1 /* dv-m68hc11tim.c -- Simulation of the 68HC11 timer devices.
2 Copyright (C) 1999, 2000, 2002, 2003, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Written by Stephane Carrez (stcarrez@nerim.fr)
5 (From a driver model Contributed by Cygnus Solutions.)
6
7 This file is part of the program GDB, the GNU debugger.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 */
23
24
25 #include "sim-main.h"
26 #include "hw-main.h"
27 #include "sim-assert.h"
28 #include <limits.h>
29
30 /* DEVICE
31
32 m68hc11tim - m68hc11 timer devices
33
34
35 DESCRIPTION
36
37 Implements the m68hc11 timer as described in Chapter 10
38 of the pink book.
39
40
41 PROPERTIES
42
43 none
44
45
46 PORTS
47
48 reset (input)
49
50 Reset the timer device. This port must be connected to
51 the cpu-reset output port.
52
53 capture (input)
54
55 Input capture. This port must be connected to the input
56 captures. It latches the current TCNT free running counter
57 into one of the three input capture registers.
58
59 */
60
61
62
63 /* port ID's */
64
65 enum
66 {
67 RESET_PORT,
68 CAPTURE
69 };
70
71
72 static const struct hw_port_descriptor m68hc11tim_ports[] =
73 {
74 { "reset", RESET_PORT, 0, input_port, },
75 { "capture", CAPTURE, 0, input_port, },
76 { NULL, },
77 };
78
79
80 /* Timer Controller information. */
81 struct m68hc11tim
82 {
83 unsigned long cop_delay;
84 unsigned long rti_delay;
85 unsigned long ovf_delay;
86 signed64 clock_prescaler;
87 signed64 tcnt_adjust;
88 signed64 cop_prev_interrupt;
89 signed64 rti_prev_interrupt;
90
91 /* Periodic timers. */
92 struct hw_event *rti_timer_event;
93 struct hw_event *cop_timer_event;
94 struct hw_event *tof_timer_event;
95 struct hw_event *cmp_timer_event;
96 };
97
98
99
100 /* Finish off the partially created hw device. Attach our local
101 callbacks. Wire up our port names etc. */
102
103 static hw_io_read_buffer_method m68hc11tim_io_read_buffer;
104 static hw_io_write_buffer_method m68hc11tim_io_write_buffer;
105 static hw_port_event_method m68hc11tim_port_event;
106 static hw_ioctl_method m68hc11tim_ioctl;
107
108 #define M6811_TIMER_FIRST_REG (M6811_TCTN)
109 #define M6811_TIMER_LAST_REG (M6811_PACNT)
110
111
112 static void
attach_m68hc11tim_regs(struct hw * me,struct m68hc11tim * controller)113 attach_m68hc11tim_regs (struct hw *me,
114 struct m68hc11tim *controller)
115 {
116 hw_attach_address (hw_parent (me), M6811_IO_LEVEL, io_map,
117 M6811_TIMER_FIRST_REG,
118 M6811_TIMER_LAST_REG - M6811_TIMER_FIRST_REG + 1,
119 me);
120 }
121
122 static void
m68hc11tim_finish(struct hw * me)123 m68hc11tim_finish (struct hw *me)
124 {
125 struct m68hc11tim *controller;
126
127 controller = HW_ZALLOC (me, struct m68hc11tim);
128 set_hw_data (me, controller);
129 set_hw_io_read_buffer (me, m68hc11tim_io_read_buffer);
130 set_hw_io_write_buffer (me, m68hc11tim_io_write_buffer);
131 set_hw_ports (me, m68hc11tim_ports);
132 set_hw_port_event (me, m68hc11tim_port_event);
133 #ifdef set_hw_ioctl
134 set_hw_ioctl (me, m68hc11tim_ioctl);
135 #else
136 me->to_ioctl = m68hc11tim_ioctl;
137 #endif
138
139 /* Preset defaults. */
140 controller->clock_prescaler = 1;
141 controller->tcnt_adjust = 0;
142
143 /* Attach ourself to our parent bus. */
144 attach_m68hc11tim_regs (me, controller);
145 }
146
147
148 /* An event arrives on an interrupt port. */
149
150 static void
m68hc11tim_port_event(struct hw * me,int my_port,struct hw * source,int source_port,int level)151 m68hc11tim_port_event (struct hw *me,
152 int my_port,
153 struct hw *source,
154 int source_port,
155 int level)
156 {
157 SIM_DESC sd;
158 struct m68hc11tim *controller;
159 sim_cpu *cpu;
160 unsigned8 val;
161 unsigned16 tcnt;
162
163 controller = hw_data (me);
164 sd = hw_system (me);
165 cpu = STATE_CPU (sd, 0);
166 switch (my_port)
167 {
168 case RESET_PORT:
169 {
170 HW_TRACE ((me, "Timer reset"));
171
172 /* Cancel all timer events. */
173 if (controller->rti_timer_event)
174 {
175 hw_event_queue_deschedule (me, controller->rti_timer_event);
176 controller->rti_timer_event = 0;
177 controller->rti_prev_interrupt = 0;
178 }
179 if (controller->cop_timer_event)
180 {
181 hw_event_queue_deschedule (me, controller->cop_timer_event);
182 controller->cop_timer_event = 0;
183 controller->cop_prev_interrupt = 0;
184 }
185 if (controller->tof_timer_event)
186 {
187 hw_event_queue_deschedule (me, controller->tof_timer_event);
188 controller->tof_timer_event = 0;
189 }
190 if (controller->cmp_timer_event)
191 {
192 hw_event_queue_deschedule (me, controller->cmp_timer_event);
193 controller->cmp_timer_event = 0;
194 }
195
196 /* Reset the state of Timer registers. This also restarts
197 the timer events (overflow and RTI clock). The pending
198 flags (TFLG2) must be cleared explicitly here. */
199 val = 0;
200 cpu->ios[M6811_TFLG2] = 0;
201 m68hc11tim_io_write_buffer (me, &val, io_map,
202 (unsigned_word) M6811_TMSK2, 1);
203 m68hc11tim_io_write_buffer (me, &val, io_map,
204 (unsigned_word) M6811_PACTL, 1);
205 break;
206 }
207
208 case CAPTURE:
209 tcnt = (uint16) ((cpu->cpu_absolute_cycle - controller->tcnt_adjust)
210 / controller->clock_prescaler);
211 switch (level)
212 {
213 case M6811_TIC1:
214 case M6811_TIC2:
215 case M6811_TIC3:
216 cpu->ios[level] = tcnt >> 8;
217 cpu->ios[level + 1] = tcnt;
218 break;
219
220 default:
221 hw_abort (me, "Invalid event parameter %d", level);
222 break;
223 }
224 break;
225
226 default:
227 hw_abort (me, "Event on unknown port %d", my_port);
228 break;
229 }
230 }
231
232 enum event_type
233 {
234 COP_EVENT,
235 RTI_EVENT,
236 OVERFLOW_EVENT,
237 COMPARE_EVENT
238 };
239
240 void
m68hc11tim_timer_event(struct hw * me,void * data)241 m68hc11tim_timer_event (struct hw *me, void *data)
242 {
243 SIM_DESC sd;
244 struct m68hc11tim *controller;
245 sim_cpu *cpu;
246 enum event_type type;
247 unsigned long delay;
248 struct hw_event **eventp;
249 int check_interrupt = 0;
250 unsigned mask;
251 unsigned flags;
252 unsigned long tcnt_internal;
253 unsigned long tcnt, tcnt_prev;
254 signed64 tcnt_insn_end;
255 signed64 tcnt_insn_start;
256 int i;
257 sim_events *events;
258
259 controller = hw_data (me);
260 sd = hw_system (me);
261 cpu = STATE_CPU (sd, 0);
262 type = (enum event_type) ((long) data) & 0x0FF;
263 events = STATE_EVENTS (sd);
264
265 delay = 0;
266 switch (type)
267 {
268 case COP_EVENT:
269 eventp = &controller->cop_timer_event;
270 delay = controller->cop_delay;
271 delay = controller->cop_prev_interrupt + controller->cop_delay;
272 controller->cop_prev_interrupt = delay;
273 delay = delay - cpu->cpu_absolute_cycle;
274 check_interrupt = 1;
275 delay += events->nr_ticks_to_process;
276 break;
277
278 case RTI_EVENT:
279 eventp = &controller->rti_timer_event;
280 delay = controller->rti_prev_interrupt + controller->rti_delay;
281
282 if (((long) (data) & 0x0100) == 0)
283 {
284 cpu->ios[M6811_TFLG2] |= M6811_RTIF;
285 check_interrupt = 1;
286 controller->rti_prev_interrupt = delay;
287 delay += controller->rti_delay;
288 }
289 delay = delay - cpu->cpu_absolute_cycle;
290 delay += events->nr_ticks_to_process;
291 break;
292
293 case OVERFLOW_EVENT:
294 /* Compute the 68HC11 internal free running counter. */
295 tcnt_internal = (cpu->cpu_absolute_cycle - controller->tcnt_adjust);
296
297 /* We must take into account the prescaler that comes
298 before the counter (it's a power of 2). */
299 tcnt_internal &= 0x0ffff * controller->clock_prescaler;
300
301 /* Compute the time when the overflow will occur. It occurs when
302 the counter increments from 0x0ffff to 0x10000 (and thus resets). */
303 delay = (0x10000 * controller->clock_prescaler) - tcnt_internal;
304
305 /* The 'nr_ticks_to_process' will be subtracted when the event
306 is scheduled. */
307 delay += events->nr_ticks_to_process;
308
309 eventp = &controller->tof_timer_event;
310 if (((long) (data) & 0x100) == 0)
311 {
312 cpu->ios[M6811_TFLG2] |= M6811_TOF;
313 check_interrupt = 1;
314 }
315 break;
316
317 case COMPARE_EVENT:
318 /* Compute value of TCNT register (64-bit precision) at beginning
319 and end of instruction. */
320 tcnt_insn_end = (cpu->cpu_absolute_cycle - controller->tcnt_adjust);
321 tcnt_insn_start = (tcnt_insn_end - cpu->cpu_current_cycle);
322
323 /* TCNT value at beginning of current instruction. */
324 tcnt_prev = (tcnt_insn_start / controller->clock_prescaler) & 0x0ffff;
325
326 /* TCNT value at end of current instruction. */
327 tcnt = (tcnt_insn_end / controller->clock_prescaler) & 0x0ffff;
328
329 /* We must take into account the prescaler that comes
330 before the counter (it's a power of 2). */
331 tcnt_internal = tcnt_insn_end;
332 tcnt_internal &= 0x0ffff * controller->clock_prescaler;
333
334 flags = cpu->ios[M6811_TMSK1];
335 mask = 0x80;
336 delay = 65536 * controller->clock_prescaler;
337
338 /* Scan each output compare register to see if one matches
339 the free running counter. Set the corresponding OCi flag
340 if the output compare is enabled. */
341 for (i = M6811_TOC1; i <= M6811_TOC5; i += 2, mask >>= 1)
342 {
343 unsigned long compare;
344
345 compare = (cpu->ios[i] << 8) + cpu->ios[i + 1];
346
347 /* See if compare is reached; handle wrap arround. */
348 if ((compare >= tcnt_prev && compare <= tcnt && tcnt_prev < tcnt)
349 || (compare >= tcnt_prev && tcnt_prev > tcnt)
350 || (compare < tcnt && tcnt_prev > tcnt))
351 {
352 unsigned dt;
353
354 if (compare > tcnt)
355 dt = 0x10000 - compare - tcnt;
356 else
357 dt = tcnt - compare;
358
359 cpu->ios[M6811_TFLG1] |= mask;
360
361 /* Raise interrupt now at the correct CPU cycle so that
362 we can find the interrupt latency. */
363 cpu->cpu_absolute_cycle -= dt;
364 interrupts_update_pending (&cpu->cpu_interrupts);
365 cpu->cpu_absolute_cycle += dt;
366 }
367
368 /* Compute how many times for the next match.
369 Use the internal counter value to take into account the
370 prescaler accurately. */
371 compare = compare * controller->clock_prescaler;
372 if (compare > tcnt_internal)
373 compare = compare - tcnt_internal;
374 else
375 compare = compare - tcnt_internal
376 + 65536 * controller->clock_prescaler;
377
378 if (compare < delay)
379 delay = compare;
380 }
381
382 /* Deactivate the compare timer if no output compare is enabled. */
383 if ((flags & 0xF8) == 0)
384 delay = 0;
385 else
386 delay += events->nr_ticks_to_process;
387
388 eventp = &controller->cmp_timer_event;
389 break;
390
391 default:
392 eventp = 0;
393 break;
394 }
395
396 if (*eventp)
397 {
398 hw_event_queue_deschedule (me, *eventp);
399 *eventp = 0;
400 }
401
402 if (delay != 0)
403 {
404 *eventp = hw_event_queue_schedule (me, delay,
405 m68hc11tim_timer_event,
406 (void*) type);
407 }
408
409 if (check_interrupt)
410 interrupts_update_pending (&cpu->cpu_interrupts);
411 }
412
413
414 /* Descriptions of the Timer I/O ports. These descriptions are only used to
415 give information of the Timer device under GDB. */
416 io_reg_desc tmsk1_desc[] = {
417 { M6811_OC1I, "OC1I ", "Timer Output Compare 1 Interrupt Enable" },
418 { M6811_OC2I, "OC2I ", "Timer Output Compare 2 Interrupt Enable" },
419 { M6811_OC3I, "OC3I ", "Timer Output Compare 3 Interrupt Enable" },
420 { M6811_OC4I, "OC4I ", "Timer Output Compare 4 Interrupt Enable" },
421 { M6811_OC5I, "OC5I ", "Timer Input Capture 4 / Output Compare 5 Enable" },
422 { M6811_IC1I, "IC1I ", "Timer Input Capture 1 Interrupt Enable" },
423 { M6811_IC2I, "IC2I ", "Timer Input Capture 2 Interrupt Enable" },
424 { M6811_IC3I, "IC3I ", "Timer Input Capture 3 Interrupt Enable" },
425 { 0, 0, 0 }
426 };
427
428 io_reg_desc tflg1_desc[] = {
429 { M6811_OC1F, "OC1F ", "Timer Output Compare 1 Interrupt Flag" },
430 { M6811_OC2F, "OC2F ", "Timer Output Compare 2 Interrupt Flag" },
431 { M6811_OC3F, "OC3F ", "Timer Output Compare 3 Interrupt Flag" },
432 { M6811_OC4F, "OC4F ", "Timer Output Compare 4 Interrupt Flag" },
433 { M6811_OC5F, "OC5F ", "Timer Input Capture 4 / Output Compare 5 Flag" },
434 { M6811_IC1F, "IC1F ", "Timer Input Capture 1 Interrupt Flag" },
435 { M6811_IC2F, "IC2F ", "Timer Input Capture 2 Interrupt Flag" },
436 { M6811_IC3F, "IC3F ", "Timer Input Capture 3 Interrupt Flag" },
437 { 0, 0, 0 }
438 };
439
440 io_reg_desc tmsk2_desc[] = {
441 { M6811_TOI, "TOI ", "Timer Overflow Interrupt Enable" },
442 { M6811_RTII, "RTII ", "RTI Interrupt Enable" },
443 { M6811_PAOVI, "PAOVI ", "Pulse Accumulator Overflow Interrupt Enable" },
444 { M6811_PAII, "PAII ", "Pulse Accumulator Interrupt Enable" },
445 { M6811_PR1, "PR1 ", "Timer prescaler (PR1)" },
446 { M6811_PR0, "PR0 ", "Timer prescaler (PR0)" },
447 { M6811_TPR_1, "TPR_1 ", "Timer prescaler div 1" },
448 { M6811_TPR_4, "TPR_4 ", "Timer prescaler div 4" },
449 { M6811_TPR_8, "TPR_8 ", "Timer prescaler div 8" },
450 { M6811_TPR_16, "TPR_16", "Timer prescaler div 16" },
451 { 0, 0, 0 }
452 };
453
454 io_reg_desc tflg2_desc[] = {
455 { M6811_TOF, "TOF ", "Timer Overflow Bit" },
456 { M6811_RTIF, "RTIF ", "Read Time Interrupt Flag" },
457 { M6811_PAOVF, "PAOVF ", "Pulse Accumulator Overflow Interrupt Flag" },
458 { M6811_PAIF, "PAIF ", "Pulse Accumulator Input Edge" },
459 { 0, 0, 0 }
460 };
461
462 io_reg_desc pactl_desc[] = {
463 { M6811_DDRA7, "DDRA7 ", "Data Direction for Port A bit-7" },
464 { M6811_PAEN, "PAEN ", "Pulse Accumulator System Enable" },
465 { M6811_PAMOD, "PAMOD ", "Pulse Accumulator Mode" },
466 { M6811_PEDGE, "PEDGE ", "Pulse Accumulator Edge Control" },
467 { M6811_RTR1, "RTR1 ", "RTI Interrupt rate select (RTR1)" },
468 { M6811_RTR0, "RTR0 ", "RTI Interrupt rate select (RTR0)" },
469 { 0, 0, 0 }
470 };
471
472 static double
to_realtime(sim_cpu * cpu,signed64 t)473 to_realtime (sim_cpu *cpu, signed64 t)
474 {
475 return (double) (t) / (double) (cpu->cpu_frequency / 4);
476 }
477
478 const char*
cycle_to_string(sim_cpu * cpu,signed64 t,int flags)479 cycle_to_string (sim_cpu *cpu, signed64 t, int flags)
480 {
481 char time_buf[32];
482 char cycle_buf[32];
483 static char buf[64];
484
485 time_buf[0] = 0;
486 cycle_buf[0] = 0;
487 if (flags & PRINT_TIME)
488 {
489 double dt;
490
491 dt = to_realtime (cpu, t);
492 if (dt < 0.001)
493 sprintf (time_buf, " (%3.1f us)", dt * 1000000.0);
494 else if (dt < 1.0)
495 sprintf (time_buf, " (%3.1f ms)", dt * 1000.0);
496 else
497 sprintf (time_buf, " (%3.1f s)", dt);
498 }
499
500 if (flags & PRINT_CYCLE)
501 sprintf (cycle_buf, " cycle%s",
502 (t > 1 ? "s" : ""));
503
504 if (t < LONG_MAX)
505 sprintf (buf, "%9lu%s%s", (unsigned long) t, cycle_buf, time_buf);
506 else
507 sprintf (buf, "%llu%s%s", t, cycle_buf, time_buf);
508 return buf;
509 }
510
511 static void
m68hc11tim_print_timer(struct hw * me,const char * name,struct hw_event * event)512 m68hc11tim_print_timer (struct hw *me, const char *name,
513 struct hw_event *event)
514 {
515 SIM_DESC sd;
516
517 sd = hw_system (me);
518 if (event == 0)
519 {
520 sim_io_printf (sd, " No %s interrupt will be raised.\n", name);
521 }
522 else
523 {
524 signed64 t;
525 sim_cpu* cpu;
526
527 cpu = STATE_CPU (sd, 0);
528
529 t = hw_event_remain_time (me, event);
530 sim_io_printf (sd, " Next %s interrupt in %s\n",
531 name, cycle_to_string (cpu, t, PRINT_TIME | PRINT_CYCLE));
532 }
533 }
534
535 static void
m68hc11tim_info(struct hw * me)536 m68hc11tim_info (struct hw *me)
537 {
538 SIM_DESC sd;
539 uint16 base = 0;
540 sim_cpu *cpu;
541 struct m68hc11tim *controller;
542 uint8 val;
543 uint16 val16;
544
545 sd = hw_system (me);
546 cpu = STATE_CPU (sd, 0);
547 controller = hw_data (me);
548
549 sim_io_printf (sd, "M68HC11 Timer:\n");
550
551 base = cpu_get_io_base (cpu);
552
553 /* Info for TIC1 */
554 val16 = (cpu->ios[M6811_TIC1_H] << 8) + cpu->ios[M6811_TIC1_L];
555 print_io_word (sd, "TIC1 ", 0, val16, base + M6811_TIC1);
556 sim_io_printf (sd, "\n");
557
558 /* Info for TIC2 */
559 val16 = (cpu->ios[M6811_TIC2_H] << 8) + cpu->ios[M6811_TIC2_L];
560 print_io_word (sd, "TIC2 ", 0, val16, base + M6811_TIC2);
561 sim_io_printf (sd, "\n");
562
563 /* Info for TIC3 */
564 val16 = (cpu->ios[M6811_TIC3_H] << 8) + cpu->ios[M6811_TIC3_L];
565 print_io_word (sd, "TIC3 ", 0, val16, base + M6811_TIC3);
566 sim_io_printf (sd, "\n");
567
568 /* Info for TOC1 */
569 val16 = (cpu->ios[M6811_TOC1_H] << 8) + cpu->ios[M6811_TOC1_L];
570 print_io_word (sd, "TOC1 ", 0, val16, base + M6811_TOC1);
571 sim_io_printf (sd, "\n");
572
573 /* Info for TOC2 */
574 val16 = (cpu->ios[M6811_TOC2_H] << 8) + cpu->ios[M6811_TOC2_L];
575 print_io_word (sd, "TOC2 ", 0, val16, base + M6811_TOC2);
576 sim_io_printf (sd, "\n");
577
578 /* Info for TOC3 */
579 val16 = (cpu->ios[M6811_TOC3_H] << 8) + cpu->ios[M6811_TOC3_L];
580 print_io_word (sd, "TOC3 ", 0, val16, base + M6811_TOC3);
581 sim_io_printf (sd, "\n");
582
583 /* Info for TOC4 */
584 val16 = (cpu->ios[M6811_TOC4_H] << 8) + cpu->ios[M6811_TOC4_L];
585 print_io_word (sd, "TOC4 ", 0, val16, base + M6811_TOC4);
586 sim_io_printf (sd, "\n");
587
588 /* Info for TOC5 */
589 val16 = (cpu->ios[M6811_TOC5_H] << 8) + cpu->ios[M6811_TOC5_L];
590 print_io_word (sd, "TOC5 ", 0, val16, base + M6811_TOC5);
591 sim_io_printf (sd, "\n");
592
593 /* Info for TMSK1 */
594 val = cpu->ios[M6811_TMSK1];
595 print_io_byte (sd, "TMSK1 ", tmsk1_desc, val, base + M6811_TMSK1);
596 sim_io_printf (sd, "\n");
597
598 /* Info for TFLG1 */
599 val = cpu->ios[M6811_TFLG1];
600 print_io_byte (sd, "TFLG1", tflg1_desc, val, base + M6811_TFLG1);
601 sim_io_printf (sd, "\n");
602
603 val = cpu->ios[M6811_TMSK2];
604 print_io_byte (sd, "TMSK2 ", tmsk2_desc, val, base + M6811_TMSK2);
605 sim_io_printf (sd, "\n");
606
607 val = cpu->ios[M6811_TFLG2];
608 print_io_byte (sd, "TFLG2", tflg2_desc, val, base + M6811_TFLG2);
609 sim_io_printf (sd, "\n");
610
611 val = cpu->ios[M6811_PACTL];
612 print_io_byte (sd, "PACTL", pactl_desc, val, base + M6811_PACTL);
613 sim_io_printf (sd, "\n");
614
615 val = cpu->ios[M6811_PACNT];
616 print_io_byte (sd, "PACNT", 0, val, base + M6811_PACNT);
617 sim_io_printf (sd, "\n");
618
619 /* Give info about the next timer interrupts. */
620 m68hc11tim_print_timer (me, "RTI", controller->rti_timer_event);
621 m68hc11tim_print_timer (me, "COP", controller->cop_timer_event);
622 m68hc11tim_print_timer (me, "OVERFLOW", controller->tof_timer_event);
623 m68hc11tim_print_timer (me, "COMPARE", controller->cmp_timer_event);
624 }
625
626 static int
m68hc11tim_ioctl(struct hw * me,hw_ioctl_request request,va_list ap)627 m68hc11tim_ioctl (struct hw *me,
628 hw_ioctl_request request,
629 va_list ap)
630 {
631 m68hc11tim_info (me);
632 return 0;
633 }
634
635 /* generic read/write */
636
637 static unsigned
m68hc11tim_io_read_buffer(struct hw * me,void * dest,int space,unsigned_word base,unsigned nr_bytes)638 m68hc11tim_io_read_buffer (struct hw *me,
639 void *dest,
640 int space,
641 unsigned_word base,
642 unsigned nr_bytes)
643 {
644 SIM_DESC sd;
645 struct m68hc11tim *controller;
646 sim_cpu *cpu;
647 unsigned8 val;
648 unsigned cnt = 0;
649
650 HW_TRACE ((me, "read 0x%08lx %d", (long) base, (int) nr_bytes));
651
652 sd = hw_system (me);
653 cpu = STATE_CPU (sd, 0);
654 controller = hw_data (me);
655
656 while (nr_bytes)
657 {
658 switch (base)
659 {
660 /* The cpu_absolute_cycle is updated after each instruction.
661 Reading in a 16-bit register will be split in two accesses
662 but this will be atomic within the simulator. */
663 case M6811_TCTN_H:
664 val = (uint8) ((cpu->cpu_absolute_cycle - controller->tcnt_adjust)
665 / (controller->clock_prescaler * 256));
666 break;
667
668 case M6811_TCTN_L:
669 val = (uint8) ((cpu->cpu_absolute_cycle - controller->tcnt_adjust)
670 / controller->clock_prescaler);
671 break;
672
673 default:
674 val = cpu->ios[base];
675 break;
676 }
677 *((unsigned8*) dest) = val;
678 dest = (char*) dest + 1;
679 base++;
680 nr_bytes--;
681 cnt++;
682 }
683 return cnt;
684 }
685
686 static unsigned
m68hc11tim_io_write_buffer(struct hw * me,const void * source,int space,unsigned_word base,unsigned nr_bytes)687 m68hc11tim_io_write_buffer (struct hw *me,
688 const void *source,
689 int space,
690 unsigned_word base,
691 unsigned nr_bytes)
692 {
693 SIM_DESC sd;
694 struct m68hc11tim *controller;
695 sim_cpu *cpu;
696 unsigned8 val, n;
697 signed64 adj;
698 int reset_compare = 0;
699 int reset_overflow = 0;
700 int cnt = 0;
701
702 HW_TRACE ((me, "write 0x%08lx %d", (long) base, (int) nr_bytes));
703
704 sd = hw_system (me);
705 cpu = STATE_CPU (sd, 0);
706 controller = hw_data (me);
707
708 while (nr_bytes)
709 {
710 val = *((const unsigned8*) source);
711 switch (base)
712 {
713 /* Set the timer counter low part, trying to preserve the low part.
714 We compute the absolute cycle adjustment that we have to apply
715 to obtain the timer current value. Computation must be made
716 in 64-bit to avoid overflow problems. */
717 case M6811_TCTN_L:
718 adj = ((cpu->cpu_absolute_cycle - controller->tcnt_adjust)
719 / (controller->clock_prescaler * (signed64) 256)) & 0x0FF;
720 adj = cpu->cpu_absolute_cycle
721 - (adj * controller->clock_prescaler * (signed64) 256)
722 - ((signed64) adj * controller->clock_prescaler);
723 controller->tcnt_adjust = adj;
724 reset_compare = 1;
725 reset_overflow = 1;
726 break;
727
728 case M6811_TCTN_H:
729 adj = ((cpu->cpu_absolute_cycle - controller->tcnt_adjust)
730 / controller->clock_prescaler) & 0x0ff;
731 adj = cpu->cpu_absolute_cycle
732 - ((signed64) val * controller->clock_prescaler * (signed64) 256)
733 - (adj * controller->clock_prescaler);
734 controller->tcnt_adjust = adj;
735 reset_compare = 1;
736 reset_overflow = 1;
737 break;
738
739 case M6811_TMSK2:
740
741 /* Timer prescaler cannot be changed after 64 bus cycles. */
742 if (cpu->cpu_absolute_cycle >= 64)
743 {
744 val &= ~(M6811_PR1 | M6811_PR0);
745 val |= cpu->ios[M6811_TMSK2] & (M6811_PR1 | M6811_PR0);
746 }
747 switch (val & (M6811_PR1 | M6811_PR0))
748 {
749 case 0:
750 n = 1;
751 break;
752 case M6811_PR0:
753 n = 4;
754 break;
755 case M6811_PR1:
756 n = 8;
757 break;
758 default:
759 case M6811_PR1 | M6811_PR0:
760 n = 16;
761 break;
762 }
763 if (cpu->cpu_absolute_cycle < 64)
764 {
765 reset_overflow = 1;
766 controller->clock_prescaler = n;
767 }
768 cpu->ios[base] = val;
769 interrupts_update_pending (&cpu->cpu_interrupts);
770 break;
771
772 case M6811_PACTL:
773 n = (1 << ((val & (M6811_RTR1 | M6811_RTR0))));
774 cpu->ios[base] = val;
775
776 controller->rti_delay = (long) (n) * 8192;
777 m68hc11tim_timer_event (me, (void*) (RTI_EVENT| 0x100));
778 break;
779
780 case M6811_TFLG2:
781 val &= cpu->ios[M6811_TFLG2];
782 cpu->ios[M6811_TFLG2] &= ~val;
783 interrupts_update_pending (&cpu->cpu_interrupts);
784 break;
785
786 case M6811_TMSK1:
787 cpu->ios[M6811_TMSK1] = val;
788 interrupts_update_pending (&cpu->cpu_interrupts);
789 reset_compare = 1;
790 break;
791
792 case M6811_TFLG1:
793 val &= cpu->ios[M6811_TFLG1];
794 cpu->ios[M6811_TFLG1] &= ~val;
795 interrupts_update_pending (&cpu->cpu_interrupts);
796 break;
797
798 case M6811_TOC1:
799 case M6811_TOC2:
800 case M6811_TOC3:
801 case M6811_TOC4:
802 case M6811_TOC5:
803 cpu->ios[base] = val;
804 reset_compare = 1;
805 break;
806
807 case M6811_TCTL1:
808 case M6811_TCTL2:
809 cpu->ios[base] = val;
810 break;
811
812 default:
813 cpu->ios[base] = val;
814 break;
815 }
816
817 base++;
818 nr_bytes--;
819 cnt++;
820 source = (char*) source + 1;
821 }
822
823 /* Re-compute the next timer compare event. */
824 if (reset_compare)
825 {
826 m68hc11tim_timer_event (me, (void*) (COMPARE_EVENT));
827 }
828 if (reset_overflow)
829 {
830 m68hc11tim_timer_event (me, (void*) (OVERFLOW_EVENT| 0x100));
831 }
832 return cnt;
833 }
834
835
836 const struct hw_descriptor dv_m68hc11tim_descriptor[] = {
837 { "m68hc11tim", m68hc11tim_finish },
838 { "m68hc12tim", m68hc11tim_finish },
839 { NULL },
840 };
841
842