1 /* Copyright (c) 2002,2007-2009 Michael Stumpf
2
3 Portions of documentation Copyright (c) 1990 - 1994
4 The Regents of the University of California.
5
6 All rights reserved.
7
8 Redistribution and use in source and binary forms, with or without
9 modification, are permitted provided that the following conditions are met:
10
11 * Redistributions of source code must retain the above copyright
12 notice, this list of conditions and the following disclaimer.
13
14 * Redistributions in binary form must reproduce the above copyright
15 notice, this list of conditions and the following disclaimer in
16 the documentation and/or other materials provided with the
17 distribution.
18
19 * Neither the name of the copyright holders nor the names of
20 contributors may be used to endorse or promote products derived
21 from this software without specific prior written permission.
22
23 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 POSSIBILITY OF SUCH DAMAGE. */
34
35 /* $Id: math.h 2503 2016-02-07 22:59:47Z joerg_wunsch $ */
36
37 /*
38 math.h - mathematical functions
39
40 Author : Michael Stumpf
41 Michael.Stumpf@t-online.de
42
43 __ATTR_CONST__ added by marekm@linux.org.pl for functions
44 that "do not examine any values except their arguments, and have
45 no effects except the return value", for better optimization by gcc.
46 */
47
48 #ifndef __MATH_H
49 #define __MATH_H
50
51 /** \file */
52 /** \defgroup avr_math <math.h>: Mathematics
53 \code #include <math.h> \endcode
54
55 This header file declares basic mathematics constants and
56 functions.
57
58 \par Notes:
59 - In order to access the functions declared herein, it is usually
60 also required to additionally link against the library \c libm.a.
61 See also the related \ref faq_libm "FAQ entry".
62 - Math functions do not raise exceptions and do not change the
63 \c errno variable. Therefore the majority of them are declared
64 with const attribute, for better optimization by GCC. */
65
66
67 /** \ingroup avr_math */
68 /*@{*/
69
70 /** The constant \a e. */
71 #define M_E 2.7182818284590452354
72
73 /** The logarithm of the \a e to base 2. */
74 #define M_LOG2E 1.4426950408889634074 /* log_2 e */
75
76 /** The logarithm of the \a e to base 10. */
77 #define M_LOG10E 0.43429448190325182765 /* log_10 e */
78
79 /** The natural logarithm of the 2. */
80 #define M_LN2 0.69314718055994530942 /* log_e 2 */
81
82 /** The natural logarithm of the 10. */
83 #define M_LN10 2.30258509299404568402 /* log_e 10 */
84
85 /** The constant \a pi. */
86 #define M_PI 3.14159265358979323846 /* pi */
87
88 /** The constant \a pi/2. */
89 #define M_PI_2 1.57079632679489661923 /* pi/2 */
90
91 /** The constant \a pi/4. */
92 #define M_PI_4 0.78539816339744830962 /* pi/4 */
93
94 /** The constant \a 1/pi. */
95 #define M_1_PI 0.31830988618379067154 /* 1/pi */
96
97 /** The constant \a 2/pi. */
98 #define M_2_PI 0.63661977236758134308 /* 2/pi */
99
100 /** The constant \a 2/sqrt(pi). */
101 #define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
102
103 /** The square root of 2. */
104 #define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
105
106 /** The constant \a 1/sqrt(2). */
107 #define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
108
109 /** NAN constant. */
110 #define NAN __builtin_nan("")
111
112 /** INFINITY constant. */
113 #define INFINITY __builtin_inf()
114
115
116 #ifndef __ATTR_CONST__
117 # define __ATTR_CONST__ __attribute__((__const__))
118 #endif
119
120 #ifdef __cplusplus
121 extern "C" {
122 #endif
123
124 /**
125 The cos() function returns the cosine of \a __x, measured in radians.
126 */
127 extern double cos(double __x) __ATTR_CONST__;
128 #define cosf cos /**< The alias for cos(). */
129
130 /**
131 The sin() function returns the sine of \a __x, measured in radians.
132 */
133 extern double sin(double __x) __ATTR_CONST__;
134 #define sinf sin /**< The alias for sin(). */
135
136 /**
137 The tan() function returns the tangent of \a __x, measured in radians.
138 */
139 extern double tan(double __x) __ATTR_CONST__;
140 #define tanf tan /**< The alias for tan(). */
141
142 /**
143 The fabs() function computes the absolute value of a floating-point
144 number \a __x.
145 */
146 extern double fabs(double __x) __ATTR_CONST__;
147 #define fabsf fabs /**< The alias for fabs(). */
148
149 /**
150 The function fmod() returns the floating-point remainder of <em>__x /
151 __y</em>.
152 */
153 extern double fmod(double __x, double __y) __ATTR_CONST__;
154 #define fmodf fmod /**< The alias for fmod(). */
155
156 /**
157 The modf() function breaks the argument \a __x into integral and
158 fractional parts, each of which has the same sign as the argument.
159 It stores the integral part as a double in the object pointed to by
160 \a __iptr.
161
162 The modf() function returns the signed fractional part of \a __x.
163
164 \note This implementation skips writing by zero pointer. However,
165 the GCC 4.3 can replace this function with inline code that does not
166 permit to use NULL address for the avoiding of storing.
167 */
168 extern double modf(double __x, double *__iptr);
169
170 /** An alias for modf(). */
171 extern float modff (float __x, float *__iptr);
172
173 /**
174 The sqrt() function returns the non-negative square root of \a __x.
175 */
176 extern double sqrt(double __x) __ATTR_CONST__;
177
178 /** An alias for sqrt(). */
179 extern float sqrtf (float) __ATTR_CONST__;
180
181 /**
182 The cbrt() function returns the cube root of \a __x.
183 */
184 extern double cbrt(double __x) __ATTR_CONST__;
185 #define cbrtf cbrt /**< The alias for cbrt(). */
186
187 /**
188 The hypot() function returns <em>sqrt(__x*__x + __y*__y)</em>. This
189 is the length of the hypotenuse of a right triangle with sides of
190 length \a __x and \a __y, or the distance of the point (\a __x, \a
191 __y) from the origin. Using this function instead of the direct
192 formula is wise, since the error is much smaller. No underflow with
193 small \a __x and \a __y. No overflow if result is in range.
194 */
195 extern double hypot (double __x, double __y) __ATTR_CONST__;
196 #define hypotf hypot /**< The alias for hypot(). */
197
198 /**
199 The function square() returns <em>__x * __x</em>.
200
201 \note This function does not belong to the C standard definition.
202 */
203 extern double square(double __x) __ATTR_CONST__;
204 #define squaref square /**< The alias for square(). */
205
206 /**
207 The floor() function returns the largest integral value less than or
208 equal to \a __x, expressed as a floating-point number.
209 */
210 extern double floor(double __x) __ATTR_CONST__;
211 #define floorf floor /**< The alias for floor(). */
212
213 /**
214 The ceil() function returns the smallest integral value greater than
215 or equal to \a __x, expressed as a floating-point number.
216 */
217 extern double ceil(double __x) __ATTR_CONST__;
218 #define ceilf ceil /**< The alias for ceil(). */
219
220 /**
221 The frexp() function breaks a floating-point number into a normalized
222 fraction and an integral power of 2. It stores the integer in the \c
223 int object pointed to by \a __pexp.
224
225 If \a __x is a normal float point number, the frexp() function
226 returns the value \c v, such that \c v has a magnitude in the
227 interval [1/2, 1) or zero, and \a __x equals \c v times 2 raised to
228 the power \a __pexp. If \a __x is zero, both parts of the result are
229 zero. If \a __x is not a finite number, the frexp() returns \a __x as
230 is and stores 0 by \a __pexp.
231
232 \note This implementation permits a zero pointer as a directive to
233 skip a storing the exponent.
234 */
235 extern double frexp(double __x, int *__pexp);
236 #define frexpf frexp /**< The alias for frexp(). */
237
238 /**
239 The ldexp() function multiplies a floating-point number by an integral
240 power of 2. It returns the value of \a __x times 2 raised to the power
241 \a __exp.
242 */
243 extern double ldexp(double __x, int __exp) __ATTR_CONST__;
244 #define ldexpf ldexp /**< The alias for ldexp(). */
245
246 /**
247 The exp() function returns the exponential value of \a __x.
248 */
249 extern double exp(double __x) __ATTR_CONST__;
250 #define expf exp /**< The alias for exp(). */
251
252 /**
253 The cosh() function returns the hyperbolic cosine of \a __x.
254 */
255 extern double cosh(double __x) __ATTR_CONST__;
256 #define coshf cosh /**< The alias for cosh(). */
257
258 /**
259 The sinh() function returns the hyperbolic sine of \a __x.
260 */
261 extern double sinh(double __x) __ATTR_CONST__;
262 #define sinhf sinh /**< The alias for sinh(). */
263
264 /**
265 The tanh() function returns the hyperbolic tangent of \a __x.
266 */
267 extern double tanh(double __x) __ATTR_CONST__;
268 #define tanhf tanh /**< The alias for tanh(). */
269
270 /**
271 The acos() function computes the principal value of the arc cosine of
272 \a __x. The returned value is in the range [0, pi] radians. A domain
273 error occurs for arguments not in the range [-1, +1].
274 */
275 extern double acos(double __x) __ATTR_CONST__;
276 #define acosf acos /**< The alias for acos(). */
277
278 /**
279 The asin() function computes the principal value of the arc sine of
280 \a __x. The returned value is in the range [-pi/2, pi/2] radians. A
281 domain error occurs for arguments not in the range [-1, +1].
282 */
283 extern double asin(double __x) __ATTR_CONST__;
284 #define asinf asin /**< The alias for asin(). */
285
286 /**
287 The atan() function computes the principal value of the arc tangent
288 of \a __x. The returned value is in the range [-pi/2, pi/2] radians.
289 */
290 extern double atan(double __x) __ATTR_CONST__;
291 #define atanf atan /**< The alias for atan(). */
292
293 /**
294 The atan2() function computes the principal value of the arc tangent
295 of <em>__y / __x</em>, using the signs of both arguments to determine
296 the quadrant of the return value. The returned value is in the range
297 [-pi, +pi] radians.
298 */
299 extern double atan2(double __y, double __x) __ATTR_CONST__;
300 #define atan2f atan2 /**< The alias for atan2(). */
301
302 /**
303 The log() function returns the natural logarithm of argument \a __x.
304 */
305 extern double log(double __x) __ATTR_CONST__;
306 #define logf log /**< The alias for log(). */
307
308 /**
309 The log10() function returns the logarithm of argument \a __x to base 10.
310 */
311 extern double log10(double __x) __ATTR_CONST__;
312 #define log10f log10 /**< The alias for log10(). */
313
314 /**
315 The function pow() returns the value of \a __x to the exponent \a __y.
316 */
317 extern double pow(double __x, double __y) __ATTR_CONST__;
318 #define powf pow /**< The alias for pow(). */
319
320 /**
321 The function isnan() returns 1 if the argument \a __x represents a
322 "not-a-number" (NaN) object, otherwise 0.
323 */
324 extern int isnan(double __x) __ATTR_CONST__;
325 #define isnanf isnan /**< The alias for isnan(). */
326
327 /**
328 The function isinf() returns 1 if the argument \a __x is positive
329 infinity, -1 if \a __x is negative infinity, and 0 otherwise.
330
331 \note The GCC 4.3 can replace this function with inline code that
332 returns the 1 value for both infinities (gcc bug #35509).
333 */
334 extern int isinf(double __x) __ATTR_CONST__;
335 #define isinff isinf /**< The alias for isinf(). */
336
337 /**
338 The isfinite() function returns a nonzero value if \a __x is finite:
339 not plus or minus infinity, and not NaN.
340 */
isfinite(double __x)341 __ATTR_CONST__ static inline int isfinite (double __x)
342 {
343 unsigned char __exp;
344 __asm__ (
345 "mov %0, %C1 \n\t"
346 "lsl %0 \n\t"
347 "mov %0, %D1 \n\t"
348 "rol %0 "
349 : "=r" (__exp)
350 : "r" (__x) );
351 return __exp != 0xff;
352 }
353 #define isfinitef isfinite /**< The alias for isfinite(). */
354
355 /**
356 The copysign() function returns \a __x but with the sign of \a __y.
357 They work even if \a __x or \a __y are NaN or zero.
358 */
copysign(double __x,double __y)359 __ATTR_CONST__ static inline double copysign (double __x, double __y)
360 {
361 __asm__ (
362 "bst %D2, 7 \n\t"
363 "bld %D0, 7 "
364 : "=r" (__x)
365 : "0" (__x), "r" (__y) );
366 return __x;
367 }
368 #define copysignf copysign /**< The alias for copysign(). */
369
370 /**
371 The signbit() function returns a nonzero value if the value of \a __x
372 has its sign bit set. This is not the same as `\a __x < 0.0',
373 because IEEE 754 floating point allows zero to be signed. The
374 comparison `-0.0 < 0.0' is false, but `signbit (-0.0)' will return a
375 nonzero value.
376 */
377 extern int signbit (double __x) __ATTR_CONST__;
378 #define signbitf signbit /**< The alias for signbit(). */
379
380 /**
381 The fdim() function returns <em>max(__x - __y, 0)</em>. If \a __x or
382 \a __y or both are NaN, NaN is returned.
383 */
384 extern double fdim (double __x, double __y) __ATTR_CONST__;
385 #define fdimf fdim /**< The alias for fdim(). */
386
387 /**
388 The fma() function performs floating-point multiply-add. This is the
389 operation <em>(__x * __y) + __z</em>, but the intermediate result is
390 not rounded to the destination type. This can sometimes improve the
391 precision of a calculation.
392 */
393 extern double fma (double __x, double __y, double __z) __ATTR_CONST__;
394 #define fmaf fma /**< The alias for fma(). */
395
396 /**
397 The fmax() function returns the greater of the two values \a __x and
398 \a __y. If an argument is NaN, the other argument is returned. If
399 both arguments are NaN, NaN is returned.
400 */
401 extern double fmax (double __x, double __y) __ATTR_CONST__;
402 #define fmaxf fmax /**< The alias for fmax(). */
403
404 /**
405 The fmin() function returns the lesser of the two values \a __x and
406 \a __y. If an argument is NaN, the other argument is returned. If
407 both arguments are NaN, NaN is returned.
408 */
409 extern double fmin (double __x, double __y) __ATTR_CONST__;
410 #define fminf fmin /**< The alias for fmin(). */
411
412 /**
413 The trunc() function rounds \a __x to the nearest integer not larger
414 in absolute value.
415 */
416 extern double trunc (double __x) __ATTR_CONST__;
417 #define truncf trunc /**< The alias for trunc(). */
418
419 /**
420 The round() function rounds \a __x to the nearest integer, but rounds
421 halfway cases away from zero (instead of to the nearest even integer).
422 Overflow is impossible.
423
424 \return The rounded value. If \a __x is an integral or infinite, \a
425 __x itself is returned. If \a __x is \c NaN, then \c NaN is returned.
426 */
427 extern double round (double __x) __ATTR_CONST__;
428 #define roundf round /**< The alias for round(). */
429
430 /**
431 The lround() function rounds \a __x to the nearest integer, but rounds
432 halfway cases away from zero (instead of to the nearest even integer).
433 This function is similar to round() function, but it differs in type of
434 return value and in that an overflow is possible.
435
436 \return The rounded long integer value. If \a __x is not a finite number
437 or an overflow was, this realization returns the \c LONG_MIN value
438 (0x80000000).
439 */
440 extern long lround (double __x) __ATTR_CONST__;
441 #define lroundf lround /**< The alias for lround(). */
442
443 /**
444 The lrint() function rounds \a __x to the nearest integer, rounding the
445 halfway cases to the even integer direction. (That is both 1.5 and 2.5
446 values are rounded to 2). This function is similar to rint() function,
447 but it differs in type of return value and in that an overflow is
448 possible.
449
450 \return The rounded long integer value. If \a __x is not a finite
451 number or an overflow was, this realization returns the \c LONG_MIN
452 value (0x80000000).
453 */
454 extern long lrint (double __x) __ATTR_CONST__;
455 #define lrintf lrint /**< The alias for lrint(). */
456
457 #ifdef __cplusplus
458 }
459 #endif
460
461 /*@}*/
462 #endif /* !__MATH_H */
463