1 //===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains types to represent alignments.
10 // They are instrumented to guarantee some invariants are preserved and prevent
11 // invalid manipulations.
12 //
13 // - Align represents an alignment in bytes, it is always set and always a valid
14 // power of two, its minimum value is 1 which means no alignment requirements.
15 //
16 // - MaybeAlign is an optional type, it may be undefined or set. When it's set
17 // you can get the underlying Align type by using the getValue() method.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #ifndef LLVM_SUPPORT_ALIGNMENT_H_
22 #define LLVM_SUPPORT_ALIGNMENT_H_
23 
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/MathExtras.h"
27 #include <cassert>
28 #include <limits>
29 
30 namespace llvm {
31 
32 #define ALIGN_CHECK_ISPOSITIVE(decl)                                           \
33   assert(decl > 0 && (#decl " should be defined"))
34 #define ALIGN_CHECK_ISSET(decl)                                                \
35   assert(decl.hasValue() && (#decl " should be defined"))
36 
37 /// This struct is a compact representation of a valid (non-zero power of two)
38 /// alignment.
39 /// It is suitable for use as static global constants.
40 struct Align {
41 private:
42   uint8_t ShiftValue = 0; /// The log2 of the required alignment.
43                           /// ShiftValue is less than 64 by construction.
44 
45   friend struct MaybeAlign;
46   friend unsigned Log2(Align);
47   friend bool operator==(Align Lhs, Align Rhs);
48   friend bool operator!=(Align Lhs, Align Rhs);
49   friend bool operator<=(Align Lhs, Align Rhs);
50   friend bool operator>=(Align Lhs, Align Rhs);
51   friend bool operator<(Align Lhs, Align Rhs);
52   friend bool operator>(Align Lhs, Align Rhs);
53   friend unsigned encode(struct MaybeAlign A);
54   friend struct MaybeAlign decodeMaybeAlign(unsigned Value);
55 
56   /// A trivial type to allow construction of constexpr Align.
57   /// This is currently needed to workaround a bug in GCC 5.3 which prevents
58   /// definition of constexpr assign operators.
59   /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic
60   /// FIXME: Remove this, make all assign operators constexpr and introduce user
61   /// defined literals when we don't have to support GCC 5.3 anymore.
62   /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain
63   struct LogValue {
64     uint8_t Log;
65   };
66 
67 public:
68   /// Default is byte-aligned.
69   constexpr Align() = default;
70   /// Do not perform checks in case of copy/move construct/assign, because the
71   /// checks have been performed when building `Other`.
72   constexpr Align(const Align &Other) = default;
73   constexpr Align(Align &&Other) = default;
74   Align &operator=(const Align &Other) = default;
75   Align &operator=(Align &&Other) = default;
76 
AlignAlign77   explicit Align(uint64_t Value) {
78     assert(Value > 0 && "Value must not be 0");
79     assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2");
80     ShiftValue = Log2_64(Value);
81     assert(ShiftValue < 64 && "Broken invariant");
82   }
83 
84   /// This is a hole in the type system and should not be abused.
85   /// Needed to interact with C for instance.
valueAlign86   uint64_t value() const { return uint64_t(1) << ShiftValue; }
87 
88   /// Returns a default constructed Align which corresponds to no alignment.
89   /// This is useful to test for unalignment as it conveys clear semantic.
90   /// `if (A != Align::None())`
91   /// would be better than
92   /// `if (A > Align(1))`
NoneAlign93   constexpr static const Align None() { return Align(); }
94 
95   /// Allow constructions of constexpr Align.
ConstantAlign96   template <size_t kValue> constexpr static LogValue Constant() {
97     return LogValue{static_cast<uint8_t>(CTLog2<kValue>())};
98   }
99 
100   /// Allow constructions of constexpr Align from types.
101   /// Compile time equivalent to Align(alignof(T)).
OfAlign102   template <typename T> constexpr static LogValue Of() {
103     return Constant<std::alignment_of<T>::value>();
104   }
105 
106   /// Constexpr constructor from LogValue type.
AlignAlign107   constexpr Align(LogValue CA) : ShiftValue(CA.Log) {}
108 };
109 
110 /// Treats the value 0 as a 1, so Align is always at least 1.
assumeAligned(uint64_t Value)111 inline Align assumeAligned(uint64_t Value) {
112   return Value ? Align(Value) : Align();
113 }
114 
115 /// This struct is a compact representation of a valid (power of two) or
116 /// undefined (0) alignment.
117 struct MaybeAlign : public llvm::Optional<Align> {
118 private:
119   using UP = llvm::Optional<Align>;
120 
121 public:
122   /// Default is undefined.
123   MaybeAlign() = default;
124   /// Do not perform checks in case of copy/move construct/assign, because the
125   /// checks have been performed when building `Other`.
126   MaybeAlign(const MaybeAlign &Other) = default;
127   MaybeAlign &operator=(const MaybeAlign &Other) = default;
128   MaybeAlign(MaybeAlign &&Other) = default;
129   MaybeAlign &operator=(MaybeAlign &&Other) = default;
130 
131   /// Use llvm::Optional<Align> constructor.
132   using UP::UP;
133 
MaybeAlignMaybeAlign134   explicit MaybeAlign(uint64_t Value) {
135     assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&
136            "Alignment is neither 0 nor a power of 2");
137     if (Value)
138       emplace(Value);
139   }
140 
141   /// For convenience, returns a valid alignment or 1 if undefined.
valueOrOneMaybeAlign142   Align valueOrOne() const { return hasValue() ? getValue() : Align(); }
143 };
144 
145 /// Checks that SizeInBytes is a multiple of the alignment.
isAligned(Align Lhs,uint64_t SizeInBytes)146 inline bool isAligned(Align Lhs, uint64_t SizeInBytes) {
147   return SizeInBytes % Lhs.value() == 0;
148 }
149 
150 /// Checks that SizeInBytes is a multiple of the alignment.
151 /// Returns false if the alignment is undefined.
isAligned(MaybeAlign Lhs,uint64_t SizeInBytes)152 inline bool isAligned(MaybeAlign Lhs, uint64_t SizeInBytes) {
153   ALIGN_CHECK_ISSET(Lhs);
154   return SizeInBytes % (*Lhs).value() == 0;
155 }
156 
157 /// Checks that Addr is a multiple of the alignment.
isAddrAligned(Align Lhs,const void * Addr)158 inline bool isAddrAligned(Align Lhs, const void *Addr) {
159   return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr));
160 }
161 
162 /// Returns a multiple of A needed to store `Size` bytes.
alignTo(uint64_t Size,Align A)163 inline uint64_t alignTo(uint64_t Size, Align A) {
164   const uint64_t value = A.value();
165   // The following line is equivalent to `(Size + value - 1) / value * value`.
166 
167   // The division followed by a multiplication can be thought of as a right
168   // shift followed by a left shift which zeros out the extra bits produced in
169   // the bump; `~(value - 1)` is a mask where all those bits being zeroed out
170   // are just zero.
171 
172   // Most compilers can generate this code but the pattern may be missed when
173   // multiple functions gets inlined.
174   return (Size + value - 1) & ~(value - 1);
175 }
176 
177 /// Returns a multiple of A needed to store `Size` bytes.
178 /// Returns `Size` if current alignment is undefined.
alignTo(uint64_t Size,MaybeAlign A)179 inline uint64_t alignTo(uint64_t Size, MaybeAlign A) {
180   return A ? alignTo(Size, A.getValue()) : Size;
181 }
182 
183 /// Aligns `Addr` to `Alignment` bytes, rounding up.
alignAddr(const void * Addr,Align Alignment)184 inline uintptr_t alignAddr(const void *Addr, Align Alignment) {
185   uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr);
186   assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=
187              ArithAddr && "Overflow");
188   return alignTo(ArithAddr, Alignment);
189 }
190 
191 /// Returns the offset to the next integer (mod 2**64) that is greater than
192 /// or equal to \p Value and is a multiple of \p Align.
offsetToAlignment(uint64_t Value,Align Alignment)193 inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) {
194   return alignTo(Value, Alignment) - Value;
195 }
196 
197 /// Returns the necessary adjustment for aligning `Addr` to `Alignment`
198 /// bytes, rounding up.
offsetToAlignedAddr(const void * Addr,Align Alignment)199 inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) {
200   return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment);
201 }
202 
203 /// Returns the log2 of the alignment.
Log2(Align A)204 inline unsigned Log2(Align A) { return A.ShiftValue; }
205 
206 /// Returns the log2 of the alignment.
207 /// \pre A must be defined.
Log2(MaybeAlign A)208 inline unsigned Log2(MaybeAlign A) {
209   ALIGN_CHECK_ISSET(A);
210   return Log2(A.getValue());
211 }
212 
213 /// Returns the alignment that satisfies both alignments.
214 /// Same semantic as MinAlign.
commonAlignment(Align A,Align B)215 inline Align commonAlignment(Align A, Align B) { return std::min(A, B); }
216 
217 /// Returns the alignment that satisfies both alignments.
218 /// Same semantic as MinAlign.
commonAlignment(Align A,uint64_t Offset)219 inline Align commonAlignment(Align A, uint64_t Offset) {
220   return Align(MinAlign(A.value(), Offset));
221 }
222 
223 /// Returns the alignment that satisfies both alignments.
224 /// Same semantic as MinAlign.
commonAlignment(MaybeAlign A,MaybeAlign B)225 inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) {
226   return A && B ? commonAlignment(*A, *B) : A ? A : B;
227 }
228 
229 /// Returns the alignment that satisfies both alignments.
230 /// Same semantic as MinAlign.
commonAlignment(MaybeAlign A,uint64_t Offset)231 inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) {
232   return MaybeAlign(MinAlign((*A).value(), Offset));
233 }
234 
235 /// Returns a representation of the alignment that encodes undefined as 0.
encode(MaybeAlign A)236 inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; }
237 
238 /// Dual operation of the encode function above.
decodeMaybeAlign(unsigned Value)239 inline MaybeAlign decodeMaybeAlign(unsigned Value) {
240   if (Value == 0)
241     return MaybeAlign();
242   Align Out;
243   Out.ShiftValue = Value - 1;
244   return Out;
245 }
246 
247 /// Returns a representation of the alignment, the encoded value is positive by
248 /// definition.
encode(Align A)249 inline unsigned encode(Align A) { return encode(MaybeAlign(A)); }
250 
251 /// Comparisons between Align and scalars. Rhs must be positive.
252 inline bool operator==(Align Lhs, uint64_t Rhs) {
253   ALIGN_CHECK_ISPOSITIVE(Rhs);
254   return Lhs.value() == Rhs;
255 }
256 inline bool operator!=(Align Lhs, uint64_t Rhs) {
257   ALIGN_CHECK_ISPOSITIVE(Rhs);
258   return Lhs.value() != Rhs;
259 }
260 inline bool operator<=(Align Lhs, uint64_t Rhs) {
261   ALIGN_CHECK_ISPOSITIVE(Rhs);
262   return Lhs.value() <= Rhs;
263 }
264 inline bool operator>=(Align Lhs, uint64_t Rhs) {
265   ALIGN_CHECK_ISPOSITIVE(Rhs);
266   return Lhs.value() >= Rhs;
267 }
268 inline bool operator<(Align Lhs, uint64_t Rhs) {
269   ALIGN_CHECK_ISPOSITIVE(Rhs);
270   return Lhs.value() < Rhs;
271 }
272 inline bool operator>(Align Lhs, uint64_t Rhs) {
273   ALIGN_CHECK_ISPOSITIVE(Rhs);
274   return Lhs.value() > Rhs;
275 }
276 
277 /// Comparisons between MaybeAlign and scalars.
278 inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) {
279   return Lhs ? (*Lhs).value() == Rhs : Rhs == 0;
280 }
281 inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) {
282   return Lhs ? (*Lhs).value() != Rhs : Rhs != 0;
283 }
284 inline bool operator<=(MaybeAlign Lhs, uint64_t Rhs) {
285   ALIGN_CHECK_ISSET(Lhs);
286   ALIGN_CHECK_ISPOSITIVE(Rhs);
287   return (*Lhs).value() <= Rhs;
288 }
289 inline bool operator>=(MaybeAlign Lhs, uint64_t Rhs) {
290   ALIGN_CHECK_ISSET(Lhs);
291   ALIGN_CHECK_ISPOSITIVE(Rhs);
292   return (*Lhs).value() >= Rhs;
293 }
294 inline bool operator<(MaybeAlign Lhs, uint64_t Rhs) {
295   ALIGN_CHECK_ISSET(Lhs);
296   ALIGN_CHECK_ISPOSITIVE(Rhs);
297   return (*Lhs).value() < Rhs;
298 }
299 inline bool operator>(MaybeAlign Lhs, uint64_t Rhs) {
300   ALIGN_CHECK_ISSET(Lhs);
301   ALIGN_CHECK_ISPOSITIVE(Rhs);
302   return (*Lhs).value() > Rhs;
303 }
304 
305 /// Comparisons operators between Align.
306 inline bool operator==(Align Lhs, Align Rhs) {
307   return Lhs.ShiftValue == Rhs.ShiftValue;
308 }
309 inline bool operator!=(Align Lhs, Align Rhs) {
310   return Lhs.ShiftValue != Rhs.ShiftValue;
311 }
312 inline bool operator<=(Align Lhs, Align Rhs) {
313   return Lhs.ShiftValue <= Rhs.ShiftValue;
314 }
315 inline bool operator>=(Align Lhs, Align Rhs) {
316   return Lhs.ShiftValue >= Rhs.ShiftValue;
317 }
318 inline bool operator<(Align Lhs, Align Rhs) {
319   return Lhs.ShiftValue < Rhs.ShiftValue;
320 }
321 inline bool operator>(Align Lhs, Align Rhs) {
322   return Lhs.ShiftValue > Rhs.ShiftValue;
323 }
324 
325 /// Comparisons operators between Align and MaybeAlign.
326 inline bool operator==(Align Lhs, MaybeAlign Rhs) {
327   ALIGN_CHECK_ISSET(Rhs);
328   return Lhs.value() == (*Rhs).value();
329 }
330 inline bool operator!=(Align Lhs, MaybeAlign Rhs) {
331   ALIGN_CHECK_ISSET(Rhs);
332   return Lhs.value() != (*Rhs).value();
333 }
334 inline bool operator<=(Align Lhs, MaybeAlign Rhs) {
335   ALIGN_CHECK_ISSET(Rhs);
336   return Lhs.value() <= (*Rhs).value();
337 }
338 inline bool operator>=(Align Lhs, MaybeAlign Rhs) {
339   ALIGN_CHECK_ISSET(Rhs);
340   return Lhs.value() >= (*Rhs).value();
341 }
342 inline bool operator<(Align Lhs, MaybeAlign Rhs) {
343   ALIGN_CHECK_ISSET(Rhs);
344   return Lhs.value() < (*Rhs).value();
345 }
346 inline bool operator>(Align Lhs, MaybeAlign Rhs) {
347   ALIGN_CHECK_ISSET(Rhs);
348   return Lhs.value() > (*Rhs).value();
349 }
350 
351 /// Comparisons operators between MaybeAlign and Align.
352 inline bool operator==(MaybeAlign Lhs, Align Rhs) {
353   ALIGN_CHECK_ISSET(Lhs);
354   return Lhs && (*Lhs).value() == Rhs.value();
355 }
356 inline bool operator!=(MaybeAlign Lhs, Align Rhs) {
357   ALIGN_CHECK_ISSET(Lhs);
358   return Lhs && (*Lhs).value() != Rhs.value();
359 }
360 inline bool operator<=(MaybeAlign Lhs, Align Rhs) {
361   ALIGN_CHECK_ISSET(Lhs);
362   return Lhs && (*Lhs).value() <= Rhs.value();
363 }
364 inline bool operator>=(MaybeAlign Lhs, Align Rhs) {
365   ALIGN_CHECK_ISSET(Lhs);
366   return Lhs && (*Lhs).value() >= Rhs.value();
367 }
368 inline bool operator<(MaybeAlign Lhs, Align Rhs) {
369   ALIGN_CHECK_ISSET(Lhs);
370   return Lhs && (*Lhs).value() < Rhs.value();
371 }
372 inline bool operator>(MaybeAlign Lhs, Align Rhs) {
373   ALIGN_CHECK_ISSET(Lhs);
374   return Lhs && (*Lhs).value() > Rhs.value();
375 }
376 
377 inline Align operator/(Align Lhs, uint64_t Divisor) {
378   assert(llvm::isPowerOf2_64(Divisor) &&
379          "Divisor must be positive and a power of 2");
380   assert(Lhs != 1 && "Can't halve byte alignment");
381   return Align(Lhs.value() / Divisor);
382 }
383 
384 inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) {
385   assert(llvm::isPowerOf2_64(Divisor) &&
386          "Divisor must be positive and a power of 2");
387   return Lhs ? Lhs.getValue() / Divisor : MaybeAlign();
388 }
389 
max(MaybeAlign Lhs,Align Rhs)390 inline Align max(MaybeAlign Lhs, Align Rhs) {
391   return Lhs && *Lhs > Rhs ? *Lhs : Rhs;
392 }
393 
max(Align Lhs,MaybeAlign Rhs)394 inline Align max(Align Lhs, MaybeAlign Rhs) {
395   return Rhs && *Rhs > Lhs ? *Rhs : Lhs;
396 }
397 
398 #undef ALIGN_CHECK_ISPOSITIVE
399 #undef ALIGN_CHECK_ISSET
400 
401 } // namespace llvm
402 
403 #endif // LLVM_SUPPORT_ALIGNMENT_H_
404