1 // layout.cc -- lay out output file sections for gold
2 
3 // Copyright (C) 2006-2021 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41 
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60 
61 namespace gold
62 {
63 
64 // Class Free_list.
65 
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78 
79 // Initialize the free list.  Creates a single free list node that
80 // describes the entire region of length LEN.  If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83 
84 void
init(off_t len,bool extend)85 Free_list::init(off_t len, bool extend)
86 {
87   this->list_.push_front(Free_list_node(0, len));
88   this->last_remove_ = this->list_.begin();
89   this->extend_ = extend;
90   this->length_ = len;
91   ++Free_list::num_lists;
92   ++Free_list::num_nodes;
93 }
94 
95 // Remove a chunk from the free list.  Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node.  We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103 
104 void
remove(off_t start,off_t end)105 Free_list::remove(off_t start, off_t end)
106 {
107   if (start == end)
108     return;
109   gold_assert(start < end);
110 
111   ++Free_list::num_removes;
112 
113   Iterator p = this->last_remove_;
114   if (p->start_ > start)
115     p = this->list_.begin();
116 
117   for (; p != this->list_.end(); ++p)
118     {
119       ++Free_list::num_remove_visits;
120       // Find a node that wholly contains the indicated region.
121       if (p->start_ <= start && p->end_ >= end)
122 	{
123 	  // Case 1: the indicated region spans the whole node.
124 	  // Add some fuzz to avoid creating tiny free chunks.
125 	  if (p->start_ + 3 >= start && p->end_ <= end + 3)
126 	    p = this->list_.erase(p);
127 	  // Case 2: remove a chunk from the start of the node.
128 	  else if (p->start_ + 3 >= start)
129 	    p->start_ = end;
130 	  // Case 3: remove a chunk from the end of the node.
131 	  else if (p->end_ <= end + 3)
132 	    p->end_ = start;
133 	  // Case 4: remove a chunk from the middle, and split
134 	  // the node into two.
135 	  else
136 	    {
137 	      Free_list_node newnode(p->start_, start);
138 	      p->start_ = end;
139 	      this->list_.insert(p, newnode);
140 	      ++Free_list::num_nodes;
141 	    }
142 	  this->last_remove_ = p;
143 	  return;
144 	}
145     }
146 
147   // Did not find a node containing the given chunk.  This could happen
148   // because a small chunk was already removed due to the fuzz.
149   gold_debug(DEBUG_INCREMENTAL,
150 	     "Free_list::remove(%d,%d) not found",
151 	     static_cast<int>(start), static_cast<int>(end));
152 }
153 
154 // Allocate a chunk of size LEN from the free list.  Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157 
158 off_t
allocate(off_t len,uint64_t align,off_t minoff)159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161   gold_debug(DEBUG_INCREMENTAL,
162 	     "Free_list::allocate(%08lx, %d, %08lx)",
163 	     static_cast<long>(len), static_cast<int>(align),
164 	     static_cast<long>(minoff));
165   if (len == 0)
166     return align_address(minoff, align);
167 
168   ++Free_list::num_allocates;
169 
170   // We usually want to drop free chunks smaller than 4 bytes.
171   // If we need to guarantee a minimum hole size, though, we need
172   // to keep track of all free chunks.
173   const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174 
175   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176     {
177       ++Free_list::num_allocate_visits;
178       off_t start = p->start_ > minoff ? p->start_ : minoff;
179       start = align_address(start, align);
180       off_t end = start + len;
181       if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182 	{
183 	  this->length_ = end;
184 	  p->end_ = end;
185 	}
186       if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187 	{
188 	  if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189 	    this->list_.erase(p);
190 	  else if (p->start_ + fuzz >= start)
191 	    p->start_ = end;
192 	  else if (p->end_ <= end + fuzz)
193 	    p->end_ = start;
194 	  else
195 	    {
196 	      Free_list_node newnode(p->start_, start);
197 	      p->start_ = end;
198 	      this->list_.insert(p, newnode);
199 	      ++Free_list::num_nodes;
200 	    }
201 	  return start;
202 	}
203     }
204   if (this->extend_)
205     {
206       off_t start = align_address(this->length_, align);
207       this->length_ = start + len;
208       return start;
209     }
210   return -1;
211 }
212 
213 // Dump the free list (for debugging).
214 void
dump()215 Free_list::dump()
216 {
217   gold_info("Free list:\n     start      end   length\n");
218   for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219     gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
220 	      static_cast<long>(p->end_),
221 	      static_cast<long>(p->end_ - p->start_));
222 }
223 
224 // Print the statistics for the free lists.
225 void
print_stats()226 Free_list::print_stats()
227 {
228   fprintf(stderr, _("%s: total free lists: %u\n"),
229 	  program_name, Free_list::num_lists);
230   fprintf(stderr, _("%s: total free list nodes: %u\n"),
231 	  program_name, Free_list::num_nodes);
232   fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233 	  program_name, Free_list::num_removes);
234   fprintf(stderr, _("%s: nodes visited: %u\n"),
235 	  program_name, Free_list::num_remove_visits);
236   fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237 	  program_name, Free_list::num_allocates);
238   fprintf(stderr, _("%s: nodes visited: %u\n"),
239 	  program_name, Free_list::num_allocate_visits);
240 }
241 
242 // A Hash_task computes the MD5 checksum of an array of char.
243 
244 class Hash_task : public Task
245 {
246  public:
Hash_task(Output_file * of,size_t offset,size_t size,unsigned char * dst,Task_token * final_blocker)247   Hash_task(Output_file* of,
248 	    size_t offset,
249 	    size_t size,
250 	    unsigned char* dst,
251 	    Task_token* final_blocker)
252     : of_(of), offset_(offset), size_(size), dst_(dst),
253       final_blocker_(final_blocker)
254   { }
255 
256   void
run(Workqueue *)257   run(Workqueue*)
258   {
259     const unsigned char* iv =
260 	this->of_->get_input_view(this->offset_, this->size_);
261     md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262     this->of_->free_input_view(this->offset_, this->size_, iv);
263   }
264 
265   Task_token*
is_runnable()266   is_runnable()
267   { return NULL; }
268 
269   // Unblock FINAL_BLOCKER_ when done.
270   void
locks(Task_locker * tl)271   locks(Task_locker* tl)
272   { tl->add(this, this->final_blocker_); }
273 
274   std::string
get_name() const275   get_name() const
276   { return "Hash_task"; }
277 
278  private:
279   Output_file* of_;
280   const size_t offset_;
281   const size_t size_;
282   unsigned char* const dst_;
283   Task_token* const final_blocker_;
284 };
285 
286 // Layout::Relaxation_debug_check methods.
287 
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
check_output_data_for_reset_values(const Layout::Section_list & sections,const Layout::Data_list & special_outputs,const Layout::Data_list & relax_outputs)293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294     const Layout::Section_list& sections,
295     const Layout::Data_list& special_outputs,
296     const Layout::Data_list& relax_outputs)
297 {
298   for(Layout::Section_list::const_iterator p = sections.begin();
299       p != sections.end();
300       ++p)
301     gold_assert((*p)->address_and_file_offset_have_reset_values());
302 
303   for(Layout::Data_list::const_iterator p = special_outputs.begin();
304       p != special_outputs.end();
305       ++p)
306     gold_assert((*p)->address_and_file_offset_have_reset_values());
307 
308   gold_assert(relax_outputs.empty());
309 }
310 
311 // Save information of SECTIONS for checking later.
312 
313 void
read_sections(const Layout::Section_list & sections)314 Layout::Relaxation_debug_check::read_sections(
315     const Layout::Section_list& sections)
316 {
317   for(Layout::Section_list::const_iterator p = sections.begin();
318       p != sections.end();
319       ++p)
320     {
321       Output_section* os = *p;
322       Section_info info;
323       info.output_section = os;
324       info.address = os->is_address_valid() ? os->address() : 0;
325       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326       info.offset = os->is_offset_valid()? os->offset() : -1 ;
327       this->section_infos_.push_back(info);
328     }
329 }
330 
331 // Verify SECTIONS using previously recorded information.
332 
333 void
verify_sections(const Layout::Section_list & sections)334 Layout::Relaxation_debug_check::verify_sections(
335     const Layout::Section_list& sections)
336 {
337   size_t i = 0;
338   for(Layout::Section_list::const_iterator p = sections.begin();
339       p != sections.end();
340       ++p, ++i)
341     {
342       Output_section* os = *p;
343       uint64_t address = os->is_address_valid() ? os->address() : 0;
344       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346 
347       if (i >= this->section_infos_.size())
348 	{
349 	  gold_fatal("Section_info of %s missing.\n", os->name());
350 	}
351       const Section_info& info = this->section_infos_[i];
352       if (os != info.output_section)
353 	gold_fatal("Section order changed.  Expecting %s but see %s\n",
354 		   info.output_section->name(), os->name());
355       if (address != info.address
356 	  || data_size != info.data_size
357 	  || offset != info.offset)
358 	gold_fatal("Section %s changed.\n", os->name());
359     }
360 }
361 
362 // Layout_task_runner methods.
363 
364 // Lay out the sections.  This is called after all the input objects
365 // have been read.
366 
367 void
run(Workqueue * workqueue,const Task * task)368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370   // See if any of the input definitions violate the One Definition Rule.
371   // TODO: if this is too slow, do this as a task, rather than inline.
372   this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373 
374   Layout* layout = this->layout_;
375   off_t file_size = layout->finalize(this->input_objects_,
376 				     this->symtab_,
377 				     this->target_,
378 				     task);
379 
380   // Now we know the final size of the output file and we know where
381   // each piece of information goes.
382 
383   if (this->mapfile_ != NULL)
384     {
385       this->mapfile_->print_discarded_sections(this->input_objects_);
386       layout->print_to_mapfile(this->mapfile_);
387     }
388 
389   Output_file* of;
390   if (layout->incremental_base() == NULL)
391     {
392       of = new Output_file(parameters->options().output_file_name());
393       if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 	of->set_is_temporary();
395       of->open(file_size);
396     }
397   else
398     {
399       of = layout->incremental_base()->output_file();
400 
401       // Apply the incremental relocations for symbols whose values
402       // have changed.  We do this before we resize the file and start
403       // writing anything else to it, so that we can read the old
404       // incremental information from the file before (possibly)
405       // overwriting it.
406       if (parameters->incremental_update())
407 	layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 							     this->layout_,
409 							     of);
410 
411       of->resize(file_size);
412     }
413 
414   // Queue up the final set of tasks.
415   gold::queue_final_tasks(this->options_, this->input_objects_,
416 			  this->symtab_, layout, workqueue, of);
417 }
418 
419 // Layout methods.
420 
Layout(int number_of_input_files,Script_options * script_options)421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422   : number_of_input_files_(number_of_input_files),
423     script_options_(script_options),
424     namepool_(),
425     sympool_(),
426     dynpool_(),
427     signatures_(),
428     section_name_map_(),
429     segment_list_(),
430     section_list_(),
431     unattached_section_list_(),
432     special_output_list_(),
433     relax_output_list_(),
434     section_headers_(NULL),
435     tls_segment_(NULL),
436     relro_segment_(NULL),
437     interp_segment_(NULL),
438     increase_relro_(0),
439     symtab_section_(NULL),
440     symtab_xindex_(NULL),
441     dynsym_section_(NULL),
442     dynsym_xindex_(NULL),
443     dynamic_section_(NULL),
444     dynamic_symbol_(NULL),
445     dynamic_data_(NULL),
446     eh_frame_section_(NULL),
447     eh_frame_data_(NULL),
448     added_eh_frame_data_(false),
449     eh_frame_hdr_section_(NULL),
450     gdb_index_data_(NULL),
451     build_id_note_(NULL),
452     debug_abbrev_(NULL),
453     debug_info_(NULL),
454     group_signatures_(),
455     output_file_size_(-1),
456     have_added_input_section_(false),
457     sections_are_attached_(false),
458     input_requires_executable_stack_(false),
459     input_with_gnu_stack_note_(false),
460     input_without_gnu_stack_note_(false),
461     has_static_tls_(false),
462     any_postprocessing_sections_(false),
463     resized_signatures_(false),
464     have_stabstr_section_(false),
465     section_ordering_specified_(false),
466     unique_segment_for_sections_specified_(false),
467     incremental_inputs_(NULL),
468     record_output_section_data_from_script_(false),
469     lto_slim_object_(false),
470     script_output_section_data_list_(),
471     segment_states_(NULL),
472     relaxation_debug_check_(NULL),
473     section_order_map_(),
474     section_segment_map_(),
475     input_section_position_(),
476     input_section_glob_(),
477     incremental_base_(NULL),
478     free_list_(),
479     gnu_properties_()
480 {
481   // Make space for more than enough segments for a typical file.
482   // This is just for efficiency--it's OK if we wind up needing more.
483   this->segment_list_.reserve(12);
484 
485   // We expect two unattached Output_data objects: the file header and
486   // the segment headers.
487   this->special_output_list_.reserve(2);
488 
489   // Initialize structure needed for an incremental build.
490   if (parameters->incremental())
491     this->incremental_inputs_ = new Incremental_inputs;
492 
493   // The section name pool is worth optimizing in all cases, because
494   // it is small, but there are often overlaps due to .rel sections.
495   this->namepool_.set_optimize();
496 }
497 
498 // For incremental links, record the base file to be modified.
499 
500 void
set_incremental_base(Incremental_binary * base)501 Layout::set_incremental_base(Incremental_binary* base)
502 {
503   this->incremental_base_ = base;
504   this->free_list_.init(base->output_file()->filesize(), true);
505 }
506 
507 // Hash a key we use to look up an output section mapping.
508 
509 size_t
operator ()(const Layout::Key & k) const510 Layout::Hash_key::operator()(const Layout::Key& k) const
511 {
512  return k.first + k.second.first + k.second.second;
513 }
514 
515 // These are the debug sections that are actually used by gdb.
516 // Currently, we've checked versions of gdb up to and including 7.4.
517 // We only check the part of the name that follows ".debug_" or
518 // ".zdebug_".
519 
520 static const char* gdb_sections[] =
521 {
522   "abbrev",
523   "addr",         // Fission extension
524   // "aranges",   // not used by gdb as of 7.4
525   "frame",
526   "gdb_scripts",
527   "info",
528   "types",
529   "line",
530   "loc",
531   "macinfo",
532   "macro",
533   // "pubnames",  // not used by gdb as of 7.4
534   // "pubtypes",  // not used by gdb as of 7.4
535   // "gnu_pubnames",  // Fission extension
536   // "gnu_pubtypes",  // Fission extension
537   "ranges",
538   "str",
539   "str_offsets",
540 };
541 
542 // This is the minimum set of sections needed for line numbers.
543 
544 static const char* lines_only_debug_sections[] =
545 {
546   "abbrev",
547   // "addr",      // Fission extension
548   // "aranges",   // not used by gdb as of 7.4
549   // "frame",
550   // "gdb_scripts",
551   "info",
552   // "types",
553   "line",
554   // "loc",
555   // "macinfo",
556   // "macro",
557   // "pubnames",  // not used by gdb as of 7.4
558   // "pubtypes",  // not used by gdb as of 7.4
559   // "gnu_pubnames",  // Fission extension
560   // "gnu_pubtypes",  // Fission extension
561   // "ranges",
562   "str",
563   "str_offsets",  // Fission extension
564 };
565 
566 // These sections are the DWARF fast-lookup tables, and are not needed
567 // when building a .gdb_index section.
568 
569 static const char* gdb_fast_lookup_sections[] =
570 {
571   "aranges",
572   "pubnames",
573   "gnu_pubnames",
574   "pubtypes",
575   "gnu_pubtypes",
576 };
577 
578 // Returns whether the given debug section is in the list of
579 // debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
580 // portion of the name following ".debug_" or ".zdebug_".
581 
582 static inline bool
is_gdb_debug_section(const char * suffix)583 is_gdb_debug_section(const char* suffix)
584 {
585   // We can do this faster: binary search or a hashtable.  But why bother?
586   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
587     if (strcmp(suffix, gdb_sections[i]) == 0)
588       return true;
589   return false;
590 }
591 
592 // Returns whether the given section is needed for lines-only debugging.
593 
594 static inline bool
is_lines_only_debug_section(const char * suffix)595 is_lines_only_debug_section(const char* suffix)
596 {
597   // We can do this faster: binary search or a hashtable.  But why bother?
598   for (size_t i = 0;
599        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
600        ++i)
601     if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
602       return true;
603   return false;
604 }
605 
606 // Returns whether the given section is a fast-lookup section that
607 // will not be needed when building a .gdb_index section.
608 
609 static inline bool
is_gdb_fast_lookup_section(const char * suffix)610 is_gdb_fast_lookup_section(const char* suffix)
611 {
612   // We can do this faster: binary search or a hashtable.  But why bother?
613   for (size_t i = 0;
614        i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
615        ++i)
616     if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
617       return true;
618   return false;
619 }
620 
621 // Sometimes we compress sections.  This is typically done for
622 // sections that are not part of normal program execution (such as
623 // .debug_* sections), and where the readers of these sections know
624 // how to deal with compressed sections.  This routine doesn't say for
625 // certain whether we'll compress -- it depends on commandline options
626 // as well -- just whether this section is a candidate for compression.
627 // (The Output_compressed_section class decides whether to compress
628 // a given section, and picks the name of the compressed section.)
629 
630 static bool
is_compressible_debug_section(const char * secname)631 is_compressible_debug_section(const char* secname)
632 {
633   return (is_prefix_of(".debug", secname));
634 }
635 
636 // We may see compressed debug sections in input files.  Return TRUE
637 // if this is the name of a compressed debug section.
638 
639 bool
is_compressed_debug_section(const char * secname)640 is_compressed_debug_section(const char* secname)
641 {
642   return (is_prefix_of(".zdebug", secname));
643 }
644 
645 std::string
corresponding_uncompressed_section_name(std::string secname)646 corresponding_uncompressed_section_name(std::string secname)
647 {
648   gold_assert(secname[0] == '.' && secname[1] == 'z');
649   std::string ret(".");
650   ret.append(secname, 2, std::string::npos);
651   return ret;
652 }
653 
654 // Whether to include this section in the link.
655 
656 template<int size, bool big_endian>
657 bool
include_section(Sized_relobj_file<size,big_endian> *,const char * name,const elfcpp::Shdr<size,big_endian> & shdr)658 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
659 			const elfcpp::Shdr<size, big_endian>& shdr)
660 {
661   if (!parameters->options().relocatable()
662       && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
663     return false;
664 
665   elfcpp::Elf_Word sh_type = shdr.get_sh_type();
666 
667   if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
668       || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
669     return parameters->target().should_include_section(sh_type);
670 
671   switch (sh_type)
672     {
673     case elfcpp::SHT_NULL:
674     case elfcpp::SHT_SYMTAB:
675     case elfcpp::SHT_DYNSYM:
676     case elfcpp::SHT_HASH:
677     case elfcpp::SHT_DYNAMIC:
678     case elfcpp::SHT_SYMTAB_SHNDX:
679       return false;
680 
681     case elfcpp::SHT_STRTAB:
682       // Discard the sections which have special meanings in the ELF
683       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
684       // checking the sh_link fields of the appropriate sections.
685       return (strcmp(name, ".dynstr") != 0
686 	      && strcmp(name, ".strtab") != 0
687 	      && strcmp(name, ".shstrtab") != 0);
688 
689     case elfcpp::SHT_RELA:
690     case elfcpp::SHT_REL:
691     case elfcpp::SHT_GROUP:
692       // If we are emitting relocations these should be handled
693       // elsewhere.
694       gold_assert(!parameters->options().relocatable());
695       return false;
696 
697     case elfcpp::SHT_PROGBITS:
698       if (parameters->options().strip_debug()
699 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
700 	{
701 	  if (is_debug_info_section(name))
702 	    return false;
703 	}
704       if (parameters->options().strip_debug_non_line()
705 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
706 	{
707 	  // Debugging sections can only be recognized by name.
708 	  if (is_prefix_of(".debug_", name)
709 	      && !is_lines_only_debug_section(name + 7))
710 	    return false;
711 	  if (is_prefix_of(".zdebug_", name)
712 	      && !is_lines_only_debug_section(name + 8))
713 	    return false;
714 	}
715       if (parameters->options().strip_debug_gdb()
716 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
717 	{
718 	  // Debugging sections can only be recognized by name.
719 	  if (is_prefix_of(".debug_", name)
720 	      && !is_gdb_debug_section(name + 7))
721 	    return false;
722 	  if (is_prefix_of(".zdebug_", name)
723 	      && !is_gdb_debug_section(name + 8))
724 	    return false;
725 	}
726       if (parameters->options().gdb_index()
727 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
728 	{
729 	  // When building .gdb_index, we can strip .debug_pubnames,
730 	  // .debug_pubtypes, and .debug_aranges sections.
731 	  if (is_prefix_of(".debug_", name)
732 	      && is_gdb_fast_lookup_section(name + 7))
733 	    return false;
734 	  if (is_prefix_of(".zdebug_", name)
735 	      && is_gdb_fast_lookup_section(name + 8))
736 	    return false;
737 	}
738       if (parameters->options().strip_lto_sections()
739 	  && !parameters->options().relocatable()
740 	  && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
741 	{
742 	  // Ignore LTO sections containing intermediate code.
743 	  if (is_prefix_of(".gnu.lto_", name))
744 	    return false;
745 	}
746       // The GNU linker strips .gnu_debuglink sections, so we do too.
747       // This is a feature used to keep debugging information in
748       // separate files.
749       if (strcmp(name, ".gnu_debuglink") == 0)
750 	return false;
751       return true;
752 
753     default:
754       return true;
755     }
756 }
757 
758 // Return an output section named NAME, or NULL if there is none.
759 
760 Output_section*
find_output_section(const char * name) const761 Layout::find_output_section(const char* name) const
762 {
763   for (Section_list::const_iterator p = this->section_list_.begin();
764        p != this->section_list_.end();
765        ++p)
766     if (strcmp((*p)->name(), name) == 0)
767       return *p;
768   return NULL;
769 }
770 
771 // Return an output segment of type TYPE, with segment flags SET set
772 // and segment flags CLEAR clear.  Return NULL if there is none.
773 
774 Output_segment*
find_output_segment(elfcpp::PT type,elfcpp::Elf_Word set,elfcpp::Elf_Word clear) const775 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
776 			    elfcpp::Elf_Word clear) const
777 {
778   for (Segment_list::const_iterator p = this->segment_list_.begin();
779        p != this->segment_list_.end();
780        ++p)
781     if (static_cast<elfcpp::PT>((*p)->type()) == type
782 	&& ((*p)->flags() & set) == set
783 	&& ((*p)->flags() & clear) == 0)
784       return *p;
785   return NULL;
786 }
787 
788 // When we put a .ctors or .dtors section with more than one word into
789 // a .init_array or .fini_array section, we need to reverse the words
790 // in the .ctors/.dtors section.  This is because .init_array executes
791 // constructors front to back, where .ctors executes them back to
792 // front, and vice-versa for .fini_array/.dtors.  Although we do want
793 // to remap .ctors/.dtors into .init_array/.fini_array because it can
794 // be more efficient, we don't want to change the order in which
795 // constructors/destructors are run.  This set just keeps track of
796 // these sections which need to be reversed.  It is only changed by
797 // Layout::layout.  It should be a private member of Layout, but that
798 // would require layout.h to #include object.h to get the definition
799 // of Section_id.
800 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
801 
802 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
803 // .init_array/.fini_array section.
804 
805 bool
is_ctors_in_init_array(Relobj * relobj,unsigned int shndx) const806 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
807 {
808   return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
809 	  != ctors_sections_in_init_array.end());
810 }
811 
812 // Return the output section to use for section NAME with type TYPE
813 // and section flags FLAGS.  NAME must be canonicalized in the string
814 // pool, and NAME_KEY is the key.  ORDER is where this should appear
815 // in the output sections.  IS_RELRO is true for a relro section.
816 
817 Output_section*
get_output_section(const char * name,Stringpool::Key name_key,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_order order,bool is_relro)818 Layout::get_output_section(const char* name, Stringpool::Key name_key,
819 			   elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
820 			   Output_section_order order, bool is_relro)
821 {
822   elfcpp::Elf_Word lookup_type = type;
823 
824   // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
825   // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
826   // .init_array, .fini_array, and .preinit_array sections by name
827   // whatever their type in the input file.  We do this because the
828   // types are not always right in the input files.
829   if (lookup_type == elfcpp::SHT_INIT_ARRAY
830       || lookup_type == elfcpp::SHT_FINI_ARRAY
831       || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
832     lookup_type = elfcpp::SHT_PROGBITS;
833 
834   elfcpp::Elf_Xword lookup_flags = flags;
835 
836   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
837   // read-write with read-only sections.  Some other ELF linkers do
838   // not do this.  FIXME: Perhaps there should be an option
839   // controlling this.
840   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
841 
842   const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
843   const std::pair<Key, Output_section*> v(key, NULL);
844   std::pair<Section_name_map::iterator, bool> ins(
845     this->section_name_map_.insert(v));
846 
847   if (!ins.second)
848     return ins.first->second;
849   else
850     {
851       // This is the first time we've seen this name/type/flags
852       // combination.  For compatibility with the GNU linker, we
853       // combine sections with contents and zero flags with sections
854       // with non-zero flags.  This is a workaround for cases where
855       // assembler code forgets to set section flags.  FIXME: Perhaps
856       // there should be an option to control this.
857       Output_section* os = NULL;
858 
859       if (lookup_type == elfcpp::SHT_PROGBITS)
860 	{
861 	  if (flags == 0)
862 	    {
863 	      Output_section* same_name = this->find_output_section(name);
864 	      if (same_name != NULL
865 		  && (same_name->type() == elfcpp::SHT_PROGBITS
866 		      || same_name->type() == elfcpp::SHT_INIT_ARRAY
867 		      || same_name->type() == elfcpp::SHT_FINI_ARRAY
868 		      || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
869 		  && (same_name->flags() & elfcpp::SHF_TLS) == 0)
870 		os = same_name;
871 	    }
872 	  else if ((flags & elfcpp::SHF_TLS) == 0)
873 	    {
874 	      elfcpp::Elf_Xword zero_flags = 0;
875 	      const Key zero_key(name_key, std::make_pair(lookup_type,
876 							  zero_flags));
877 	      Section_name_map::iterator p =
878 		  this->section_name_map_.find(zero_key);
879 	      if (p != this->section_name_map_.end())
880 		os = p->second;
881 	    }
882 	}
883 
884       if (os == NULL)
885 	os = this->make_output_section(name, type, flags, order, is_relro);
886 
887       ins.first->second = os;
888       return os;
889     }
890 }
891 
892 // Returns TRUE iff NAME (an input section from RELOBJ) will
893 // be mapped to an output section that should be KEPT.
894 
895 bool
keep_input_section(const Relobj * relobj,const char * name)896 Layout::keep_input_section(const Relobj* relobj, const char* name)
897 {
898   if (! this->script_options_->saw_sections_clause())
899     return false;
900 
901   Script_sections* ss = this->script_options_->script_sections();
902   const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
903   Output_section** output_section_slot;
904   Script_sections::Section_type script_section_type;
905   bool keep;
906 
907   name = ss->output_section_name(file_name, name, &output_section_slot,
908 				 &script_section_type, &keep, true);
909   return name != NULL && keep;
910 }
911 
912 // Clear the input section flags that should not be copied to the
913 // output section.
914 
915 elfcpp::Elf_Xword
get_output_section_flags(elfcpp::Elf_Xword input_section_flags)916 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
917 {
918   // Some flags in the input section should not be automatically
919   // copied to the output section.
920   input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
921 			    | elfcpp::SHF_GROUP
922 			    | elfcpp::SHF_COMPRESSED
923 			    | elfcpp::SHF_MERGE
924 			    | elfcpp::SHF_STRINGS);
925 
926   // We only clear the SHF_LINK_ORDER flag in for
927   // a non-relocatable link.
928   if (!parameters->options().relocatable())
929     input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
930 
931   return input_section_flags;
932 }
933 
934 // Pick the output section to use for section NAME, in input file
935 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
936 // linker created section.  IS_INPUT_SECTION is true if we are
937 // choosing an output section for an input section found in a input
938 // file.  ORDER is where this section should appear in the output
939 // sections.  IS_RELRO is true for a relro section.  This will return
940 // NULL if the input section should be discarded.  MATCH_INPUT_SPEC
941 // is true if the section name should be matched against input specs
942 // in a linker script.
943 
944 Output_section*
choose_output_section(const Relobj * relobj,const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,bool is_input_section,Output_section_order order,bool is_relro,bool is_reloc,bool match_input_spec)945 Layout::choose_output_section(const Relobj* relobj, const char* name,
946 			      elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
947 			      bool is_input_section, Output_section_order order,
948 			      bool is_relro, bool is_reloc,
949 			      bool match_input_spec)
950 {
951   // We should not see any input sections after we have attached
952   // sections to segments.
953   gold_assert(!is_input_section || !this->sections_are_attached_);
954 
955   flags = this->get_output_section_flags(flags);
956 
957   if (this->script_options_->saw_sections_clause() && !is_reloc)
958     {
959       // We are using a SECTIONS clause, so the output section is
960       // chosen based only on the name.
961 
962       Script_sections* ss = this->script_options_->script_sections();
963       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
964       Output_section** output_section_slot;
965       Script_sections::Section_type script_section_type;
966       const char* orig_name = name;
967       bool keep;
968       name = ss->output_section_name(file_name, name, &output_section_slot,
969 				     &script_section_type, &keep,
970 				     match_input_spec);
971 
972       if (name == NULL)
973 	{
974 	  gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
975 				     "because it is not allowed by the "
976 				     "SECTIONS clause of the linker script"),
977 		     orig_name);
978 	  // The SECTIONS clause says to discard this input section.
979 	  return NULL;
980 	}
981 
982       // We can only handle script section types ST_NONE and ST_NOLOAD.
983       switch (script_section_type)
984 	{
985 	case Script_sections::ST_NONE:
986 	  break;
987 	case Script_sections::ST_NOLOAD:
988 	  flags &= elfcpp::SHF_ALLOC;
989 	  break;
990 	default:
991 	  gold_unreachable();
992 	}
993 
994       // If this is an orphan section--one not mentioned in the linker
995       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
996       // default processing below.
997 
998       if (output_section_slot != NULL)
999 	{
1000 	  if (*output_section_slot != NULL)
1001 	    {
1002 	      (*output_section_slot)->update_flags_for_input_section(flags);
1003 	      return *output_section_slot;
1004 	    }
1005 
1006 	  // We don't put sections found in the linker script into
1007 	  // SECTION_NAME_MAP_.  That keeps us from getting confused
1008 	  // if an orphan section is mapped to a section with the same
1009 	  // name as one in the linker script.
1010 
1011 	  name = this->namepool_.add(name, false, NULL);
1012 
1013 	  Output_section* os = this->make_output_section(name, type, flags,
1014 							 order, is_relro);
1015 
1016 	  os->set_found_in_sections_clause();
1017 
1018 	  // Special handling for NOLOAD sections.
1019 	  if (script_section_type == Script_sections::ST_NOLOAD)
1020 	    {
1021 	      os->set_is_noload();
1022 
1023 	      // The constructor of Output_section sets addresses of non-ALLOC
1024 	      // sections to 0 by default.  We don't want that for NOLOAD
1025 	      // sections even if they have no SHF_ALLOC flag.
1026 	      if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1027 		  && os->is_address_valid())
1028 		{
1029 		  gold_assert(os->address() == 0
1030 			      && !os->is_offset_valid()
1031 			      && !os->is_data_size_valid());
1032 		  os->reset_address_and_file_offset();
1033 		}
1034 	    }
1035 
1036 	  *output_section_slot = os;
1037 	  return os;
1038 	}
1039     }
1040 
1041   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1042 
1043   size_t len = strlen(name);
1044   std::string uncompressed_name;
1045 
1046   // Compressed debug sections should be mapped to the corresponding
1047   // uncompressed section.
1048   if (is_compressed_debug_section(name))
1049     {
1050       uncompressed_name =
1051 	  corresponding_uncompressed_section_name(std::string(name, len));
1052       name = uncompressed_name.c_str();
1053       len = uncompressed_name.length();
1054     }
1055 
1056   // Turn NAME from the name of the input section into the name of the
1057   // output section.
1058   if (is_input_section
1059       && !this->script_options_->saw_sections_clause()
1060       && !parameters->options().relocatable())
1061     {
1062       const char *orig_name = name;
1063       name = parameters->target().output_section_name(relobj, name, &len);
1064       if (name == NULL)
1065 	name = Layout::output_section_name(relobj, orig_name, &len);
1066     }
1067 
1068   Stringpool::Key name_key;
1069   name = this->namepool_.add_with_length(name, len, true, &name_key);
1070 
1071   // Find or make the output section.  The output section is selected
1072   // based on the section name, type, and flags.
1073   return this->get_output_section(name, name_key, type, flags, order, is_relro);
1074 }
1075 
1076 // For incremental links, record the initial fixed layout of a section
1077 // from the base file, and return a pointer to the Output_section.
1078 
1079 template<int size, bool big_endian>
1080 Output_section*
init_fixed_output_section(const char * name,elfcpp::Shdr<size,big_endian> & shdr)1081 Layout::init_fixed_output_section(const char* name,
1082 				  elfcpp::Shdr<size, big_endian>& shdr)
1083 {
1084   unsigned int sh_type = shdr.get_sh_type();
1085 
1086   // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1087   // PRE_INIT_ARRAY, and NOTE sections.
1088   // All others will be created from scratch and reallocated.
1089   if (!can_incremental_update(sh_type))
1090     return NULL;
1091 
1092   // If we're generating a .gdb_index section, we need to regenerate
1093   // it from scratch.
1094   if (parameters->options().gdb_index()
1095       && sh_type == elfcpp::SHT_PROGBITS
1096       && strcmp(name, ".gdb_index") == 0)
1097     return NULL;
1098 
1099   typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1100   typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1101   typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1102   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags =
1103       this->get_output_section_flags(shdr.get_sh_flags());
1104   typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1105       shdr.get_sh_addralign();
1106 
1107   // Make the output section.
1108   Stringpool::Key name_key;
1109   name = this->namepool_.add(name, true, &name_key);
1110   Output_section* os = this->get_output_section(name, name_key, sh_type,
1111 						sh_flags, ORDER_INVALID, false);
1112   os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1113   if (sh_type != elfcpp::SHT_NOBITS)
1114     this->free_list_.remove(sh_offset, sh_offset + sh_size);
1115   return os;
1116 }
1117 
1118 // Return the index by which an input section should be ordered.  This
1119 // is used to sort some .text sections, for compatibility with GNU ld.
1120 
1121 int
special_ordering_of_input_section(const char * name)1122 Layout::special_ordering_of_input_section(const char* name)
1123 {
1124   // The GNU linker has some special handling for some sections that
1125   // wind up in the .text section.  Sections that start with these
1126   // prefixes must appear first, and must appear in the order listed
1127   // here.
1128   static const char* const text_section_sort[] =
1129   {
1130     ".text.unlikely",
1131     ".text.exit",
1132     ".text.startup",
1133     ".text.hot",
1134     ".text.sorted"
1135   };
1136 
1137   for (size_t i = 0;
1138        i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1139        i++)
1140     if (is_prefix_of(text_section_sort[i], name))
1141       return i;
1142 
1143   return -1;
1144 }
1145 
1146 // Return the output section to use for input section SHNDX, with name
1147 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
1148 // index of a relocation section which applies to this section, or 0
1149 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
1150 // relocation section if there is one.  Set *OFF to the offset of this
1151 // input section without the output section.  Return NULL if the
1152 // section should be discarded.  Set *OFF to -1 if the section
1153 // contents should not be written directly to the output file, but
1154 // will instead receive special handling.
1155 
1156 template<int size, bool big_endian>
1157 Output_section*
layout(Sized_relobj_file<size,big_endian> * object,unsigned int shndx,const char * name,const elfcpp::Shdr<size,big_endian> & shdr,unsigned int sh_type,unsigned int reloc_shndx,unsigned int,off_t * off)1158 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1159 	       const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1160 	       unsigned int sh_type, unsigned int reloc_shndx,
1161 	       unsigned int, off_t* off)
1162 {
1163   *off = 0;
1164 
1165   if (!this->include_section(object, name, shdr))
1166     return NULL;
1167 
1168   // In a relocatable link a grouped section must not be combined with
1169   // any other sections.
1170   Output_section* os;
1171   if (parameters->options().relocatable()
1172       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1173     {
1174       // Some flags in the input section should not be automatically
1175       // copied to the output section.
1176       elfcpp::Elf_Xword sh_flags = (shdr.get_sh_flags()
1177 				    & ~ elfcpp::SHF_COMPRESSED);
1178       name = this->namepool_.add(name, true, NULL);
1179       os = this->make_output_section(name, sh_type, sh_flags, ORDER_INVALID,
1180 				     false);
1181     }
1182   else
1183     {
1184       // Get the section flags and mask out any flags that do not
1185       // take part in section matching.
1186       elfcpp::Elf_Xword sh_flags
1187 	  = (this->get_output_section_flags(shdr.get_sh_flags())
1188 	     & ~object->osabi().ignored_sh_flags());
1189 
1190       // All ".text.unlikely.*" sections can be moved to a unique
1191       // segment with --text-unlikely-segment option.
1192       bool text_unlikely_segment
1193 	  = (parameters->options().text_unlikely_segment()
1194 	     && is_prefix_of(".text.unlikely",
1195 			     object->section_name(shndx).c_str()));
1196       if (text_unlikely_segment)
1197 	{
1198 	  Stringpool::Key name_key;
1199 	  const char* os_name = this->namepool_.add(".text.unlikely", true,
1200 						    &name_key);
1201 	  os = this->get_output_section(os_name, name_key, sh_type, sh_flags,
1202 					ORDER_INVALID, false);
1203 	  // Map this output section to a unique segment.  This is done to
1204 	  // separate "text" that is not likely to be executed from "text"
1205 	  // that is likely executed.
1206 	  os->set_is_unique_segment();
1207 	}
1208       else
1209 	{
1210 	  // Plugins can choose to place one or more subsets of sections in
1211 	  // unique segments and this is done by mapping these section subsets
1212 	  // to unique output sections.  Check if this section needs to be
1213 	  // remapped to a unique output section.
1214 	  Section_segment_map::iterator it
1215 	    = this->section_segment_map_.find(Const_section_id(object, shndx));
1216 	  if (it == this->section_segment_map_.end())
1217 	    {
1218 	      os = this->choose_output_section(object, name, sh_type,
1219 					       sh_flags, true, ORDER_INVALID,
1220 					       false, false, true);
1221 	    }
1222 	  else
1223 	    {
1224 	      // We know the name of the output section, directly call
1225 	      // get_output_section here by-passing choose_output_section.
1226 	      const char* os_name = it->second->name;
1227 	      Stringpool::Key name_key;
1228 	      os_name = this->namepool_.add(os_name, true, &name_key);
1229 	      os = this->get_output_section(os_name, name_key, sh_type,
1230 					    sh_flags, ORDER_INVALID, false);
1231 	      if (!os->is_unique_segment())
1232 		{
1233 		  os->set_is_unique_segment();
1234 		  os->set_extra_segment_flags(it->second->flags);
1235 		  os->set_segment_alignment(it->second->align);
1236 		}
1237 	    }
1238 	  }
1239       if (os == NULL)
1240 	return NULL;
1241     }
1242 
1243   // By default the GNU linker sorts input sections whose names match
1244   // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
1245   // sections are sorted by name.  This is used to implement
1246   // constructor priority ordering.  We are compatible.  When we put
1247   // .ctor sections in .init_array and .dtor sections in .fini_array,
1248   // we must also sort plain .ctor and .dtor sections.
1249   if (!this->script_options_->saw_sections_clause()
1250       && !parameters->options().relocatable()
1251       && (is_prefix_of(".ctors.", name)
1252 	  || is_prefix_of(".dtors.", name)
1253 	  || is_prefix_of(".init_array.", name)
1254 	  || is_prefix_of(".fini_array.", name)
1255 	  || (parameters->options().ctors_in_init_array()
1256 	      && (strcmp(name, ".ctors") == 0
1257 		  || strcmp(name, ".dtors") == 0))))
1258     os->set_must_sort_attached_input_sections();
1259 
1260   // By default the GNU linker sorts some special text sections ahead
1261   // of others.  We are compatible.
1262   if (parameters->options().text_reorder()
1263       && !this->script_options_->saw_sections_clause()
1264       && !this->is_section_ordering_specified()
1265       && !parameters->options().relocatable()
1266       && Layout::special_ordering_of_input_section(name) >= 0)
1267     os->set_must_sort_attached_input_sections();
1268 
1269   // If this is a .ctors or .ctors.* section being mapped to a
1270   // .init_array section, or a .dtors or .dtors.* section being mapped
1271   // to a .fini_array section, we will need to reverse the words if
1272   // there is more than one.  Record this section for later.  See
1273   // ctors_sections_in_init_array above.
1274   if (!this->script_options_->saw_sections_clause()
1275       && !parameters->options().relocatable()
1276       && shdr.get_sh_size() > size / 8
1277       && (((strcmp(name, ".ctors") == 0
1278 	    || is_prefix_of(".ctors.", name))
1279 	   && strcmp(os->name(), ".init_array") == 0)
1280 	  || ((strcmp(name, ".dtors") == 0
1281 	       || is_prefix_of(".dtors.", name))
1282 	      && strcmp(os->name(), ".fini_array") == 0)))
1283     ctors_sections_in_init_array.insert(Section_id(object, shndx));
1284 
1285   // FIXME: Handle SHF_LINK_ORDER somewhere.
1286 
1287   elfcpp::Elf_Xword orig_flags = os->flags();
1288 
1289   *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1290 			       this->script_options_->saw_sections_clause());
1291 
1292   // If the flags changed, we may have to change the order.
1293   if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1294     {
1295       orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1296       elfcpp::Elf_Xword new_flags =
1297 	os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1298       if (orig_flags != new_flags)
1299 	os->set_order(this->default_section_order(os, false));
1300     }
1301 
1302   this->have_added_input_section_ = true;
1303 
1304   return os;
1305 }
1306 
1307 // Maps section SECN to SEGMENT s.
1308 void
insert_section_segment_map(Const_section_id secn,Unique_segment_info * s)1309 Layout::insert_section_segment_map(Const_section_id secn,
1310 				   Unique_segment_info *s)
1311 {
1312   gold_assert(this->unique_segment_for_sections_specified_);
1313   this->section_segment_map_[secn] = s;
1314 }
1315 
1316 // Handle a relocation section when doing a relocatable link.
1317 
1318 template<int size, bool big_endian>
1319 Output_section*
layout_reloc(Sized_relobj_file<size,big_endian> *,unsigned int,const elfcpp::Shdr<size,big_endian> & shdr,Output_section * data_section,Relocatable_relocs * rr)1320 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1321 		     unsigned int,
1322 		     const elfcpp::Shdr<size, big_endian>& shdr,
1323 		     Output_section* data_section,
1324 		     Relocatable_relocs* rr)
1325 {
1326   gold_assert(parameters->options().relocatable()
1327 	      || parameters->options().emit_relocs());
1328 
1329   int sh_type = shdr.get_sh_type();
1330 
1331   std::string name;
1332   if (sh_type == elfcpp::SHT_REL)
1333     name = ".rel";
1334   else if (sh_type == elfcpp::SHT_RELA)
1335     name = ".rela";
1336   else
1337     gold_unreachable();
1338   name += data_section->name();
1339 
1340   // If the output data section already has a reloc section, use that;
1341   // otherwise, make a new one.
1342   Output_section* os = data_section->reloc_section();
1343   if (os == NULL)
1344     {
1345       const char* n = this->namepool_.add(name.c_str(), true, NULL);
1346       os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1347 				     ORDER_INVALID, false);
1348       os->set_should_link_to_symtab();
1349       os->set_info_section(data_section);
1350       data_section->set_reloc_section(os);
1351     }
1352 
1353   Output_section_data* posd;
1354   if (sh_type == elfcpp::SHT_REL)
1355     {
1356       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1357       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1358 					   size,
1359 					   big_endian>(rr);
1360     }
1361   else if (sh_type == elfcpp::SHT_RELA)
1362     {
1363       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1364       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1365 					   size,
1366 					   big_endian>(rr);
1367     }
1368   else
1369     gold_unreachable();
1370 
1371   os->add_output_section_data(posd);
1372   rr->set_output_data(posd);
1373 
1374   return os;
1375 }
1376 
1377 // Handle a group section when doing a relocatable link.
1378 
1379 template<int size, bool big_endian>
1380 void
layout_group(Symbol_table * symtab,Sized_relobj_file<size,big_endian> * object,unsigned int,const char * group_section_name,const char * signature,const elfcpp::Shdr<size,big_endian> & shdr,elfcpp::Elf_Word flags,std::vector<unsigned int> * shndxes)1381 Layout::layout_group(Symbol_table* symtab,
1382 		     Sized_relobj_file<size, big_endian>* object,
1383 		     unsigned int,
1384 		     const char* group_section_name,
1385 		     const char* signature,
1386 		     const elfcpp::Shdr<size, big_endian>& shdr,
1387 		     elfcpp::Elf_Word flags,
1388 		     std::vector<unsigned int>* shndxes)
1389 {
1390   gold_assert(parameters->options().relocatable());
1391   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1392   group_section_name = this->namepool_.add(group_section_name, true, NULL);
1393   Output_section* os = this->make_output_section(group_section_name,
1394 						 elfcpp::SHT_GROUP,
1395 						 shdr.get_sh_flags(),
1396 						 ORDER_INVALID, false);
1397 
1398   // We need to find a symbol with the signature in the symbol table.
1399   // If we don't find one now, we need to look again later.
1400   Symbol* sym = symtab->lookup(signature, NULL);
1401   if (sym != NULL)
1402     os->set_info_symndx(sym);
1403   else
1404     {
1405       // Reserve some space to minimize reallocations.
1406       if (this->group_signatures_.empty())
1407 	this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1408 
1409       // We will wind up using a symbol whose name is the signature.
1410       // So just put the signature in the symbol name pool to save it.
1411       signature = symtab->canonicalize_name(signature);
1412       this->group_signatures_.push_back(Group_signature(os, signature));
1413     }
1414 
1415   os->set_should_link_to_symtab();
1416   os->set_entsize(4);
1417 
1418   section_size_type entry_count =
1419     convert_to_section_size_type(shdr.get_sh_size() / 4);
1420   Output_section_data* posd =
1421     new Output_data_group<size, big_endian>(object, entry_count, flags,
1422 					    shndxes);
1423   os->add_output_section_data(posd);
1424 }
1425 
1426 // Special GNU handling of sections name .eh_frame.  They will
1427 // normally hold exception frame data as defined by the C++ ABI
1428 // (http://codesourcery.com/cxx-abi/).
1429 
1430 template<int size, bool big_endian>
1431 Output_section*
layout_eh_frame(Sized_relobj_file<size,big_endian> * object,const unsigned char * symbols,off_t symbols_size,const unsigned char * symbol_names,off_t symbol_names_size,unsigned int shndx,const elfcpp::Shdr<size,big_endian> & shdr,unsigned int reloc_shndx,unsigned int reloc_type,off_t * off)1432 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1433 			const unsigned char* symbols,
1434 			off_t symbols_size,
1435 			const unsigned char* symbol_names,
1436 			off_t symbol_names_size,
1437 			unsigned int shndx,
1438 			const elfcpp::Shdr<size, big_endian>& shdr,
1439 			unsigned int reloc_shndx, unsigned int reloc_type,
1440 			off_t* off)
1441 {
1442   const unsigned int unwind_section_type =
1443       parameters->target().unwind_section_type();
1444 
1445   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1446 	      || shdr.get_sh_type() == unwind_section_type);
1447   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1448 
1449   Output_section* os = this->make_eh_frame_section(object);
1450   if (os == NULL)
1451     return NULL;
1452 
1453   gold_assert(this->eh_frame_section_ == os);
1454 
1455   elfcpp::Elf_Xword orig_flags = os->flags();
1456 
1457   Eh_frame::Eh_frame_section_disposition disp =
1458       Eh_frame::EH_UNRECOGNIZED_SECTION;
1459   if (!parameters->incremental())
1460     {
1461       disp = this->eh_frame_data_->add_ehframe_input_section(object,
1462 							     symbols,
1463 							     symbols_size,
1464 							     symbol_names,
1465 							     symbol_names_size,
1466 							     shndx,
1467 							     reloc_shndx,
1468 							     reloc_type);
1469     }
1470 
1471   if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1472     {
1473       os->update_flags_for_input_section(shdr.get_sh_flags());
1474 
1475       // A writable .eh_frame section is a RELRO section.
1476       if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1477 	  != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1478 	{
1479 	  os->set_is_relro();
1480 	  os->set_order(ORDER_RELRO);
1481 	}
1482 
1483       *off = -1;
1484       return os;
1485     }
1486 
1487   if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1488     {
1489       // We found the end marker section, so now we can add the set of
1490       // optimized sections to the output section.  We need to postpone
1491       // adding this until we've found a section we can optimize so that
1492       // the .eh_frame section in crtbeginT.o winds up at the start of
1493       // the output section.
1494       os->add_output_section_data(this->eh_frame_data_);
1495       this->added_eh_frame_data_ = true;
1496      }
1497 
1498   // We couldn't handle this .eh_frame section for some reason.
1499   // Add it as a normal section.
1500   bool saw_sections_clause = this->script_options_->saw_sections_clause();
1501   *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1502 			       reloc_shndx, saw_sections_clause);
1503   this->have_added_input_section_ = true;
1504 
1505   if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1506       != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1507     os->set_order(this->default_section_order(os, false));
1508 
1509   return os;
1510 }
1511 
1512 void
finalize_eh_frame_section()1513 Layout::finalize_eh_frame_section()
1514 {
1515   // If we never found an end marker section, we need to add the
1516   // optimized eh sections to the output section now.
1517   if (!parameters->incremental()
1518       && this->eh_frame_section_ != NULL
1519       && !this->added_eh_frame_data_)
1520     {
1521       this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1522       this->added_eh_frame_data_ = true;
1523     }
1524 }
1525 
1526 // Create and return the magic .eh_frame section.  Create
1527 // .eh_frame_hdr also if appropriate.  OBJECT is the object with the
1528 // input .eh_frame section; it may be NULL.
1529 
1530 Output_section*
make_eh_frame_section(const Relobj * object)1531 Layout::make_eh_frame_section(const Relobj* object)
1532 {
1533   const unsigned int unwind_section_type =
1534       parameters->target().unwind_section_type();
1535 
1536   Output_section* os = this->choose_output_section(object, ".eh_frame",
1537 						   unwind_section_type,
1538 						   elfcpp::SHF_ALLOC, false,
1539 						   ORDER_EHFRAME, false, false,
1540 						   false);
1541   if (os == NULL)
1542     return NULL;
1543 
1544   if (this->eh_frame_section_ == NULL)
1545     {
1546       this->eh_frame_section_ = os;
1547       this->eh_frame_data_ = new Eh_frame();
1548 
1549       // For incremental linking, we do not optimize .eh_frame sections
1550       // or create a .eh_frame_hdr section.
1551       if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1552 	{
1553 	  Output_section* hdr_os =
1554 	    this->choose_output_section(NULL, ".eh_frame_hdr",
1555 					unwind_section_type,
1556 					elfcpp::SHF_ALLOC, false,
1557 					ORDER_EHFRAME, false, false,
1558 					false);
1559 
1560 	  if (hdr_os != NULL)
1561 	    {
1562 	      Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1563 							this->eh_frame_data_);
1564 	      hdr_os->add_output_section_data(hdr_posd);
1565 
1566 	      hdr_os->set_after_input_sections();
1567 
1568 	      if (!this->script_options_->saw_phdrs_clause())
1569 		{
1570 		  Output_segment* hdr_oseg;
1571 		  hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1572 						       elfcpp::PF_R);
1573 		  hdr_oseg->add_output_section_to_nonload(hdr_os,
1574 							  elfcpp::PF_R);
1575 		}
1576 
1577 	      this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1578 	    }
1579 	}
1580     }
1581 
1582   return os;
1583 }
1584 
1585 // Add an exception frame for a PLT.  This is called from target code.
1586 
1587 void
add_eh_frame_for_plt(Output_data * plt,const unsigned char * cie_data,size_t cie_length,const unsigned char * fde_data,size_t fde_length)1588 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1589 			     size_t cie_length, const unsigned char* fde_data,
1590 			     size_t fde_length)
1591 {
1592   if (parameters->incremental())
1593     {
1594       // FIXME: Maybe this could work some day....
1595       return;
1596     }
1597   Output_section* os = this->make_eh_frame_section(NULL);
1598   if (os == NULL)
1599     return;
1600   this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1601 					    fde_data, fde_length);
1602   if (!this->added_eh_frame_data_)
1603     {
1604       os->add_output_section_data(this->eh_frame_data_);
1605       this->added_eh_frame_data_ = true;
1606     }
1607 }
1608 
1609 // Remove all post-map .eh_frame information for a PLT.
1610 
1611 void
remove_eh_frame_for_plt(Output_data * plt,const unsigned char * cie_data,size_t cie_length)1612 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1613 				size_t cie_length)
1614 {
1615   if (parameters->incremental())
1616     {
1617       // FIXME: Maybe this could work some day....
1618       return;
1619     }
1620   this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length);
1621 }
1622 
1623 // Scan a .debug_info or .debug_types section, and add summary
1624 // information to the .gdb_index section.
1625 
1626 template<int size, bool big_endian>
1627 void
add_to_gdb_index(bool is_type_unit,Sized_relobj<size,big_endian> * object,const unsigned char * symbols,off_t symbols_size,unsigned int shndx,unsigned int reloc_shndx,unsigned int reloc_type)1628 Layout::add_to_gdb_index(bool is_type_unit,
1629 			 Sized_relobj<size, big_endian>* object,
1630 			 const unsigned char* symbols,
1631 			 off_t symbols_size,
1632 			 unsigned int shndx,
1633 			 unsigned int reloc_shndx,
1634 			 unsigned int reloc_type)
1635 {
1636   if (this->gdb_index_data_ == NULL)
1637     {
1638       Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1639 						       elfcpp::SHT_PROGBITS, 0,
1640 						       false, ORDER_INVALID,
1641 						       false, false, false);
1642       if (os == NULL)
1643 	return;
1644 
1645       this->gdb_index_data_ = new Gdb_index(os);
1646       os->add_output_section_data(this->gdb_index_data_);
1647       os->set_after_input_sections();
1648     }
1649 
1650   this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1651 					 symbols_size, shndx, reloc_shndx,
1652 					 reloc_type);
1653 }
1654 
1655 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
1656 // the output section.
1657 
1658 Output_section*
add_output_section_data(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_data * posd,Output_section_order order,bool is_relro)1659 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1660 				elfcpp::Elf_Xword flags,
1661 				Output_section_data* posd,
1662 				Output_section_order order, bool is_relro)
1663 {
1664   Output_section* os = this->choose_output_section(NULL, name, type, flags,
1665 						   false, order, is_relro,
1666 						   false, false);
1667   if (os != NULL)
1668     os->add_output_section_data(posd);
1669   return os;
1670 }
1671 
1672 // Map section flags to segment flags.
1673 
1674 elfcpp::Elf_Word
section_flags_to_segment(elfcpp::Elf_Xword flags)1675 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1676 {
1677   elfcpp::Elf_Word ret = elfcpp::PF_R;
1678   if ((flags & elfcpp::SHF_WRITE) != 0)
1679     ret |= elfcpp::PF_W;
1680   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1681     ret |= elfcpp::PF_X;
1682   return ret;
1683 }
1684 
1685 // Make a new Output_section, and attach it to segments as
1686 // appropriate.  ORDER is the order in which this section should
1687 // appear in the output segment.  IS_RELRO is true if this is a relro
1688 // (read-only after relocations) section.
1689 
1690 Output_section*
make_output_section(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags,Output_section_order order,bool is_relro)1691 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1692 			    elfcpp::Elf_Xword flags,
1693 			    Output_section_order order, bool is_relro)
1694 {
1695   Output_section* os;
1696   if ((flags & elfcpp::SHF_ALLOC) == 0
1697       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1698       && is_compressible_debug_section(name))
1699     os = new Output_compressed_section(&parameters->options(), name, type,
1700 				       flags);
1701   else if ((flags & elfcpp::SHF_ALLOC) == 0
1702 	   && parameters->options().strip_debug_non_line()
1703 	   && strcmp(".debug_abbrev", name) == 0)
1704     {
1705       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1706 	  name, type, flags);
1707       if (this->debug_info_)
1708 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
1709     }
1710   else if ((flags & elfcpp::SHF_ALLOC) == 0
1711 	   && parameters->options().strip_debug_non_line()
1712 	   && strcmp(".debug_info", name) == 0)
1713     {
1714       os = this->debug_info_ = new Output_reduced_debug_info_section(
1715 	  name, type, flags);
1716       if (this->debug_abbrev_)
1717 	this->debug_info_->set_abbreviations(this->debug_abbrev_);
1718     }
1719   else
1720     {
1721       // Sometimes .init_array*, .preinit_array* and .fini_array* do
1722       // not have correct section types.  Force them here.
1723       if (type == elfcpp::SHT_PROGBITS)
1724 	{
1725 	  if (is_prefix_of(".init_array", name))
1726 	    type = elfcpp::SHT_INIT_ARRAY;
1727 	  else if (is_prefix_of(".preinit_array", name))
1728 	    type = elfcpp::SHT_PREINIT_ARRAY;
1729 	  else if (is_prefix_of(".fini_array", name))
1730 	    type = elfcpp::SHT_FINI_ARRAY;
1731 	}
1732 
1733       // FIXME: const_cast is ugly.
1734       Target* target = const_cast<Target*>(&parameters->target());
1735       os = target->make_output_section(name, type, flags);
1736     }
1737 
1738   // With -z relro, we have to recognize the special sections by name.
1739   // There is no other way.
1740   bool is_relro_local = false;
1741   if (!this->script_options_->saw_sections_clause()
1742       && parameters->options().relro()
1743       && (flags & elfcpp::SHF_ALLOC) != 0
1744       && (flags & elfcpp::SHF_WRITE) != 0)
1745     {
1746       if (type == elfcpp::SHT_PROGBITS)
1747 	{
1748 	  if ((flags & elfcpp::SHF_TLS) != 0)
1749 	    is_relro = true;
1750 	  else if (strcmp(name, ".data.rel.ro") == 0)
1751 	    is_relro = true;
1752 	  else if (strcmp(name, ".data.rel.ro.local") == 0)
1753 	    {
1754 	      is_relro = true;
1755 	      is_relro_local = true;
1756 	    }
1757 	  else if (strcmp(name, ".ctors") == 0
1758 		   || strcmp(name, ".dtors") == 0
1759 		   || strcmp(name, ".jcr") == 0)
1760 	    is_relro = true;
1761 	}
1762       else if (type == elfcpp::SHT_INIT_ARRAY
1763 	       || type == elfcpp::SHT_FINI_ARRAY
1764 	       || type == elfcpp::SHT_PREINIT_ARRAY)
1765 	is_relro = true;
1766     }
1767 
1768   if (is_relro)
1769     os->set_is_relro();
1770 
1771   if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1772     order = this->default_section_order(os, is_relro_local);
1773 
1774   os->set_order(order);
1775 
1776   parameters->target().new_output_section(os);
1777 
1778   this->section_list_.push_back(os);
1779 
1780   // The GNU linker by default sorts some sections by priority, so we
1781   // do the same.  We need to know that this might happen before we
1782   // attach any input sections.
1783   if (!this->script_options_->saw_sections_clause()
1784       && !parameters->options().relocatable()
1785       && (strcmp(name, ".init_array") == 0
1786 	  || strcmp(name, ".fini_array") == 0
1787 	  || (!parameters->options().ctors_in_init_array()
1788 	      && (strcmp(name, ".ctors") == 0
1789 		  || strcmp(name, ".dtors") == 0))))
1790     os->set_may_sort_attached_input_sections();
1791 
1792   // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1793   // sections before other .text sections.  We are compatible.  We
1794   // need to know that this might happen before we attach any input
1795   // sections.
1796   if (parameters->options().text_reorder()
1797       && !this->script_options_->saw_sections_clause()
1798       && !this->is_section_ordering_specified()
1799       && !parameters->options().relocatable()
1800       && strcmp(name, ".text") == 0)
1801     os->set_may_sort_attached_input_sections();
1802 
1803   // GNU linker sorts section by name with --sort-section=name.
1804   if (strcmp(parameters->options().sort_section(), "name") == 0)
1805       os->set_must_sort_attached_input_sections();
1806 
1807   // Check for .stab*str sections, as .stab* sections need to link to
1808   // them.
1809   if (type == elfcpp::SHT_STRTAB
1810       && !this->have_stabstr_section_
1811       && strncmp(name, ".stab", 5) == 0
1812       && strcmp(name + strlen(name) - 3, "str") == 0)
1813     this->have_stabstr_section_ = true;
1814 
1815   // During a full incremental link, we add patch space to most
1816   // PROGBITS and NOBITS sections.  Flag those that may be
1817   // arbitrarily padded.
1818   if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1819       && order != ORDER_INTERP
1820       && order != ORDER_INIT
1821       && order != ORDER_PLT
1822       && order != ORDER_FINI
1823       && order != ORDER_RELRO_LAST
1824       && order != ORDER_NON_RELRO_FIRST
1825       && strcmp(name, ".eh_frame") != 0
1826       && strcmp(name, ".ctors") != 0
1827       && strcmp(name, ".dtors") != 0
1828       && strcmp(name, ".jcr") != 0)
1829     {
1830       os->set_is_patch_space_allowed();
1831 
1832       // Certain sections require "holes" to be filled with
1833       // specific fill patterns.  These fill patterns may have
1834       // a minimum size, so we must prevent allocations from the
1835       // free list that leave a hole smaller than the minimum.
1836       if (strcmp(name, ".debug_info") == 0)
1837 	os->set_free_space_fill(new Output_fill_debug_info(false));
1838       else if (strcmp(name, ".debug_types") == 0)
1839 	os->set_free_space_fill(new Output_fill_debug_info(true));
1840       else if (strcmp(name, ".debug_line") == 0)
1841 	os->set_free_space_fill(new Output_fill_debug_line());
1842     }
1843 
1844   // If we have already attached the sections to segments, then we
1845   // need to attach this one now.  This happens for sections created
1846   // directly by the linker.
1847   if (this->sections_are_attached_)
1848     this->attach_section_to_segment(&parameters->target(), os);
1849 
1850   return os;
1851 }
1852 
1853 // Return the default order in which a section should be placed in an
1854 // output segment.  This function captures a lot of the ideas in
1855 // ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
1856 // linker created section is normally set when the section is created;
1857 // this function is used for input sections.
1858 
1859 Output_section_order
default_section_order(Output_section * os,bool is_relro_local)1860 Layout::default_section_order(Output_section* os, bool is_relro_local)
1861 {
1862   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1863   bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1864   bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1865   bool is_bss = false;
1866 
1867   switch (os->type())
1868     {
1869     default:
1870     case elfcpp::SHT_PROGBITS:
1871       break;
1872     case elfcpp::SHT_NOBITS:
1873       is_bss = true;
1874       break;
1875     case elfcpp::SHT_RELA:
1876     case elfcpp::SHT_REL:
1877       if (!is_write)
1878 	return ORDER_DYNAMIC_RELOCS;
1879       break;
1880     case elfcpp::SHT_HASH:
1881     case elfcpp::SHT_DYNAMIC:
1882     case elfcpp::SHT_SHLIB:
1883     case elfcpp::SHT_DYNSYM:
1884     case elfcpp::SHT_GNU_HASH:
1885     case elfcpp::SHT_GNU_verdef:
1886     case elfcpp::SHT_GNU_verneed:
1887     case elfcpp::SHT_GNU_versym:
1888       if (!is_write)
1889 	return ORDER_DYNAMIC_LINKER;
1890       break;
1891     case elfcpp::SHT_NOTE:
1892       return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1893     }
1894 
1895   if ((os->flags() & elfcpp::SHF_TLS) != 0)
1896     return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1897 
1898   if (!is_bss && !is_write)
1899     {
1900       if (is_execinstr)
1901 	{
1902 	  if (strcmp(os->name(), ".init") == 0)
1903 	    return ORDER_INIT;
1904 	  else if (strcmp(os->name(), ".fini") == 0)
1905 	    return ORDER_FINI;
1906 	  else if (parameters->options().keep_text_section_prefix())
1907 	    {
1908 	      // -z,keep-text-section-prefix introduces additional
1909 	      // output sections.
1910 	      if (strcmp(os->name(), ".text.hot") == 0)
1911 		return ORDER_TEXT_HOT;
1912 	      else if (strcmp(os->name(), ".text.startup") == 0)
1913 		return ORDER_TEXT_STARTUP;
1914 	      else if (strcmp(os->name(), ".text.exit") == 0)
1915 		return ORDER_TEXT_EXIT;
1916 	      else if (strcmp(os->name(), ".text.unlikely") == 0)
1917 		return ORDER_TEXT_UNLIKELY;
1918 	    }
1919 	}
1920       return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1921     }
1922 
1923   if (os->is_relro())
1924     return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1925 
1926   if (os->is_small_section())
1927     return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1928   if (os->is_large_section())
1929     return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1930 
1931   return is_bss ? ORDER_BSS : ORDER_DATA;
1932 }
1933 
1934 // Attach output sections to segments.  This is called after we have
1935 // seen all the input sections.
1936 
1937 void
attach_sections_to_segments(const Target * target)1938 Layout::attach_sections_to_segments(const Target* target)
1939 {
1940   for (Section_list::iterator p = this->section_list_.begin();
1941        p != this->section_list_.end();
1942        ++p)
1943     this->attach_section_to_segment(target, *p);
1944 
1945   this->sections_are_attached_ = true;
1946 }
1947 
1948 // Attach an output section to a segment.
1949 
1950 void
attach_section_to_segment(const Target * target,Output_section * os)1951 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1952 {
1953   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1954     this->unattached_section_list_.push_back(os);
1955   else
1956     this->attach_allocated_section_to_segment(target, os);
1957 }
1958 
1959 // Attach an allocated output section to a segment.
1960 
1961 void
attach_allocated_section_to_segment(const Target * target,Output_section * os)1962 Layout::attach_allocated_section_to_segment(const Target* target,
1963 					    Output_section* os)
1964 {
1965   elfcpp::Elf_Xword flags = os->flags();
1966   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1967 
1968   if (parameters->options().relocatable())
1969     return;
1970 
1971   // If we have a SECTIONS clause, we can't handle the attachment to
1972   // segments until after we've seen all the sections.
1973   if (this->script_options_->saw_sections_clause())
1974     return;
1975 
1976   gold_assert(!this->script_options_->saw_phdrs_clause());
1977 
1978   // This output section goes into a PT_LOAD segment.
1979 
1980   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1981 
1982   // If this output section's segment has extra flags that need to be set,
1983   // coming from a linker plugin, do that.
1984   seg_flags |= os->extra_segment_flags();
1985 
1986   // Check for --section-start.
1987   uint64_t addr;
1988   bool is_address_set = parameters->options().section_start(os->name(), &addr);
1989 
1990   // In general the only thing we really care about for PT_LOAD
1991   // segments is whether or not they are writable or executable,
1992   // so that is how we search for them.
1993   // Large data sections also go into their own PT_LOAD segment.
1994   // People who need segments sorted on some other basis will
1995   // have to use a linker script.
1996 
1997   Segment_list::const_iterator p;
1998   if (!os->is_unique_segment())
1999     {
2000       for (p = this->segment_list_.begin();
2001 	   p != this->segment_list_.end();
2002 	   ++p)
2003 	{
2004 	  if ((*p)->type() != elfcpp::PT_LOAD)
2005 	    continue;
2006 	  if ((*p)->is_unique_segment())
2007 	    continue;
2008 	  if (!parameters->options().omagic()
2009 	      && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2010 	    continue;
2011 	  if ((target->isolate_execinstr() || parameters->options().rosegment())
2012 	      && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2013 	    continue;
2014 	  // If -Tbss was specified, we need to separate the data and BSS
2015 	  // segments.
2016 	  if (parameters->options().user_set_Tbss())
2017 	    {
2018 	      if ((os->type() == elfcpp::SHT_NOBITS)
2019 		  == (*p)->has_any_data_sections())
2020 		continue;
2021 	    }
2022 	  if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2023 	    continue;
2024 
2025 	  if (is_address_set)
2026 	    {
2027 	      if ((*p)->are_addresses_set())
2028 		continue;
2029 
2030 	      (*p)->add_initial_output_data(os);
2031 	      (*p)->update_flags_for_output_section(seg_flags);
2032 	      (*p)->set_addresses(addr, addr);
2033 	      break;
2034 	    }
2035 
2036 	  (*p)->add_output_section_to_load(this, os, seg_flags);
2037 	  break;
2038 	}
2039     }
2040 
2041   if (p == this->segment_list_.end()
2042       || os->is_unique_segment())
2043     {
2044       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2045 						       seg_flags);
2046       if (os->is_large_data_section())
2047 	oseg->set_is_large_data_segment();
2048       oseg->add_output_section_to_load(this, os, seg_flags);
2049       if (is_address_set)
2050 	oseg->set_addresses(addr, addr);
2051       // Check if segment should be marked unique.  For segments marked
2052       // unique by linker plugins, set the new alignment if specified.
2053       if (os->is_unique_segment())
2054 	{
2055 	  oseg->set_is_unique_segment();
2056 	  if (os->segment_alignment() != 0)
2057 	    oseg->set_minimum_p_align(os->segment_alignment());
2058 	}
2059     }
2060 
2061   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2062   // segment.
2063   if (os->type() == elfcpp::SHT_NOTE)
2064     {
2065       uint64_t os_align = os->addralign();
2066 
2067       // See if we already have an equivalent PT_NOTE segment.
2068       for (p = this->segment_list_.begin();
2069 	   p != segment_list_.end();
2070 	   ++p)
2071 	{
2072 	  if ((*p)->type() == elfcpp::PT_NOTE
2073 	      && (*p)->align() == os_align
2074 	      && (((*p)->flags() & elfcpp::PF_W)
2075 		  == (seg_flags & elfcpp::PF_W)))
2076 	    {
2077 	      (*p)->add_output_section_to_nonload(os, seg_flags);
2078 	      break;
2079 	    }
2080 	}
2081 
2082       if (p == this->segment_list_.end())
2083 	{
2084 	  Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2085 							   seg_flags);
2086 	  oseg->add_output_section_to_nonload(os, seg_flags);
2087 	  oseg->set_align(os_align);
2088 	}
2089     }
2090 
2091   // If we see a loadable SHF_TLS section, we create a PT_TLS
2092   // segment.  There can only be one such segment.
2093   if ((flags & elfcpp::SHF_TLS) != 0)
2094     {
2095       if (this->tls_segment_ == NULL)
2096 	this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2097       this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2098     }
2099 
2100   // If -z relro is in effect, and we see a relro section, we create a
2101   // PT_GNU_RELRO segment.  There can only be one such segment.
2102   if (os->is_relro() && parameters->options().relro())
2103     {
2104       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2105       if (this->relro_segment_ == NULL)
2106 	this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2107       this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2108     }
2109 
2110   // If we see a section named .interp, put it into a PT_INTERP
2111   // segment.  This seems broken to me, but this is what GNU ld does,
2112   // and glibc expects it.
2113   if (strcmp(os->name(), ".interp") == 0
2114       && !this->script_options_->saw_phdrs_clause())
2115     {
2116       if (this->interp_segment_ == NULL)
2117 	this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2118       else
2119 	gold_warning(_("multiple '.interp' sections in input files "
2120 		       "may cause confusing PT_INTERP segment"));
2121       this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2122     }
2123 }
2124 
2125 // Make an output section for a script.
2126 
2127 Output_section*
make_output_section_for_script(const char * name,Script_sections::Section_type section_type)2128 Layout::make_output_section_for_script(
2129     const char* name,
2130     Script_sections::Section_type section_type)
2131 {
2132   name = this->namepool_.add(name, false, NULL);
2133   elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2134   if (section_type == Script_sections::ST_NOLOAD)
2135     sh_flags = 0;
2136   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2137 						 sh_flags, ORDER_INVALID,
2138 						 false);
2139   os->set_found_in_sections_clause();
2140   if (section_type == Script_sections::ST_NOLOAD)
2141     os->set_is_noload();
2142   return os;
2143 }
2144 
2145 // Return the number of segments we expect to see.
2146 
2147 size_t
expected_segment_count() const2148 Layout::expected_segment_count() const
2149 {
2150   size_t ret = this->segment_list_.size();
2151 
2152   // If we didn't see a SECTIONS clause in a linker script, we should
2153   // already have the complete list of segments.  Otherwise we ask the
2154   // SECTIONS clause how many segments it expects, and add in the ones
2155   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2156 
2157   if (!this->script_options_->saw_sections_clause())
2158     return ret;
2159   else
2160     {
2161       const Script_sections* ss = this->script_options_->script_sections();
2162       return ret + ss->expected_segment_count(this);
2163     }
2164 }
2165 
2166 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
2167 // is whether we saw a .note.GNU-stack section in the object file.
2168 // GNU_STACK_FLAGS is the section flags.  The flags give the
2169 // protection required for stack memory.  We record this in an
2170 // executable as a PT_GNU_STACK segment.  If an object file does not
2171 // have a .note.GNU-stack segment, we must assume that it is an old
2172 // object.  On some targets that will force an executable stack.
2173 
2174 void
layout_gnu_stack(bool seen_gnu_stack,uint64_t gnu_stack_flags,const Object * obj)2175 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2176 			 const Object* obj)
2177 {
2178   if (!seen_gnu_stack)
2179     {
2180       this->input_without_gnu_stack_note_ = true;
2181       if (parameters->options().warn_execstack()
2182 	  && parameters->target().is_default_stack_executable())
2183 	gold_warning(_("%s: missing .note.GNU-stack section"
2184 		       " implies executable stack"),
2185 		     obj->name().c_str());
2186     }
2187   else
2188     {
2189       this->input_with_gnu_stack_note_ = true;
2190       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2191 	{
2192 	  this->input_requires_executable_stack_ = true;
2193 	  if (parameters->options().warn_execstack())
2194 	    gold_warning(_("%s: requires executable stack"),
2195 			 obj->name().c_str());
2196 	}
2197     }
2198 }
2199 
2200 // Read a value with given size and endianness.
2201 
2202 static inline uint64_t
read_sized_value(size_t size,const unsigned char * buf,bool is_big_endian,const Object * object)2203 read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
2204 		 const Object* object)
2205 {
2206   uint64_t val = 0;
2207   if (size == 4)
2208     {
2209       if (is_big_endian)
2210 	val = elfcpp::Swap<32, true>::readval(buf);
2211       else
2212 	val = elfcpp::Swap<32, false>::readval(buf);
2213     }
2214   else if (size == 8)
2215     {
2216       if (is_big_endian)
2217 	val = elfcpp::Swap<64, true>::readval(buf);
2218       else
2219 	val = elfcpp::Swap<64, false>::readval(buf);
2220     }
2221   else
2222     {
2223       gold_warning(_("%s: in .note.gnu.property section, "
2224 		     "pr_datasz must be 4 or 8"),
2225 		   object->name().c_str());
2226     }
2227   return val;
2228 }
2229 
2230 // Write a value with given size and endianness.
2231 
2232 static inline void
write_sized_value(uint64_t value,size_t size,unsigned char * buf,bool is_big_endian)2233 write_sized_value(uint64_t value, size_t size, unsigned char* buf,
2234 		  bool is_big_endian)
2235 {
2236   if (size == 4)
2237     {
2238       if (is_big_endian)
2239 	elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
2240       else
2241 	elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
2242     }
2243   else if (size == 8)
2244     {
2245       if (is_big_endian)
2246 	elfcpp::Swap<64, true>::writeval(buf, value);
2247       else
2248 	elfcpp::Swap<64, false>::writeval(buf, value);
2249     }
2250   else
2251     {
2252       // We will have already complained about this.
2253     }
2254 }
2255 
2256 // Handle the .note.gnu.property section at layout time.
2257 
2258 void
layout_gnu_property(unsigned int note_type,unsigned int pr_type,size_t pr_datasz,const unsigned char * pr_data,const Object * object)2259 Layout::layout_gnu_property(unsigned int note_type,
2260 			    unsigned int pr_type,
2261 			    size_t pr_datasz,
2262 			    const unsigned char* pr_data,
2263 			    const Object* object)
2264 {
2265   // We currently support only the one note type.
2266   gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2267 
2268   if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
2269       && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
2270     {
2271       // Target-dependent property value; call the target to record.
2272       const int size = parameters->target().get_size();
2273       const bool is_big_endian = parameters->target().is_big_endian();
2274       if (size == 32)
2275 	{
2276 	  if (is_big_endian)
2277 	    {
2278 #ifdef HAVE_TARGET_32_BIG
2279 	      parameters->sized_target<32, true>()->
2280 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2281 				      object);
2282 #else
2283 	      gold_unreachable();
2284 #endif
2285 	    }
2286 	  else
2287 	    {
2288 #ifdef HAVE_TARGET_32_LITTLE
2289 	      parameters->sized_target<32, false>()->
2290 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2291 				      object);
2292 #else
2293 	      gold_unreachable();
2294 #endif
2295 	    }
2296 	}
2297       else if (size == 64)
2298 	{
2299 	  if (is_big_endian)
2300 	    {
2301 #ifdef HAVE_TARGET_64_BIG
2302 	      parameters->sized_target<64, true>()->
2303 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2304 				      object);
2305 #else
2306 	      gold_unreachable();
2307 #endif
2308 	    }
2309 	  else
2310 	    {
2311 #ifdef HAVE_TARGET_64_LITTLE
2312 	      parameters->sized_target<64, false>()->
2313 		  record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2314 				      object);
2315 #else
2316 	      gold_unreachable();
2317 #endif
2318 	    }
2319 	}
2320       else
2321 	gold_unreachable();
2322       return;
2323     }
2324 
2325   Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
2326   if (pprop == this->gnu_properties_.end())
2327     {
2328       Gnu_property prop;
2329       prop.pr_datasz = pr_datasz;
2330       prop.pr_data = new unsigned char[pr_datasz];
2331       memcpy(prop.pr_data, pr_data, pr_datasz);
2332       this->gnu_properties_[pr_type] = prop;
2333     }
2334   else
2335     {
2336       const bool is_big_endian = parameters->target().is_big_endian();
2337       switch (pr_type)
2338 	{
2339 	case elfcpp::GNU_PROPERTY_STACK_SIZE:
2340 	  // Record the maximum value seen.
2341 	  {
2342 	    uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
2343 					     pprop->second.pr_data,
2344 					     is_big_endian, object);
2345 	    uint64_t val2 = read_sized_value(pr_datasz, pr_data,
2346 					     is_big_endian, object);
2347 	    if (val2 > val1)
2348 	      write_sized_value(val2, pprop->second.pr_datasz,
2349 				pprop->second.pr_data, is_big_endian);
2350 	  }
2351 	  break;
2352 	case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
2353 	  // No data to merge.
2354 	  break;
2355 	default:
2356 	  gold_warning(_("%s: unknown program property type %d "
2357 			 "in .note.gnu.property section"),
2358 		       object->name().c_str(), pr_type);
2359 	}
2360     }
2361 }
2362 
2363 // Merge per-object properties with program properties.
2364 // This lets the target identify objects that are missing certain
2365 // properties, in cases where properties must be ANDed together.
2366 
2367 void
merge_gnu_properties(const Object * object)2368 Layout::merge_gnu_properties(const Object* object)
2369 {
2370   const int size = parameters->target().get_size();
2371   const bool is_big_endian = parameters->target().is_big_endian();
2372   if (size == 32)
2373     {
2374       if (is_big_endian)
2375 	{
2376 #ifdef HAVE_TARGET_32_BIG
2377 	  parameters->sized_target<32, true>()->merge_gnu_properties(object);
2378 #else
2379 	  gold_unreachable();
2380 #endif
2381 	}
2382       else
2383 	{
2384 #ifdef HAVE_TARGET_32_LITTLE
2385 	  parameters->sized_target<32, false>()->merge_gnu_properties(object);
2386 #else
2387 	  gold_unreachable();
2388 #endif
2389 	}
2390     }
2391   else if (size == 64)
2392     {
2393       if (is_big_endian)
2394 	{
2395 #ifdef HAVE_TARGET_64_BIG
2396 	  parameters->sized_target<64, true>()->merge_gnu_properties(object);
2397 #else
2398 	  gold_unreachable();
2399 #endif
2400 	}
2401       else
2402 	{
2403 #ifdef HAVE_TARGET_64_LITTLE
2404 	  parameters->sized_target<64, false>()->merge_gnu_properties(object);
2405 #else
2406 	  gold_unreachable();
2407 #endif
2408 	}
2409     }
2410   else
2411     gold_unreachable();
2412 }
2413 
2414 // Add a target-specific property for the output .note.gnu.property section.
2415 
2416 void
add_gnu_property(unsigned int note_type,unsigned int pr_type,size_t pr_datasz,const unsigned char * pr_data)2417 Layout::add_gnu_property(unsigned int note_type,
2418 			 unsigned int pr_type,
2419 			 size_t pr_datasz,
2420 			 const unsigned char* pr_data)
2421 {
2422   gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2423 
2424   Gnu_property prop;
2425   prop.pr_datasz = pr_datasz;
2426   prop.pr_data = new unsigned char[pr_datasz];
2427   memcpy(prop.pr_data, pr_data, pr_datasz);
2428   this->gnu_properties_[pr_type] = prop;
2429 }
2430 
2431 // Create automatic note sections.
2432 
2433 void
create_notes()2434 Layout::create_notes()
2435 {
2436   this->create_gnu_properties_note();
2437   this->create_gold_note();
2438   this->create_stack_segment();
2439   this->create_build_id();
2440 }
2441 
2442 // Create the dynamic sections which are needed before we read the
2443 // relocs.
2444 
2445 void
create_initial_dynamic_sections(Symbol_table * symtab)2446 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2447 {
2448   if (parameters->doing_static_link())
2449     return;
2450 
2451   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2452 						       elfcpp::SHT_DYNAMIC,
2453 						       (elfcpp::SHF_ALLOC
2454 							| elfcpp::SHF_WRITE),
2455 						       false, ORDER_RELRO,
2456 						       true, false, false);
2457 
2458   // A linker script may discard .dynamic, so check for NULL.
2459   if (this->dynamic_section_ != NULL)
2460     {
2461       this->dynamic_symbol_ =
2462 	symtab->define_in_output_data("_DYNAMIC", NULL,
2463 				      Symbol_table::PREDEFINED,
2464 				      this->dynamic_section_, 0, 0,
2465 				      elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2466 				      elfcpp::STV_HIDDEN, 0, false, false);
2467 
2468       this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
2469 
2470       this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2471     }
2472 }
2473 
2474 // For each output section whose name can be represented as C symbol,
2475 // define __start and __stop symbols for the section.  This is a GNU
2476 // extension.
2477 
2478 void
define_section_symbols(Symbol_table * symtab)2479 Layout::define_section_symbols(Symbol_table* symtab)
2480 {
2481   const elfcpp::STV visibility = parameters->options().start_stop_visibility_enum();
2482   for (Section_list::const_iterator p = this->section_list_.begin();
2483        p != this->section_list_.end();
2484        ++p)
2485     {
2486       const char* const name = (*p)->name();
2487       if (is_cident(name))
2488 	{
2489 	  const std::string name_string(name);
2490 	  const std::string start_name(cident_section_start_prefix
2491 				       + name_string);
2492 	  const std::string stop_name(cident_section_stop_prefix
2493 				      + name_string);
2494 
2495 	  symtab->define_in_output_data(start_name.c_str(),
2496 					NULL, // version
2497 					Symbol_table::PREDEFINED,
2498 					*p,
2499 					0, // value
2500 					0, // symsize
2501 					elfcpp::STT_NOTYPE,
2502 					elfcpp::STB_GLOBAL,
2503 					visibility,
2504 					0, // nonvis
2505 					false, // offset_is_from_end
2506 					true); // only_if_ref
2507 
2508 	  symtab->define_in_output_data(stop_name.c_str(),
2509 					NULL, // version
2510 					Symbol_table::PREDEFINED,
2511 					*p,
2512 					0, // value
2513 					0, // symsize
2514 					elfcpp::STT_NOTYPE,
2515 					elfcpp::STB_GLOBAL,
2516 					visibility,
2517 					0, // nonvis
2518 					true, // offset_is_from_end
2519 					true); // only_if_ref
2520 	}
2521     }
2522 }
2523 
2524 // Define symbols for group signatures.
2525 
2526 void
define_group_signatures(Symbol_table * symtab)2527 Layout::define_group_signatures(Symbol_table* symtab)
2528 {
2529   for (Group_signatures::iterator p = this->group_signatures_.begin();
2530        p != this->group_signatures_.end();
2531        ++p)
2532     {
2533       Symbol* sym = symtab->lookup(p->signature, NULL);
2534       if (sym != NULL)
2535 	p->section->set_info_symndx(sym);
2536       else
2537 	{
2538 	  // Force the name of the group section to the group
2539 	  // signature, and use the group's section symbol as the
2540 	  // signature symbol.
2541 	  if (strcmp(p->section->name(), p->signature) != 0)
2542 	    {
2543 	      const char* name = this->namepool_.add(p->signature,
2544 						     true, NULL);
2545 	      p->section->set_name(name);
2546 	    }
2547 	  p->section->set_needs_symtab_index();
2548 	  p->section->set_info_section_symndx(p->section);
2549 	}
2550     }
2551 
2552   this->group_signatures_.clear();
2553 }
2554 
2555 // Find the first read-only PT_LOAD segment, creating one if
2556 // necessary.
2557 
2558 Output_segment*
find_first_load_seg(const Target * target)2559 Layout::find_first_load_seg(const Target* target)
2560 {
2561   Output_segment* best = NULL;
2562   for (Segment_list::const_iterator p = this->segment_list_.begin();
2563        p != this->segment_list_.end();
2564        ++p)
2565     {
2566       if ((*p)->type() == elfcpp::PT_LOAD
2567 	  && ((*p)->flags() & elfcpp::PF_R) != 0
2568 	  && (parameters->options().omagic()
2569 	      || ((*p)->flags() & elfcpp::PF_W) == 0)
2570 	  && (!target->isolate_execinstr()
2571 	      || ((*p)->flags() & elfcpp::PF_X) == 0))
2572 	{
2573 	  if (best == NULL || this->segment_precedes(*p, best))
2574 	    best = *p;
2575 	}
2576     }
2577   if (best != NULL)
2578     return best;
2579 
2580   gold_assert(!this->script_options_->saw_phdrs_clause());
2581 
2582   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2583 						       elfcpp::PF_R);
2584   return load_seg;
2585 }
2586 
2587 // Save states of all current output segments.  Store saved states
2588 // in SEGMENT_STATES.
2589 
2590 void
save_segments(Segment_states * segment_states)2591 Layout::save_segments(Segment_states* segment_states)
2592 {
2593   for (Segment_list::const_iterator p = this->segment_list_.begin();
2594        p != this->segment_list_.end();
2595        ++p)
2596     {
2597       Output_segment* segment = *p;
2598       // Shallow copy.
2599       Output_segment* copy = new Output_segment(*segment);
2600       (*segment_states)[segment] = copy;
2601     }
2602 }
2603 
2604 // Restore states of output segments and delete any segment not found in
2605 // SEGMENT_STATES.
2606 
2607 void
restore_segments(const Segment_states * segment_states)2608 Layout::restore_segments(const Segment_states* segment_states)
2609 {
2610   // Go through the segment list and remove any segment added in the
2611   // relaxation loop.
2612   this->tls_segment_ = NULL;
2613   this->relro_segment_ = NULL;
2614   Segment_list::iterator list_iter = this->segment_list_.begin();
2615   while (list_iter != this->segment_list_.end())
2616     {
2617       Output_segment* segment = *list_iter;
2618       Segment_states::const_iterator states_iter =
2619 	  segment_states->find(segment);
2620       if (states_iter != segment_states->end())
2621 	{
2622 	  const Output_segment* copy = states_iter->second;
2623 	  // Shallow copy to restore states.
2624 	  *segment = *copy;
2625 
2626 	  // Also fix up TLS and RELRO segment pointers as appropriate.
2627 	  if (segment->type() == elfcpp::PT_TLS)
2628 	    this->tls_segment_ = segment;
2629 	  else if (segment->type() == elfcpp::PT_GNU_RELRO)
2630 	    this->relro_segment_ = segment;
2631 
2632 	  ++list_iter;
2633 	}
2634       else
2635 	{
2636 	  list_iter = this->segment_list_.erase(list_iter);
2637 	  // This is a segment created during section layout.  It should be
2638 	  // safe to remove it since we should have removed all pointers to it.
2639 	  delete segment;
2640 	}
2641     }
2642 }
2643 
2644 // Clean up after relaxation so that sections can be laid out again.
2645 
2646 void
clean_up_after_relaxation()2647 Layout::clean_up_after_relaxation()
2648 {
2649   // Restore the segments to point state just prior to the relaxation loop.
2650   Script_sections* script_section = this->script_options_->script_sections();
2651   script_section->release_segments();
2652   this->restore_segments(this->segment_states_);
2653 
2654   // Reset section addresses and file offsets
2655   for (Section_list::iterator p = this->section_list_.begin();
2656        p != this->section_list_.end();
2657        ++p)
2658     {
2659       (*p)->restore_states();
2660 
2661       // If an input section changes size because of relaxation,
2662       // we need to adjust the section offsets of all input sections.
2663       // after such a section.
2664       if ((*p)->section_offsets_need_adjustment())
2665 	(*p)->adjust_section_offsets();
2666 
2667       (*p)->reset_address_and_file_offset();
2668     }
2669 
2670   // Reset special output object address and file offsets.
2671   for (Data_list::iterator p = this->special_output_list_.begin();
2672        p != this->special_output_list_.end();
2673        ++p)
2674     (*p)->reset_address_and_file_offset();
2675 
2676   // A linker script may have created some output section data objects.
2677   // They are useless now.
2678   for (Output_section_data_list::const_iterator p =
2679 	 this->script_output_section_data_list_.begin();
2680        p != this->script_output_section_data_list_.end();
2681        ++p)
2682     delete *p;
2683   this->script_output_section_data_list_.clear();
2684 
2685   // Special-case fill output objects are recreated each time through
2686   // the relaxation loop.
2687   this->reset_relax_output();
2688 }
2689 
2690 void
reset_relax_output()2691 Layout::reset_relax_output()
2692 {
2693   for (Data_list::const_iterator p = this->relax_output_list_.begin();
2694        p != this->relax_output_list_.end();
2695        ++p)
2696     delete *p;
2697   this->relax_output_list_.clear();
2698 }
2699 
2700 // Prepare for relaxation.
2701 
2702 void
prepare_for_relaxation()2703 Layout::prepare_for_relaxation()
2704 {
2705   // Create an relaxation debug check if in debugging mode.
2706   if (is_debugging_enabled(DEBUG_RELAXATION))
2707     this->relaxation_debug_check_ = new Relaxation_debug_check();
2708 
2709   // Save segment states.
2710   this->segment_states_ = new Segment_states();
2711   this->save_segments(this->segment_states_);
2712 
2713   for(Section_list::const_iterator p = this->section_list_.begin();
2714       p != this->section_list_.end();
2715       ++p)
2716     (*p)->save_states();
2717 
2718   if (is_debugging_enabled(DEBUG_RELAXATION))
2719     this->relaxation_debug_check_->check_output_data_for_reset_values(
2720 	this->section_list_, this->special_output_list_,
2721 	this->relax_output_list_);
2722 
2723   // Also enable recording of output section data from scripts.
2724   this->record_output_section_data_from_script_ = true;
2725 }
2726 
2727 // If the user set the address of the text segment, that may not be
2728 // compatible with putting the segment headers and file headers into
2729 // that segment.  For isolate_execinstr() targets, it's the rodata
2730 // segment rather than text where we might put the headers.
2731 static inline bool
load_seg_unusable_for_headers(const Target * target)2732 load_seg_unusable_for_headers(const Target* target)
2733 {
2734   const General_options& options = parameters->options();
2735   if (target->isolate_execinstr())
2736     return (options.user_set_Trodata_segment()
2737 	    && options.Trodata_segment() % target->abi_pagesize() != 0);
2738   else
2739     return (options.user_set_Ttext()
2740 	    && options.Ttext() % target->abi_pagesize() != 0);
2741 }
2742 
2743 // Relaxation loop body:  If target has no relaxation, this runs only once
2744 // Otherwise, the target relaxation hook is called at the end of
2745 // each iteration.  If the hook returns true, it means re-layout of
2746 // section is required.
2747 //
2748 // The number of segments created by a linking script without a PHDRS
2749 // clause may be affected by section sizes and alignments.  There is
2750 // a remote chance that relaxation causes different number of PT_LOAD
2751 // segments are created and sections are attached to different segments.
2752 // Therefore, we always throw away all segments created during section
2753 // layout.  In order to be able to restart the section layout, we keep
2754 // a copy of the segment list right before the relaxation loop and use
2755 // that to restore the segments.
2756 //
2757 // PASS is the current relaxation pass number.
2758 // SYMTAB is a symbol table.
2759 // PLOAD_SEG is the address of a pointer for the load segment.
2760 // PHDR_SEG is a pointer to the PHDR segment.
2761 // SEGMENT_HEADERS points to the output segment header.
2762 // FILE_HEADER points to the output file header.
2763 // PSHNDX is the address to store the output section index.
2764 
2765 off_t inline
relaxation_loop_body(int pass,Target * target,Symbol_table * symtab,Output_segment ** pload_seg,Output_segment * phdr_seg,Output_segment_headers * segment_headers,Output_file_header * file_header,unsigned int * pshndx)2766 Layout::relaxation_loop_body(
2767     int pass,
2768     Target* target,
2769     Symbol_table* symtab,
2770     Output_segment** pload_seg,
2771     Output_segment* phdr_seg,
2772     Output_segment_headers* segment_headers,
2773     Output_file_header* file_header,
2774     unsigned int* pshndx)
2775 {
2776   // If this is not the first iteration, we need to clean up after
2777   // relaxation so that we can lay out the sections again.
2778   if (pass != 0)
2779     this->clean_up_after_relaxation();
2780 
2781   // If there is a SECTIONS clause, put all the input sections into
2782   // the required order.
2783   Output_segment* load_seg;
2784   if (this->script_options_->saw_sections_clause())
2785     load_seg = this->set_section_addresses_from_script(symtab);
2786   else if (parameters->options().relocatable())
2787     load_seg = NULL;
2788   else
2789     load_seg = this->find_first_load_seg(target);
2790 
2791   if (parameters->options().oformat_enum()
2792       != General_options::OBJECT_FORMAT_ELF)
2793     load_seg = NULL;
2794 
2795   if (load_seg_unusable_for_headers(target))
2796     {
2797       load_seg = NULL;
2798       phdr_seg = NULL;
2799     }
2800 
2801   gold_assert(phdr_seg == NULL
2802 	      || load_seg != NULL
2803 	      || this->script_options_->saw_sections_clause());
2804 
2805   // If the address of the load segment we found has been set by
2806   // --section-start rather than by a script, then adjust the VMA and
2807   // LMA downward if possible to include the file and section headers.
2808   uint64_t header_gap = 0;
2809   if (load_seg != NULL
2810       && load_seg->are_addresses_set()
2811       && !this->script_options_->saw_sections_clause()
2812       && !parameters->options().relocatable())
2813     {
2814       file_header->finalize_data_size();
2815       segment_headers->finalize_data_size();
2816       size_t sizeof_headers = (file_header->data_size()
2817 			       + segment_headers->data_size());
2818       const uint64_t abi_pagesize = target->abi_pagesize();
2819       uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2820       hdr_paddr &= ~(abi_pagesize - 1);
2821       uint64_t subtract = load_seg->paddr() - hdr_paddr;
2822       if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2823 	load_seg = NULL;
2824       else
2825 	{
2826 	  load_seg->set_addresses(load_seg->vaddr() - subtract,
2827 				  load_seg->paddr() - subtract);
2828 	  header_gap = subtract - sizeof_headers;
2829 	}
2830     }
2831 
2832   // Lay out the segment headers.
2833   if (!parameters->options().relocatable())
2834     {
2835       gold_assert(segment_headers != NULL);
2836       if (header_gap != 0 && load_seg != NULL)
2837 	{
2838 	  Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2839 	  load_seg->add_initial_output_data(z);
2840 	}
2841       if (load_seg != NULL)
2842 	load_seg->add_initial_output_data(segment_headers);
2843       if (phdr_seg != NULL)
2844 	phdr_seg->add_initial_output_data(segment_headers);
2845     }
2846 
2847   // Lay out the file header.
2848   if (load_seg != NULL)
2849     load_seg->add_initial_output_data(file_header);
2850 
2851   if (this->script_options_->saw_phdrs_clause()
2852       && !parameters->options().relocatable())
2853     {
2854       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2855       // clause in a linker script.
2856       Script_sections* ss = this->script_options_->script_sections();
2857       ss->put_headers_in_phdrs(file_header, segment_headers);
2858     }
2859 
2860   // We set the output section indexes in set_segment_offsets and
2861   // set_section_indexes.
2862   *pshndx = 1;
2863 
2864   // Set the file offsets of all the segments, and all the sections
2865   // they contain.
2866   off_t off;
2867   if (!parameters->options().relocatable())
2868     off = this->set_segment_offsets(target, load_seg, pshndx);
2869   else
2870     off = this->set_relocatable_section_offsets(file_header, pshndx);
2871 
2872    // Verify that the dummy relaxation does not change anything.
2873   if (is_debugging_enabled(DEBUG_RELAXATION))
2874     {
2875       if (pass == 0)
2876 	this->relaxation_debug_check_->read_sections(this->section_list_);
2877       else
2878 	this->relaxation_debug_check_->verify_sections(this->section_list_);
2879     }
2880 
2881   *pload_seg = load_seg;
2882   return off;
2883 }
2884 
2885 // Search the list of patterns and find the position of the given section
2886 // name in the output section.  If the section name matches a glob
2887 // pattern and a non-glob name, then the non-glob position takes
2888 // precedence.  Return 0 if no match is found.
2889 
2890 unsigned int
find_section_order_index(const std::string & section_name)2891 Layout::find_section_order_index(const std::string& section_name)
2892 {
2893   Unordered_map<std::string, unsigned int>::iterator map_it;
2894   map_it = this->input_section_position_.find(section_name);
2895   if (map_it != this->input_section_position_.end())
2896     return map_it->second;
2897 
2898   // Absolute match failed.  Linear search the glob patterns.
2899   std::vector<std::string>::iterator it;
2900   for (it = this->input_section_glob_.begin();
2901        it != this->input_section_glob_.end();
2902        ++it)
2903     {
2904        if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2905 	 {
2906 	   map_it = this->input_section_position_.find(*it);
2907 	   gold_assert(map_it != this->input_section_position_.end());
2908 	   return map_it->second;
2909 	 }
2910     }
2911   return 0;
2912 }
2913 
2914 // Read the sequence of input sections from the file specified with
2915 // option --section-ordering-file.
2916 
2917 void
read_layout_from_file()2918 Layout::read_layout_from_file()
2919 {
2920   const char* filename = parameters->options().section_ordering_file();
2921   std::ifstream in;
2922   std::string line;
2923 
2924   in.open(filename);
2925   if (!in)
2926     gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2927 	       filename, strerror(errno));
2928 
2929   File_read::record_file_read(filename);
2930 
2931   std::getline(in, line);   // this chops off the trailing \n, if any
2932   unsigned int position = 1;
2933   this->set_section_ordering_specified();
2934 
2935   while (in)
2936     {
2937       if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
2938 	line.resize(line.length() - 1);
2939       // Ignore comments, beginning with '#'
2940       if (line[0] == '#')
2941 	{
2942 	  std::getline(in, line);
2943 	  continue;
2944 	}
2945       this->input_section_position_[line] = position;
2946       // Store all glob patterns in a vector.
2947       if (is_wildcard_string(line.c_str()))
2948 	this->input_section_glob_.push_back(line);
2949       position++;
2950       std::getline(in, line);
2951     }
2952 }
2953 
2954 // Finalize the layout.  When this is called, we have created all the
2955 // output sections and all the output segments which are based on
2956 // input sections.  We have several things to do, and we have to do
2957 // them in the right order, so that we get the right results correctly
2958 // and efficiently.
2959 
2960 // 1) Finalize the list of output segments and create the segment
2961 // table header.
2962 
2963 // 2) Finalize the dynamic symbol table and associated sections.
2964 
2965 // 3) Determine the final file offset of all the output segments.
2966 
2967 // 4) Determine the final file offset of all the SHF_ALLOC output
2968 // sections.
2969 
2970 // 5) Create the symbol table sections and the section name table
2971 // section.
2972 
2973 // 6) Finalize the symbol table: set symbol values to their final
2974 // value and make a final determination of which symbols are going
2975 // into the output symbol table.
2976 
2977 // 7) Create the section table header.
2978 
2979 // 8) Determine the final file offset of all the output sections which
2980 // are not SHF_ALLOC, including the section table header.
2981 
2982 // 9) Finalize the ELF file header.
2983 
2984 // This function returns the size of the output file.
2985 
2986 off_t
finalize(const Input_objects * input_objects,Symbol_table * symtab,Target * target,const Task * task)2987 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2988 		 Target* target, const Task* task)
2989 {
2990   unsigned int local_dynamic_count = 0;
2991   unsigned int forced_local_dynamic_count = 0;
2992 
2993   target->finalize_sections(this, input_objects, symtab);
2994 
2995   this->count_local_symbols(task, input_objects);
2996 
2997   this->link_stabs_sections();
2998 
2999   Output_segment* phdr_seg = NULL;
3000   if (!parameters->options().relocatable() && !parameters->doing_static_link())
3001     {
3002       // There was a dynamic object in the link.  We need to create
3003       // some information for the dynamic linker.
3004 
3005       // Create the PT_PHDR segment which will hold the program
3006       // headers.
3007       if (!this->script_options_->saw_phdrs_clause())
3008 	phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
3009 
3010       // Create the dynamic symbol table, including the hash table.
3011       Output_section* dynstr;
3012       std::vector<Symbol*> dynamic_symbols;
3013       Versions versions(*this->script_options()->version_script_info(),
3014 			&this->dynpool_);
3015       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
3016 				  &local_dynamic_count,
3017 				  &forced_local_dynamic_count,
3018 				  &dynamic_symbols,
3019 				  &versions);
3020 
3021       // Create the .interp section to hold the name of the
3022       // interpreter, and put it in a PT_INTERP segment.  Don't do it
3023       // if we saw a .interp section in an input file.
3024       if ((!parameters->options().shared()
3025 	   || parameters->options().dynamic_linker() != NULL)
3026 	  && this->interp_segment_ == NULL)
3027 	this->create_interp(target);
3028 
3029       // Finish the .dynamic section to hold the dynamic data, and put
3030       // it in a PT_DYNAMIC segment.
3031       this->finish_dynamic_section(input_objects, symtab);
3032 
3033       // We should have added everything we need to the dynamic string
3034       // table.
3035       this->dynpool_.set_string_offsets();
3036 
3037       // Create the version sections.  We can't do this until the
3038       // dynamic string table is complete.
3039       this->create_version_sections(&versions, symtab,
3040 				    (local_dynamic_count
3041 				     + forced_local_dynamic_count),
3042 				    dynamic_symbols, dynstr);
3043 
3044       // Set the size of the _DYNAMIC symbol.  We can't do this until
3045       // after we call create_version_sections.
3046       this->set_dynamic_symbol_size(symtab);
3047     }
3048 
3049   // Create segment headers.
3050   Output_segment_headers* segment_headers =
3051     (parameters->options().relocatable()
3052      ? NULL
3053      : new Output_segment_headers(this->segment_list_));
3054 
3055   // Lay out the file header.
3056   Output_file_header* file_header = new Output_file_header(target, symtab,
3057 							   segment_headers);
3058 
3059   this->special_output_list_.push_back(file_header);
3060   if (segment_headers != NULL)
3061     this->special_output_list_.push_back(segment_headers);
3062 
3063   // Find approriate places for orphan output sections if we are using
3064   // a linker script.
3065   if (this->script_options_->saw_sections_clause())
3066     this->place_orphan_sections_in_script();
3067 
3068   Output_segment* load_seg;
3069   off_t off;
3070   unsigned int shndx;
3071   int pass = 0;
3072 
3073   // Take a snapshot of the section layout as needed.
3074   if (target->may_relax())
3075     this->prepare_for_relaxation();
3076 
3077   // Run the relaxation loop to lay out sections.
3078   do
3079     {
3080       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
3081 				       phdr_seg, segment_headers, file_header,
3082 				       &shndx);
3083       pass++;
3084     }
3085   while (target->may_relax()
3086 	 && target->relax(pass, input_objects, symtab, this, task));
3087 
3088   // If there is a load segment that contains the file and program headers,
3089   // provide a symbol __ehdr_start pointing there.
3090   // A program can use this to examine itself robustly.
3091   Symbol *ehdr_start = symtab->lookup("__ehdr_start");
3092   if (ehdr_start != NULL && ehdr_start->is_predefined())
3093     {
3094       if (load_seg != NULL)
3095 	ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
3096       else
3097 	ehdr_start->set_undefined();
3098     }
3099 
3100   // Set the file offsets of all the non-data sections we've seen so
3101   // far which don't have to wait for the input sections.  We need
3102   // this in order to finalize local symbols in non-allocated
3103   // sections.
3104   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3105 
3106   // Set the section indexes of all unallocated sections seen so far,
3107   // in case any of them are somehow referenced by a symbol.
3108   shndx = this->set_section_indexes(shndx);
3109 
3110   // Create the symbol table sections.
3111   this->create_symtab_sections(input_objects, symtab, shndx, &off,
3112 			       local_dynamic_count);
3113   if (!parameters->doing_static_link())
3114     this->assign_local_dynsym_offsets(input_objects);
3115 
3116   // Process any symbol assignments from a linker script.  This must
3117   // be called after the symbol table has been finalized.
3118   this->script_options_->finalize_symbols(symtab, this);
3119 
3120   // Create the incremental inputs sections.
3121   if (this->incremental_inputs_)
3122     {
3123       this->incremental_inputs_->finalize();
3124       this->create_incremental_info_sections(symtab);
3125     }
3126 
3127   // Create the .shstrtab section.
3128   Output_section* shstrtab_section = this->create_shstrtab();
3129 
3130   // Set the file offsets of the rest of the non-data sections which
3131   // don't have to wait for the input sections.
3132   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3133 
3134   // Now that all sections have been created, set the section indexes
3135   // for any sections which haven't been done yet.
3136   shndx = this->set_section_indexes(shndx);
3137 
3138   // Create the section table header.
3139   this->create_shdrs(shstrtab_section, &off);
3140 
3141   // If there are no sections which require postprocessing, we can
3142   // handle the section names now, and avoid a resize later.
3143   if (!this->any_postprocessing_sections_)
3144     {
3145       off = this->set_section_offsets(off,
3146 				      POSTPROCESSING_SECTIONS_PASS);
3147       off =
3148 	  this->set_section_offsets(off,
3149 				    STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3150     }
3151 
3152   file_header->set_section_info(this->section_headers_, shstrtab_section);
3153 
3154   // Now we know exactly where everything goes in the output file
3155   // (except for non-allocated sections which require postprocessing).
3156   Output_data::layout_complete();
3157 
3158   this->output_file_size_ = off;
3159 
3160   return off;
3161 }
3162 
3163 // Create a note header following the format defined in the ELF ABI.
3164 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3165 // of the section to create, DESCSZ is the size of the descriptor.
3166 // ALLOCATE is true if the section should be allocated in memory.
3167 // This returns the new note section.  It sets *TRAILING_PADDING to
3168 // the number of trailing zero bytes required.
3169 
3170 Output_section*
create_note(const char * name,int note_type,const char * section_name,size_t descsz,bool allocate,size_t * trailing_padding)3171 Layout::create_note(const char* name, int note_type,
3172 		    const char* section_name, size_t descsz,
3173 		    bool allocate, size_t* trailing_padding)
3174 {
3175   // Authorities all agree that the values in a .note field should
3176   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
3177   // they differ on what the alignment is for 64-bit binaries.
3178   // The GABI says unambiguously they take 8-byte alignment:
3179   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3180   // Other documentation says alignment should always be 4 bytes:
3181   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3182   // GNU ld and GNU readelf both support the latter (at least as of
3183   // version 2.16.91), and glibc always generates the latter for
3184   // .note.ABI-tag (as of version 1.6), so that's the one we go with
3185   // here.
3186 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
3187   const int size = parameters->target().get_size();
3188 #else
3189   const int size = 32;
3190 #endif
3191   // The NT_GNU_PROPERTY_TYPE_0 note is aligned to the pointer size.
3192   const int addralign = ((note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0
3193 			 ? parameters->target().get_size()
3194 			 : size) / 8);
3195 
3196   // The contents of the .note section.
3197   size_t namesz = strlen(name) + 1;
3198   size_t aligned_namesz = align_address(namesz, size / 8);
3199   size_t aligned_descsz = align_address(descsz, size / 8);
3200 
3201   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
3202 
3203   unsigned char* buffer = new unsigned char[notehdrsz];
3204   memset(buffer, 0, notehdrsz);
3205 
3206   bool is_big_endian = parameters->target().is_big_endian();
3207 
3208   if (size == 32)
3209     {
3210       if (!is_big_endian)
3211 	{
3212 	  elfcpp::Swap<32, false>::writeval(buffer, namesz);
3213 	  elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
3214 	  elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
3215 	}
3216       else
3217 	{
3218 	  elfcpp::Swap<32, true>::writeval(buffer, namesz);
3219 	  elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
3220 	  elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
3221 	}
3222     }
3223   else if (size == 64)
3224     {
3225       if (!is_big_endian)
3226 	{
3227 	  elfcpp::Swap<64, false>::writeval(buffer, namesz);
3228 	  elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
3229 	  elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
3230 	}
3231       else
3232 	{
3233 	  elfcpp::Swap<64, true>::writeval(buffer, namesz);
3234 	  elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
3235 	  elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
3236 	}
3237     }
3238   else
3239     gold_unreachable();
3240 
3241   memcpy(buffer + 3 * (size / 8), name, namesz);
3242 
3243   elfcpp::Elf_Xword flags = 0;
3244   Output_section_order order = ORDER_INVALID;
3245   if (allocate)
3246     {
3247       flags = elfcpp::SHF_ALLOC;
3248       order = ORDER_RO_NOTE;
3249     }
3250   Output_section* os = this->choose_output_section(NULL, section_name,
3251 						   elfcpp::SHT_NOTE,
3252 						   flags, false, order, false,
3253 						   false, true);
3254   if (os == NULL)
3255     return NULL;
3256 
3257   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3258 							   addralign,
3259 							   "** note header");
3260   os->add_output_section_data(posd);
3261 
3262   *trailing_padding = aligned_descsz - descsz;
3263 
3264   return os;
3265 }
3266 
3267 // Create a .note.gnu.property section to record program properties
3268 // accumulated from the input files.
3269 
3270 void
create_gnu_properties_note()3271 Layout::create_gnu_properties_note()
3272 {
3273   parameters->target().finalize_gnu_properties(this);
3274 
3275   if (this->gnu_properties_.empty())
3276     return;
3277 
3278   const unsigned int size = parameters->target().get_size();
3279   const bool is_big_endian = parameters->target().is_big_endian();
3280 
3281   // Compute the total size of the properties array.
3282   size_t descsz = 0;
3283   for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3284        prop != this->gnu_properties_.end();
3285        ++prop)
3286     {
3287       descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
3288     }
3289 
3290   // Create the note section.
3291   size_t trailing_padding;
3292   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
3293 					 ".note.gnu.property", descsz,
3294 					 true, &trailing_padding);
3295   if (os == NULL)
3296     return;
3297   gold_assert(trailing_padding == 0);
3298 
3299   // Allocate and fill the properties array.
3300   unsigned char* desc = new unsigned char[descsz];
3301   unsigned char* p = desc;
3302   for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3303        prop != this->gnu_properties_.end();
3304        ++prop)
3305     {
3306       size_t datasz = prop->second.pr_datasz;
3307       size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
3308       write_sized_value(prop->first, 4, p, is_big_endian);
3309       write_sized_value(datasz, 4, p + 4, is_big_endian);
3310       memcpy(p + 8, prop->second.pr_data, datasz);
3311       if (aligned_datasz > datasz)
3312 	memset(p + 8 + datasz, 0, aligned_datasz - datasz);
3313       p += 8 + aligned_datasz;
3314     }
3315   Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3316   os->add_output_section_data(posd);
3317 }
3318 
3319 // For an executable or shared library, create a note to record the
3320 // version of gold used to create the binary.
3321 
3322 void
create_gold_note()3323 Layout::create_gold_note()
3324 {
3325   if (parameters->options().relocatable()
3326       || parameters->incremental_update())
3327     return;
3328 
3329   std::string desc = std::string("gold ") + gold::get_version_string();
3330 
3331   size_t trailing_padding;
3332   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3333 					 ".note.gnu.gold-version", desc.size(),
3334 					 false, &trailing_padding);
3335   if (os == NULL)
3336     return;
3337 
3338   Output_section_data* posd = new Output_data_const(desc, 4);
3339   os->add_output_section_data(posd);
3340 
3341   if (trailing_padding > 0)
3342     {
3343       posd = new Output_data_zero_fill(trailing_padding, 0);
3344       os->add_output_section_data(posd);
3345     }
3346 }
3347 
3348 // Record whether the stack should be executable.  This can be set
3349 // from the command line using the -z execstack or -z noexecstack
3350 // options.  Otherwise, if any input file has a .note.GNU-stack
3351 // section with the SHF_EXECINSTR flag set, the stack should be
3352 // executable.  Otherwise, if at least one input file a
3353 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3354 // section, we use the target default for whether the stack should be
3355 // executable.  If -z stack-size was used to set a p_memsz value for
3356 // PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
3357 // don't generate a stack note.  When generating a object file, we
3358 // create a .note.GNU-stack section with the appropriate marking.
3359 // When generating an executable or shared library, we create a
3360 // PT_GNU_STACK segment.
3361 
3362 void
create_stack_segment()3363 Layout::create_stack_segment()
3364 {
3365   bool is_stack_executable;
3366   if (parameters->options().is_execstack_set())
3367     {
3368       is_stack_executable = parameters->options().is_stack_executable();
3369       if (!is_stack_executable
3370 	  && this->input_requires_executable_stack_
3371 	  && parameters->options().warn_execstack())
3372 	gold_warning(_("one or more inputs require executable stack, "
3373 		       "but -z noexecstack was given"));
3374     }
3375   else if (!this->input_with_gnu_stack_note_
3376 	   && (!parameters->options().user_set_stack_size()
3377 	       || parameters->options().relocatable()))
3378     return;
3379   else
3380     {
3381       if (this->input_requires_executable_stack_)
3382 	is_stack_executable = true;
3383       else if (this->input_without_gnu_stack_note_)
3384 	is_stack_executable =
3385 	  parameters->target().is_default_stack_executable();
3386       else
3387 	is_stack_executable = false;
3388     }
3389 
3390   if (parameters->options().relocatable())
3391     {
3392       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3393       elfcpp::Elf_Xword flags = 0;
3394       if (is_stack_executable)
3395 	flags |= elfcpp::SHF_EXECINSTR;
3396       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3397 				ORDER_INVALID, false);
3398     }
3399   else
3400     {
3401       if (this->script_options_->saw_phdrs_clause())
3402 	return;
3403       int flags = elfcpp::PF_R | elfcpp::PF_W;
3404       if (is_stack_executable)
3405 	flags |= elfcpp::PF_X;
3406       Output_segment* seg =
3407 	this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3408       seg->set_size(parameters->options().stack_size());
3409       // BFD lets targets override this default alignment, but the only
3410       // targets that do so are ones that Gold does not support so far.
3411       seg->set_minimum_p_align(16);
3412     }
3413 }
3414 
3415 // If --build-id was used, set up the build ID note.
3416 
3417 void
create_build_id()3418 Layout::create_build_id()
3419 {
3420   if (!parameters->options().user_set_build_id())
3421     return;
3422 
3423   const char* style = parameters->options().build_id();
3424   if (strcmp(style, "none") == 0)
3425     return;
3426 
3427   // Set DESCSZ to the size of the note descriptor.  When possible,
3428   // set DESC to the note descriptor contents.
3429   size_t descsz;
3430   std::string desc;
3431   if (strcmp(style, "md5") == 0)
3432     descsz = 128 / 8;
3433   else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3434     descsz = 160 / 8;
3435   else if (strcmp(style, "uuid") == 0)
3436     {
3437 #ifndef __MINGW32__
3438       const size_t uuidsz = 128 / 8;
3439 
3440       char buffer[uuidsz];
3441       memset(buffer, 0, uuidsz);
3442 
3443       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3444       if (descriptor < 0)
3445 	gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3446 		   strerror(errno));
3447       else
3448 	{
3449 	  ssize_t got = ::read(descriptor, buffer, uuidsz);
3450 	  release_descriptor(descriptor, true);
3451 	  if (got < 0)
3452 	    gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3453 	  else if (static_cast<size_t>(got) != uuidsz)
3454 	    gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3455 		       uuidsz, got);
3456 	}
3457 
3458       desc.assign(buffer, uuidsz);
3459       descsz = uuidsz;
3460 #else // __MINGW32__
3461       UUID uuid;
3462       typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3463 
3464       HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3465       if (!rpc_library)
3466 	gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3467       else
3468 	{
3469 	  UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3470 	      GetProcAddress(rpc_library, "UuidCreate"));
3471 	  if (!uuid_create)
3472 	    gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3473 	  else if (uuid_create(&uuid) != RPC_S_OK)
3474 	    gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3475 	  FreeLibrary(rpc_library);
3476 	}
3477       desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3478       descsz = sizeof(UUID);
3479 #endif // __MINGW32__
3480     }
3481   else if (strncmp(style, "0x", 2) == 0)
3482     {
3483       hex_init();
3484       const char* p = style + 2;
3485       while (*p != '\0')
3486 	{
3487 	  if (hex_p(p[0]) && hex_p(p[1]))
3488 	    {
3489 	      char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3490 	      desc += c;
3491 	      p += 2;
3492 	    }
3493 	  else if (*p == '-' || *p == ':')
3494 	    ++p;
3495 	  else
3496 	    gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3497 		       style);
3498 	}
3499       descsz = desc.size();
3500     }
3501   else
3502     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3503 
3504   // Create the note.
3505   size_t trailing_padding;
3506   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3507 					 ".note.gnu.build-id", descsz, true,
3508 					 &trailing_padding);
3509   if (os == NULL)
3510     return;
3511 
3512   if (!desc.empty())
3513     {
3514       // We know the value already, so we fill it in now.
3515       gold_assert(desc.size() == descsz);
3516 
3517       Output_section_data* posd = new Output_data_const(desc, 4);
3518       os->add_output_section_data(posd);
3519 
3520       if (trailing_padding != 0)
3521 	{
3522 	  posd = new Output_data_zero_fill(trailing_padding, 0);
3523 	  os->add_output_section_data(posd);
3524 	}
3525     }
3526   else
3527     {
3528       // We need to compute a checksum after we have completed the
3529       // link.
3530       gold_assert(trailing_padding == 0);
3531       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3532       os->add_output_section_data(this->build_id_note_);
3533     }
3534 }
3535 
3536 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3537 // field of the former should point to the latter.  I'm not sure who
3538 // started this, but the GNU linker does it, and some tools depend
3539 // upon it.
3540 
3541 void
link_stabs_sections()3542 Layout::link_stabs_sections()
3543 {
3544   if (!this->have_stabstr_section_)
3545     return;
3546 
3547   for (Section_list::iterator p = this->section_list_.begin();
3548        p != this->section_list_.end();
3549        ++p)
3550     {
3551       if ((*p)->type() != elfcpp::SHT_STRTAB)
3552 	continue;
3553 
3554       const char* name = (*p)->name();
3555       if (strncmp(name, ".stab", 5) != 0)
3556 	continue;
3557 
3558       size_t len = strlen(name);
3559       if (strcmp(name + len - 3, "str") != 0)
3560 	continue;
3561 
3562       std::string stab_name(name, len - 3);
3563       Output_section* stab_sec;
3564       stab_sec = this->find_output_section(stab_name.c_str());
3565       if (stab_sec != NULL)
3566 	stab_sec->set_link_section(*p);
3567     }
3568 }
3569 
3570 // Create .gnu_incremental_inputs and related sections needed
3571 // for the next run of incremental linking to check what has changed.
3572 
3573 void
create_incremental_info_sections(Symbol_table * symtab)3574 Layout::create_incremental_info_sections(Symbol_table* symtab)
3575 {
3576   Incremental_inputs* incr = this->incremental_inputs_;
3577 
3578   gold_assert(incr != NULL);
3579 
3580   // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3581   incr->create_data_sections(symtab);
3582 
3583   // Add the .gnu_incremental_inputs section.
3584   const char* incremental_inputs_name =
3585     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3586   Output_section* incremental_inputs_os =
3587     this->make_output_section(incremental_inputs_name,
3588 			      elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3589 			      ORDER_INVALID, false);
3590   incremental_inputs_os->add_output_section_data(incr->inputs_section());
3591 
3592   // Add the .gnu_incremental_symtab section.
3593   const char* incremental_symtab_name =
3594     this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3595   Output_section* incremental_symtab_os =
3596     this->make_output_section(incremental_symtab_name,
3597 			      elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3598 			      ORDER_INVALID, false);
3599   incremental_symtab_os->add_output_section_data(incr->symtab_section());
3600   incremental_symtab_os->set_entsize(4);
3601 
3602   // Add the .gnu_incremental_relocs section.
3603   const char* incremental_relocs_name =
3604     this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3605   Output_section* incremental_relocs_os =
3606     this->make_output_section(incremental_relocs_name,
3607 			      elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3608 			      ORDER_INVALID, false);
3609   incremental_relocs_os->add_output_section_data(incr->relocs_section());
3610   incremental_relocs_os->set_entsize(incr->relocs_entsize());
3611 
3612   // Add the .gnu_incremental_got_plt section.
3613   const char* incremental_got_plt_name =
3614     this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3615   Output_section* incremental_got_plt_os =
3616     this->make_output_section(incremental_got_plt_name,
3617 			      elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3618 			      ORDER_INVALID, false);
3619   incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3620 
3621   // Add the .gnu_incremental_strtab section.
3622   const char* incremental_strtab_name =
3623     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3624   Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3625 							elfcpp::SHT_STRTAB, 0,
3626 							ORDER_INVALID, false);
3627   Output_data_strtab* strtab_data =
3628       new Output_data_strtab(incr->get_stringpool());
3629   incremental_strtab_os->add_output_section_data(strtab_data);
3630 
3631   incremental_inputs_os->set_after_input_sections();
3632   incremental_symtab_os->set_after_input_sections();
3633   incremental_relocs_os->set_after_input_sections();
3634   incremental_got_plt_os->set_after_input_sections();
3635 
3636   incremental_inputs_os->set_link_section(incremental_strtab_os);
3637   incremental_symtab_os->set_link_section(incremental_inputs_os);
3638   incremental_relocs_os->set_link_section(incremental_inputs_os);
3639   incremental_got_plt_os->set_link_section(incremental_inputs_os);
3640 }
3641 
3642 // Return whether SEG1 should be before SEG2 in the output file.  This
3643 // is based entirely on the segment type and flags.  When this is
3644 // called the segment addresses have normally not yet been set.
3645 
3646 bool
segment_precedes(const Output_segment * seg1,const Output_segment * seg2)3647 Layout::segment_precedes(const Output_segment* seg1,
3648 			 const Output_segment* seg2)
3649 {
3650   // In order to produce a stable ordering if we're called with the same pointer
3651   // return false.
3652   if (seg1 == seg2)
3653     return false;
3654 
3655   elfcpp::Elf_Word type1 = seg1->type();
3656   elfcpp::Elf_Word type2 = seg2->type();
3657 
3658   // The single PT_PHDR segment is required to precede any loadable
3659   // segment.  We simply make it always first.
3660   if (type1 == elfcpp::PT_PHDR)
3661     {
3662       gold_assert(type2 != elfcpp::PT_PHDR);
3663       return true;
3664     }
3665   if (type2 == elfcpp::PT_PHDR)
3666     return false;
3667 
3668   // The single PT_INTERP segment is required to precede any loadable
3669   // segment.  We simply make it always second.
3670   if (type1 == elfcpp::PT_INTERP)
3671     {
3672       gold_assert(type2 != elfcpp::PT_INTERP);
3673       return true;
3674     }
3675   if (type2 == elfcpp::PT_INTERP)
3676     return false;
3677 
3678   // We then put PT_LOAD segments before any other segments.
3679   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3680     return true;
3681   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3682     return false;
3683 
3684   // We put the PT_TLS segment last except for the PT_GNU_RELRO
3685   // segment, because that is where the dynamic linker expects to find
3686   // it (this is just for efficiency; other positions would also work
3687   // correctly).
3688   if (type1 == elfcpp::PT_TLS
3689       && type2 != elfcpp::PT_TLS
3690       && type2 != elfcpp::PT_GNU_RELRO)
3691     return false;
3692   if (type2 == elfcpp::PT_TLS
3693       && type1 != elfcpp::PT_TLS
3694       && type1 != elfcpp::PT_GNU_RELRO)
3695     return true;
3696 
3697   // We put the PT_GNU_RELRO segment last, because that is where the
3698   // dynamic linker expects to find it (as with PT_TLS, this is just
3699   // for efficiency).
3700   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3701     return false;
3702   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3703     return true;
3704 
3705   const elfcpp::Elf_Word flags1 = seg1->flags();
3706   const elfcpp::Elf_Word flags2 = seg2->flags();
3707 
3708   // The order of non-PT_LOAD segments is unimportant.  We simply sort
3709   // by the numeric segment type and flags values.  There should not
3710   // be more than one segment with the same type and flags, except
3711   // when a linker script specifies such.
3712   if (type1 != elfcpp::PT_LOAD)
3713     {
3714       if (type1 != type2)
3715 	return type1 < type2;
3716       uint64_t align1 = seg1->align();
3717       uint64_t align2 = seg2->align();
3718       // Place segments with larger alignments first.
3719       if (align1 != align2)
3720 	return align1 > align2;
3721       gold_assert(flags1 != flags2
3722 		  || this->script_options_->saw_phdrs_clause());
3723       return flags1 < flags2;
3724     }
3725 
3726   // If the addresses are set already, sort by load address.
3727   if (seg1->are_addresses_set())
3728     {
3729       if (!seg2->are_addresses_set())
3730 	return true;
3731 
3732       unsigned int section_count1 = seg1->output_section_count();
3733       unsigned int section_count2 = seg2->output_section_count();
3734       if (section_count1 == 0 && section_count2 > 0)
3735 	return true;
3736       if (section_count1 > 0 && section_count2 == 0)
3737 	return false;
3738 
3739       uint64_t paddr1 =	(seg1->are_addresses_set()
3740 			 ? seg1->paddr()
3741 			 : seg1->first_section_load_address());
3742       uint64_t paddr2 =	(seg2->are_addresses_set()
3743 			 ? seg2->paddr()
3744 			 : seg2->first_section_load_address());
3745 
3746       if (paddr1 != paddr2)
3747 	return paddr1 < paddr2;
3748     }
3749   else if (seg2->are_addresses_set())
3750     return false;
3751 
3752   // A segment which holds large data comes after a segment which does
3753   // not hold large data.
3754   if (seg1->is_large_data_segment())
3755     {
3756       if (!seg2->is_large_data_segment())
3757 	return false;
3758     }
3759   else if (seg2->is_large_data_segment())
3760     return true;
3761 
3762   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
3763   // segments come before writable segments.  Then writable segments
3764   // with data come before writable segments without data.  Then
3765   // executable segments come before non-executable segments.  Then
3766   // the unlikely case of a non-readable segment comes before the
3767   // normal case of a readable segment.  If there are multiple
3768   // segments with the same type and flags, we require that the
3769   // address be set, and we sort by virtual address and then physical
3770   // address.
3771   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3772     return (flags1 & elfcpp::PF_W) == 0;
3773   if ((flags1 & elfcpp::PF_W) != 0
3774       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3775     return seg1->has_any_data_sections();
3776   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3777     return (flags1 & elfcpp::PF_X) != 0;
3778   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3779     return (flags1 & elfcpp::PF_R) == 0;
3780 
3781   // We shouldn't get here--we shouldn't create segments which we
3782   // can't distinguish.  Unless of course we are using a weird linker
3783   // script or overlapping --section-start options.  We could also get
3784   // here if plugins want unique segments for subsets of sections.
3785   gold_assert(this->script_options_->saw_phdrs_clause()
3786 	      || parameters->options().any_section_start()
3787 	      || this->is_unique_segment_for_sections_specified()
3788 	      || parameters->options().text_unlikely_segment());
3789   return false;
3790 }
3791 
3792 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3793 
3794 static off_t
align_file_offset(off_t off,uint64_t addr,uint64_t abi_pagesize)3795 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3796 {
3797   uint64_t unsigned_off = off;
3798   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3799 			  | (addr & (abi_pagesize - 1)));
3800   if (aligned_off < unsigned_off)
3801     aligned_off += abi_pagesize;
3802   return aligned_off;
3803 }
3804 
3805 // On targets where the text segment contains only executable code,
3806 // a non-executable segment is never the text segment.
3807 
3808 static inline bool
is_text_segment(const Target * target,const Output_segment * seg)3809 is_text_segment(const Target* target, const Output_segment* seg)
3810 {
3811   elfcpp::Elf_Xword flags = seg->flags();
3812   if ((flags & elfcpp::PF_W) != 0)
3813     return false;
3814   if ((flags & elfcpp::PF_X) == 0)
3815     return !target->isolate_execinstr();
3816   return true;
3817 }
3818 
3819 // Set the file offsets of all the segments, and all the sections they
3820 // contain.  They have all been created.  LOAD_SEG must be laid out
3821 // first.  Return the offset of the data to follow.
3822 
3823 off_t
set_segment_offsets(const Target * target,Output_segment * load_seg,unsigned int * pshndx)3824 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3825 			    unsigned int* pshndx)
3826 {
3827   // Sort them into the final order.  We use a stable sort so that we
3828   // don't randomize the order of indistinguishable segments created
3829   // by linker scripts.
3830   std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3831 		   Layout::Compare_segments(this));
3832 
3833   // Find the PT_LOAD segments, and set their addresses and offsets
3834   // and their section's addresses and offsets.
3835   uint64_t start_addr;
3836   if (parameters->options().user_set_Ttext())
3837     start_addr = parameters->options().Ttext();
3838   else if (parameters->options().output_is_position_independent())
3839     start_addr = 0;
3840   else
3841     start_addr = target->default_text_segment_address();
3842 
3843   uint64_t addr = start_addr;
3844   off_t off = 0;
3845 
3846   // If LOAD_SEG is NULL, then the file header and segment headers
3847   // will not be loadable.  But they still need to be at offset 0 in
3848   // the file.  Set their offsets now.
3849   if (load_seg == NULL)
3850     {
3851       for (Data_list::iterator p = this->special_output_list_.begin();
3852 	   p != this->special_output_list_.end();
3853 	   ++p)
3854 	{
3855 	  off = align_address(off, (*p)->addralign());
3856 	  (*p)->set_address_and_file_offset(0, off);
3857 	  off += (*p)->data_size();
3858 	}
3859     }
3860 
3861   unsigned int increase_relro = this->increase_relro_;
3862   if (this->script_options_->saw_sections_clause())
3863     increase_relro = 0;
3864 
3865   const bool check_sections = parameters->options().check_sections();
3866   Output_segment* last_load_segment = NULL;
3867 
3868   unsigned int shndx_begin = *pshndx;
3869   unsigned int shndx_load_seg = *pshndx;
3870 
3871   for (Segment_list::iterator p = this->segment_list_.begin();
3872        p != this->segment_list_.end();
3873        ++p)
3874     {
3875       if ((*p)->type() == elfcpp::PT_LOAD)
3876 	{
3877 	  if (target->isolate_execinstr())
3878 	    {
3879 	      // When we hit the segment that should contain the
3880 	      // file headers, reset the file offset so we place
3881 	      // it and subsequent segments appropriately.
3882 	      // We'll fix up the preceding segments below.
3883 	      if (load_seg == *p)
3884 		{
3885 		  if (off == 0)
3886 		    load_seg = NULL;
3887 		  else
3888 		    {
3889 		      off = 0;
3890 		      shndx_load_seg = *pshndx;
3891 		    }
3892 		}
3893 	    }
3894 	  else
3895 	    {
3896 	      // Verify that the file headers fall into the first segment.
3897 	      if (load_seg != NULL && load_seg != *p)
3898 		gold_unreachable();
3899 	      load_seg = NULL;
3900 	    }
3901 
3902 	  bool are_addresses_set = (*p)->are_addresses_set();
3903 	  if (are_addresses_set)
3904 	    {
3905 	      // When it comes to setting file offsets, we care about
3906 	      // the physical address.
3907 	      addr = (*p)->paddr();
3908 	    }
3909 	  else if (parameters->options().user_set_Ttext()
3910 		   && (parameters->options().omagic()
3911 		       || is_text_segment(target, *p)))
3912 	    {
3913 	      are_addresses_set = true;
3914 	    }
3915 	  else if (parameters->options().user_set_Trodata_segment()
3916 		   && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3917 	    {
3918 	      addr = parameters->options().Trodata_segment();
3919 	      are_addresses_set = true;
3920 	    }
3921 	  else if (parameters->options().user_set_Tdata()
3922 		   && ((*p)->flags() & elfcpp::PF_W) != 0
3923 		   && (!parameters->options().user_set_Tbss()
3924 		       || (*p)->has_any_data_sections()))
3925 	    {
3926 	      addr = parameters->options().Tdata();
3927 	      are_addresses_set = true;
3928 	    }
3929 	  else if (parameters->options().user_set_Tbss()
3930 		   && ((*p)->flags() & elfcpp::PF_W) != 0
3931 		   && !(*p)->has_any_data_sections())
3932 	    {
3933 	      addr = parameters->options().Tbss();
3934 	      are_addresses_set = true;
3935 	    }
3936 
3937 	  uint64_t orig_addr = addr;
3938 	  uint64_t orig_off = off;
3939 
3940 	  uint64_t aligned_addr = 0;
3941 	  uint64_t abi_pagesize = target->abi_pagesize();
3942 	  uint64_t common_pagesize = target->common_pagesize();
3943 
3944 	  if (!parameters->options().nmagic()
3945 	      && !parameters->options().omagic())
3946 	    (*p)->set_minimum_p_align(abi_pagesize);
3947 
3948 	  if (!are_addresses_set)
3949 	    {
3950 	      // Skip the address forward one page, maintaining the same
3951 	      // position within the page.  This lets us store both segments
3952 	      // overlapping on a single page in the file, but the loader will
3953 	      // put them on different pages in memory. We will revisit this
3954 	      // decision once we know the size of the segment.
3955 
3956 	      uint64_t max_align = (*p)->maximum_alignment();
3957 	      if (max_align > abi_pagesize)
3958 		addr = align_address(addr, max_align);
3959 	      aligned_addr = addr;
3960 
3961 	      if (load_seg == *p)
3962 		{
3963 		  // This is the segment that will contain the file
3964 		  // headers, so its offset will have to be exactly zero.
3965 		  gold_assert(orig_off == 0);
3966 
3967 		  // If the target wants a fixed minimum distance from the
3968 		  // text segment to the read-only segment, move up now.
3969 		  uint64_t min_addr =
3970 		    start_addr + (parameters->options().user_set_rosegment_gap()
3971 				  ? parameters->options().rosegment_gap()
3972 				  : target->rosegment_gap());
3973 		  if (addr < min_addr)
3974 		    addr = min_addr;
3975 
3976 		  // But this is not the first segment!  To make its
3977 		  // address congruent with its offset, that address better
3978 		  // be aligned to the ABI-mandated page size.
3979 		  addr = align_address(addr, abi_pagesize);
3980 		  aligned_addr = addr;
3981 		}
3982 	      else
3983 		{
3984 		  if ((addr & (abi_pagesize - 1)) != 0)
3985 		    addr = addr + abi_pagesize;
3986 
3987 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3988 		}
3989 	    }
3990 
3991 	  if (!parameters->options().nmagic()
3992 	      && !parameters->options().omagic())
3993 	    {
3994 	      // Here we are also taking care of the case when
3995 	      // the maximum segment alignment is larger than the page size.
3996 	      off = align_file_offset(off, addr,
3997 				      std::max(abi_pagesize,
3998 					       (*p)->maximum_alignment()));
3999 	    }
4000 	  else
4001 	    {
4002 	      // This is -N or -n with a section script which prevents
4003 	      // us from using a load segment.  We need to ensure that
4004 	      // the file offset is aligned to the alignment of the
4005 	      // segment.  This is because the linker script
4006 	      // implicitly assumed a zero offset.  If we don't align
4007 	      // here, then the alignment of the sections in the
4008 	      // linker script may not match the alignment of the
4009 	      // sections in the set_section_addresses call below,
4010 	      // causing an error about dot moving backward.
4011 	      off = align_address(off, (*p)->maximum_alignment());
4012 	    }
4013 
4014 	  unsigned int shndx_hold = *pshndx;
4015 	  bool has_relro = false;
4016 	  uint64_t new_addr = (*p)->set_section_addresses(target, this,
4017 							  false, addr,
4018 							  &increase_relro,
4019 							  &has_relro,
4020 							  &off, pshndx);
4021 
4022 	  // Now that we know the size of this segment, we may be able
4023 	  // to save a page in memory, at the cost of wasting some
4024 	  // file space, by instead aligning to the start of a new
4025 	  // page.  Here we use the real machine page size rather than
4026 	  // the ABI mandated page size.  If the segment has been
4027 	  // aligned so that the relro data ends at a page boundary,
4028 	  // we do not try to realign it.
4029 
4030 	  if (!are_addresses_set
4031 	      && !has_relro
4032 	      && aligned_addr != addr
4033 	      && !parameters->incremental())
4034 	    {
4035 	      uint64_t first_off = (common_pagesize
4036 				    - (aligned_addr
4037 				       & (common_pagesize - 1)));
4038 	      uint64_t last_off = new_addr & (common_pagesize - 1);
4039 	      if (first_off > 0
4040 		  && last_off > 0
4041 		  && ((aligned_addr & ~ (common_pagesize - 1))
4042 		      != (new_addr & ~ (common_pagesize - 1)))
4043 		  && first_off + last_off <= common_pagesize)
4044 		{
4045 		  *pshndx = shndx_hold;
4046 		  addr = align_address(aligned_addr, common_pagesize);
4047 		  addr = align_address(addr, (*p)->maximum_alignment());
4048 		  if ((addr & (abi_pagesize - 1)) != 0)
4049 		    addr = addr + abi_pagesize;
4050 		  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4051 		  off = align_file_offset(off, addr, abi_pagesize);
4052 
4053 		  increase_relro = this->increase_relro_;
4054 		  if (this->script_options_->saw_sections_clause())
4055 		    increase_relro = 0;
4056 		  has_relro = false;
4057 
4058 		  new_addr = (*p)->set_section_addresses(target, this,
4059 							 true, addr,
4060 							 &increase_relro,
4061 							 &has_relro,
4062 							 &off, pshndx);
4063 		}
4064 	    }
4065 
4066 	  addr = new_addr;
4067 
4068 	  // Implement --check-sections.  We know that the segments
4069 	  // are sorted by LMA.
4070 	  if (check_sections && last_load_segment != NULL)
4071 	    {
4072 	      gold_assert(last_load_segment->paddr() <= (*p)->paddr());
4073 	      if (last_load_segment->paddr() + last_load_segment->memsz()
4074 		  > (*p)->paddr())
4075 		{
4076 		  unsigned long long lb1 = last_load_segment->paddr();
4077 		  unsigned long long le1 = lb1 + last_load_segment->memsz();
4078 		  unsigned long long lb2 = (*p)->paddr();
4079 		  unsigned long long le2 = lb2 + (*p)->memsz();
4080 		  gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
4081 			       "[0x%llx -> 0x%llx]"),
4082 			     lb1, le1, lb2, le2);
4083 		}
4084 	    }
4085 	  last_load_segment = *p;
4086 	}
4087     }
4088 
4089   if (load_seg != NULL && target->isolate_execinstr())
4090     {
4091       // Process the early segments again, setting their file offsets
4092       // so they land after the segments starting at LOAD_SEG.
4093       off = align_file_offset(off, 0, target->abi_pagesize());
4094 
4095       this->reset_relax_output();
4096 
4097       for (Segment_list::iterator p = this->segment_list_.begin();
4098 	   *p != load_seg;
4099 	   ++p)
4100 	{
4101 	  if ((*p)->type() == elfcpp::PT_LOAD)
4102 	    {
4103 	      // We repeat the whole job of assigning addresses and
4104 	      // offsets, but we really only want to change the offsets and
4105 	      // must ensure that the addresses all come out the same as
4106 	      // they did the first time through.
4107 	      bool has_relro = false;
4108 	      const uint64_t old_addr = (*p)->vaddr();
4109 	      const uint64_t old_end = old_addr + (*p)->memsz();
4110 	      uint64_t new_addr = (*p)->set_section_addresses(target, this,
4111 							      true, old_addr,
4112 							      &increase_relro,
4113 							      &has_relro,
4114 							      &off,
4115 							      &shndx_begin);
4116 	      gold_assert(new_addr == old_end);
4117 	    }
4118 	}
4119 
4120       gold_assert(shndx_begin == shndx_load_seg);
4121     }
4122 
4123   // Handle the non-PT_LOAD segments, setting their offsets from their
4124   // section's offsets.
4125   for (Segment_list::iterator p = this->segment_list_.begin();
4126        p != this->segment_list_.end();
4127        ++p)
4128     {
4129       // PT_GNU_STACK was set up correctly when it was created.
4130       if ((*p)->type() != elfcpp::PT_LOAD
4131 	  && (*p)->type() != elfcpp::PT_GNU_STACK)
4132 	(*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
4133 			 ? increase_relro
4134 			 : 0);
4135     }
4136 
4137   // Set the TLS offsets for each section in the PT_TLS segment.
4138   if (this->tls_segment_ != NULL)
4139     this->tls_segment_->set_tls_offsets();
4140 
4141   return off;
4142 }
4143 
4144 // Set the offsets of all the allocated sections when doing a
4145 // relocatable link.  This does the same jobs as set_segment_offsets,
4146 // only for a relocatable link.
4147 
4148 off_t
set_relocatable_section_offsets(Output_data * file_header,unsigned int * pshndx)4149 Layout::set_relocatable_section_offsets(Output_data* file_header,
4150 					unsigned int* pshndx)
4151 {
4152   off_t off = 0;
4153 
4154   file_header->set_address_and_file_offset(0, 0);
4155   off += file_header->data_size();
4156 
4157   for (Section_list::iterator p = this->section_list_.begin();
4158        p != this->section_list_.end();
4159        ++p)
4160     {
4161       // We skip unallocated sections here, except that group sections
4162       // have to come first.
4163       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
4164 	  && (*p)->type() != elfcpp::SHT_GROUP)
4165 	continue;
4166 
4167       off = align_address(off, (*p)->addralign());
4168 
4169       // The linker script might have set the address.
4170       if (!(*p)->is_address_valid())
4171 	(*p)->set_address(0);
4172       (*p)->set_file_offset(off);
4173       (*p)->finalize_data_size();
4174       if ((*p)->type() != elfcpp::SHT_NOBITS)
4175 	off += (*p)->data_size();
4176 
4177       (*p)->set_out_shndx(*pshndx);
4178       ++*pshndx;
4179     }
4180 
4181   return off;
4182 }
4183 
4184 // Set the file offset of all the sections not associated with a
4185 // segment.
4186 
4187 off_t
set_section_offsets(off_t off,Layout::Section_offset_pass pass)4188 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
4189 {
4190   off_t startoff = off;
4191   off_t maxoff = off;
4192 
4193   for (Section_list::iterator p = this->unattached_section_list_.begin();
4194        p != this->unattached_section_list_.end();
4195        ++p)
4196     {
4197       // The symtab section is handled in create_symtab_sections.
4198       if (*p == this->symtab_section_)
4199 	continue;
4200 
4201       // If we've already set the data size, don't set it again.
4202       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
4203 	continue;
4204 
4205       if (pass == BEFORE_INPUT_SECTIONS_PASS
4206 	  && (*p)->requires_postprocessing())
4207 	{
4208 	  (*p)->create_postprocessing_buffer();
4209 	  this->any_postprocessing_sections_ = true;
4210 	}
4211 
4212       if (pass == BEFORE_INPUT_SECTIONS_PASS
4213 	  && (*p)->after_input_sections())
4214 	continue;
4215       else if (pass == POSTPROCESSING_SECTIONS_PASS
4216 	       && (!(*p)->after_input_sections()
4217 		   || (*p)->type() == elfcpp::SHT_STRTAB))
4218 	continue;
4219       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4220 	       && (!(*p)->after_input_sections()
4221 		   || (*p)->type() != elfcpp::SHT_STRTAB))
4222 	continue;
4223 
4224       if (!parameters->incremental_update())
4225 	{
4226 	  off = align_address(off, (*p)->addralign());
4227 	  (*p)->set_file_offset(off);
4228 	  (*p)->finalize_data_size();
4229 	}
4230       else
4231 	{
4232 	  // Incremental update: allocate file space from free list.
4233 	  (*p)->pre_finalize_data_size();
4234 	  off_t current_size = (*p)->current_data_size();
4235 	  off = this->allocate(current_size, (*p)->addralign(), startoff);
4236 	  if (off == -1)
4237 	    {
4238 	      if (is_debugging_enabled(DEBUG_INCREMENTAL))
4239 		this->free_list_.dump();
4240 	      gold_assert((*p)->output_section() != NULL);
4241 	      gold_fallback(_("out of patch space for section %s; "
4242 			      "relink with --incremental-full"),
4243 			    (*p)->output_section()->name());
4244 	    }
4245 	  (*p)->set_file_offset(off);
4246 	  (*p)->finalize_data_size();
4247 	  if ((*p)->data_size() > current_size)
4248 	    {
4249 	      gold_assert((*p)->output_section() != NULL);
4250 	      gold_fallback(_("%s: section changed size; "
4251 			      "relink with --incremental-full"),
4252 			    (*p)->output_section()->name());
4253 	    }
4254 	  gold_debug(DEBUG_INCREMENTAL,
4255 		     "set_section_offsets: %08lx %08lx %s",
4256 		     static_cast<long>(off),
4257 		     static_cast<long>((*p)->data_size()),
4258 		     ((*p)->output_section() != NULL
4259 		      ? (*p)->output_section()->name() : "(special)"));
4260 	}
4261 
4262       off += (*p)->data_size();
4263       if (off > maxoff)
4264 	maxoff = off;
4265 
4266       // At this point the name must be set.
4267       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
4268 	this->namepool_.add((*p)->name(), false, NULL);
4269     }
4270   return maxoff;
4271 }
4272 
4273 // Set the section indexes of all the sections not associated with a
4274 // segment.
4275 
4276 unsigned int
set_section_indexes(unsigned int shndx)4277 Layout::set_section_indexes(unsigned int shndx)
4278 {
4279   for (Section_list::iterator p = this->unattached_section_list_.begin();
4280        p != this->unattached_section_list_.end();
4281        ++p)
4282     {
4283       if (!(*p)->has_out_shndx())
4284 	{
4285 	  (*p)->set_out_shndx(shndx);
4286 	  ++shndx;
4287 	}
4288     }
4289   return shndx;
4290 }
4291 
4292 // Set the section addresses according to the linker script.  This is
4293 // only called when we see a SECTIONS clause.  This returns the
4294 // program segment which should hold the file header and segment
4295 // headers, if any.  It will return NULL if they should not be in a
4296 // segment.
4297 
4298 Output_segment*
set_section_addresses_from_script(Symbol_table * symtab)4299 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4300 {
4301   Script_sections* ss = this->script_options_->script_sections();
4302   gold_assert(ss->saw_sections_clause());
4303   return this->script_options_->set_section_addresses(symtab, this);
4304 }
4305 
4306 // Place the orphan sections in the linker script.
4307 
4308 void
place_orphan_sections_in_script()4309 Layout::place_orphan_sections_in_script()
4310 {
4311   Script_sections* ss = this->script_options_->script_sections();
4312   gold_assert(ss->saw_sections_clause());
4313 
4314   // Place each orphaned output section in the script.
4315   for (Section_list::iterator p = this->section_list_.begin();
4316        p != this->section_list_.end();
4317        ++p)
4318     {
4319       if (!(*p)->found_in_sections_clause())
4320 	ss->place_orphan(*p);
4321     }
4322 }
4323 
4324 // Count the local symbols in the regular symbol table and the dynamic
4325 // symbol table, and build the respective string pools.
4326 
4327 void
count_local_symbols(const Task * task,const Input_objects * input_objects)4328 Layout::count_local_symbols(const Task* task,
4329 			    const Input_objects* input_objects)
4330 {
4331   // First, figure out an upper bound on the number of symbols we'll
4332   // be inserting into each pool.  This helps us create the pools with
4333   // the right size, to avoid unnecessary hashtable resizing.
4334   unsigned int symbol_count = 0;
4335   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4336        p != input_objects->relobj_end();
4337        ++p)
4338     symbol_count += (*p)->local_symbol_count();
4339 
4340   // Go from "upper bound" to "estimate."  We overcount for two
4341   // reasons: we double-count symbols that occur in more than one
4342   // object file, and we count symbols that are dropped from the
4343   // output.  Add it all together and assume we overcount by 100%.
4344   symbol_count /= 2;
4345 
4346   // We assume all symbols will go into both the sympool and dynpool.
4347   this->sympool_.reserve(symbol_count);
4348   this->dynpool_.reserve(symbol_count);
4349 
4350   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4351        p != input_objects->relobj_end();
4352        ++p)
4353     {
4354       Task_lock_obj<Object> tlo(task, *p);
4355       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4356     }
4357 }
4358 
4359 // Create the symbol table sections.  Here we also set the final
4360 // values of the symbols.  At this point all the loadable sections are
4361 // fully laid out.  SHNUM is the number of sections so far.
4362 
4363 void
create_symtab_sections(const Input_objects * input_objects,Symbol_table * symtab,unsigned int shnum,off_t * poff,unsigned int local_dynamic_count)4364 Layout::create_symtab_sections(const Input_objects* input_objects,
4365 			       Symbol_table* symtab,
4366 			       unsigned int shnum,
4367 			       off_t* poff,
4368 			       unsigned int local_dynamic_count)
4369 {
4370   int symsize;
4371   unsigned int align;
4372   if (parameters->target().get_size() == 32)
4373     {
4374       symsize = elfcpp::Elf_sizes<32>::sym_size;
4375       align = 4;
4376     }
4377   else if (parameters->target().get_size() == 64)
4378     {
4379       symsize = elfcpp::Elf_sizes<64>::sym_size;
4380       align = 8;
4381     }
4382   else
4383     gold_unreachable();
4384 
4385   // Compute file offsets relative to the start of the symtab section.
4386   off_t off = 0;
4387 
4388   // Save space for the dummy symbol at the start of the section.  We
4389   // never bother to write this out--it will just be left as zero.
4390   off += symsize;
4391   unsigned int local_symbol_index = 1;
4392 
4393   // Add STT_SECTION symbols for each Output section which needs one.
4394   for (Section_list::iterator p = this->section_list_.begin();
4395        p != this->section_list_.end();
4396        ++p)
4397     {
4398       if (!(*p)->needs_symtab_index())
4399 	(*p)->set_symtab_index(-1U);
4400       else
4401 	{
4402 	  (*p)->set_symtab_index(local_symbol_index);
4403 	  ++local_symbol_index;
4404 	  off += symsize;
4405 	}
4406     }
4407 
4408   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4409        p != input_objects->relobj_end();
4410        ++p)
4411     {
4412       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4413 							off, symtab);
4414       off += (index - local_symbol_index) * symsize;
4415       local_symbol_index = index;
4416     }
4417 
4418   unsigned int local_symcount = local_symbol_index;
4419   gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4420 
4421   off_t dynoff;
4422   size_t dyncount;
4423   if (this->dynsym_section_ == NULL)
4424     {
4425       dynoff = 0;
4426       dyncount = 0;
4427     }
4428   else
4429     {
4430       off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4431       dynoff = this->dynsym_section_->offset() + locsize;
4432       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4433       gold_assert(static_cast<off_t>(dyncount * symsize)
4434 		  == this->dynsym_section_->data_size() - locsize);
4435     }
4436 
4437   off_t global_off = off;
4438   off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4439 			 &this->sympool_, &local_symcount);
4440 
4441   if (!parameters->options().strip_all())
4442     {
4443       this->sympool_.set_string_offsets();
4444 
4445       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4446       Output_section* osymtab = this->make_output_section(symtab_name,
4447 							  elfcpp::SHT_SYMTAB,
4448 							  0, ORDER_INVALID,
4449 							  false);
4450       this->symtab_section_ = osymtab;
4451 
4452       Output_section_data* pos = new Output_data_fixed_space(off, align,
4453 							     "** symtab");
4454       osymtab->add_output_section_data(pos);
4455 
4456       // We generate a .symtab_shndx section if we have more than
4457       // SHN_LORESERVE sections.  Technically it is possible that we
4458       // don't need one, because it is possible that there are no
4459       // symbols in any of sections with indexes larger than
4460       // SHN_LORESERVE.  That is probably unusual, though, and it is
4461       // easier to always create one than to compute section indexes
4462       // twice (once here, once when writing out the symbols).
4463       if (shnum >= elfcpp::SHN_LORESERVE)
4464 	{
4465 	  const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4466 							       false, NULL);
4467 	  Output_section* osymtab_xindex =
4468 	    this->make_output_section(symtab_xindex_name,
4469 				      elfcpp::SHT_SYMTAB_SHNDX, 0,
4470 				      ORDER_INVALID, false);
4471 
4472 	  size_t symcount = off / symsize;
4473 	  this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4474 
4475 	  osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4476 
4477 	  osymtab_xindex->set_link_section(osymtab);
4478 	  osymtab_xindex->set_addralign(4);
4479 	  osymtab_xindex->set_entsize(4);
4480 
4481 	  osymtab_xindex->set_after_input_sections();
4482 
4483 	  // This tells the driver code to wait until the symbol table
4484 	  // has written out before writing out the postprocessing
4485 	  // sections, including the .symtab_shndx section.
4486 	  this->any_postprocessing_sections_ = true;
4487 	}
4488 
4489       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4490       Output_section* ostrtab = this->make_output_section(strtab_name,
4491 							  elfcpp::SHT_STRTAB,
4492 							  0, ORDER_INVALID,
4493 							  false);
4494 
4495       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4496       ostrtab->add_output_section_data(pstr);
4497 
4498       off_t symtab_off;
4499       if (!parameters->incremental_update())
4500 	symtab_off = align_address(*poff, align);
4501       else
4502 	{
4503 	  symtab_off = this->allocate(off, align, *poff);
4504 	  if (off == -1)
4505 	    gold_fallback(_("out of patch space for symbol table; "
4506 			    "relink with --incremental-full"));
4507 	  gold_debug(DEBUG_INCREMENTAL,
4508 		     "create_symtab_sections: %08lx %08lx .symtab",
4509 		     static_cast<long>(symtab_off),
4510 		     static_cast<long>(off));
4511 	}
4512 
4513       symtab->set_file_offset(symtab_off + global_off);
4514       osymtab->set_file_offset(symtab_off);
4515       osymtab->finalize_data_size();
4516       osymtab->set_link_section(ostrtab);
4517       osymtab->set_info(local_symcount);
4518       osymtab->set_entsize(symsize);
4519 
4520       if (symtab_off + off > *poff)
4521 	*poff = symtab_off + off;
4522     }
4523 }
4524 
4525 // Create the .shstrtab section, which holds the names of the
4526 // sections.  At the time this is called, we have created all the
4527 // output sections except .shstrtab itself.
4528 
4529 Output_section*
create_shstrtab()4530 Layout::create_shstrtab()
4531 {
4532   // FIXME: We don't need to create a .shstrtab section if we are
4533   // stripping everything.
4534 
4535   const char* name = this->namepool_.add(".shstrtab", false, NULL);
4536 
4537   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4538 						 ORDER_INVALID, false);
4539 
4540   if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4541     {
4542       // We can't write out this section until we've set all the
4543       // section names, and we don't set the names of compressed
4544       // output sections until relocations are complete.  FIXME: With
4545       // the current names we use, this is unnecessary.
4546       os->set_after_input_sections();
4547     }
4548 
4549   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4550   os->add_output_section_data(posd);
4551 
4552   return os;
4553 }
4554 
4555 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
4556 // offset.
4557 
4558 void
create_shdrs(const Output_section * shstrtab_section,off_t * poff)4559 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4560 {
4561   Output_section_headers* oshdrs;
4562   oshdrs = new Output_section_headers(this,
4563 				      &this->segment_list_,
4564 				      &this->section_list_,
4565 				      &this->unattached_section_list_,
4566 				      &this->namepool_,
4567 				      shstrtab_section);
4568   off_t off;
4569   if (!parameters->incremental_update())
4570     off = align_address(*poff, oshdrs->addralign());
4571   else
4572     {
4573       oshdrs->pre_finalize_data_size();
4574       off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4575       if (off == -1)
4576 	  gold_fallback(_("out of patch space for section header table; "
4577 			  "relink with --incremental-full"));
4578       gold_debug(DEBUG_INCREMENTAL,
4579 		 "create_shdrs: %08lx %08lx (section header table)",
4580 		 static_cast<long>(off),
4581 		 static_cast<long>(off + oshdrs->data_size()));
4582     }
4583   oshdrs->set_address_and_file_offset(0, off);
4584   off += oshdrs->data_size();
4585   if (off > *poff)
4586     *poff = off;
4587   this->section_headers_ = oshdrs;
4588 }
4589 
4590 // Count the allocated sections.
4591 
4592 size_t
allocated_output_section_count() const4593 Layout::allocated_output_section_count() const
4594 {
4595   size_t section_count = 0;
4596   for (Segment_list::const_iterator p = this->segment_list_.begin();
4597        p != this->segment_list_.end();
4598        ++p)
4599     section_count += (*p)->output_section_count();
4600   return section_count;
4601 }
4602 
4603 // Create the dynamic symbol table.
4604 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4605 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4606 // to the number of global symbols that have been forced local.
4607 // We need to remember the former because the forced-local symbols are
4608 // written along with the global symbols in Symtab::write_globals().
4609 
4610 void
create_dynamic_symtab(const Input_objects * input_objects,Symbol_table * symtab,Output_section ** pdynstr,unsigned int * plocal_dynamic_count,unsigned int * pforced_local_dynamic_count,std::vector<Symbol * > * pdynamic_symbols,Versions * pversions)4611 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4612 			      Symbol_table* symtab,
4613 			      Output_section** pdynstr,
4614 			      unsigned int* plocal_dynamic_count,
4615 			      unsigned int* pforced_local_dynamic_count,
4616 			      std::vector<Symbol*>* pdynamic_symbols,
4617 			      Versions* pversions)
4618 {
4619   // Count all the symbols in the dynamic symbol table, and set the
4620   // dynamic symbol indexes.
4621 
4622   // Skip symbol 0, which is always all zeroes.
4623   unsigned int index = 1;
4624 
4625   // Add STT_SECTION symbols for each Output section which needs one.
4626   for (Section_list::iterator p = this->section_list_.begin();
4627        p != this->section_list_.end();
4628        ++p)
4629     {
4630       if (!(*p)->needs_dynsym_index())
4631 	(*p)->set_dynsym_index(-1U);
4632       else
4633 	{
4634 	  (*p)->set_dynsym_index(index);
4635 	  ++index;
4636 	}
4637     }
4638 
4639   // Count the local symbols that need to go in the dynamic symbol table,
4640   // and set the dynamic symbol indexes.
4641   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4642        p != input_objects->relobj_end();
4643        ++p)
4644     {
4645       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4646       index = new_index;
4647     }
4648 
4649   unsigned int local_symcount = index;
4650   unsigned int forced_local_count = 0;
4651 
4652   index = symtab->set_dynsym_indexes(index, &forced_local_count,
4653 				     pdynamic_symbols, &this->dynpool_,
4654 				     pversions);
4655 
4656   *plocal_dynamic_count = local_symcount;
4657   *pforced_local_dynamic_count = forced_local_count;
4658 
4659   int symsize;
4660   unsigned int align;
4661   const int size = parameters->target().get_size();
4662   if (size == 32)
4663     {
4664       symsize = elfcpp::Elf_sizes<32>::sym_size;
4665       align = 4;
4666     }
4667   else if (size == 64)
4668     {
4669       symsize = elfcpp::Elf_sizes<64>::sym_size;
4670       align = 8;
4671     }
4672   else
4673     gold_unreachable();
4674 
4675   // Create the dynamic symbol table section.
4676 
4677   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4678 						       elfcpp::SHT_DYNSYM,
4679 						       elfcpp::SHF_ALLOC,
4680 						       false,
4681 						       ORDER_DYNAMIC_LINKER,
4682 						       false, false, false);
4683 
4684   // Check for NULL as a linker script may discard .dynsym.
4685   if (dynsym != NULL)
4686     {
4687       Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4688 							       align,
4689 							       "** dynsym");
4690       dynsym->add_output_section_data(odata);
4691 
4692       dynsym->set_info(local_symcount + forced_local_count);
4693       dynsym->set_entsize(symsize);
4694       dynsym->set_addralign(align);
4695 
4696       this->dynsym_section_ = dynsym;
4697     }
4698 
4699   Output_data_dynamic* const odyn = this->dynamic_data_;
4700   if (odyn != NULL)
4701     {
4702       odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4703       odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4704     }
4705 
4706   // If there are more than SHN_LORESERVE allocated sections, we
4707   // create a .dynsym_shndx section.  It is possible that we don't
4708   // need one, because it is possible that there are no dynamic
4709   // symbols in any of the sections with indexes larger than
4710   // SHN_LORESERVE.  This is probably unusual, though, and at this
4711   // time we don't know the actual section indexes so it is
4712   // inconvenient to check.
4713   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4714     {
4715       Output_section* dynsym_xindex =
4716 	this->choose_output_section(NULL, ".dynsym_shndx",
4717 				    elfcpp::SHT_SYMTAB_SHNDX,
4718 				    elfcpp::SHF_ALLOC,
4719 				    false, ORDER_DYNAMIC_LINKER, false, false,
4720 				    false);
4721 
4722       if (dynsym_xindex != NULL)
4723 	{
4724 	  this->dynsym_xindex_ = new Output_symtab_xindex(index);
4725 
4726 	  dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4727 
4728 	  dynsym_xindex->set_link_section(dynsym);
4729 	  dynsym_xindex->set_addralign(4);
4730 	  dynsym_xindex->set_entsize(4);
4731 
4732 	  dynsym_xindex->set_after_input_sections();
4733 
4734 	  // This tells the driver code to wait until the symbol table
4735 	  // has written out before writing out the postprocessing
4736 	  // sections, including the .dynsym_shndx section.
4737 	  this->any_postprocessing_sections_ = true;
4738 	}
4739     }
4740 
4741   // Create the dynamic string table section.
4742 
4743   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4744 						       elfcpp::SHT_STRTAB,
4745 						       elfcpp::SHF_ALLOC,
4746 						       false,
4747 						       ORDER_DYNAMIC_LINKER,
4748 						       false, false, false);
4749   *pdynstr = dynstr;
4750   if (dynstr != NULL)
4751     {
4752       Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4753       dynstr->add_output_section_data(strdata);
4754 
4755       if (dynsym != NULL)
4756 	dynsym->set_link_section(dynstr);
4757       if (this->dynamic_section_ != NULL)
4758 	this->dynamic_section_->set_link_section(dynstr);
4759 
4760       if (odyn != NULL)
4761 	{
4762 	  odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4763 	  odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4764 	}
4765     }
4766 
4767   // Create the hash tables.  The Gnu-style hash table must be
4768   // built first, because it changes the order of the symbols
4769   // in the dynamic symbol table.
4770 
4771   if (strcmp(parameters->options().hash_style(), "gnu") == 0
4772       || strcmp(parameters->options().hash_style(), "both") == 0)
4773     {
4774       unsigned char* phash;
4775       unsigned int hashlen;
4776       Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4777 				    local_symcount + forced_local_count,
4778 				    &phash, &hashlen);
4779 
4780       Output_section* hashsec =
4781 	this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4782 				    elfcpp::SHF_ALLOC, false,
4783 				    ORDER_DYNAMIC_LINKER, false, false,
4784 				    false);
4785 
4786       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4787 								   hashlen,
4788 								   align,
4789 								   "** hash");
4790       if (hashsec != NULL && hashdata != NULL)
4791 	hashsec->add_output_section_data(hashdata);
4792 
4793       if (hashsec != NULL)
4794 	{
4795 	  if (dynsym != NULL)
4796 	    hashsec->set_link_section(dynsym);
4797 
4798 	  // For a 64-bit target, the entries in .gnu.hash do not have
4799 	  // a uniform size, so we only set the entry size for a
4800 	  // 32-bit target.
4801 	  if (parameters->target().get_size() == 32)
4802 	    hashsec->set_entsize(4);
4803 
4804 	  if (odyn != NULL)
4805 	    odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4806 	}
4807     }
4808 
4809   if (strcmp(parameters->options().hash_style(), "sysv") == 0
4810       || strcmp(parameters->options().hash_style(), "both") == 0)
4811     {
4812       unsigned char* phash;
4813       unsigned int hashlen;
4814       Dynobj::create_elf_hash_table(*pdynamic_symbols,
4815 				    local_symcount + forced_local_count,
4816 				    &phash, &hashlen);
4817 
4818       Output_section* hashsec =
4819 	this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4820 				    elfcpp::SHF_ALLOC, false,
4821 				    ORDER_DYNAMIC_LINKER, false, false,
4822 				    false);
4823 
4824       Output_section_data* hashdata = new Output_data_const_buffer(phash,
4825 								   hashlen,
4826 								   align,
4827 								   "** hash");
4828       if (hashsec != NULL && hashdata != NULL)
4829 	hashsec->add_output_section_data(hashdata);
4830 
4831       if (hashsec != NULL)
4832 	{
4833 	  if (dynsym != NULL)
4834 	    hashsec->set_link_section(dynsym);
4835 	  hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4836 	}
4837 
4838       if (odyn != NULL)
4839 	odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4840     }
4841 }
4842 
4843 // Assign offsets to each local portion of the dynamic symbol table.
4844 
4845 void
assign_local_dynsym_offsets(const Input_objects * input_objects)4846 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4847 {
4848   Output_section* dynsym = this->dynsym_section_;
4849   if (dynsym == NULL)
4850     return;
4851 
4852   off_t off = dynsym->offset();
4853 
4854   // Skip the dummy symbol at the start of the section.
4855   off += dynsym->entsize();
4856 
4857   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4858        p != input_objects->relobj_end();
4859        ++p)
4860     {
4861       unsigned int count = (*p)->set_local_dynsym_offset(off);
4862       off += count * dynsym->entsize();
4863     }
4864 }
4865 
4866 // Create the version sections.
4867 
4868 void
create_version_sections(const Versions * versions,const Symbol_table * symtab,unsigned int local_symcount,const std::vector<Symbol * > & dynamic_symbols,const Output_section * dynstr)4869 Layout::create_version_sections(const Versions* versions,
4870 				const Symbol_table* symtab,
4871 				unsigned int local_symcount,
4872 				const std::vector<Symbol*>& dynamic_symbols,
4873 				const Output_section* dynstr)
4874 {
4875   if (!versions->any_defs() && !versions->any_needs())
4876     return;
4877 
4878   switch (parameters->size_and_endianness())
4879     {
4880 #ifdef HAVE_TARGET_32_LITTLE
4881     case Parameters::TARGET_32_LITTLE:
4882       this->sized_create_version_sections<32, false>(versions, symtab,
4883 						     local_symcount,
4884 						     dynamic_symbols, dynstr);
4885       break;
4886 #endif
4887 #ifdef HAVE_TARGET_32_BIG
4888     case Parameters::TARGET_32_BIG:
4889       this->sized_create_version_sections<32, true>(versions, symtab,
4890 						    local_symcount,
4891 						    dynamic_symbols, dynstr);
4892       break;
4893 #endif
4894 #ifdef HAVE_TARGET_64_LITTLE
4895     case Parameters::TARGET_64_LITTLE:
4896       this->sized_create_version_sections<64, false>(versions, symtab,
4897 						     local_symcount,
4898 						     dynamic_symbols, dynstr);
4899       break;
4900 #endif
4901 #ifdef HAVE_TARGET_64_BIG
4902     case Parameters::TARGET_64_BIG:
4903       this->sized_create_version_sections<64, true>(versions, symtab,
4904 						    local_symcount,
4905 						    dynamic_symbols, dynstr);
4906       break;
4907 #endif
4908     default:
4909       gold_unreachable();
4910     }
4911 }
4912 
4913 // Create the version sections, sized version.
4914 
4915 template<int size, bool big_endian>
4916 void
sized_create_version_sections(const Versions * versions,const Symbol_table * symtab,unsigned int local_symcount,const std::vector<Symbol * > & dynamic_symbols,const Output_section * dynstr)4917 Layout::sized_create_version_sections(
4918     const Versions* versions,
4919     const Symbol_table* symtab,
4920     unsigned int local_symcount,
4921     const std::vector<Symbol*>& dynamic_symbols,
4922     const Output_section* dynstr)
4923 {
4924   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4925 						     elfcpp::SHT_GNU_versym,
4926 						     elfcpp::SHF_ALLOC,
4927 						     false,
4928 						     ORDER_DYNAMIC_LINKER,
4929 						     false, false, false);
4930 
4931   // Check for NULL since a linker script may discard this section.
4932   if (vsec != NULL)
4933     {
4934       unsigned char* vbuf;
4935       unsigned int vsize;
4936       versions->symbol_section_contents<size, big_endian>(symtab,
4937 							  &this->dynpool_,
4938 							  local_symcount,
4939 							  dynamic_symbols,
4940 							  &vbuf, &vsize);
4941 
4942       Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4943 								"** versions");
4944 
4945       vsec->add_output_section_data(vdata);
4946       vsec->set_entsize(2);
4947       vsec->set_link_section(this->dynsym_section_);
4948     }
4949 
4950   Output_data_dynamic* const odyn = this->dynamic_data_;
4951   if (odyn != NULL && vsec != NULL)
4952     odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4953 
4954   if (versions->any_defs())
4955     {
4956       Output_section* vdsec;
4957       vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4958 					  elfcpp::SHT_GNU_verdef,
4959 					  elfcpp::SHF_ALLOC,
4960 					  false, ORDER_DYNAMIC_LINKER, false,
4961 					  false, false);
4962 
4963       if (vdsec != NULL)
4964 	{
4965 	  unsigned char* vdbuf;
4966 	  unsigned int vdsize;
4967 	  unsigned int vdentries;
4968 	  versions->def_section_contents<size, big_endian>(&this->dynpool_,
4969 							   &vdbuf, &vdsize,
4970 							   &vdentries);
4971 
4972 	  Output_section_data* vddata =
4973 	    new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4974 
4975 	  vdsec->add_output_section_data(vddata);
4976 	  vdsec->set_link_section(dynstr);
4977 	  vdsec->set_info(vdentries);
4978 
4979 	  if (odyn != NULL)
4980 	    {
4981 	      odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4982 	      odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4983 	    }
4984 	}
4985     }
4986 
4987   if (versions->any_needs())
4988     {
4989       Output_section* vnsec;
4990       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4991 					  elfcpp::SHT_GNU_verneed,
4992 					  elfcpp::SHF_ALLOC,
4993 					  false, ORDER_DYNAMIC_LINKER, false,
4994 					  false, false);
4995 
4996       if (vnsec != NULL)
4997 	{
4998 	  unsigned char* vnbuf;
4999 	  unsigned int vnsize;
5000 	  unsigned int vnentries;
5001 	  versions->need_section_contents<size, big_endian>(&this->dynpool_,
5002 							    &vnbuf, &vnsize,
5003 							    &vnentries);
5004 
5005 	  Output_section_data* vndata =
5006 	    new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
5007 
5008 	  vnsec->add_output_section_data(vndata);
5009 	  vnsec->set_link_section(dynstr);
5010 	  vnsec->set_info(vnentries);
5011 
5012 	  if (odyn != NULL)
5013 	    {
5014 	      odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
5015 	      odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
5016 	    }
5017 	}
5018     }
5019 }
5020 
5021 // Create the .interp section and PT_INTERP segment.
5022 
5023 void
create_interp(const Target * target)5024 Layout::create_interp(const Target* target)
5025 {
5026   gold_assert(this->interp_segment_ == NULL);
5027 
5028   const char* interp = parameters->options().dynamic_linker();
5029   if (interp == NULL)
5030     {
5031       interp = target->dynamic_linker();
5032       gold_assert(interp != NULL);
5033     }
5034 
5035   size_t len = strlen(interp) + 1;
5036 
5037   Output_section_data* odata = new Output_data_const(interp, len, 1);
5038 
5039   Output_section* osec = this->choose_output_section(NULL, ".interp",
5040 						     elfcpp::SHT_PROGBITS,
5041 						     elfcpp::SHF_ALLOC,
5042 						     false, ORDER_INTERP,
5043 						     false, false, false);
5044   if (osec != NULL)
5045     osec->add_output_section_data(odata);
5046 }
5047 
5048 // Add dynamic tags for the PLT and the dynamic relocs.  This is
5049 // called by the target-specific code.  This does nothing if not doing
5050 // a dynamic link.
5051 
5052 // USE_REL is true for REL relocs rather than RELA relocs.
5053 
5054 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
5055 
5056 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
5057 // and we also set DT_PLTREL.  We use PLT_REL's output section, since
5058 // some targets have multiple reloc sections in PLT_REL.
5059 
5060 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
5061 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
5062 // section.
5063 
5064 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
5065 // executable.
5066 
5067 void
add_target_dynamic_tags(bool use_rel,const Output_data * plt_got,const Output_data * plt_rel,const Output_data_reloc_generic * dyn_rel,bool add_debug,bool dynrel_includes_plt)5068 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
5069 				const Output_data* plt_rel,
5070 				const Output_data_reloc_generic* dyn_rel,
5071 				bool add_debug, bool dynrel_includes_plt)
5072 {
5073   Output_data_dynamic* odyn = this->dynamic_data_;
5074   if (odyn == NULL)
5075     return;
5076 
5077   if (plt_got != NULL && plt_got->output_section() != NULL)
5078     odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
5079 
5080   if (plt_rel != NULL && plt_rel->output_section() != NULL)
5081     {
5082       odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
5083       odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
5084       odyn->add_constant(elfcpp::DT_PLTREL,
5085 			 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
5086     }
5087 
5088   if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
5089       || (dynrel_includes_plt
5090 	  && plt_rel != NULL
5091 	  && plt_rel->output_section() != NULL))
5092     {
5093       bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
5094       bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
5095       odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
5096 				(have_dyn_rel
5097 				 ? dyn_rel->output_section()
5098 				 : plt_rel->output_section()));
5099       elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
5100       if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
5101 	odyn->add_section_size(size_tag,
5102 			       dyn_rel->output_section(),
5103 			       plt_rel->output_section());
5104       else if (have_dyn_rel)
5105 	odyn->add_section_size(size_tag, dyn_rel->output_section());
5106       else
5107 	odyn->add_section_size(size_tag, plt_rel->output_section());
5108       const int size = parameters->target().get_size();
5109       elfcpp::DT rel_tag;
5110       int rel_size;
5111       if (use_rel)
5112 	{
5113 	  rel_tag = elfcpp::DT_RELENT;
5114 	  if (size == 32)
5115 	    rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
5116 	  else if (size == 64)
5117 	    rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
5118 	  else
5119 	    gold_unreachable();
5120 	}
5121       else
5122 	{
5123 	  rel_tag = elfcpp::DT_RELAENT;
5124 	  if (size == 32)
5125 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
5126 	  else if (size == 64)
5127 	    rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
5128 	  else
5129 	    gold_unreachable();
5130 	}
5131       odyn->add_constant(rel_tag, rel_size);
5132 
5133       if (parameters->options().combreloc() && have_dyn_rel)
5134 	{
5135 	  size_t c = dyn_rel->relative_reloc_count();
5136 	  if (c > 0)
5137 	    odyn->add_constant((use_rel
5138 				? elfcpp::DT_RELCOUNT
5139 				: elfcpp::DT_RELACOUNT),
5140 			       c);
5141 	}
5142     }
5143 
5144   if (add_debug && !parameters->options().shared())
5145     {
5146       // The value of the DT_DEBUG tag is filled in by the dynamic
5147       // linker at run time, and used by the debugger.
5148       odyn->add_constant(elfcpp::DT_DEBUG, 0);
5149     }
5150 }
5151 
5152 void
add_target_specific_dynamic_tag(elfcpp::DT tag,unsigned int val)5153 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
5154 {
5155   Output_data_dynamic* odyn = this->dynamic_data_;
5156   if (odyn == NULL)
5157     return;
5158   odyn->add_constant(tag, val);
5159 }
5160 
5161 // Finish the .dynamic section and PT_DYNAMIC segment.
5162 
5163 void
finish_dynamic_section(const Input_objects * input_objects,const Symbol_table * symtab)5164 Layout::finish_dynamic_section(const Input_objects* input_objects,
5165 			       const Symbol_table* symtab)
5166 {
5167   if (!this->script_options_->saw_phdrs_clause()
5168       && this->dynamic_section_ != NULL)
5169     {
5170       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
5171 						       (elfcpp::PF_R
5172 							| elfcpp::PF_W));
5173       oseg->add_output_section_to_nonload(this->dynamic_section_,
5174 					  elfcpp::PF_R | elfcpp::PF_W);
5175     }
5176 
5177   Output_data_dynamic* const odyn = this->dynamic_data_;
5178   if (odyn == NULL)
5179     return;
5180 
5181   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
5182        p != input_objects->dynobj_end();
5183        ++p)
5184     {
5185       if (!(*p)->is_needed() && (*p)->as_needed())
5186 	{
5187 	  // This dynamic object was linked with --as-needed, but it
5188 	  // is not needed.
5189 	  continue;
5190 	}
5191 
5192       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
5193     }
5194 
5195   if (parameters->options().shared())
5196     {
5197       const char* soname = parameters->options().soname();
5198       if (soname != NULL)
5199 	odyn->add_string(elfcpp::DT_SONAME, soname);
5200     }
5201 
5202   Symbol* sym = symtab->lookup(parameters->options().init());
5203   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5204     odyn->add_symbol(elfcpp::DT_INIT, sym);
5205 
5206   sym = symtab->lookup(parameters->options().fini());
5207   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5208     odyn->add_symbol(elfcpp::DT_FINI, sym);
5209 
5210   // Look for .init_array, .preinit_array and .fini_array by checking
5211   // section types.
5212   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
5213       p != this->section_list_.end();
5214       ++p)
5215     switch((*p)->type())
5216       {
5217       case elfcpp::SHT_FINI_ARRAY:
5218 	odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
5219 	odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
5220 	break;
5221       case elfcpp::SHT_INIT_ARRAY:
5222 	odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
5223 	odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
5224 	break;
5225       case elfcpp::SHT_PREINIT_ARRAY:
5226 	odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
5227 	odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
5228 	break;
5229       default:
5230 	break;
5231       }
5232 
5233   // Add a DT_RPATH entry if needed.
5234   const General_options::Dir_list& rpath(parameters->options().rpath());
5235   if (!rpath.empty())
5236     {
5237       std::string rpath_val;
5238       for (General_options::Dir_list::const_iterator p = rpath.begin();
5239 	   p != rpath.end();
5240 	   ++p)
5241 	{
5242 	  if (rpath_val.empty())
5243 	    rpath_val = p->name();
5244 	  else
5245 	    {
5246 	      // Eliminate duplicates.
5247 	      General_options::Dir_list::const_iterator q;
5248 	      for (q = rpath.begin(); q != p; ++q)
5249 		if (q->name() == p->name())
5250 		  break;
5251 	      if (q == p)
5252 		{
5253 		  rpath_val += ':';
5254 		  rpath_val += p->name();
5255 		}
5256 	    }
5257 	}
5258 
5259       if (!parameters->options().enable_new_dtags())
5260 	odyn->add_string(elfcpp::DT_RPATH, rpath_val);
5261       else
5262 	odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
5263     }
5264 
5265   // Look for text segments that have dynamic relocations.
5266   bool have_textrel = false;
5267   if (!this->script_options_->saw_sections_clause())
5268     {
5269       for (Segment_list::const_iterator p = this->segment_list_.begin();
5270 	   p != this->segment_list_.end();
5271 	   ++p)
5272 	{
5273 	  if ((*p)->type() == elfcpp::PT_LOAD
5274 	      && ((*p)->flags() & elfcpp::PF_W) == 0
5275 	      && (*p)->has_dynamic_reloc())
5276 	    {
5277 	      have_textrel = true;
5278 	      break;
5279 	    }
5280 	}
5281     }
5282   else
5283     {
5284       // We don't know the section -> segment mapping, so we are
5285       // conservative and just look for readonly sections with
5286       // relocations.  If those sections wind up in writable segments,
5287       // then we have created an unnecessary DT_TEXTREL entry.
5288       for (Section_list::const_iterator p = this->section_list_.begin();
5289 	   p != this->section_list_.end();
5290 	   ++p)
5291 	{
5292 	  if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
5293 	      && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
5294 	      && (*p)->has_dynamic_reloc())
5295 	    {
5296 	      have_textrel = true;
5297 	      break;
5298 	    }
5299 	}
5300     }
5301 
5302   if (parameters->options().filter() != NULL)
5303     odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5304   if (parameters->options().any_auxiliary())
5305     {
5306       for (options::String_set::const_iterator p =
5307 	     parameters->options().auxiliary_begin();
5308 	   p != parameters->options().auxiliary_end();
5309 	   ++p)
5310 	odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5311     }
5312 
5313   // Add a DT_FLAGS entry if necessary.
5314   unsigned int flags = 0;
5315   if (have_textrel)
5316     {
5317       // Add a DT_TEXTREL for compatibility with older loaders.
5318       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5319       flags |= elfcpp::DF_TEXTREL;
5320 
5321       if (parameters->options().text())
5322 	gold_error(_("read-only segment has dynamic relocations"));
5323       else if (parameters->options().warn_shared_textrel()
5324 	       && parameters->options().shared())
5325 	gold_warning(_("shared library text segment is not shareable"));
5326     }
5327   if (parameters->options().shared() && this->has_static_tls())
5328     flags |= elfcpp::DF_STATIC_TLS;
5329   if (parameters->options().origin())
5330     flags |= elfcpp::DF_ORIGIN;
5331   if (parameters->options().Bsymbolic()
5332       && !parameters->options().have_dynamic_list())
5333     {
5334       flags |= elfcpp::DF_SYMBOLIC;
5335       // Add DT_SYMBOLIC for compatibility with older loaders.
5336       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5337     }
5338   if (parameters->options().now())
5339     flags |= elfcpp::DF_BIND_NOW;
5340   if (flags != 0)
5341     odyn->add_constant(elfcpp::DT_FLAGS, flags);
5342 
5343   flags = 0;
5344   if (parameters->options().global())
5345     flags |= elfcpp::DF_1_GLOBAL;
5346   if (parameters->options().initfirst())
5347     flags |= elfcpp::DF_1_INITFIRST;
5348   if (parameters->options().interpose())
5349     flags |= elfcpp::DF_1_INTERPOSE;
5350   if (parameters->options().loadfltr())
5351     flags |= elfcpp::DF_1_LOADFLTR;
5352   if (parameters->options().nodefaultlib())
5353     flags |= elfcpp::DF_1_NODEFLIB;
5354   if (parameters->options().nodelete())
5355     flags |= elfcpp::DF_1_NODELETE;
5356   if (parameters->options().nodlopen())
5357     flags |= elfcpp::DF_1_NOOPEN;
5358   if (parameters->options().nodump())
5359     flags |= elfcpp::DF_1_NODUMP;
5360   if (!parameters->options().shared())
5361     flags &= ~(elfcpp::DF_1_INITFIRST
5362 	       | elfcpp::DF_1_NODELETE
5363 	       | elfcpp::DF_1_NOOPEN);
5364   if (parameters->options().origin())
5365     flags |= elfcpp::DF_1_ORIGIN;
5366   if (parameters->options().now())
5367     flags |= elfcpp::DF_1_NOW;
5368   if (parameters->options().Bgroup())
5369     flags |= elfcpp::DF_1_GROUP;
5370   if (parameters->options().pie())
5371     flags |= elfcpp::DF_1_PIE;
5372   if (flags != 0)
5373     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5374 
5375   flags = 0;
5376   if (parameters->options().unique())
5377     flags |= elfcpp::DF_GNU_1_UNIQUE;
5378   if (flags != 0)
5379     odyn->add_constant(elfcpp::DT_GNU_FLAGS_1, flags);
5380 }
5381 
5382 // Set the size of the _DYNAMIC symbol table to be the size of the
5383 // dynamic data.
5384 
5385 void
set_dynamic_symbol_size(const Symbol_table * symtab)5386 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5387 {
5388   Output_data_dynamic* const odyn = this->dynamic_data_;
5389   if (odyn == NULL)
5390     return;
5391   odyn->finalize_data_size();
5392   if (this->dynamic_symbol_ == NULL)
5393     return;
5394   off_t data_size = odyn->data_size();
5395   const int size = parameters->target().get_size();
5396   if (size == 32)
5397     symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5398   else if (size == 64)
5399     symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5400   else
5401     gold_unreachable();
5402 }
5403 
5404 // The mapping of input section name prefixes to output section names.
5405 // In some cases one prefix is itself a prefix of another prefix; in
5406 // such a case the longer prefix must come first.  These prefixes are
5407 // based on the GNU linker default ELF linker script.
5408 
5409 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5410 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5411 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5412 {
5413   MAPPING_INIT(".text.", ".text"),
5414   MAPPING_INIT(".rodata.", ".rodata"),
5415   MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5416   MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5417   MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5418   MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5419   MAPPING_INIT(".data.", ".data"),
5420   MAPPING_INIT(".bss.", ".bss"),
5421   MAPPING_INIT(".tdata.", ".tdata"),
5422   MAPPING_INIT(".tbss.", ".tbss"),
5423   MAPPING_INIT(".init_array.", ".init_array"),
5424   MAPPING_INIT(".fini_array.", ".fini_array"),
5425   MAPPING_INIT(".sdata.", ".sdata"),
5426   MAPPING_INIT(".sbss.", ".sbss"),
5427   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5428   // differently depending on whether it is creating a shared library.
5429   MAPPING_INIT(".sdata2.", ".sdata"),
5430   MAPPING_INIT(".sbss2.", ".sbss"),
5431   MAPPING_INIT(".lrodata.", ".lrodata"),
5432   MAPPING_INIT(".ldata.", ".ldata"),
5433   MAPPING_INIT(".lbss.", ".lbss"),
5434   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5435   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5436   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5437   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5438   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5439   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5440   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5441   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5442   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5443   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5444   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5445   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5446   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5447   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5448   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5449   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5450   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5451   MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5452   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5453   MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5454   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5455   MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
5456 };
5457 
5458 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5459 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5460 {
5461   MAPPING_INIT(".text.hot.", ".text.hot"),
5462   MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5463   MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5464   MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5465   MAPPING_INIT(".text.startup.", ".text.startup"),
5466   MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5467   MAPPING_INIT(".text.exit.", ".text.exit"),
5468   MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5469   MAPPING_INIT(".text.", ".text"),
5470 };
5471 #undef MAPPING_INIT
5472 #undef MAPPING_INIT_EXACT
5473 
5474 const int Layout::section_name_mapping_count =
5475   (sizeof(Layout::section_name_mapping)
5476    / sizeof(Layout::section_name_mapping[0]));
5477 
5478 const int Layout::text_section_name_mapping_count =
5479   (sizeof(Layout::text_section_name_mapping)
5480    / sizeof(Layout::text_section_name_mapping[0]));
5481 
5482 // Find section name NAME in PSNM and return the mapped name if found
5483 // with the length set in PLEN.
5484 const char *
match_section_name(const Layout::Section_name_mapping * psnm,const int count,const char * name,size_t * plen)5485 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5486 			   const int count,
5487 			   const char* name, size_t* plen)
5488 {
5489   for (int i = 0; i < count; ++i, ++psnm)
5490     {
5491       if (psnm->fromlen > 0)
5492 	{
5493 	  if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5494 	    {
5495 	      *plen = psnm->tolen;
5496 	      return psnm->to;
5497 	    }
5498 	}
5499       else
5500 	{
5501 	  if (strcmp(name, psnm->from) == 0)
5502 	    {
5503 	      *plen = psnm->tolen;
5504 	      return psnm->to;
5505 	    }
5506 	}
5507     }
5508   return NULL;
5509 }
5510 
5511 // Choose the output section name to use given an input section name.
5512 // Set *PLEN to the length of the name.  *PLEN is initialized to the
5513 // length of NAME.
5514 
5515 const char*
output_section_name(const Relobj * relobj,const char * name,size_t * plen)5516 Layout::output_section_name(const Relobj* relobj, const char* name,
5517 			    size_t* plen)
5518 {
5519   // gcc 4.3 generates the following sorts of section names when it
5520   // needs a section name specific to a function:
5521   //   .text.FN
5522   //   .rodata.FN
5523   //   .sdata2.FN
5524   //   .data.FN
5525   //   .data.rel.FN
5526   //   .data.rel.local.FN
5527   //   .data.rel.ro.FN
5528   //   .data.rel.ro.local.FN
5529   //   .sdata.FN
5530   //   .bss.FN
5531   //   .sbss.FN
5532   //   .tdata.FN
5533   //   .tbss.FN
5534 
5535   // The GNU linker maps all of those to the part before the .FN,
5536   // except that .data.rel.local.FN is mapped to .data, and
5537   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
5538   // beginning with .data.rel.ro.local are grouped together.
5539 
5540   // For an anonymous namespace, the string FN can contain a '.'.
5541 
5542   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5543   // GNU linker maps to .rodata.
5544 
5545   // The .data.rel.ro sections are used with -z relro.  The sections
5546   // are recognized by name.  We use the same names that the GNU
5547   // linker does for these sections.
5548 
5549   // It is hard to handle this in a principled way, so we don't even
5550   // try.  We use a table of mappings.  If the input section name is
5551   // not found in the table, we simply use it as the output section
5552   // name.
5553 
5554   if (parameters->options().keep_text_section_prefix()
5555       && is_prefix_of(".text", name))
5556     {
5557       const char* match = match_section_name(text_section_name_mapping,
5558 					     text_section_name_mapping_count,
5559 					     name, plen);
5560       if (match != NULL)
5561 	return match;
5562     }
5563 
5564   const char* match = match_section_name(section_name_mapping,
5565 					 section_name_mapping_count, name, plen);
5566   if (match != NULL)
5567     return match;
5568 
5569   // As an additional complication, .ctors sections are output in
5570   // either .ctors or .init_array sections, and .dtors sections are
5571   // output in either .dtors or .fini_array sections.
5572   if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5573     {
5574       if (parameters->options().ctors_in_init_array())
5575 	{
5576 	  *plen = 11;
5577 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
5578 	}
5579       else
5580 	{
5581 	  *plen = 6;
5582 	  return name[1] == 'c' ? ".ctors" : ".dtors";
5583 	}
5584     }
5585   if (parameters->options().ctors_in_init_array()
5586       && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5587     {
5588       // To make .init_array/.fini_array work with gcc we must exclude
5589       // .ctors and .dtors sections from the crtbegin and crtend
5590       // files.
5591       if (relobj == NULL
5592 	  || (!Layout::match_file_name(relobj, "crtbegin")
5593 	      && !Layout::match_file_name(relobj, "crtend")))
5594 	{
5595 	  *plen = 11;
5596 	  return name[1] == 'c' ? ".init_array" : ".fini_array";
5597 	}
5598     }
5599 
5600   return name;
5601 }
5602 
5603 // Return true if RELOBJ is an input file whose base name matches
5604 // FILE_NAME.  The base name must have an extension of ".o", and must
5605 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
5606 // to match crtbegin.o as well as crtbeginS.o without getting confused
5607 // by other possibilities.  Overall matching the file name this way is
5608 // a dreadful hack, but the GNU linker does it in order to better
5609 // support gcc, and we need to be compatible.
5610 
5611 bool
match_file_name(const Relobj * relobj,const char * match)5612 Layout::match_file_name(const Relobj* relobj, const char* match)
5613 {
5614   const std::string& file_name(relobj->name());
5615   const char* base_name = lbasename(file_name.c_str());
5616   size_t match_len = strlen(match);
5617   if (strncmp(base_name, match, match_len) != 0)
5618     return false;
5619   size_t base_len = strlen(base_name);
5620   if (base_len != match_len + 2 && base_len != match_len + 3)
5621     return false;
5622   return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5623 }
5624 
5625 // Check if a comdat group or .gnu.linkonce section with the given
5626 // NAME is selected for the link.  If there is already a section,
5627 // *KEPT_SECTION is set to point to the existing section and the
5628 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5629 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5630 // *KEPT_SECTION is set to the internal copy and the function returns
5631 // true.
5632 
5633 bool
find_or_add_kept_section(const std::string & name,Relobj * object,unsigned int shndx,bool is_comdat,bool is_group_name,Kept_section ** kept_section)5634 Layout::find_or_add_kept_section(const std::string& name,
5635 				 Relobj* object,
5636 				 unsigned int shndx,
5637 				 bool is_comdat,
5638 				 bool is_group_name,
5639 				 Kept_section** kept_section)
5640 {
5641   // It's normal to see a couple of entries here, for the x86 thunk
5642   // sections.  If we see more than a few, we're linking a C++
5643   // program, and we resize to get more space to minimize rehashing.
5644   if (this->signatures_.size() > 4
5645       && !this->resized_signatures_)
5646     {
5647       reserve_unordered_map(&this->signatures_,
5648 			    this->number_of_input_files_ * 64);
5649       this->resized_signatures_ = true;
5650     }
5651 
5652   Kept_section candidate;
5653   std::pair<Signatures::iterator, bool> ins =
5654     this->signatures_.insert(std::make_pair(name, candidate));
5655 
5656   if (kept_section != NULL)
5657     *kept_section = &ins.first->second;
5658   if (ins.second)
5659     {
5660       // This is the first time we've seen this signature.
5661       ins.first->second.set_object(object);
5662       ins.first->second.set_shndx(shndx);
5663       if (is_comdat)
5664 	ins.first->second.set_is_comdat();
5665       if (is_group_name)
5666 	ins.first->second.set_is_group_name();
5667       return true;
5668     }
5669 
5670   // We have already seen this signature.
5671 
5672   if (ins.first->second.is_group_name())
5673     {
5674       // We've already seen a real section group with this signature.
5675       // If the kept group is from a plugin object, and we're in the
5676       // replacement phase, accept the new one as a replacement.
5677       if (ins.first->second.object() == NULL
5678 	  && parameters->options().plugins()->in_replacement_phase())
5679 	{
5680 	  ins.first->second.set_object(object);
5681 	  ins.first->second.set_shndx(shndx);
5682 	  return true;
5683 	}
5684       return false;
5685     }
5686   else if (is_group_name)
5687     {
5688       // This is a real section group, and we've already seen a
5689       // linkonce section with this signature.  Record that we've seen
5690       // a section group, and don't include this section group.
5691       ins.first->second.set_is_group_name();
5692       return false;
5693     }
5694   else
5695     {
5696       // We've already seen a linkonce section and this is a linkonce
5697       // section.  These don't block each other--this may be the same
5698       // symbol name with different section types.
5699       return true;
5700     }
5701 }
5702 
5703 // Store the allocated sections into the section list.
5704 
5705 void
get_allocated_sections(Section_list * section_list) const5706 Layout::get_allocated_sections(Section_list* section_list) const
5707 {
5708   for (Section_list::const_iterator p = this->section_list_.begin();
5709        p != this->section_list_.end();
5710        ++p)
5711     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5712       section_list->push_back(*p);
5713 }
5714 
5715 // Store the executable sections into the section list.
5716 
5717 void
get_executable_sections(Section_list * section_list) const5718 Layout::get_executable_sections(Section_list* section_list) const
5719 {
5720   for (Section_list::const_iterator p = this->section_list_.begin();
5721        p != this->section_list_.end();
5722        ++p)
5723     if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5724 	== (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5725       section_list->push_back(*p);
5726 }
5727 
5728 // Create an output segment.
5729 
5730 Output_segment*
make_output_segment(elfcpp::Elf_Word type,elfcpp::Elf_Word flags)5731 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5732 {
5733   gold_assert(!parameters->options().relocatable());
5734   Output_segment* oseg = new Output_segment(type, flags);
5735   this->segment_list_.push_back(oseg);
5736 
5737   if (type == elfcpp::PT_TLS)
5738     this->tls_segment_ = oseg;
5739   else if (type == elfcpp::PT_GNU_RELRO)
5740     this->relro_segment_ = oseg;
5741   else if (type == elfcpp::PT_INTERP)
5742     this->interp_segment_ = oseg;
5743 
5744   return oseg;
5745 }
5746 
5747 // Return the file offset of the normal symbol table.
5748 
5749 off_t
symtab_section_offset() const5750 Layout::symtab_section_offset() const
5751 {
5752   if (this->symtab_section_ != NULL)
5753     return this->symtab_section_->offset();
5754   return 0;
5755 }
5756 
5757 // Return the section index of the normal symbol table.  It may have
5758 // been stripped by the -s/--strip-all option.
5759 
5760 unsigned int
symtab_section_shndx() const5761 Layout::symtab_section_shndx() const
5762 {
5763   if (this->symtab_section_ != NULL)
5764     return this->symtab_section_->out_shndx();
5765   return 0;
5766 }
5767 
5768 // Write out the Output_sections.  Most won't have anything to write,
5769 // since most of the data will come from input sections which are
5770 // handled elsewhere.  But some Output_sections do have Output_data.
5771 
5772 void
write_output_sections(Output_file * of) const5773 Layout::write_output_sections(Output_file* of) const
5774 {
5775   for (Section_list::const_iterator p = this->section_list_.begin();
5776        p != this->section_list_.end();
5777        ++p)
5778     {
5779       if (!(*p)->after_input_sections())
5780 	(*p)->write(of);
5781     }
5782 }
5783 
5784 // Write out data not associated with a section or the symbol table.
5785 
5786 void
write_data(const Symbol_table * symtab,Output_file * of) const5787 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5788 {
5789   if (!parameters->options().strip_all())
5790     {
5791       const Output_section* symtab_section = this->symtab_section_;
5792       for (Section_list::const_iterator p = this->section_list_.begin();
5793 	   p != this->section_list_.end();
5794 	   ++p)
5795 	{
5796 	  if ((*p)->needs_symtab_index())
5797 	    {
5798 	      gold_assert(symtab_section != NULL);
5799 	      unsigned int index = (*p)->symtab_index();
5800 	      gold_assert(index > 0 && index != -1U);
5801 	      off_t off = (symtab_section->offset()
5802 			   + index * symtab_section->entsize());
5803 	      symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5804 	    }
5805 	}
5806     }
5807 
5808   const Output_section* dynsym_section = this->dynsym_section_;
5809   for (Section_list::const_iterator p = this->section_list_.begin();
5810        p != this->section_list_.end();
5811        ++p)
5812     {
5813       if ((*p)->needs_dynsym_index())
5814 	{
5815 	  gold_assert(dynsym_section != NULL);
5816 	  unsigned int index = (*p)->dynsym_index();
5817 	  gold_assert(index > 0 && index != -1U);
5818 	  off_t off = (dynsym_section->offset()
5819 		       + index * dynsym_section->entsize());
5820 	  symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5821 	}
5822     }
5823 
5824   // Write out the Output_data which are not in an Output_section.
5825   for (Data_list::const_iterator p = this->special_output_list_.begin();
5826        p != this->special_output_list_.end();
5827        ++p)
5828     (*p)->write(of);
5829 
5830   // Write out the Output_data which are not in an Output_section
5831   // and are regenerated in each iteration of relaxation.
5832   for (Data_list::const_iterator p = this->relax_output_list_.begin();
5833        p != this->relax_output_list_.end();
5834        ++p)
5835     (*p)->write(of);
5836 }
5837 
5838 // Write out the Output_sections which can only be written after the
5839 // input sections are complete.
5840 
5841 void
write_sections_after_input_sections(Output_file * of)5842 Layout::write_sections_after_input_sections(Output_file* of)
5843 {
5844   // Determine the final section offsets, and thus the final output
5845   // file size.  Note we finalize the .shstrab last, to allow the
5846   // after_input_section sections to modify their section-names before
5847   // writing.
5848   if (this->any_postprocessing_sections_)
5849     {
5850       off_t off = this->output_file_size_;
5851       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5852 
5853       // Now that we've finalized the names, we can finalize the shstrab.
5854       off =
5855 	this->set_section_offsets(off,
5856 				  STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5857 
5858       if (off > this->output_file_size_)
5859 	{
5860 	  of->resize(off);
5861 	  this->output_file_size_ = off;
5862 	}
5863     }
5864 
5865   for (Section_list::const_iterator p = this->section_list_.begin();
5866        p != this->section_list_.end();
5867        ++p)
5868     {
5869       if ((*p)->after_input_sections())
5870 	(*p)->write(of);
5871     }
5872 
5873   this->section_headers_->write(of);
5874 }
5875 
5876 // If a tree-style build ID was requested, the parallel part of that computation
5877 // is already done, and the final hash-of-hashes is computed here.  For other
5878 // types of build IDs, all the work is done here.
5879 
5880 void
write_build_id(Output_file * of,unsigned char * array_of_hashes,size_t size_of_hashes) const5881 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5882 		       size_t size_of_hashes) const
5883 {
5884   if (this->build_id_note_ == NULL)
5885     return;
5886 
5887   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5888 					  this->build_id_note_->data_size());
5889 
5890   if (array_of_hashes == NULL)
5891     {
5892       const size_t output_file_size = this->output_file_size();
5893       const unsigned char* iv = of->get_input_view(0, output_file_size);
5894       const char* style = parameters->options().build_id();
5895 
5896       // If we get here with style == "tree" then the output must be
5897       // too small for chunking, and we use SHA-1 in that case.
5898       if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5899 	sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5900       else if (strcmp(style, "md5") == 0)
5901 	md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5902       else
5903 	gold_unreachable();
5904 
5905       of->free_input_view(0, output_file_size, iv);
5906     }
5907   else
5908     {
5909       // Non-overlapping substrings of the output file have been hashed.
5910       // Compute SHA-1 hash of the hashes.
5911       sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5912 		  size_of_hashes, ov);
5913       delete[] array_of_hashes;
5914     }
5915 
5916   of->write_output_view(this->build_id_note_->offset(),
5917 			this->build_id_note_->data_size(),
5918 			ov);
5919 }
5920 
5921 // Write out a binary file.  This is called after the link is
5922 // complete.  IN is the temporary output file we used to generate the
5923 // ELF code.  We simply walk through the segments, read them from
5924 // their file offset in IN, and write them to their load address in
5925 // the output file.  FIXME: with a bit more work, we could support
5926 // S-records and/or Intel hex format here.
5927 
5928 void
write_binary(Output_file * in) const5929 Layout::write_binary(Output_file* in) const
5930 {
5931   gold_assert(parameters->options().oformat_enum()
5932 	      == General_options::OBJECT_FORMAT_BINARY);
5933 
5934   // Get the size of the binary file.
5935   uint64_t max_load_address = 0;
5936   for (Segment_list::const_iterator p = this->segment_list_.begin();
5937        p != this->segment_list_.end();
5938        ++p)
5939     {
5940       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5941 	{
5942 	  uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5943 	  if (max_paddr > max_load_address)
5944 	    max_load_address = max_paddr;
5945 	}
5946     }
5947 
5948   Output_file out(parameters->options().output_file_name());
5949   out.open(max_load_address);
5950 
5951   for (Segment_list::const_iterator p = this->segment_list_.begin();
5952        p != this->segment_list_.end();
5953        ++p)
5954     {
5955       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5956 	{
5957 	  const unsigned char* vin = in->get_input_view((*p)->offset(),
5958 							(*p)->filesz());
5959 	  unsigned char* vout = out.get_output_view((*p)->paddr(),
5960 						    (*p)->filesz());
5961 	  memcpy(vout, vin, (*p)->filesz());
5962 	  out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5963 	  in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5964 	}
5965     }
5966 
5967   out.close();
5968 }
5969 
5970 // Print the output sections to the map file.
5971 
5972 void
print_to_mapfile(Mapfile * mapfile) const5973 Layout::print_to_mapfile(Mapfile* mapfile) const
5974 {
5975   for (Segment_list::const_iterator p = this->segment_list_.begin();
5976        p != this->segment_list_.end();
5977        ++p)
5978     (*p)->print_sections_to_mapfile(mapfile);
5979   for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5980        p != this->unattached_section_list_.end();
5981        ++p)
5982     (*p)->print_to_mapfile(mapfile);
5983 }
5984 
5985 // Print statistical information to stderr.  This is used for --stats.
5986 
5987 void
print_stats() const5988 Layout::print_stats() const
5989 {
5990   this->namepool_.print_stats("section name pool");
5991   this->sympool_.print_stats("output symbol name pool");
5992   this->dynpool_.print_stats("dynamic name pool");
5993 
5994   for (Section_list::const_iterator p = this->section_list_.begin();
5995        p != this->section_list_.end();
5996        ++p)
5997     (*p)->print_merge_stats();
5998 }
5999 
6000 // Write_sections_task methods.
6001 
6002 // We can always run this task.
6003 
6004 Task_token*
is_runnable()6005 Write_sections_task::is_runnable()
6006 {
6007   return NULL;
6008 }
6009 
6010 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
6011 // when finished.
6012 
6013 void
locks(Task_locker * tl)6014 Write_sections_task::locks(Task_locker* tl)
6015 {
6016   tl->add(this, this->output_sections_blocker_);
6017   if (this->input_sections_blocker_ != NULL)
6018     tl->add(this, this->input_sections_blocker_);
6019   tl->add(this, this->final_blocker_);
6020 }
6021 
6022 // Run the task--write out the data.
6023 
6024 void
run(Workqueue *)6025 Write_sections_task::run(Workqueue*)
6026 {
6027   this->layout_->write_output_sections(this->of_);
6028 }
6029 
6030 // Write_data_task methods.
6031 
6032 // We can always run this task.
6033 
6034 Task_token*
is_runnable()6035 Write_data_task::is_runnable()
6036 {
6037   return NULL;
6038 }
6039 
6040 // We need to unlock FINAL_BLOCKER when finished.
6041 
6042 void
locks(Task_locker * tl)6043 Write_data_task::locks(Task_locker* tl)
6044 {
6045   tl->add(this, this->final_blocker_);
6046 }
6047 
6048 // Run the task--write out the data.
6049 
6050 void
run(Workqueue *)6051 Write_data_task::run(Workqueue*)
6052 {
6053   this->layout_->write_data(this->symtab_, this->of_);
6054 }
6055 
6056 // Write_symbols_task methods.
6057 
6058 // We can always run this task.
6059 
6060 Task_token*
is_runnable()6061 Write_symbols_task::is_runnable()
6062 {
6063   return NULL;
6064 }
6065 
6066 // We need to unlock FINAL_BLOCKER when finished.
6067 
6068 void
locks(Task_locker * tl)6069 Write_symbols_task::locks(Task_locker* tl)
6070 {
6071   tl->add(this, this->final_blocker_);
6072 }
6073 
6074 // Run the task--write out the symbols.
6075 
6076 void
run(Workqueue *)6077 Write_symbols_task::run(Workqueue*)
6078 {
6079   this->symtab_->write_globals(this->sympool_, this->dynpool_,
6080 			       this->layout_->symtab_xindex(),
6081 			       this->layout_->dynsym_xindex(), this->of_);
6082 }
6083 
6084 // Write_after_input_sections_task methods.
6085 
6086 // We can only run this task after the input sections have completed.
6087 
6088 Task_token*
is_runnable()6089 Write_after_input_sections_task::is_runnable()
6090 {
6091   if (this->input_sections_blocker_->is_blocked())
6092     return this->input_sections_blocker_;
6093   return NULL;
6094 }
6095 
6096 // We need to unlock FINAL_BLOCKER when finished.
6097 
6098 void
locks(Task_locker * tl)6099 Write_after_input_sections_task::locks(Task_locker* tl)
6100 {
6101   tl->add(this, this->final_blocker_);
6102 }
6103 
6104 // Run the task.
6105 
6106 void
run(Workqueue *)6107 Write_after_input_sections_task::run(Workqueue*)
6108 {
6109   this->layout_->write_sections_after_input_sections(this->of_);
6110 }
6111 
6112 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
6113 // or as a "tree" where each chunk of the string is hashed and then those
6114 // hashes are put into a (much smaller) string which is hashed with sha1.
6115 // We compute a checksum over the entire file because that is simplest.
6116 
6117 void
run(Workqueue * workqueue,const Task *)6118 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
6119 {
6120   Task_token* post_hash_tasks_blocker = new Task_token(true);
6121   const Layout* layout = this->layout_;
6122   Output_file* of = this->of_;
6123   const size_t filesize = (layout->output_file_size() <= 0 ? 0
6124 			   : static_cast<size_t>(layout->output_file_size()));
6125   unsigned char* array_of_hashes = NULL;
6126   size_t size_of_hashes = 0;
6127 
6128   if (strcmp(this->options_->build_id(), "tree") == 0
6129       && this->options_->build_id_chunk_size_for_treehash() > 0
6130       && filesize > 0
6131       && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
6132     {
6133       static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
6134       const size_t chunk_size =
6135 	  this->options_->build_id_chunk_size_for_treehash();
6136       const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
6137       post_hash_tasks_blocker->add_blockers(num_hashes);
6138       size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
6139       array_of_hashes = new unsigned char[size_of_hashes];
6140       unsigned char *dst = array_of_hashes;
6141       for (size_t i = 0, src_offset = 0; i < num_hashes;
6142 	   i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
6143 	{
6144 	  size_t size = std::min(chunk_size, filesize - src_offset);
6145 	  workqueue->queue(new Hash_task(of,
6146 					 src_offset,
6147 					 size,
6148 					 dst,
6149 					 post_hash_tasks_blocker));
6150 	}
6151     }
6152 
6153   // Queue the final task to write the build id and close the output file.
6154   workqueue->queue(new Task_function(new Close_task_runner(this->options_,
6155 							   layout,
6156 							   of,
6157 							   array_of_hashes,
6158 							   size_of_hashes),
6159 				     post_hash_tasks_blocker,
6160 				     "Task_function Close_task_runner"));
6161 }
6162 
6163 // Close_task_runner methods.
6164 
6165 // Finish up the build ID computation, if necessary, and write a binary file,
6166 // if necessary.  Then close the output file.
6167 
6168 void
run(Workqueue *,const Task *)6169 Close_task_runner::run(Workqueue*, const Task*)
6170 {
6171   // At this point the multi-threaded part of the build ID computation,
6172   // if any, is done.  See Build_id_task_runner.
6173   this->layout_->write_build_id(this->of_, this->array_of_hashes_,
6174 				this->size_of_hashes_);
6175 
6176   // If we've been asked to create a binary file, we do so here.
6177   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
6178     this->layout_->write_binary(this->of_);
6179 
6180   if (this->options_->dependency_file())
6181     File_read::write_dependency_file(this->options_->dependency_file(),
6182 				     this->options_->output_file_name());
6183 
6184   this->of_->close();
6185 }
6186 
6187 // Instantiate the templates we need.  We could use the configure
6188 // script to restrict this to only the ones for implemented targets.
6189 
6190 #ifdef HAVE_TARGET_32_LITTLE
6191 template
6192 Output_section*
6193 Layout::init_fixed_output_section<32, false>(
6194     const char* name,
6195     elfcpp::Shdr<32, false>& shdr);
6196 #endif
6197 
6198 #ifdef HAVE_TARGET_32_BIG
6199 template
6200 Output_section*
6201 Layout::init_fixed_output_section<32, true>(
6202     const char* name,
6203     elfcpp::Shdr<32, true>& shdr);
6204 #endif
6205 
6206 #ifdef HAVE_TARGET_64_LITTLE
6207 template
6208 Output_section*
6209 Layout::init_fixed_output_section<64, false>(
6210     const char* name,
6211     elfcpp::Shdr<64, false>& shdr);
6212 #endif
6213 
6214 #ifdef HAVE_TARGET_64_BIG
6215 template
6216 Output_section*
6217 Layout::init_fixed_output_section<64, true>(
6218     const char* name,
6219     elfcpp::Shdr<64, true>& shdr);
6220 #endif
6221 
6222 #ifdef HAVE_TARGET_32_LITTLE
6223 template
6224 Output_section*
6225 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
6226 			  unsigned int shndx,
6227 			  const char* name,
6228 			  const elfcpp::Shdr<32, false>& shdr,
6229 			  unsigned int, unsigned int, unsigned int, off_t*);
6230 #endif
6231 
6232 #ifdef HAVE_TARGET_32_BIG
6233 template
6234 Output_section*
6235 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
6236 			 unsigned int shndx,
6237 			 const char* name,
6238 			 const elfcpp::Shdr<32, true>& shdr,
6239 			 unsigned int, unsigned int, unsigned int, off_t*);
6240 #endif
6241 
6242 #ifdef HAVE_TARGET_64_LITTLE
6243 template
6244 Output_section*
6245 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
6246 			  unsigned int shndx,
6247 			  const char* name,
6248 			  const elfcpp::Shdr<64, false>& shdr,
6249 			  unsigned int, unsigned int, unsigned int, off_t*);
6250 #endif
6251 
6252 #ifdef HAVE_TARGET_64_BIG
6253 template
6254 Output_section*
6255 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
6256 			 unsigned int shndx,
6257 			 const char* name,
6258 			 const elfcpp::Shdr<64, true>& shdr,
6259 			 unsigned int, unsigned int, unsigned int, off_t*);
6260 #endif
6261 
6262 #ifdef HAVE_TARGET_32_LITTLE
6263 template
6264 Output_section*
6265 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
6266 				unsigned int reloc_shndx,
6267 				const elfcpp::Shdr<32, false>& shdr,
6268 				Output_section* data_section,
6269 				Relocatable_relocs* rr);
6270 #endif
6271 
6272 #ifdef HAVE_TARGET_32_BIG
6273 template
6274 Output_section*
6275 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
6276 			       unsigned int reloc_shndx,
6277 			       const elfcpp::Shdr<32, true>& shdr,
6278 			       Output_section* data_section,
6279 			       Relocatable_relocs* rr);
6280 #endif
6281 
6282 #ifdef HAVE_TARGET_64_LITTLE
6283 template
6284 Output_section*
6285 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
6286 				unsigned int reloc_shndx,
6287 				const elfcpp::Shdr<64, false>& shdr,
6288 				Output_section* data_section,
6289 				Relocatable_relocs* rr);
6290 #endif
6291 
6292 #ifdef HAVE_TARGET_64_BIG
6293 template
6294 Output_section*
6295 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
6296 			       unsigned int reloc_shndx,
6297 			       const elfcpp::Shdr<64, true>& shdr,
6298 			       Output_section* data_section,
6299 			       Relocatable_relocs* rr);
6300 #endif
6301 
6302 #ifdef HAVE_TARGET_32_LITTLE
6303 template
6304 void
6305 Layout::layout_group<32, false>(Symbol_table* symtab,
6306 				Sized_relobj_file<32, false>* object,
6307 				unsigned int,
6308 				const char* group_section_name,
6309 				const char* signature,
6310 				const elfcpp::Shdr<32, false>& shdr,
6311 				elfcpp::Elf_Word flags,
6312 				std::vector<unsigned int>* shndxes);
6313 #endif
6314 
6315 #ifdef HAVE_TARGET_32_BIG
6316 template
6317 void
6318 Layout::layout_group<32, true>(Symbol_table* symtab,
6319 			       Sized_relobj_file<32, true>* object,
6320 			       unsigned int,
6321 			       const char* group_section_name,
6322 			       const char* signature,
6323 			       const elfcpp::Shdr<32, true>& shdr,
6324 			       elfcpp::Elf_Word flags,
6325 			       std::vector<unsigned int>* shndxes);
6326 #endif
6327 
6328 #ifdef HAVE_TARGET_64_LITTLE
6329 template
6330 void
6331 Layout::layout_group<64, false>(Symbol_table* symtab,
6332 				Sized_relobj_file<64, false>* object,
6333 				unsigned int,
6334 				const char* group_section_name,
6335 				const char* signature,
6336 				const elfcpp::Shdr<64, false>& shdr,
6337 				elfcpp::Elf_Word flags,
6338 				std::vector<unsigned int>* shndxes);
6339 #endif
6340 
6341 #ifdef HAVE_TARGET_64_BIG
6342 template
6343 void
6344 Layout::layout_group<64, true>(Symbol_table* symtab,
6345 			       Sized_relobj_file<64, true>* object,
6346 			       unsigned int,
6347 			       const char* group_section_name,
6348 			       const char* signature,
6349 			       const elfcpp::Shdr<64, true>& shdr,
6350 			       elfcpp::Elf_Word flags,
6351 			       std::vector<unsigned int>* shndxes);
6352 #endif
6353 
6354 #ifdef HAVE_TARGET_32_LITTLE
6355 template
6356 Output_section*
6357 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6358 				   const unsigned char* symbols,
6359 				   off_t symbols_size,
6360 				   const unsigned char* symbol_names,
6361 				   off_t symbol_names_size,
6362 				   unsigned int shndx,
6363 				   const elfcpp::Shdr<32, false>& shdr,
6364 				   unsigned int reloc_shndx,
6365 				   unsigned int reloc_type,
6366 				   off_t* off);
6367 #endif
6368 
6369 #ifdef HAVE_TARGET_32_BIG
6370 template
6371 Output_section*
6372 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6373 				  const unsigned char* symbols,
6374 				  off_t symbols_size,
6375 				  const unsigned char* symbol_names,
6376 				  off_t symbol_names_size,
6377 				  unsigned int shndx,
6378 				  const elfcpp::Shdr<32, true>& shdr,
6379 				  unsigned int reloc_shndx,
6380 				  unsigned int reloc_type,
6381 				  off_t* off);
6382 #endif
6383 
6384 #ifdef HAVE_TARGET_64_LITTLE
6385 template
6386 Output_section*
6387 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6388 				   const unsigned char* symbols,
6389 				   off_t symbols_size,
6390 				   const unsigned char* symbol_names,
6391 				   off_t symbol_names_size,
6392 				   unsigned int shndx,
6393 				   const elfcpp::Shdr<64, false>& shdr,
6394 				   unsigned int reloc_shndx,
6395 				   unsigned int reloc_type,
6396 				   off_t* off);
6397 #endif
6398 
6399 #ifdef HAVE_TARGET_64_BIG
6400 template
6401 Output_section*
6402 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6403 				  const unsigned char* symbols,
6404 				  off_t symbols_size,
6405 				  const unsigned char* symbol_names,
6406 				  off_t symbol_names_size,
6407 				  unsigned int shndx,
6408 				  const elfcpp::Shdr<64, true>& shdr,
6409 				  unsigned int reloc_shndx,
6410 				  unsigned int reloc_type,
6411 				  off_t* off);
6412 #endif
6413 
6414 #ifdef HAVE_TARGET_32_LITTLE
6415 template
6416 void
6417 Layout::add_to_gdb_index(bool is_type_unit,
6418 			 Sized_relobj<32, false>* object,
6419 			 const unsigned char* symbols,
6420 			 off_t symbols_size,
6421 			 unsigned int shndx,
6422 			 unsigned int reloc_shndx,
6423 			 unsigned int reloc_type);
6424 #endif
6425 
6426 #ifdef HAVE_TARGET_32_BIG
6427 template
6428 void
6429 Layout::add_to_gdb_index(bool is_type_unit,
6430 			 Sized_relobj<32, true>* object,
6431 			 const unsigned char* symbols,
6432 			 off_t symbols_size,
6433 			 unsigned int shndx,
6434 			 unsigned int reloc_shndx,
6435 			 unsigned int reloc_type);
6436 #endif
6437 
6438 #ifdef HAVE_TARGET_64_LITTLE
6439 template
6440 void
6441 Layout::add_to_gdb_index(bool is_type_unit,
6442 			 Sized_relobj<64, false>* object,
6443 			 const unsigned char* symbols,
6444 			 off_t symbols_size,
6445 			 unsigned int shndx,
6446 			 unsigned int reloc_shndx,
6447 			 unsigned int reloc_type);
6448 #endif
6449 
6450 #ifdef HAVE_TARGET_64_BIG
6451 template
6452 void
6453 Layout::add_to_gdb_index(bool is_type_unit,
6454 			 Sized_relobj<64, true>* object,
6455 			 const unsigned char* symbols,
6456 			 off_t symbols_size,
6457 			 unsigned int shndx,
6458 			 unsigned int reloc_shndx,
6459 			 unsigned int reloc_type);
6460 #endif
6461 
6462 } // End namespace gold.
6463