1 // Copyright Paul Bristow 2006, 2007.
2 // Copyright John Maddock 2006, 2007.
3
4 // Use, modification and distribution are subject to the
5 // Boost Software License, Version 1.0.
6 // (See accompanying file LICENSE_1_0.txt
7 // or copy at http://www.boost.org/LICENSE_1_0.txt)
8
9 // test_triangular.cpp
10
11 #include <pch.hpp>
12
13 #ifdef _MSC_VER
14 # pragma warning(disable: 4127) // conditional expression is constant.
15 # pragma warning(disable: 4305) // truncation from 'long double' to 'float'
16 #endif
17
18 #include <boost/math/concepts/real_concept.hpp> // for real_concept
19 #define BOOST_TEST_MAIN
20 #include <boost/test/unit_test.hpp> // Boost.Test
21 #include <boost/test/tools/floating_point_comparison.hpp>
22
23 #include <boost/math/distributions/triangular.hpp>
24 using boost::math::triangular_distribution;
25 #include <boost/math/tools/test.hpp>
26 #include <boost/math/special_functions/fpclassify.hpp>
27 #include "test_out_of_range.hpp"
28
29 #include <iostream>
30 #include <iomanip>
31 using std::cout;
32 using std::endl;
33 using std::scientific;
34 using std::fixed;
35 using std::left;
36 using std::right;
37 using std::setw;
38 using std::setprecision;
39 using std::showpos;
40 #include <limits>
41 using std::numeric_limits;
42
43 template <class RealType>
check_triangular(RealType lower,RealType mode,RealType upper,RealType x,RealType p,RealType q,RealType tol)44 void check_triangular(RealType lower, RealType mode, RealType upper, RealType x, RealType p, RealType q, RealType tol)
45 {
46 BOOST_CHECK_CLOSE_FRACTION(
47 ::boost::math::cdf(
48 triangular_distribution<RealType>(lower, mode, upper), // distribution.
49 x), // random variable.
50 p, // probability.
51 tol); // tolerance.
52 BOOST_CHECK_CLOSE_FRACTION(
53 ::boost::math::cdf(
54 complement(
55 triangular_distribution<RealType>(lower, mode, upper), // distribution.
56 x)), // random variable.
57 q, // probability complement.
58 tol); // tolerance.
59 BOOST_CHECK_CLOSE_FRACTION(
60 ::boost::math::quantile(
61 triangular_distribution<RealType>(lower,mode, upper), // distribution.
62 p), // probability.
63 x, // random variable.
64 tol); // tolerance.
65 BOOST_CHECK_CLOSE_FRACTION(
66 ::boost::math::quantile(
67 complement(
68 triangular_distribution<RealType>(lower, mode, upper), // distribution.
69 q)), // probability complement.
70 x, // random variable.
71 tol); // tolerance.
72 } // void check_triangular
73
74 template <class RealType>
test_spots(RealType)75 void test_spots(RealType)
76 {
77 // Basic sanity checks:
78 //
79 // Some test values were generated for the triangular distribution
80 // using the online calculator at
81 // http://espse.ed.psu.edu/edpsych/faculty/rhale/hale/507Mat/statlets/free/pdist.htm
82 //
83 // Tolerance is just over 5 epsilon expressed as a fraction:
84 RealType tolerance = boost::math::tools::epsilon<RealType>() * 5; // 5 eps as a fraction.
85 RealType tol5eps = boost::math::tools::epsilon<RealType>() * 5; // 5 eps as a fraction.
86
87 cout << "Tolerance for type " << typeid(RealType).name() << " is " << tolerance << "." << endl;
88
89 using namespace std; // for ADL of std::exp;
90
91 // Tests on construction
92 // Default should be 0, 0, 1
93 BOOST_CHECK_EQUAL(triangular_distribution<RealType>().lower(), -1);
94 BOOST_CHECK_EQUAL(triangular_distribution<RealType>().mode(), 0);
95 BOOST_CHECK_EQUAL(triangular_distribution<RealType>().upper(), 1);
96 BOOST_CHECK_EQUAL(support(triangular_distribution<RealType>()).first, triangular_distribution<RealType>().lower());
97 BOOST_CHECK_EQUAL(support(triangular_distribution<RealType>()).second, triangular_distribution<RealType>().upper());
98
99 if (std::numeric_limits<RealType>::has_quiet_NaN == true)
100 {
101 BOOST_MATH_CHECK_THROW( // duff parameter lower.
102 triangular_distribution<RealType>(static_cast<RealType>(std::numeric_limits<RealType>::quiet_NaN()), 0, 0),
103 std::domain_error);
104
105 BOOST_MATH_CHECK_THROW( // duff parameter mode.
106 triangular_distribution<RealType>(0, static_cast<RealType>(std::numeric_limits<RealType>::quiet_NaN()), 0),
107 std::domain_error);
108
109 BOOST_MATH_CHECK_THROW( // duff parameter upper.
110 triangular_distribution<RealType>(0, 0, static_cast<RealType>(std::numeric_limits<RealType>::quiet_NaN())),
111 std::domain_error);
112 } // quiet_NaN tests.
113
114 BOOST_MATH_CHECK_THROW( // duff parameters upper < lower.
115 triangular_distribution<RealType>(1, 0, -1),
116 std::domain_error);
117
118 BOOST_MATH_CHECK_THROW( // duff parameters upper == lower.
119 triangular_distribution<RealType>(0, 0, 0),
120 std::domain_error);
121 BOOST_MATH_CHECK_THROW( // duff parameters mode < lower.
122 triangular_distribution<RealType>(0, -1, 1),
123 std::domain_error);
124
125 BOOST_MATH_CHECK_THROW( // duff parameters mode > upper.
126 triangular_distribution<RealType>(0, 2, 1),
127 std::domain_error);
128
129 // Tests for PDF
130 // // triangular_distribution<RealType>() default is (0, 0, 1), mode == lower.
131 BOOST_CHECK_CLOSE_FRACTION( // x == lower == mode
132 pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(0)),
133 static_cast<RealType>(2),
134 tolerance);
135
136 BOOST_CHECK_CLOSE_FRACTION( // x == upper
137 pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(1)),
138 static_cast<RealType>(0),
139 tolerance);
140
141 BOOST_CHECK_CLOSE_FRACTION( // x > upper
142 pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(-1)),
143 static_cast<RealType>(0),
144 tolerance);
145 BOOST_CHECK_CLOSE_FRACTION( // x < lower
146 pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(2)),
147 static_cast<RealType>(0),
148 tolerance);
149
150 BOOST_CHECK_CLOSE_FRACTION( // x < lower
151 pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(2)),
152 static_cast<RealType>(0),
153 tolerance);
154
155 // triangular_distribution<RealType>() (0, 1, 1) mode == upper
156 BOOST_CHECK_CLOSE_FRACTION( // x == lower
157 pdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(0)),
158 static_cast<RealType>(0),
159 tolerance);
160
161 BOOST_CHECK_CLOSE_FRACTION( // x == upper
162 pdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(1)),
163 static_cast<RealType>(2),
164 tolerance);
165
166 BOOST_CHECK_CLOSE_FRACTION( // x > upper
167 pdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(-1)),
168 static_cast<RealType>(0),
169 tolerance);
170 BOOST_CHECK_CLOSE_FRACTION( // x < lower
171 pdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(2)),
172 static_cast<RealType>(0),
173 tolerance);
174
175 BOOST_CHECK_CLOSE_FRACTION( // x < middle so Wiki says special case pdf = 2 * x
176 pdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(0.25)),
177 static_cast<RealType>(0.5),
178 tolerance);
179
180 BOOST_CHECK_CLOSE_FRACTION( // x < middle so Wiki says special case cdf = x * x
181 cdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(0.25)),
182 static_cast<RealType>(0.25 * 0.25),
183 tolerance);
184
185 // triangular_distribution<RealType>() (0, 0.5, 1) mode == middle.
186 BOOST_CHECK_CLOSE_FRACTION( // x == lower
187 pdf(triangular_distribution<RealType>(0, 0.5, 1), static_cast<RealType>(0)),
188 static_cast<RealType>(0),
189 tolerance);
190
191 BOOST_CHECK_CLOSE_FRACTION( // x == upper
192 pdf(triangular_distribution<RealType>(0, 0.5, 1), static_cast<RealType>(1)),
193 static_cast<RealType>(0),
194 tolerance);
195
196 BOOST_CHECK_CLOSE_FRACTION( // x > upper
197 pdf(triangular_distribution<RealType>(0, 0.5, 1), static_cast<RealType>(-1)),
198 static_cast<RealType>(0),
199 tolerance);
200 BOOST_CHECK_CLOSE_FRACTION( // x < lower
201 pdf(triangular_distribution<RealType>(0, 0.5, 1), static_cast<RealType>(2)),
202 static_cast<RealType>(0),
203 tolerance);
204
205 BOOST_CHECK_CLOSE_FRACTION( // x == mode
206 pdf(triangular_distribution<RealType>(0, 0.5, 1), static_cast<RealType>(0.5)),
207 static_cast<RealType>(2),
208 tolerance);
209
210 BOOST_CHECK_CLOSE_FRACTION( // x == half mode
211 pdf(triangular_distribution<RealType>(0, 0.5, 1), static_cast<RealType>(0.25)),
212 static_cast<RealType>(1),
213 tolerance);
214 BOOST_CHECK_CLOSE_FRACTION( // x == half mode
215 pdf(triangular_distribution<RealType>(0, 0.5, 1), static_cast<RealType>(0.75)),
216 static_cast<RealType>(1),
217 tolerance);
218
219 if(std::numeric_limits<RealType>::has_infinity)
220 { // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
221 // Note that infinity is not implemented for real_concept, so these tests
222 // are only done for types, like built-in float, double.. that have infinity.
223 // Note that these assume that BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
224 // #define BOOST_MATH_OVERFLOW_ERROR_POLICY == throw_on_error would give a throw here.
225 // #define BOOST_MATH_DOMAIN_ERROR_POLICY == throw_on_error IS defined, so the throw path
226 // of error handling is tested below with BOOST_MATH_CHECK_THROW tests.
227
228 BOOST_MATH_CHECK_THROW( // x == infinity NOT OK.
229 pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(std::numeric_limits<RealType>::infinity())),
230 std::domain_error);
231
232 BOOST_MATH_CHECK_THROW( // x == minus infinity not OK too.
233 pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(-std::numeric_limits<RealType>::infinity())),
234 std::domain_error);
235 }
236 if(std::numeric_limits<RealType>::has_quiet_NaN)
237 { // BOOST_CHECK tests for NaN using std::numeric_limits<>::has_quiet_NaN() - should throw.
238 BOOST_MATH_CHECK_THROW(
239 pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(std::numeric_limits<RealType>::quiet_NaN())),
240 std::domain_error);
241 BOOST_MATH_CHECK_THROW(
242 pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(-std::numeric_limits<RealType>::quiet_NaN())),
243 std::domain_error);
244 } // test for x = NaN using std::numeric_limits<>::quiet_NaN()
245
246 // cdf
247 BOOST_CHECK_EQUAL( // x < lower
248 cdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(-1)),
249 static_cast<RealType>(0) );
250 BOOST_CHECK_CLOSE_FRACTION( // x == lower
251 cdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(0)),
252 static_cast<RealType>(0),
253 tolerance);
254 BOOST_CHECK_CLOSE_FRACTION( // x == upper
255 cdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(1)),
256 static_cast<RealType>(1),
257 tolerance);
258 BOOST_CHECK_EQUAL( // x > upper
259 cdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(2)),
260 static_cast<RealType>(1));
261
262 BOOST_CHECK_CLOSE_FRACTION( // x == mode
263 cdf(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(0)),
264 //static_cast<RealType>((mode - lower) / (upper - lower)),
265 static_cast<RealType>(0.5), // (0 --1) / (1 -- 1) = 0.5
266 tolerance);
267 BOOST_CHECK_CLOSE_FRACTION(
268 cdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(0.9L)),
269 static_cast<RealType>(0.81L),
270 tolerance);
271
272 BOOST_CHECK_CLOSE_FRACTION(
273 cdf(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(-1)),
274 static_cast<RealType>(0),
275 tolerance);
276 BOOST_CHECK_CLOSE_FRACTION(
277 cdf(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(-0.5L)),
278 static_cast<RealType>(0.125L),
279 tolerance);
280 BOOST_CHECK_CLOSE_FRACTION(
281 cdf(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(0)),
282 static_cast<RealType>(0.5),
283 tolerance);
284 BOOST_CHECK_CLOSE_FRACTION(
285 cdf(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(+0.5L)),
286 static_cast<RealType>(0.875L),
287 tolerance);
288 BOOST_CHECK_CLOSE_FRACTION(
289 cdf(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(1)),
290 static_cast<RealType>(1),
291 tolerance);
292
293 // cdf complement
294 BOOST_CHECK_EQUAL( // x < lower
295 cdf(complement(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(-1))),
296 static_cast<RealType>(1));
297 BOOST_CHECK_EQUAL( // x == lower
298 cdf(complement(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(0))),
299 static_cast<RealType>(1));
300
301 BOOST_CHECK_EQUAL( // x == mode
302 cdf(complement(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(0))),
303 static_cast<RealType>(0.5));
304
305 BOOST_CHECK_EQUAL( // x == mode
306 cdf(complement(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(0))),
307 static_cast<RealType>(1));
308 BOOST_CHECK_EQUAL( // x == mode
309 cdf(complement(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(1))),
310 static_cast<RealType>(0));
311
312 BOOST_CHECK_EQUAL( // x > upper
313 cdf(complement(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(2))),
314 static_cast<RealType>(0));
315 BOOST_CHECK_EQUAL( // x == upper
316 cdf(complement(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(1))),
317 static_cast<RealType>(0));
318
319 BOOST_CHECK_CLOSE_FRACTION( // x = -0.5
320 cdf(complement(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(-0.5))),
321 static_cast<RealType>(0.875L),
322 tolerance);
323
324 BOOST_CHECK_CLOSE_FRACTION( // x = +0.5
325 cdf(complement(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(0.5))),
326 static_cast<RealType>(0.125),
327 tolerance);
328
329 triangular_distribution<RealType> triang; // Using typedef == triangular_distribution<double> tristd;
330 triangular_distribution<RealType> tristd(0, 0.5, 1); // 'Standard' triangular distribution.
331
332 BOOST_CHECK_CLOSE_FRACTION( // median of Standard triangular is sqrt(mode/2) if c > 1/2 else 1 - sqrt((1-c)/2)
333 median(tristd),
334 static_cast<RealType>(0.5),
335 tolerance);
336 triangular_distribution<RealType> tri011(0, 1, 1); // Using default RealType double.
337 triangular_distribution<RealType> tri0q1(0, 0.25, 1); // mode is near bottom.
338 triangular_distribution<RealType> tri0h1(0, 0.5, 1); // Equilateral triangle - mode is the middle.
339 triangular_distribution<RealType> trim12(-1, -0.5, 2); // mode is negative.
340
341 BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.02L), static_cast<RealType>(0.0016L), tolerance);
342 BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.5L), static_cast<RealType>(0.66666666666666666666666666666666666666666666667L), tolerance);
343 BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.98L), static_cast<RealType>(0.9994666666666666666666666666666666666666666666L), tolerance);
344
345 // quantile
346 BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, static_cast<RealType>(0.0016L)), static_cast<RealType>(0.02L), tol5eps);
347 BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, static_cast<RealType>(0.66666666666666666666666666666666666666666666667L)), static_cast<RealType>(0.5), tol5eps);
348 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0q1, static_cast<RealType>(0.3333333333333333333333333333333333333333333333333L))), static_cast<RealType>(0.5), tol5eps);
349 BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, static_cast<RealType>(0.999466666666666666666666666666666666666666666666666L)), static_cast<RealType>(98) / 100, 10 * tol5eps);
350
351 BOOST_CHECK_CLOSE_FRACTION(pdf(trim12, 0), static_cast<RealType>(0.533333333333333333333333333333333333333333333L), tol5eps);
352 BOOST_CHECK_CLOSE_FRACTION(cdf(trim12, 0), static_cast<RealType>(0.466666666666666666666666666666666666666666667L), tol5eps);
353 BOOST_CHECK_CLOSE_FRACTION(cdf(complement(trim12, 0)), static_cast<RealType>(1 - 0.466666666666666666666666666666666666666666667L), tol5eps);
354
355 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0q1, static_cast<RealType>(1 - 0.999466666666666666666666666666666666666666666666L))), static_cast<RealType>(0.98L), 10 * tol5eps);
356 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, static_cast<RealType>(1))), static_cast<RealType>(0), tol5eps);
357 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, static_cast<RealType>(0.5))), static_cast<RealType>(0.5), tol5eps); // OK
358 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, static_cast<RealType>(1 - 0.02L))), static_cast<RealType>(0.1L), tol5eps);
359 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, static_cast<RealType>(1 - 0.98L))), static_cast<RealType>(0.9L), tol5eps);
360 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 0)), static_cast<RealType>(1), tol5eps);
361
362 RealType xs [] = {0, 0.01L, 0.02L, 0.05L, 0.1L, 0.2L, 0.3L, 0.4L, 0.5L, 0.6L, 0.7L, 0.8L, 0.9L, 0.95L, 0.98L, 0.99L, 1};
363
364 const triangular_distribution<RealType>& distr = triang;
365 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(distr, 1.)), static_cast<RealType>(-1), tol5eps);
366 const triangular_distribution<RealType>* distp = &triang;
367 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(*distp, 1.)), static_cast<RealType>(-1), tol5eps);
368
369 const triangular_distribution<RealType>* dists [] = {&tristd, &tri011, &tri0q1, &tri0h1, &trim12};
370 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(*dists[1], 1.)), static_cast<RealType>(0), tol5eps);
371
372 for (int i = 0; i < 5; i++)
373 {
374 const triangular_distribution<RealType>* const dist = dists[i];
375 // cout << "Distribution " << i << endl;
376 BOOST_CHECK_CLOSE_FRACTION(quantile(*dists[i], 0.5L), quantile(complement(*dist, 0.5L)), tol5eps);
377 BOOST_CHECK_CLOSE_FRACTION(quantile(*dists[i], 0.98L), quantile(complement(*dist, 1.L - 0.98L)),tol5eps);
378 BOOST_CHECK_CLOSE_FRACTION(quantile(*dists[i], 0.98L), quantile(complement(*dist, 1.L - 0.98L)),tol5eps);
379 } // for i
380
381 // quantile complement
382 for (int i = 0; i < 5; i++)
383 {
384 const triangular_distribution<RealType>* const dist = dists[i];
385 //cout << "Distribution " << i << endl;
386 BOOST_CHECK_EQUAL(quantile(complement(*dists[i], 1.)), quantile(*dists[i], 0.));
387 for (unsigned j = 0; j < sizeof(xs) /sizeof(RealType); j++)
388 {
389 RealType x = xs[j];
390 BOOST_CHECK_CLOSE_FRACTION(quantile(*dists[i], x), quantile(complement(*dist, 1 - x)), tol5eps);
391 } // for j
392 } // for i
393
394
395 check_triangular(
396 static_cast<RealType>(0), // lower
397 static_cast<RealType>(0.5), // mode
398 static_cast<RealType>(1), // upper
399 static_cast<RealType>(0.5), // x
400 static_cast<RealType>(0.5), // p
401 static_cast<RealType>(1 - 0.5), // q
402 tolerance);
403
404 // Some Not-standard triangular tests.
405 check_triangular(
406 static_cast<RealType>(-1), // lower
407 static_cast<RealType>(0), // mode
408 static_cast<RealType>(1), // upper
409 static_cast<RealType>(0), // x
410 static_cast<RealType>(0.5), // p
411 static_cast<RealType>(1 - 0.5), // q = 1 - p
412 tolerance);
413
414 check_triangular(
415 static_cast<RealType>(1), // lower
416 static_cast<RealType>(1), // mode
417 static_cast<RealType>(3), // upper
418 static_cast<RealType>(2), // x
419 static_cast<RealType>(0.75), // p
420 static_cast<RealType>(1 - 0.75), // q = 1 - p
421 tolerance);
422
423 check_triangular(
424 static_cast<RealType>(-1), // lower
425 static_cast<RealType>(1), // mode
426 static_cast<RealType>(2), // upper
427 static_cast<RealType>(1), // x
428 static_cast<RealType>(0.66666666666666666666666666666666666666666667L), // p
429 static_cast<RealType>(0.33333333333333333333333333333333333333333333L), // q = 1 - p
430 tolerance);
431 tolerance = (std::max)(
432 boost::math::tools::epsilon<RealType>(),
433 static_cast<RealType>(boost::math::tools::epsilon<double>())) * 10; // 10 eps as a fraction.
434 cout << "Tolerance (as fraction) for type " << typeid(RealType).name() << " is " << tolerance << "." << endl;
435
436 triangular_distribution<RealType> tridef; // (-1, 0, 1) // Default distribution.
437 RealType x = static_cast<RealType>(0.5);
438 using namespace std; // ADL of std names.
439 // mean:
440 BOOST_CHECK_CLOSE_FRACTION(
441 mean(tridef), static_cast<RealType>(0), tolerance);
442 // variance:
443 BOOST_CHECK_CLOSE_FRACTION(
444 variance(tridef), static_cast<RealType>(0.16666666666666666666666666666666666666666667L), tolerance);
445 // was 0.0833333333333333333333333333333333333333333L
446
447 // std deviation:
448 BOOST_CHECK_CLOSE_FRACTION(
449 standard_deviation(tridef), sqrt(variance(tridef)), tolerance);
450 // hazard:
451 BOOST_CHECK_CLOSE_FRACTION(
452 hazard(tridef, x), pdf(tridef, x) / cdf(complement(tridef, x)), tolerance);
453 // cumulative hazard:
454 BOOST_CHECK_CLOSE_FRACTION(
455 chf(tridef, x), -log(cdf(complement(tridef, x))), tolerance);
456 // coefficient_of_variation:
457 if (mean(tridef) != 0)
458 {
459 BOOST_CHECK_CLOSE_FRACTION(
460 coefficient_of_variation(tridef), standard_deviation(tridef) / mean(tridef), tolerance);
461 }
462 // mode:
463 BOOST_CHECK_CLOSE_FRACTION(
464 mode(tridef), static_cast<RealType>(0), tolerance);
465 // skewness:
466 BOOST_CHECK_CLOSE_FRACTION(
467 median(tridef), static_cast<RealType>(0), tolerance);
468 // https://reference.wolfram.com/language/ref/Skewness.html skewness{-1, 0, +1} = 0
469 // skewness[triangulardistribution{-1, 0, +1}] does not compute a result.
470 // skewness[triangulardistribution{0, +1}] result == 0
471 // skewness[normaldistribution{0,1}] result == 0
472
473 BOOST_CHECK_EQUAL(
474 skewness(tridef), static_cast<RealType>(0));
475 // kurtosis:
476 BOOST_CHECK_CLOSE_FRACTION(
477 kurtosis_excess(tridef), kurtosis(tridef) - static_cast<RealType>(3L), tolerance);
478 // kurtosis excess = kurtosis - 3;
479 BOOST_CHECK_CLOSE_FRACTION(
480 kurtosis_excess(tridef), static_cast<RealType>(-0.6), tolerance); // Constant value of -3/5 for all distributions.
481
482 {
483 triangular_distribution<RealType> tri01(0, 1, 1); // Asymmetric 0, 1, 1 distribution.
484 RealType x = static_cast<RealType>(0.5);
485 using namespace std; // ADL of std names.
486 // mean:
487 BOOST_CHECK_CLOSE_FRACTION(
488 mean(tri01), static_cast<RealType>(0.66666666666666666666666666666666666666666666666667L), tolerance);
489 // variance: N[variance[triangulardistribution{0, 1}, 1], 50]
490 BOOST_CHECK_CLOSE_FRACTION(
491 variance(tri01), static_cast<RealType>(0.055555555555555555555555555555555555555555555555556L), tolerance);
492 // std deviation:
493 BOOST_CHECK_CLOSE_FRACTION(
494 standard_deviation(tri01), sqrt(variance(tri01)), tolerance);
495 // hazard:
496 BOOST_CHECK_CLOSE_FRACTION(
497 hazard(tri01, x), pdf(tri01, x) / cdf(complement(tri01, x)), tolerance);
498 // cumulative hazard:
499 BOOST_CHECK_CLOSE_FRACTION(
500 chf(tri01, x), -log(cdf(complement(tri01, x))), tolerance);
501 // coefficient_of_variation:
502 if (mean(tri01) != 0)
503 {
504 BOOST_CHECK_CLOSE_FRACTION(
505 coefficient_of_variation(tri01), standard_deviation(tri01) / mean(tri01), tolerance);
506 }
507 // mode:
508 BOOST_CHECK_CLOSE_FRACTION(
509 mode(tri01), static_cast<RealType>(1), tolerance);
510 // skewness:
511 BOOST_CHECK_CLOSE_FRACTION(
512 median(tri01), static_cast<RealType>(0.70710678118654752440084436210484903928483593768847L), tolerance);
513
514 // https://reference.wolfram.com/language/ref/Skewness.html
515 // N[skewness[triangulardistribution{0, 1}, 1], 50]
516 BOOST_CHECK_CLOSE_FRACTION(
517 skewness(tri01), static_cast<RealType>(-0.56568542494923801952067548968387923142786875015078L), tolerance);
518 // kurtosis:
519 BOOST_CHECK_CLOSE_FRACTION(
520 kurtosis_excess(tri01), kurtosis(tri01) - static_cast<RealType>(3L), tolerance);
521 // kurtosis excess = kurtosis - 3;
522 BOOST_CHECK_CLOSE_FRACTION(
523 kurtosis_excess(tri01), static_cast<RealType>(-0.6), tolerance); // Constant value of -3/5 for all distributions.
524 } // tri01 tests
525
526 if(std::numeric_limits<RealType>::has_infinity)
527 { // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
528 // Note that infinity is not implemented for real_concept, so these tests
529 // are only done for types, like built-in float, double.. that have infinity.
530 // Note that these assume that BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
531 // #define BOOST_MATH_OVERFLOW_ERROR_POLICY == throw_on_error would give a throw here.
532 // #define BOOST_MATH_DOMAIN_ERROR_POLICY == throw_on_error IS defined, so the throw path
533 // of error handling is tested below with BOOST_MATH_CHECK_THROW tests.
534
535 using boost::math::policies::policy;
536 using boost::math::policies::domain_error;
537 using boost::math::policies::ignore_error;
538
539 // Define a (bad?) policy to ignore domain errors ('bad' arguments):
540 typedef policy<domain_error<ignore_error> > inf_policy; // domain error returns infinity.
541 triangular_distribution<RealType, inf_policy> tridef_inf(-1, 0., 1);
542 // But can't use BOOST_CHECK_EQUAL(?, quiet_NaN)
543 using boost::math::isnan;
544 BOOST_CHECK((isnan)(pdf(tridef_inf, std::numeric_limits<RealType>::infinity())));
545 } // test for infinity using std::numeric_limits<>::infinity()
546 else
547 { // real_concept case, does has_infinfity == false, so can't check it throws.
548 // cout << std::numeric_limits<RealType>::infinity() << ' '
549 // << (boost::math::fpclassify)(std::numeric_limits<RealType>::infinity()) << endl;
550 // value of std::numeric_limits<RealType>::infinity() is zero, so FPclassify is zero,
551 // so (boost::math::isfinite)(std::numeric_limits<RealType>::infinity()) does not detect infinity.
552 // so these tests would never throw.
553 //BOOST_MATH_CHECK_THROW(pdf(tridef, std::numeric_limits<RealType>::infinity()), std::domain_error);
554 //BOOST_MATH_CHECK_THROW(pdf(tridef, std::numeric_limits<RealType>::quiet_NaN()), std::domain_error);
555 // BOOST_MATH_CHECK_THROW(pdf(tridef, boost::math::tools::max_value<RealType>() * 2), std::domain_error); // Doesn't throw.
556 BOOST_CHECK_EQUAL(pdf(tridef, boost::math::tools::max_value<RealType>()), 0);
557 }
558 // Special cases:
559 BOOST_CHECK(pdf(tridef, -1) == 0);
560 BOOST_CHECK(pdf(tridef, 1) == 0);
561 BOOST_CHECK(cdf(tridef, 0) == 0.5);
562 BOOST_CHECK(pdf(tridef, 1) == 0);
563 BOOST_CHECK(cdf(tridef, 1) == 1);
564 BOOST_CHECK(cdf(complement(tridef, -1)) == 1);
565 BOOST_CHECK(cdf(complement(tridef, 1)) == 0);
566 BOOST_CHECK(quantile(tridef, 1) == 1);
567 BOOST_CHECK(quantile(complement(tridef, 1)) == -1);
568
569 BOOST_CHECK_EQUAL(support(trim12).first, trim12.lower());
570 BOOST_CHECK_EQUAL(support(trim12).second, trim12.upper());
571
572 // Error checks:
573 if(std::numeric_limits<RealType>::has_quiet_NaN)
574 { // BOOST_CHECK tests for quiet_NaN (not for real_concept, for example - see notes above).
575 BOOST_MATH_CHECK_THROW(triangular_distribution<RealType>(0, std::numeric_limits<RealType>::quiet_NaN()), std::domain_error);
576 BOOST_MATH_CHECK_THROW(triangular_distribution<RealType>(0, -std::numeric_limits<RealType>::quiet_NaN()), std::domain_error);
577 }
578 BOOST_MATH_CHECK_THROW(triangular_distribution<RealType>(1, 0), std::domain_error); // lower > upper!
579
580 check_out_of_range<triangular_distribution<RealType> >(-1, 0, 1);
581 } // template <class RealType>void test_spots(RealType)
582
BOOST_AUTO_TEST_CASE(test_main)583 BOOST_AUTO_TEST_CASE( test_main )
584 {
585 // double toleps = std::numeric_limits<double>::epsilon(); // 5 eps as a fraction.
586 double tol5eps = std::numeric_limits<double>::epsilon() * 5; // 5 eps as a fraction.
587 // double tol50eps = std::numeric_limits<double>::epsilon() * 50; // 50 eps as a fraction.
588 double tol500eps = std::numeric_limits<double>::epsilon() * 500; // 500 eps as a fraction.
589
590 // Check that can construct triangular distribution using the two convenience methods:
591 using namespace boost::math;
592 triangular triang; // Using typedef
593 // == triangular_distribution<double> triang;
594
595 BOOST_CHECK_EQUAL(triang.lower(), -1); // Check default.
596 BOOST_CHECK_EQUAL(triang.mode(), 0);
597 BOOST_CHECK_EQUAL(triang.upper(), 1);
598
599 triangular tristd (0, 0.5, 1); // Using typedef
600
601 BOOST_CHECK_EQUAL(tristd.lower(), 0);
602 BOOST_CHECK_EQUAL(tristd.mode(), 0.5);
603 BOOST_CHECK_EQUAL(tristd.upper(), 1);
604
605 //cout << "X range from " << range(tristd).first << " to " << range(tristd).second << endl;
606 //cout << "Supported from "<< support(tristd).first << ' ' << support(tristd).second << endl;
607
608 BOOST_CHECK_EQUAL(support(tristd).first, tristd.lower());
609 BOOST_CHECK_EQUAL(support(tristd).second, tristd.upper());
610
611 triangular_distribution<> tri011(0, 1, 1); // Using default RealType double.
612 // mode is upper
613 BOOST_CHECK_EQUAL(tri011.lower(), 0); // Check defaults again.
614 BOOST_CHECK_EQUAL(tri011.mode(), 1); // Check defaults again.
615 BOOST_CHECK_EQUAL(tri011.upper(), 1);
616 BOOST_CHECK_EQUAL(mode(tri011), 1);
617
618 BOOST_CHECK_EQUAL(pdf(tri011, 0), 0);
619 BOOST_CHECK_EQUAL(pdf(tri011, 0.1), 0.2);
620 BOOST_CHECK_EQUAL(pdf(tri011, 0.5), 1);
621 BOOST_CHECK_EQUAL(pdf(tri011, 0.9), 1.8);
622 BOOST_CHECK_EQUAL(pdf(tri011, 1), 2);
623
624 BOOST_CHECK_EQUAL(cdf(tri011, 0), 0);
625 BOOST_CHECK_CLOSE_FRACTION(cdf(tri011, 0.1), 0.01, tol5eps);
626 BOOST_CHECK_EQUAL(cdf(tri011, 0.5), 0.25);
627 BOOST_CHECK_EQUAL(cdf(tri011, 0.9), 0.81);
628 BOOST_CHECK_EQUAL(cdf(tri011, 1), 1);
629 BOOST_CHECK_EQUAL(cdf(tri011, 9), 1);
630 BOOST_CHECK_EQUAL(mean(tri011), 0.666666666666666666666666666666666666666666666666667);
631 BOOST_CHECK_EQUAL(variance(tri011), 1./18.);
632
633 triangular tri0h1(0, 0.5, 1); // Equilateral triangle - mode is the middle.
634 BOOST_CHECK_EQUAL(tri0h1.lower(), 0);
635 BOOST_CHECK_EQUAL(tri0h1.mode(), 0.5);
636 BOOST_CHECK_EQUAL(tri0h1.upper(), 1);
637 BOOST_CHECK_EQUAL(mean(tri0h1), 0.5);
638 BOOST_CHECK_EQUAL(mode(tri0h1), 0.5);
639 BOOST_CHECK_EQUAL(pdf(tri0h1, -1), 0);
640 BOOST_CHECK_EQUAL(cdf(tri0h1, -1), 0);
641 BOOST_CHECK_EQUAL(pdf(tri0h1, 1), 0);
642 BOOST_CHECK_EQUAL(pdf(tri0h1, 999), 0);
643 BOOST_CHECK_EQUAL(cdf(tri0h1, 999), 1);
644 BOOST_CHECK_EQUAL(cdf(tri0h1, 1), 1);
645 BOOST_CHECK_CLOSE_FRACTION(cdf(tri0h1, 0.1), 0.02, tol5eps);
646 BOOST_CHECK_EQUAL(cdf(tri0h1, 0.5), 0.5);
647 BOOST_CHECK_CLOSE_FRACTION(cdf(tri0h1, 0.9), 0.98, tol5eps);
648
649 BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 0.), 0., tol5eps);
650 BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 0.02), 0.1, tol5eps);
651 BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 0.5), 0.5, tol5eps);
652 BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 0.98), 0.9, tol5eps);
653 BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 1.), 1., tol5eps);
654
655 triangular tri0q1(0, 0.25, 1); // mode is near bottom.
656 BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.02), 0.0016, tol5eps);
657 BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.5), 0.66666666666666666666666666666666666666666666667, tol5eps);
658 BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.98), 0.99946666666666661, tol5eps);
659
660 BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, 0.0016), 0.02, tol5eps);
661 BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, 0.66666666666666666666666666666666666666666666667), 0.5, tol5eps);
662 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0q1, 0.3333333333333333333333333333333333333333333333333)), 0.5, tol5eps);
663 BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, 0.99946666666666661), 0.98, 10 * tol5eps);
664
665 triangular trim12(-1, -0.5, 2); // mode is negative.
666 BOOST_CHECK_CLOSE_FRACTION(pdf(trim12, 0), 0.533333333333333333333333333333333333333333333, tol5eps);
667 BOOST_CHECK_CLOSE_FRACTION(cdf(trim12, 0), 0.466666666666666666666666666666666666666666667, tol5eps);
668 BOOST_CHECK_CLOSE_FRACTION(cdf(complement(trim12, 0)), 1 - 0.466666666666666666666666666666666666666666667, tol5eps);
669
670 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0q1, 1 - 0.99946666666666661)), 0.98, 10 * tol5eps);
671 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 1.)), 0., tol5eps);
672 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 0.5)), 0.5, tol5eps); // OK
673 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 1. - 0.02)), 0.1, tol5eps);
674 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 1. - 0.98)), 0.9, tol5eps);
675 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 0)), 1., tol5eps);
676
677 double xs [] = {0., 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99, 1.};
678
679 const triangular_distribution<double>& distr = tristd;
680 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(distr, 1.)), 0., tol5eps);
681 const triangular_distribution<double>* distp = &tristd;
682 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(*distp, 1.)), 0., tol5eps);
683
684 const triangular_distribution<double>* dists [] = {&tristd, &tri011, &tri0q1, &tri0h1, &trim12};
685 BOOST_CHECK_CLOSE_FRACTION(quantile(complement(*dists[1], 1.)), 0., tol5eps);
686
687 for (int i = 0; i < 5; i++)
688 {
689 const triangular_distribution<double>* const dist = dists[i];
690 cout << "Distribution " << i << endl;
691 BOOST_CHECK_EQUAL(quantile(complement(*dists[i], 1.)), quantile(*dists[i], 0.));
692 BOOST_CHECK_CLOSE_FRACTION(quantile(*dists[i], 0.5), quantile(complement(*dist, 0.5)), tol5eps); // OK
693 BOOST_CHECK_CLOSE_FRACTION(quantile(*dists[i], 0.98), quantile(complement(*dist, 1. - 0.98)),tol5eps);
694 // cout << setprecision(17) << median(*dist) << endl;
695 }
696
697 cout << showpos << setprecision(2) << endl;
698
699 //triangular_distribution<double>& dist = trim12;
700 for (unsigned i = 0; i < sizeof(xs) /sizeof(double); i++)
701 {
702 double x = xs[i] * (trim12.upper() - trim12.lower()) + trim12.lower();
703 double dx = cdf(trim12, x);
704 double cx = cdf(complement(trim12, x));
705 //cout << fixed << showpos << setprecision(3)
706 // << xs[i] << ", " << x << ", " << pdf(trim12, x) << ", " << dx << ", " << cx << ",, " ;
707
708 BOOST_CHECK_CLOSE_FRACTION(cx, 1 - dx, tol500eps); // cx == 1 - dx
709
710 // << setprecision(2) << scientific << cr - x << ", " // difference x - quan(cdf)
711 // << setprecision(3) << fixed
712 // << quantile(trim12, dx) << ", "
713 // << quantile(complement(trim12, 1 - dx)) << ", "
714 // << quantile(complement(trim12, cx)) << ", "
715 // << endl;
716 BOOST_CHECK_CLOSE_FRACTION(quantile(trim12, dx), quantile(complement(trim12, 1 - dx)), tol500eps);
717 }
718 cout << endl;
719 // Basic sanity-check spot values.
720 // (Parameter value, arbitrarily zero, only communicates the floating point type).
721 test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
722 test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
723 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
724 test_spots(0.0L); // Test long double.
725 #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x0582))
726 test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
727 #endif
728 #else
729 std::cout << "<note>The long double tests have been disabled on this platform "
730 "either because the long double overloads of the usual math functions are "
731 "not available at all, or because they are too inaccurate for these tests "
732 "to pass.</note>" << std::endl;
733 #endif
734
735
736 } // BOOST_AUTO_TEST_CASE( test_main )
737
738 /*
739
740 Output:
741
742 Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_triangular.exe"
743 Running 1 test case...
744 Distribution 0
745 Distribution 1
746 Distribution 2
747 Distribution 3
748 Distribution 4
749 Tolerance for type float is 5.96046e-007.
750 Tolerance for type double is 1.11022e-015.
751 Tolerance for type long double is 1.11022e-015.
752 Tolerance for type class boost::math::concepts::real_concept is 1.11022e-015.
753 *** No errors detected
754
755
756
757 */
758
759
760
761
762