1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans  https://bulletphysics.org
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #include "btTypedConstraint.h"
17 #include "BulletDynamics/Dynamics/btRigidBody.h"
18 #include "LinearMath/btSerializer.h"
19 
20 #define DEFAULT_DEBUGDRAW_SIZE btScalar(0.05f)
21 
btTypedConstraint(btTypedConstraintType type,btRigidBody & rbA)22 btTypedConstraint::btTypedConstraint(btTypedConstraintType type, btRigidBody& rbA)
23 	: btTypedObject(type),
24 	  m_userConstraintType(-1),
25 	  m_userConstraintPtr((void*)-1),
26 	  m_breakingImpulseThreshold(SIMD_INFINITY),
27 	  m_isEnabled(true),
28 	  m_needsFeedback(false),
29 	  m_overrideNumSolverIterations(-1),
30 	  m_rbA(rbA),
31 	  m_rbB(getFixedBody()),
32 	  m_appliedImpulse(btScalar(0.)),
33 	  m_dbgDrawSize(DEFAULT_DEBUGDRAW_SIZE),
34 	  m_jointFeedback(0)
35 {
36 }
37 
btTypedConstraint(btTypedConstraintType type,btRigidBody & rbA,btRigidBody & rbB)38 btTypedConstraint::btTypedConstraint(btTypedConstraintType type, btRigidBody& rbA, btRigidBody& rbB)
39 	: btTypedObject(type),
40 	  m_userConstraintType(-1),
41 	  m_userConstraintPtr((void*)-1),
42 	  m_breakingImpulseThreshold(SIMD_INFINITY),
43 	  m_isEnabled(true),
44 	  m_needsFeedback(false),
45 	  m_overrideNumSolverIterations(-1),
46 	  m_rbA(rbA),
47 	  m_rbB(rbB),
48 	  m_appliedImpulse(btScalar(0.)),
49 	  m_dbgDrawSize(DEFAULT_DEBUGDRAW_SIZE),
50 	  m_jointFeedback(0)
51 {
52 }
53 
getMotorFactor(btScalar pos,btScalar lowLim,btScalar uppLim,btScalar vel,btScalar timeFact)54 btScalar btTypedConstraint::getMotorFactor(btScalar pos, btScalar lowLim, btScalar uppLim, btScalar vel, btScalar timeFact)
55 {
56 	if (lowLim > uppLim)
57 	{
58 		return btScalar(1.0f);
59 	}
60 	else if (lowLim == uppLim)
61 	{
62 		return btScalar(0.0f);
63 	}
64 	btScalar lim_fact = btScalar(1.0f);
65 	btScalar delta_max = vel / timeFact;
66 	if (delta_max < btScalar(0.0f))
67 	{
68 		if ((pos >= lowLim) && (pos < (lowLim - delta_max)))
69 		{
70 			lim_fact = (lowLim - pos) / delta_max;
71 		}
72 		else if (pos < lowLim)
73 		{
74 			lim_fact = btScalar(0.0f);
75 		}
76 		else
77 		{
78 			lim_fact = btScalar(1.0f);
79 		}
80 	}
81 	else if (delta_max > btScalar(0.0f))
82 	{
83 		if ((pos <= uppLim) && (pos > (uppLim - delta_max)))
84 		{
85 			lim_fact = (uppLim - pos) / delta_max;
86 		}
87 		else if (pos > uppLim)
88 		{
89 			lim_fact = btScalar(0.0f);
90 		}
91 		else
92 		{
93 			lim_fact = btScalar(1.0f);
94 		}
95 	}
96 	else
97 	{
98 		lim_fact = btScalar(0.0f);
99 	}
100 	return lim_fact;
101 }
102 
103 ///fills the dataBuffer and returns the struct name (and 0 on failure)
serialize(void * dataBuffer,btSerializer * serializer) const104 const char* btTypedConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
105 {
106 	btTypedConstraintData2* tcd = (btTypedConstraintData2*)dataBuffer;
107 
108 	tcd->m_rbA = (btRigidBodyData*)serializer->getUniquePointer(&m_rbA);
109 	tcd->m_rbB = (btRigidBodyData*)serializer->getUniquePointer(&m_rbB);
110 	char* name = (char*)serializer->findNameForPointer(this);
111 	tcd->m_name = (char*)serializer->getUniquePointer(name);
112 	if (tcd->m_name)
113 	{
114 		serializer->serializeName(name);
115 	}
116 
117 	tcd->m_objectType = m_objectType;
118 	tcd->m_needsFeedback = m_needsFeedback;
119 	tcd->m_overrideNumSolverIterations = m_overrideNumSolverIterations;
120 	tcd->m_breakingImpulseThreshold = m_breakingImpulseThreshold;
121 	tcd->m_isEnabled = m_isEnabled ? 1 : 0;
122 
123 	tcd->m_userConstraintId = m_userConstraintId;
124 	tcd->m_userConstraintType = m_userConstraintType;
125 
126 	tcd->m_appliedImpulse = m_appliedImpulse;
127 	tcd->m_dbgDrawSize = m_dbgDrawSize;
128 
129 	tcd->m_disableCollisionsBetweenLinkedBodies = false;
130 
131 	int i;
132 	for (i = 0; i < m_rbA.getNumConstraintRefs(); i++)
133 		if (m_rbA.getConstraintRef(i) == this)
134 			tcd->m_disableCollisionsBetweenLinkedBodies = true;
135 	for (i = 0; i < m_rbB.getNumConstraintRefs(); i++)
136 		if (m_rbB.getConstraintRef(i) == this)
137 			tcd->m_disableCollisionsBetweenLinkedBodies = true;
138 
139 	return btTypedConstraintDataName;
140 }
141 
getFixedBody()142 btRigidBody& btTypedConstraint::getFixedBody()
143 {
144 	static btRigidBody s_fixed(0, 0, 0);
145 	s_fixed.setMassProps(btScalar(0.), btVector3(btScalar(0.), btScalar(0.), btScalar(0.)));
146 	return s_fixed;
147 }
148 
set(btScalar low,btScalar high,btScalar _softness,btScalar _biasFactor,btScalar _relaxationFactor)149 void btAngularLimit::set(btScalar low, btScalar high, btScalar _softness, btScalar _biasFactor, btScalar _relaxationFactor)
150 {
151 	m_halfRange = (high - low) / 2.0f;
152 	m_center = btNormalizeAngle(low + m_halfRange);
153 	m_softness = _softness;
154 	m_biasFactor = _biasFactor;
155 	m_relaxationFactor = _relaxationFactor;
156 }
157 
test(const btScalar angle)158 void btAngularLimit::test(const btScalar angle)
159 {
160 	m_correction = 0.0f;
161 	m_sign = 0.0f;
162 	m_solveLimit = false;
163 
164 	if (m_halfRange >= 0.0f)
165 	{
166 		btScalar deviation = btNormalizeAngle(angle - m_center);
167 		if (deviation < -m_halfRange)
168 		{
169 			m_solveLimit = true;
170 			m_correction = -(deviation + m_halfRange);
171 			m_sign = +1.0f;
172 		}
173 		else if (deviation > m_halfRange)
174 		{
175 			m_solveLimit = true;
176 			m_correction = m_halfRange - deviation;
177 			m_sign = -1.0f;
178 		}
179 	}
180 }
181 
getError() const182 btScalar btAngularLimit::getError() const
183 {
184 	return m_correction * m_sign;
185 }
186 
fit(btScalar & angle) const187 void btAngularLimit::fit(btScalar& angle) const
188 {
189 	if (m_halfRange > 0.0f)
190 	{
191 		btScalar relativeAngle = btNormalizeAngle(angle - m_center);
192 		if (!btEqual(relativeAngle, m_halfRange))
193 		{
194 			if (relativeAngle > 0.0f)
195 			{
196 				angle = getHigh();
197 			}
198 			else
199 			{
200 				angle = getLow();
201 			}
202 		}
203 	}
204 }
205 
getLow() const206 btScalar btAngularLimit::getLow() const
207 {
208 	return btNormalizeAngle(m_center - m_halfRange);
209 }
210 
getHigh() const211 btScalar btAngularLimit::getHigh() const
212 {
213 	return btNormalizeAngle(m_center + m_halfRange);
214 }
215