1 /* Distributed under the OSI-approved BSD 3-Clause License. See accompanying
2 file Copyright.txt or https://cmake.org/licensing#kwsys for details. */
3 #include "kwsysPrivate.h"
4 #include KWSYS_HEADER(MD5.h)
5
6 /* Work-around CMake dependency scanning limitation. This must
7 duplicate the above list of headers. */
8 #if 0
9 # include "MD5.h.in"
10 #endif
11
12 #include <stddef.h> /* size_t */
13 #include <stdlib.h> /* malloc, free */
14 #include <string.h> /* memcpy, strlen */
15
16 /* This MD5 implementation has been taken from a third party. Slight
17 modifications to the arrangement of the code have been made to put
18 it in a single source file instead of a separate header and
19 implementation file. */
20
21 #if defined(__clang__) && !defined(__INTEL_COMPILER)
22 # pragma clang diagnostic push
23 # pragma clang diagnostic ignored "-Wcast-align"
24 #endif
25
26 /*
27 Copyright (C) 1999, 2000, 2002 Aladdin Enterprises. All rights reserved.
28
29 This software is provided 'as-is', without any express or implied
30 warranty. In no event will the authors be held liable for any damages
31 arising from the use of this software.
32
33 Permission is granted to anyone to use this software for any purpose,
34 including commercial applications, and to alter it and redistribute it
35 freely, subject to the following restrictions:
36
37 1. The origin of this software must not be misrepresented; you must not
38 claim that you wrote the original software. If you use this software
39 in a product, an acknowledgment in the product documentation would be
40 appreciated but is not required.
41 2. Altered source versions must be plainly marked as such, and must not be
42 misrepresented as being the original software.
43 3. This notice may not be removed or altered from any source distribution.
44
45 L. Peter Deutsch
46 ghost@aladdin.com
47
48 */
49 /*
50 Independent implementation of MD5 (RFC 1321).
51
52 This code implements the MD5 Algorithm defined in RFC 1321, whose
53 text is available at
54 http://www.ietf.org/rfc/rfc1321.txt
55 The code is derived from the text of the RFC, including the test suite
56 (section A.5) but excluding the rest of Appendix A. It does not include
57 any code or documentation that is identified in the RFC as being
58 copyrighted.
59
60 The original and principal author of md5.c is L. Peter Deutsch
61 <ghost@aladdin.com>. Other authors are noted in the change history
62 that follows (in reverse chronological order):
63
64 2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order
65 either statically or dynamically; added missing #include <string.h>
66 in library.
67 2002-03-11 lpd Corrected argument list for main(), and added int return
68 type, in test program and T value program.
69 2002-02-21 lpd Added missing #include <stdio.h> in test program.
70 2000-07-03 lpd Patched to eliminate warnings about "constant is
71 unsigned in ANSI C, signed in traditional"; made test program
72 self-checking.
73 1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
74 1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5).
75 1999-05-03 lpd Original version.
76 */
77
78 /*
79 * This package supports both compile-time and run-time determination of CPU
80 * byte order. If ARCH_IS_BIG_ENDIAN is defined as 0, the code will be
81 * compiled to run only on little-endian CPUs; if ARCH_IS_BIG_ENDIAN is
82 * defined as non-zero, the code will be compiled to run only on big-endian
83 * CPUs; if ARCH_IS_BIG_ENDIAN is not defined, the code will be compiled to
84 * run on either big- or little-endian CPUs, but will run slightly less
85 * efficiently on either one than if ARCH_IS_BIG_ENDIAN is defined.
86 */
87
88 typedef unsigned char md5_byte_t; /* 8-bit byte */
89 typedef unsigned int md5_word_t; /* 32-bit word */
90
91 /* Define the state of the MD5 Algorithm. */
92 typedef struct md5_state_s
93 {
94 md5_word_t count[2]; /* message length in bits, lsw first */
95 md5_word_t abcd[4]; /* digest buffer */
96 md5_byte_t buf[64]; /* accumulate block */
97 } md5_state_t;
98
99 #undef BYTE_ORDER /* 1 = big-endian, -1 = little-endian, 0 = unknown */
100 #ifdef ARCH_IS_BIG_ENDIAN
101 # define BYTE_ORDER (ARCH_IS_BIG_ENDIAN ? 1 : -1)
102 #else
103 # define BYTE_ORDER 0
104 #endif
105
106 #define T_MASK ((md5_word_t)~0)
107 #define T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87)
108 #define T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9)
109 #define T3 0x242070db
110 #define T4 /* 0xc1bdceee */ (T_MASK ^ 0x3e423111)
111 #define T5 /* 0xf57c0faf */ (T_MASK ^ 0x0a83f050)
112 #define T6 0x4787c62a
113 #define T7 /* 0xa8304613 */ (T_MASK ^ 0x57cfb9ec)
114 #define T8 /* 0xfd469501 */ (T_MASK ^ 0x02b96afe)
115 #define T9 0x698098d8
116 #define T10 /* 0x8b44f7af */ (T_MASK ^ 0x74bb0850)
117 #define T11 /* 0xffff5bb1 */ (T_MASK ^ 0x0000a44e)
118 #define T12 /* 0x895cd7be */ (T_MASK ^ 0x76a32841)
119 #define T13 0x6b901122
120 #define T14 /* 0xfd987193 */ (T_MASK ^ 0x02678e6c)
121 #define T15 /* 0xa679438e */ (T_MASK ^ 0x5986bc71)
122 #define T16 0x49b40821
123 #define T17 /* 0xf61e2562 */ (T_MASK ^ 0x09e1da9d)
124 #define T18 /* 0xc040b340 */ (T_MASK ^ 0x3fbf4cbf)
125 #define T19 0x265e5a51
126 #define T20 /* 0xe9b6c7aa */ (T_MASK ^ 0x16493855)
127 #define T21 /* 0xd62f105d */ (T_MASK ^ 0x29d0efa2)
128 #define T22 0x02441453
129 #define T23 /* 0xd8a1e681 */ (T_MASK ^ 0x275e197e)
130 #define T24 /* 0xe7d3fbc8 */ (T_MASK ^ 0x182c0437)
131 #define T25 0x21e1cde6
132 #define T26 /* 0xc33707d6 */ (T_MASK ^ 0x3cc8f829)
133 #define T27 /* 0xf4d50d87 */ (T_MASK ^ 0x0b2af278)
134 #define T28 0x455a14ed
135 #define T29 /* 0xa9e3e905 */ (T_MASK ^ 0x561c16fa)
136 #define T30 /* 0xfcefa3f8 */ (T_MASK ^ 0x03105c07)
137 #define T31 0x676f02d9
138 #define T32 /* 0x8d2a4c8a */ (T_MASK ^ 0x72d5b375)
139 #define T33 /* 0xfffa3942 */ (T_MASK ^ 0x0005c6bd)
140 #define T34 /* 0x8771f681 */ (T_MASK ^ 0x788e097e)
141 #define T35 0x6d9d6122
142 #define T36 /* 0xfde5380c */ (T_MASK ^ 0x021ac7f3)
143 #define T37 /* 0xa4beea44 */ (T_MASK ^ 0x5b4115bb)
144 #define T38 0x4bdecfa9
145 #define T39 /* 0xf6bb4b60 */ (T_MASK ^ 0x0944b49f)
146 #define T40 /* 0xbebfbc70 */ (T_MASK ^ 0x4140438f)
147 #define T41 0x289b7ec6
148 #define T42 /* 0xeaa127fa */ (T_MASK ^ 0x155ed805)
149 #define T43 /* 0xd4ef3085 */ (T_MASK ^ 0x2b10cf7a)
150 #define T44 0x04881d05
151 #define T45 /* 0xd9d4d039 */ (T_MASK ^ 0x262b2fc6)
152 #define T46 /* 0xe6db99e5 */ (T_MASK ^ 0x1924661a)
153 #define T47 0x1fa27cf8
154 #define T48 /* 0xc4ac5665 */ (T_MASK ^ 0x3b53a99a)
155 #define T49 /* 0xf4292244 */ (T_MASK ^ 0x0bd6ddbb)
156 #define T50 0x432aff97
157 #define T51 /* 0xab9423a7 */ (T_MASK ^ 0x546bdc58)
158 #define T52 /* 0xfc93a039 */ (T_MASK ^ 0x036c5fc6)
159 #define T53 0x655b59c3
160 #define T54 /* 0x8f0ccc92 */ (T_MASK ^ 0x70f3336d)
161 #define T55 /* 0xffeff47d */ (T_MASK ^ 0x00100b82)
162 #define T56 /* 0x85845dd1 */ (T_MASK ^ 0x7a7ba22e)
163 #define T57 0x6fa87e4f
164 #define T58 /* 0xfe2ce6e0 */ (T_MASK ^ 0x01d3191f)
165 #define T59 /* 0xa3014314 */ (T_MASK ^ 0x5cfebceb)
166 #define T60 0x4e0811a1
167 #define T61 /* 0xf7537e82 */ (T_MASK ^ 0x08ac817d)
168 #define T62 /* 0xbd3af235 */ (T_MASK ^ 0x42c50dca)
169 #define T63 0x2ad7d2bb
170 #define T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e)
171
md5_process(md5_state_t * pms,const md5_byte_t * data)172 static void md5_process(md5_state_t* pms, const md5_byte_t* data /*[64]*/)
173 {
174 md5_word_t a = pms->abcd[0];
175 md5_word_t b = pms->abcd[1];
176 md5_word_t c = pms->abcd[2];
177 md5_word_t d = pms->abcd[3];
178 md5_word_t t;
179 #if BYTE_ORDER > 0
180 /* Define storage only for big-endian CPUs. */
181 md5_word_t X[16];
182 #else
183 /* Define storage for little-endian or both types of CPUs. */
184 md5_word_t xbuf[16];
185 const md5_word_t* X;
186 #endif
187
188 {
189 #if BYTE_ORDER == 0
190 /*
191 * Determine dynamically whether this is a big-endian or
192 * little-endian machine, since we can use a more efficient
193 * algorithm on the latter.
194 */
195 static const int w = 1;
196
197 if (*((const md5_byte_t*)&w)) /* dynamic little-endian */
198 #endif
199 #if BYTE_ORDER <= 0 /* little-endian */
200 {
201 /*
202 * On little-endian machines, we can process properly aligned
203 * data without copying it.
204 */
205 if (!((data - (const md5_byte_t*)0) & 3)) {
206 /* data are properly aligned */
207 X = (const md5_word_t*)data;
208 } else {
209 /* not aligned */
210 memcpy(xbuf, data, 64);
211 X = xbuf;
212 }
213 }
214 #endif
215 #if BYTE_ORDER == 0
216 else /* dynamic big-endian */
217 #endif
218 #if BYTE_ORDER >= 0 /* big-endian */
219 {
220 /*
221 * On big-endian machines, we must arrange the bytes in the
222 * right order.
223 */
224 const md5_byte_t* xp = data;
225 int i;
226
227 # if BYTE_ORDER == 0
228 X = xbuf; /* (dynamic only) */
229 # else
230 # define xbuf X /* (static only) */
231 # endif
232 for (i = 0; i < 16; ++i, xp += 4) {
233 xbuf[i] =
234 (md5_word_t)(xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24));
235 }
236 }
237 #endif
238 }
239
240 #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
241
242 /* Round 1. */
243 /* Let [abcd k s i] denote the operation
244 a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
245 #define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
246 #define SET(a, b, c, d, k, s, Ti) \
247 t = a + F(b, c, d) + X[k] + (Ti); \
248 a = ROTATE_LEFT(t, s) + b
249 /* Do the following 16 operations. */
250 SET(a, b, c, d, 0, 7, T1);
251 SET(d, a, b, c, 1, 12, T2);
252 SET(c, d, a, b, 2, 17, T3);
253 SET(b, c, d, a, 3, 22, T4);
254 SET(a, b, c, d, 4, 7, T5);
255 SET(d, a, b, c, 5, 12, T6);
256 SET(c, d, a, b, 6, 17, T7);
257 SET(b, c, d, a, 7, 22, T8);
258 SET(a, b, c, d, 8, 7, T9);
259 SET(d, a, b, c, 9, 12, T10);
260 SET(c, d, a, b, 10, 17, T11);
261 SET(b, c, d, a, 11, 22, T12);
262 SET(a, b, c, d, 12, 7, T13);
263 SET(d, a, b, c, 13, 12, T14);
264 SET(c, d, a, b, 14, 17, T15);
265 SET(b, c, d, a, 15, 22, T16);
266 #undef SET
267
268 /* Round 2. */
269 /* Let [abcd k s i] denote the operation
270 a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
271 #define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
272 #define SET(a, b, c, d, k, s, Ti) \
273 t = a + G(b, c, d) + X[k] + (Ti); \
274 a = ROTATE_LEFT(t, s) + b
275 /* Do the following 16 operations. */
276 SET(a, b, c, d, 1, 5, T17);
277 SET(d, a, b, c, 6, 9, T18);
278 SET(c, d, a, b, 11, 14, T19);
279 SET(b, c, d, a, 0, 20, T20);
280 SET(a, b, c, d, 5, 5, T21);
281 SET(d, a, b, c, 10, 9, T22);
282 SET(c, d, a, b, 15, 14, T23);
283 SET(b, c, d, a, 4, 20, T24);
284 SET(a, b, c, d, 9, 5, T25);
285 SET(d, a, b, c, 14, 9, T26);
286 SET(c, d, a, b, 3, 14, T27);
287 SET(b, c, d, a, 8, 20, T28);
288 SET(a, b, c, d, 13, 5, T29);
289 SET(d, a, b, c, 2, 9, T30);
290 SET(c, d, a, b, 7, 14, T31);
291 SET(b, c, d, a, 12, 20, T32);
292 #undef SET
293
294 /* Round 3. */
295 /* Let [abcd k s t] denote the operation
296 a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
297 #define H(x, y, z) ((x) ^ (y) ^ (z))
298 #define SET(a, b, c, d, k, s, Ti) \
299 t = a + H(b, c, d) + X[k] + (Ti); \
300 a = ROTATE_LEFT(t, s) + b
301 /* Do the following 16 operations. */
302 SET(a, b, c, d, 5, 4, T33);
303 SET(d, a, b, c, 8, 11, T34);
304 SET(c, d, a, b, 11, 16, T35);
305 SET(b, c, d, a, 14, 23, T36);
306 SET(a, b, c, d, 1, 4, T37);
307 SET(d, a, b, c, 4, 11, T38);
308 SET(c, d, a, b, 7, 16, T39);
309 SET(b, c, d, a, 10, 23, T40);
310 SET(a, b, c, d, 13, 4, T41);
311 SET(d, a, b, c, 0, 11, T42);
312 SET(c, d, a, b, 3, 16, T43);
313 SET(b, c, d, a, 6, 23, T44);
314 SET(a, b, c, d, 9, 4, T45);
315 SET(d, a, b, c, 12, 11, T46);
316 SET(c, d, a, b, 15, 16, T47);
317 SET(b, c, d, a, 2, 23, T48);
318 #undef SET
319
320 /* Round 4. */
321 /* Let [abcd k s t] denote the operation
322 a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
323 #define I(x, y, z) ((y) ^ ((x) | ~(z)))
324 #define SET(a, b, c, d, k, s, Ti) \
325 t = a + I(b, c, d) + X[k] + (Ti); \
326 a = ROTATE_LEFT(t, s) + b
327 /* Do the following 16 operations. */
328 SET(a, b, c, d, 0, 6, T49);
329 SET(d, a, b, c, 7, 10, T50);
330 SET(c, d, a, b, 14, 15, T51);
331 SET(b, c, d, a, 5, 21, T52);
332 SET(a, b, c, d, 12, 6, T53);
333 SET(d, a, b, c, 3, 10, T54);
334 SET(c, d, a, b, 10, 15, T55);
335 SET(b, c, d, a, 1, 21, T56);
336 SET(a, b, c, d, 8, 6, T57);
337 SET(d, a, b, c, 15, 10, T58);
338 SET(c, d, a, b, 6, 15, T59);
339 SET(b, c, d, a, 13, 21, T60);
340 SET(a, b, c, d, 4, 6, T61);
341 SET(d, a, b, c, 11, 10, T62);
342 SET(c, d, a, b, 2, 15, T63);
343 SET(b, c, d, a, 9, 21, T64);
344 #undef SET
345
346 /* Then perform the following additions. (That is increment each
347 of the four registers by the value it had before this block
348 was started.) */
349 pms->abcd[0] += a;
350 pms->abcd[1] += b;
351 pms->abcd[2] += c;
352 pms->abcd[3] += d;
353 }
354
355 /* Initialize the algorithm. */
md5_init(md5_state_t * pms)356 static void md5_init(md5_state_t* pms)
357 {
358 pms->count[0] = pms->count[1] = 0;
359 pms->abcd[0] = 0x67452301;
360 pms->abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476;
361 pms->abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301;
362 pms->abcd[3] = 0x10325476;
363 }
364
365 /* Append a string to the message. */
md5_append(md5_state_t * pms,const md5_byte_t * data,size_t nbytes)366 static void md5_append(md5_state_t* pms, const md5_byte_t* data, size_t nbytes)
367 {
368 const md5_byte_t* p = data;
369 size_t left = nbytes;
370 size_t offset = (pms->count[0] >> 3) & 63;
371 md5_word_t nbits = (md5_word_t)(nbytes << 3);
372
373 if (nbytes <= 0) {
374 return;
375 }
376
377 /* Update the message length. */
378 pms->count[1] += (md5_word_t)(nbytes >> 29);
379 pms->count[0] += nbits;
380 if (pms->count[0] < nbits) {
381 pms->count[1]++;
382 }
383
384 /* Process an initial partial block. */
385 if (offset) {
386 size_t copy = (offset + nbytes > 64 ? 64 - offset : nbytes);
387
388 memcpy(pms->buf + offset, p, copy);
389 if (offset + copy < 64) {
390 return;
391 }
392 p += copy;
393 left -= copy;
394 md5_process(pms, pms->buf);
395 }
396
397 /* Process full blocks. */
398 for (; left >= 64; p += 64, left -= 64) {
399 md5_process(pms, p);
400 }
401
402 /* Process a final partial block. */
403 if (left) {
404 memcpy(pms->buf, p, left);
405 }
406 }
407
408 /* Finish the message and return the digest. */
md5_finish(md5_state_t * pms,md5_byte_t digest[16])409 static void md5_finish(md5_state_t* pms, md5_byte_t digest[16])
410 {
411 static const md5_byte_t pad[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
412 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
413 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
414 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
415 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
416 md5_byte_t data[8];
417 int i;
418
419 /* Save the length before padding. */
420 for (i = 0; i < 8; ++i) {
421 data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3));
422 }
423 /* Pad to 56 bytes mod 64. */
424 md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1);
425 /* Append the length. */
426 md5_append(pms, data, 8);
427 for (i = 0; i < 16; ++i) {
428 digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3));
429 }
430 }
431
432 #if defined(__clang__) && !defined(__INTEL_COMPILER)
433 # pragma clang diagnostic pop
434 #endif
435
436 /* Wrap up the MD5 state in our opaque structure. */
437 struct kwsysMD5_s
438 {
439 md5_state_t md5_state;
440 };
441
kwsysMD5_New(void)442 kwsysMD5* kwsysMD5_New(void)
443 {
444 /* Allocate a process control structure. */
445 kwsysMD5* md5 = (kwsysMD5*)malloc(sizeof(kwsysMD5));
446 if (!md5) {
447 return 0;
448 }
449 return md5;
450 }
451
kwsysMD5_Delete(kwsysMD5 * md5)452 void kwsysMD5_Delete(kwsysMD5* md5)
453 {
454 /* Make sure we have an instance. */
455 if (!md5) {
456 return;
457 }
458
459 /* Free memory. */
460 free(md5);
461 }
462
kwsysMD5_Initialize(kwsysMD5 * md5)463 void kwsysMD5_Initialize(kwsysMD5* md5)
464 {
465 md5_init(&md5->md5_state);
466 }
467
kwsysMD5_Append(kwsysMD5 * md5,unsigned char const * data,int length)468 void kwsysMD5_Append(kwsysMD5* md5, unsigned char const* data, int length)
469 {
470 size_t dlen;
471 if (length < 0) {
472 dlen = strlen((char const*)data);
473 } else {
474 dlen = (size_t)length;
475 }
476 md5_append(&md5->md5_state, (md5_byte_t const*)data, dlen);
477 }
478
kwsysMD5_Finalize(kwsysMD5 * md5,unsigned char digest[16])479 void kwsysMD5_Finalize(kwsysMD5* md5, unsigned char digest[16])
480 {
481 md5_finish(&md5->md5_state, (md5_byte_t*)digest);
482 }
483
kwsysMD5_FinalizeHex(kwsysMD5 * md5,char buffer[32])484 void kwsysMD5_FinalizeHex(kwsysMD5* md5, char buffer[32])
485 {
486 unsigned char digest[16];
487 kwsysMD5_Finalize(md5, digest);
488 kwsysMD5_DigestToHex(digest, buffer);
489 }
490
kwsysMD5_DigestToHex(unsigned char const digest[16],char buffer[32])491 void kwsysMD5_DigestToHex(unsigned char const digest[16], char buffer[32])
492 {
493 /* Map from 4-bit index to hexadecimal representation. */
494 static char const hex[16] = { '0', '1', '2', '3', '4', '5', '6', '7',
495 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
496
497 /* Map each 4-bit block separately. */
498 char* out = buffer;
499 int i;
500 for (i = 0; i < 16; ++i) {
501 *out++ = hex[digest[i] >> 4];
502 *out++ = hex[digest[i] & 0xF];
503 }
504 }
505