1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
33
34 #define XTENSA_NO_NOP_REMOVAL 0
35
36 /* Local helper functions. */
37
38 static bfd_boolean add_extra_plt_sections (bfd *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
46
47 /* Local functions to handle Xtensa configurability. */
48
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
74
75 /* Functions for link-time code simplifications. */
76
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
83
84 /* Access to internal relocations, section contents and symbols. */
85
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
94
95 /* Miscellaneous utility functions. */
96
97 static asection *elf_xtensa_get_plt_section (bfd *, int);
98 static asection *elf_xtensa_get_gotplt_section (bfd *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_littable_section (asection *);
107 static int internal_reloc_compare (const void *, const void *);
108 static int internal_reloc_matches (const void *, const void *);
109 extern char *xtensa_get_property_section_name (asection *, const char *);
110 static flagword xtensa_get_property_predef_flags (asection *);
111
112 /* Other functions called directly by the linker. */
113
114 typedef void (*deps_callback_t)
115 (asection *, bfd_vma, asection *, bfd_vma, void *);
116 extern bfd_boolean xtensa_callback_required_dependence
117 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
118
119
120 /* Globally visible flag for choosing size optimization of NOP removal
121 instead of branch-target-aware minimization for NOP removal.
122 When nonzero, narrow all instructions and remove all NOPs possible
123 around longcall expansions. */
124
125 int elf32xtensa_size_opt;
126
127
128 /* The "new_section_hook" is used to set up a per-section
129 "xtensa_relax_info" data structure with additional information used
130 during relaxation. */
131
132 typedef struct xtensa_relax_info_struct xtensa_relax_info;
133
134
135 /* Total count of PLT relocations seen during check_relocs.
136 The actual PLT code must be split into multiple sections and all
137 the sections have to be created before size_dynamic_sections,
138 where we figure out the exact number of PLT entries that will be
139 needed. It is OK if this count is an overestimate, e.g., some
140 relocations may be removed by GC. */
141
142 static int plt_reloc_count = 0;
143
144
145 /* The GNU tools do not easily allow extending interfaces to pass around
146 the pointer to the Xtensa ISA information, so instead we add a global
147 variable here (in BFD) that can be used by any of the tools that need
148 this information. */
149
150 xtensa_isa xtensa_default_isa;
151
152
153 /* When this is true, relocations may have been modified to refer to
154 symbols from other input files. The per-section list of "fix"
155 records needs to be checked when resolving relocations. */
156
157 static bfd_boolean relaxing_section = FALSE;
158
159 /* When this is true, during final links, literals that cannot be
160 coalesced and their relocations may be moved to other sections. */
161
162 int elf32xtensa_no_literal_movement = 1;
163
164
165 static reloc_howto_type elf_howto_table[] =
166 {
167 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
168 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
169 FALSE, 0x00000000, 0x00000000, FALSE),
170 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
171 bfd_elf_xtensa_reloc, "R_XTENSA_32",
172 TRUE, 0xffffffff, 0xffffffff, FALSE),
173 /* Replace a 32-bit value with a value from the runtime linker (only
174 used by linker-generated stub functions). The r_addend value is
175 special: 1 means to substitute a pointer to the runtime linker's
176 dynamic resolver function; 2 means to substitute the link map for
177 the shared object. */
178 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
179 NULL, "R_XTENSA_RTLD",
180 FALSE, 0x00000000, 0x00000000, FALSE),
181 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
183 FALSE, 0xffffffff, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
186 FALSE, 0xffffffff, 0xffffffff, FALSE),
187 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
189 FALSE, 0xffffffff, 0xffffffff, FALSE),
190 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
192 FALSE, 0xffffffff, 0xffffffff, FALSE),
193 EMPTY_HOWTO (7),
194 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP0",
196 FALSE, 0x00000000, 0x00000000, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1",
199 FALSE, 0x00000000, 0x00000000, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2",
202 FALSE, 0x00000000, 0x00000000, TRUE),
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND",
206 FALSE, 0x00000000, 0x00000000, FALSE),
207 /* Relax assembly auto-expansion. */
208 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY",
210 FALSE, 0x00000000, 0x00000000, TRUE),
211 EMPTY_HOWTO (13),
212 EMPTY_HOWTO (14),
213 /* GNU extension to record C++ vtable hierarchy. */
214 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
215 NULL, "R_XTENSA_GNU_VTINHERIT",
216 FALSE, 0x00000000, 0x00000000, FALSE),
217 /* GNU extension to record C++ vtable member usage. */
218 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
219 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
220 FALSE, 0x00000000, 0x00000000, FALSE),
221
222 /* Relocations for supporting difference of symbols. */
223 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8",
225 FALSE, 0xffffffff, 0xffffffff, FALSE),
226 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16",
228 FALSE, 0xffffffff, 0xffffffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32",
231 FALSE, 0xffffffff, 0xffffffff, FALSE),
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP",
236 FALSE, 0x00000000, 0x00000000, TRUE),
237 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP",
239 FALSE, 0x00000000, 0x00000000, TRUE),
240 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP",
242 FALSE, 0x00000000, 0x00000000, TRUE),
243 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP",
245 FALSE, 0x00000000, 0x00000000, TRUE),
246 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP",
248 FALSE, 0x00000000, 0x00000000, TRUE),
249 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP",
251 FALSE, 0x00000000, 0x00000000, TRUE),
252 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP",
254 FALSE, 0x00000000, 0x00000000, TRUE),
255 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP",
257 FALSE, 0x00000000, 0x00000000, TRUE),
258 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP",
260 FALSE, 0x00000000, 0x00000000, TRUE),
261 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP",
263 FALSE, 0x00000000, 0x00000000, TRUE),
264 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP",
266 FALSE, 0x00000000, 0x00000000, TRUE),
267 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP",
269 FALSE, 0x00000000, 0x00000000, TRUE),
270 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP",
272 FALSE, 0x00000000, 0x00000000, TRUE),
273 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP",
275 FALSE, 0x00000000, 0x00000000, TRUE),
276 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP",
278 FALSE, 0x00000000, 0x00000000, TRUE),
279
280 /* "Alternate" relocations. The meaning of these is opcode-specific. */
281 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT",
283 FALSE, 0x00000000, 0x00000000, TRUE),
284 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT",
286 FALSE, 0x00000000, 0x00000000, TRUE),
287 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT",
289 FALSE, 0x00000000, 0x00000000, TRUE),
290 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT",
292 FALSE, 0x00000000, 0x00000000, TRUE),
293 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT",
295 FALSE, 0x00000000, 0x00000000, TRUE),
296 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT",
298 FALSE, 0x00000000, 0x00000000, TRUE),
299 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT",
301 FALSE, 0x00000000, 0x00000000, TRUE),
302 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
303 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT",
304 FALSE, 0x00000000, 0x00000000, TRUE),
305 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT",
307 FALSE, 0x00000000, 0x00000000, TRUE),
308 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
309 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT",
310 FALSE, 0x00000000, 0x00000000, TRUE),
311 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT",
313 FALSE, 0x00000000, 0x00000000, TRUE),
314 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
315 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT",
316 FALSE, 0x00000000, 0x00000000, TRUE),
317 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT",
319 FALSE, 0x00000000, 0x00000000, TRUE),
320 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
321 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT",
322 FALSE, 0x00000000, 0x00000000, TRUE),
323 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
324 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT",
325 FALSE, 0x00000000, 0x00000000, TRUE)
326 };
327
328 #if DEBUG_GEN_RELOC
329 #define TRACE(str) \
330 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
331 #else
332 #define TRACE(str)
333 #endif
334
335 static reloc_howto_type *
elf_xtensa_reloc_type_lookup(bfd * abfd ATTRIBUTE_UNUSED,bfd_reloc_code_real_type code)336 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
337 bfd_reloc_code_real_type code)
338 {
339 switch (code)
340 {
341 case BFD_RELOC_NONE:
342 TRACE ("BFD_RELOC_NONE");
343 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
344
345 case BFD_RELOC_32:
346 TRACE ("BFD_RELOC_32");
347 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
348
349 case BFD_RELOC_XTENSA_DIFF8:
350 TRACE ("BFD_RELOC_XTENSA_DIFF8");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
352
353 case BFD_RELOC_XTENSA_DIFF16:
354 TRACE ("BFD_RELOC_XTENSA_DIFF16");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
356
357 case BFD_RELOC_XTENSA_DIFF32:
358 TRACE ("BFD_RELOC_XTENSA_DIFF32");
359 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
360
361 case BFD_RELOC_XTENSA_RTLD:
362 TRACE ("BFD_RELOC_XTENSA_RTLD");
363 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
364
365 case BFD_RELOC_XTENSA_GLOB_DAT:
366 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
367 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
368
369 case BFD_RELOC_XTENSA_JMP_SLOT:
370 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
371 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
372
373 case BFD_RELOC_XTENSA_RELATIVE:
374 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
375 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
376
377 case BFD_RELOC_XTENSA_PLT:
378 TRACE ("BFD_RELOC_XTENSA_PLT");
379 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
380
381 case BFD_RELOC_XTENSA_OP0:
382 TRACE ("BFD_RELOC_XTENSA_OP0");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
384
385 case BFD_RELOC_XTENSA_OP1:
386 TRACE ("BFD_RELOC_XTENSA_OP1");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
388
389 case BFD_RELOC_XTENSA_OP2:
390 TRACE ("BFD_RELOC_XTENSA_OP2");
391 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
392
393 case BFD_RELOC_XTENSA_ASM_EXPAND:
394 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
396
397 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
398 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
399 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
400
401 case BFD_RELOC_VTABLE_INHERIT:
402 TRACE ("BFD_RELOC_VTABLE_INHERIT");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
404
405 case BFD_RELOC_VTABLE_ENTRY:
406 TRACE ("BFD_RELOC_VTABLE_ENTRY");
407 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
408
409 default:
410 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
411 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
412 {
413 unsigned n = (R_XTENSA_SLOT0_OP +
414 (code - BFD_RELOC_XTENSA_SLOT0_OP));
415 return &elf_howto_table[n];
416 }
417
418 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
419 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
420 {
421 unsigned n = (R_XTENSA_SLOT0_ALT +
422 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
423 return &elf_howto_table[n];
424 }
425
426 break;
427 }
428
429 TRACE ("Unknown");
430 return NULL;
431 }
432
433
434 /* Given an ELF "rela" relocation, find the corresponding howto and record
435 it in the BFD internal arelent representation of the relocation. */
436
437 static void
elf_xtensa_info_to_howto_rela(bfd * abfd ATTRIBUTE_UNUSED,arelent * cache_ptr,Elf_Internal_Rela * dst)438 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
439 arelent *cache_ptr,
440 Elf_Internal_Rela *dst)
441 {
442 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
443
444 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
445 cache_ptr->howto = &elf_howto_table[r_type];
446 }
447
448
449 /* Functions for the Xtensa ELF linker. */
450
451 /* The name of the dynamic interpreter. This is put in the .interp
452 section. */
453
454 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
455
456 /* The size in bytes of an entry in the procedure linkage table.
457 (This does _not_ include the space for the literals associated with
458 the PLT entry.) */
459
460 #define PLT_ENTRY_SIZE 16
461
462 /* For _really_ large PLTs, we may need to alternate between literals
463 and code to keep the literals within the 256K range of the L32R
464 instructions in the code. It's unlikely that anyone would ever need
465 such a big PLT, but an arbitrary limit on the PLT size would be bad.
466 Thus, we split the PLT into chunks. Since there's very little
467 overhead (2 extra literals) for each chunk, the chunk size is kept
468 small so that the code for handling multiple chunks get used and
469 tested regularly. With 254 entries, there are 1K of literals for
470 each chunk, and that seems like a nice round number. */
471
472 #define PLT_ENTRIES_PER_CHUNK 254
473
474 /* PLT entries are actually used as stub functions for lazy symbol
475 resolution. Once the symbol is resolved, the stub function is never
476 invoked. Note: the 32-byte frame size used here cannot be changed
477 without a corresponding change in the runtime linker. */
478
479 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
480 {
481 0x6c, 0x10, 0x04, /* entry sp, 32 */
482 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
483 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
484 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
485 0x0a, 0x80, 0x00, /* jx a8 */
486 0 /* unused */
487 };
488
489 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
490 {
491 0x36, 0x41, 0x00, /* entry sp, 32 */
492 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
493 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
494 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
495 0xa0, 0x08, 0x00, /* jx a8 */
496 0 /* unused */
497 };
498
499
500 static inline bfd_boolean
xtensa_elf_dynamic_symbol_p(struct elf_link_hash_entry * h,struct bfd_link_info * info)501 xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
502 struct bfd_link_info *info)
503 {
504 /* Check if we should do dynamic things to this symbol. The
505 "ignore_protected" argument need not be set, because Xtensa code
506 does not require special handling of STV_PROTECTED to make function
507 pointer comparisons work properly. The PLT addresses are never
508 used for function pointers. */
509
510 return _bfd_elf_dynamic_symbol_p (h, info, 0);
511 }
512
513
514 static int
property_table_compare(const void * ap,const void * bp)515 property_table_compare (const void *ap, const void *bp)
516 {
517 const property_table_entry *a = (const property_table_entry *) ap;
518 const property_table_entry *b = (const property_table_entry *) bp;
519
520 if (a->address == b->address)
521 {
522 if (a->size != b->size)
523 return (a->size - b->size);
524
525 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
526 return ((b->flags & XTENSA_PROP_ALIGN)
527 - (a->flags & XTENSA_PROP_ALIGN));
528
529 if ((a->flags & XTENSA_PROP_ALIGN)
530 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
531 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
532 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
533 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
534
535 if ((a->flags & XTENSA_PROP_UNREACHABLE)
536 != (b->flags & XTENSA_PROP_UNREACHABLE))
537 return ((b->flags & XTENSA_PROP_UNREACHABLE)
538 - (a->flags & XTENSA_PROP_UNREACHABLE));
539
540 return (a->flags - b->flags);
541 }
542
543 return (a->address - b->address);
544 }
545
546
547 static int
property_table_matches(const void * ap,const void * bp)548 property_table_matches (const void *ap, const void *bp)
549 {
550 const property_table_entry *a = (const property_table_entry *) ap;
551 const property_table_entry *b = (const property_table_entry *) bp;
552
553 /* Check if one entry overlaps with the other. */
554 if ((b->address >= a->address && b->address < (a->address + a->size))
555 || (a->address >= b->address && a->address < (b->address + b->size)))
556 return 0;
557
558 return (a->address - b->address);
559 }
560
561
562 /* Get the literal table or property table entries for the given
563 section. Sets TABLE_P and returns the number of entries. On
564 error, returns a negative value. */
565
566 static int
xtensa_read_table_entries(bfd * abfd,asection * section,property_table_entry ** table_p,const char * sec_name,bfd_boolean output_addr)567 xtensa_read_table_entries (bfd *abfd,
568 asection *section,
569 property_table_entry **table_p,
570 const char *sec_name,
571 bfd_boolean output_addr)
572 {
573 asection *table_section;
574 char *table_section_name;
575 bfd_size_type table_size = 0;
576 bfd_byte *table_data;
577 property_table_entry *blocks;
578 int blk, block_count;
579 bfd_size_type num_records;
580 Elf_Internal_Rela *internal_relocs;
581 bfd_vma section_addr;
582 flagword predef_flags;
583 bfd_size_type table_entry_size;
584
585 if (!section
586 || !(section->flags & SEC_ALLOC)
587 || (section->flags & SEC_DEBUGGING))
588 {
589 *table_p = NULL;
590 return 0;
591 }
592
593 table_section_name = xtensa_get_property_section_name (section, sec_name);
594 table_section = bfd_get_section_by_name (abfd, table_section_name);
595 free (table_section_name);
596 if (table_section)
597 table_size = table_section->size;
598
599 if (table_size == 0)
600 {
601 *table_p = NULL;
602 return 0;
603 }
604
605 predef_flags = xtensa_get_property_predef_flags (table_section);
606 table_entry_size = 12;
607 if (predef_flags)
608 table_entry_size -= 4;
609
610 num_records = table_size / table_entry_size;
611 table_data = retrieve_contents (abfd, table_section, TRUE);
612 blocks = (property_table_entry *)
613 bfd_malloc (num_records * sizeof (property_table_entry));
614 block_count = 0;
615
616 if (output_addr)
617 section_addr = section->output_section->vma + section->output_offset;
618 else
619 section_addr = section->vma;
620
621 /* If the file has not yet been relocated, process the relocations
622 and sort out the table entries that apply to the specified section. */
623 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
624 if (internal_relocs && !table_section->reloc_done)
625 {
626 unsigned i;
627
628 for (i = 0; i < table_section->reloc_count; i++)
629 {
630 Elf_Internal_Rela *rel = &internal_relocs[i];
631 unsigned long r_symndx;
632
633 if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE)
634 continue;
635
636 BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32);
637 r_symndx = ELF32_R_SYM (rel->r_info);
638
639 if (get_elf_r_symndx_section (abfd, r_symndx) == section)
640 {
641 bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
642 BFD_ASSERT (sym_off == 0);
643 blocks[block_count].address =
644 (section_addr + sym_off + rel->r_addend
645 + bfd_get_32 (abfd, table_data + rel->r_offset));
646 blocks[block_count].size =
647 bfd_get_32 (abfd, table_data + rel->r_offset + 4);
648 if (predef_flags)
649 blocks[block_count].flags = predef_flags;
650 else
651 blocks[block_count].flags =
652 bfd_get_32 (abfd, table_data + rel->r_offset + 8);
653 block_count++;
654 }
655 }
656 }
657 else
658 {
659 /* The file has already been relocated and the addresses are
660 already in the table. */
661 bfd_vma off;
662 bfd_size_type section_limit = bfd_get_section_limit (abfd, section);
663
664 for (off = 0; off < table_size; off += table_entry_size)
665 {
666 bfd_vma address = bfd_get_32 (abfd, table_data + off);
667
668 if (address >= section_addr
669 && address < section_addr + section_limit)
670 {
671 blocks[block_count].address = address;
672 blocks[block_count].size =
673 bfd_get_32 (abfd, table_data + off + 4);
674 if (predef_flags)
675 blocks[block_count].flags = predef_flags;
676 else
677 blocks[block_count].flags =
678 bfd_get_32 (abfd, table_data + off + 8);
679 block_count++;
680 }
681 }
682 }
683
684 release_contents (table_section, table_data);
685 release_internal_relocs (table_section, internal_relocs);
686
687 if (block_count > 0)
688 {
689 /* Now sort them into address order for easy reference. */
690 qsort (blocks, block_count, sizeof (property_table_entry),
691 property_table_compare);
692
693 /* Check that the table contents are valid. Problems may occur,
694 for example, if an unrelocated object file is stripped. */
695 for (blk = 1; blk < block_count; blk++)
696 {
697 /* The only circumstance where two entries may legitimately
698 have the same address is when one of them is a zero-size
699 placeholder to mark a place where fill can be inserted.
700 The zero-size entry should come first. */
701 if (blocks[blk - 1].address == blocks[blk].address &&
702 blocks[blk - 1].size != 0)
703 {
704 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
705 abfd, section);
706 bfd_set_error (bfd_error_bad_value);
707 free (blocks);
708 return -1;
709 }
710 }
711 }
712
713 *table_p = blocks;
714 return block_count;
715 }
716
717
718 static property_table_entry *
elf_xtensa_find_property_entry(property_table_entry * property_table,int property_table_size,bfd_vma addr)719 elf_xtensa_find_property_entry (property_table_entry *property_table,
720 int property_table_size,
721 bfd_vma addr)
722 {
723 property_table_entry entry;
724 property_table_entry *rv;
725
726 if (property_table_size == 0)
727 return NULL;
728
729 entry.address = addr;
730 entry.size = 1;
731 entry.flags = 0;
732
733 rv = bsearch (&entry, property_table, property_table_size,
734 sizeof (property_table_entry), property_table_matches);
735 return rv;
736 }
737
738
739 static bfd_boolean
elf_xtensa_in_literal_pool(property_table_entry * lit_table,int lit_table_size,bfd_vma addr)740 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
741 int lit_table_size,
742 bfd_vma addr)
743 {
744 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
745 return TRUE;
746
747 return FALSE;
748 }
749
750
751 /* Look through the relocs for a section during the first phase, and
752 calculate needed space in the dynamic reloc sections. */
753
754 static bfd_boolean
elf_xtensa_check_relocs(bfd * abfd,struct bfd_link_info * info,asection * sec,const Elf_Internal_Rela * relocs)755 elf_xtensa_check_relocs (bfd *abfd,
756 struct bfd_link_info *info,
757 asection *sec,
758 const Elf_Internal_Rela *relocs)
759 {
760 Elf_Internal_Shdr *symtab_hdr;
761 struct elf_link_hash_entry **sym_hashes;
762 const Elf_Internal_Rela *rel;
763 const Elf_Internal_Rela *rel_end;
764
765 if (info->relocatable)
766 return TRUE;
767
768 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
769 sym_hashes = elf_sym_hashes (abfd);
770
771 rel_end = relocs + sec->reloc_count;
772 for (rel = relocs; rel < rel_end; rel++)
773 {
774 unsigned int r_type;
775 unsigned long r_symndx;
776 struct elf_link_hash_entry *h;
777
778 r_symndx = ELF32_R_SYM (rel->r_info);
779 r_type = ELF32_R_TYPE (rel->r_info);
780
781 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
782 {
783 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
784 abfd, r_symndx);
785 return FALSE;
786 }
787
788 if (r_symndx < symtab_hdr->sh_info)
789 h = NULL;
790 else
791 {
792 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
793 while (h->root.type == bfd_link_hash_indirect
794 || h->root.type == bfd_link_hash_warning)
795 h = (struct elf_link_hash_entry *) h->root.u.i.link;
796 }
797
798 switch (r_type)
799 {
800 case R_XTENSA_32:
801 if (h == NULL)
802 goto local_literal;
803
804 if ((sec->flags & SEC_ALLOC) != 0)
805 {
806 if (h->got.refcount <= 0)
807 h->got.refcount = 1;
808 else
809 h->got.refcount += 1;
810 }
811 break;
812
813 case R_XTENSA_PLT:
814 /* If this relocation is against a local symbol, then it's
815 exactly the same as a normal local GOT entry. */
816 if (h == NULL)
817 goto local_literal;
818
819 if ((sec->flags & SEC_ALLOC) != 0)
820 {
821 if (h->plt.refcount <= 0)
822 {
823 h->needs_plt = 1;
824 h->plt.refcount = 1;
825 }
826 else
827 h->plt.refcount += 1;
828
829 /* Keep track of the total PLT relocation count even if we
830 don't yet know whether the dynamic sections will be
831 created. */
832 plt_reloc_count += 1;
833
834 if (elf_hash_table (info)->dynamic_sections_created)
835 {
836 if (!add_extra_plt_sections (elf_hash_table (info)->dynobj,
837 plt_reloc_count))
838 return FALSE;
839 }
840 }
841 break;
842
843 local_literal:
844 if ((sec->flags & SEC_ALLOC) != 0)
845 {
846 bfd_signed_vma *local_got_refcounts;
847
848 /* This is a global offset table entry for a local symbol. */
849 local_got_refcounts = elf_local_got_refcounts (abfd);
850 if (local_got_refcounts == NULL)
851 {
852 bfd_size_type size;
853
854 size = symtab_hdr->sh_info;
855 size *= sizeof (bfd_signed_vma);
856 local_got_refcounts =
857 (bfd_signed_vma *) bfd_zalloc (abfd, size);
858 if (local_got_refcounts == NULL)
859 return FALSE;
860 elf_local_got_refcounts (abfd) = local_got_refcounts;
861 }
862 local_got_refcounts[r_symndx] += 1;
863 }
864 break;
865
866 case R_XTENSA_OP0:
867 case R_XTENSA_OP1:
868 case R_XTENSA_OP2:
869 case R_XTENSA_SLOT0_OP:
870 case R_XTENSA_SLOT1_OP:
871 case R_XTENSA_SLOT2_OP:
872 case R_XTENSA_SLOT3_OP:
873 case R_XTENSA_SLOT4_OP:
874 case R_XTENSA_SLOT5_OP:
875 case R_XTENSA_SLOT6_OP:
876 case R_XTENSA_SLOT7_OP:
877 case R_XTENSA_SLOT8_OP:
878 case R_XTENSA_SLOT9_OP:
879 case R_XTENSA_SLOT10_OP:
880 case R_XTENSA_SLOT11_OP:
881 case R_XTENSA_SLOT12_OP:
882 case R_XTENSA_SLOT13_OP:
883 case R_XTENSA_SLOT14_OP:
884 case R_XTENSA_SLOT0_ALT:
885 case R_XTENSA_SLOT1_ALT:
886 case R_XTENSA_SLOT2_ALT:
887 case R_XTENSA_SLOT3_ALT:
888 case R_XTENSA_SLOT4_ALT:
889 case R_XTENSA_SLOT5_ALT:
890 case R_XTENSA_SLOT6_ALT:
891 case R_XTENSA_SLOT7_ALT:
892 case R_XTENSA_SLOT8_ALT:
893 case R_XTENSA_SLOT9_ALT:
894 case R_XTENSA_SLOT10_ALT:
895 case R_XTENSA_SLOT11_ALT:
896 case R_XTENSA_SLOT12_ALT:
897 case R_XTENSA_SLOT13_ALT:
898 case R_XTENSA_SLOT14_ALT:
899 case R_XTENSA_ASM_EXPAND:
900 case R_XTENSA_ASM_SIMPLIFY:
901 case R_XTENSA_DIFF8:
902 case R_XTENSA_DIFF16:
903 case R_XTENSA_DIFF32:
904 /* Nothing to do for these. */
905 break;
906
907 case R_XTENSA_GNU_VTINHERIT:
908 /* This relocation describes the C++ object vtable hierarchy.
909 Reconstruct it for later use during GC. */
910 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
911 return FALSE;
912 break;
913
914 case R_XTENSA_GNU_VTENTRY:
915 /* This relocation describes which C++ vtable entries are actually
916 used. Record for later use during GC. */
917 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
918 return FALSE;
919 break;
920
921 default:
922 break;
923 }
924 }
925
926 return TRUE;
927 }
928
929
930 static void
elf_xtensa_make_sym_local(struct bfd_link_info * info,struct elf_link_hash_entry * h)931 elf_xtensa_make_sym_local (struct bfd_link_info *info,
932 struct elf_link_hash_entry *h)
933 {
934 if (info->shared)
935 {
936 if (h->plt.refcount > 0)
937 {
938 /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */
939 if (h->got.refcount < 0)
940 h->got.refcount = 0;
941 h->got.refcount += h->plt.refcount;
942 h->plt.refcount = 0;
943 }
944 }
945 else
946 {
947 /* Don't need any dynamic relocations at all. */
948 h->plt.refcount = 0;
949 h->got.refcount = 0;
950 }
951 }
952
953
954 static void
elf_xtensa_hide_symbol(struct bfd_link_info * info,struct elf_link_hash_entry * h,bfd_boolean force_local)955 elf_xtensa_hide_symbol (struct bfd_link_info *info,
956 struct elf_link_hash_entry *h,
957 bfd_boolean force_local)
958 {
959 /* For a shared link, move the plt refcount to the got refcount to leave
960 space for RELATIVE relocs. */
961 elf_xtensa_make_sym_local (info, h);
962
963 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
964 }
965
966
967 /* Return the section that should be marked against GC for a given
968 relocation. */
969
970 static asection *
elf_xtensa_gc_mark_hook(asection * sec,struct bfd_link_info * info ATTRIBUTE_UNUSED,Elf_Internal_Rela * rel,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)971 elf_xtensa_gc_mark_hook (asection *sec,
972 struct bfd_link_info *info ATTRIBUTE_UNUSED,
973 Elf_Internal_Rela *rel,
974 struct elf_link_hash_entry *h,
975 Elf_Internal_Sym *sym)
976 {
977 if (h)
978 {
979 switch (ELF32_R_TYPE (rel->r_info))
980 {
981 case R_XTENSA_GNU_VTINHERIT:
982 case R_XTENSA_GNU_VTENTRY:
983 break;
984
985 default:
986 switch (h->root.type)
987 {
988 case bfd_link_hash_defined:
989 case bfd_link_hash_defweak:
990 return h->root.u.def.section;
991
992 case bfd_link_hash_common:
993 return h->root.u.c.p->section;
994
995 default:
996 break;
997 }
998 }
999 }
1000 else
1001 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1002
1003 return NULL;
1004 }
1005
1006
1007 /* Update the GOT & PLT entry reference counts
1008 for the section being removed. */
1009
1010 static bfd_boolean
elf_xtensa_gc_sweep_hook(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED,asection * sec,const Elf_Internal_Rela * relocs)1011 elf_xtensa_gc_sweep_hook (bfd *abfd,
1012 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1013 asection *sec,
1014 const Elf_Internal_Rela *relocs)
1015 {
1016 Elf_Internal_Shdr *symtab_hdr;
1017 struct elf_link_hash_entry **sym_hashes;
1018 bfd_signed_vma *local_got_refcounts;
1019 const Elf_Internal_Rela *rel, *relend;
1020
1021 if ((sec->flags & SEC_ALLOC) == 0)
1022 return TRUE;
1023
1024 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1025 sym_hashes = elf_sym_hashes (abfd);
1026 local_got_refcounts = elf_local_got_refcounts (abfd);
1027
1028 relend = relocs + sec->reloc_count;
1029 for (rel = relocs; rel < relend; rel++)
1030 {
1031 unsigned long r_symndx;
1032 unsigned int r_type;
1033 struct elf_link_hash_entry *h = NULL;
1034
1035 r_symndx = ELF32_R_SYM (rel->r_info);
1036 if (r_symndx >= symtab_hdr->sh_info)
1037 {
1038 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1039 while (h->root.type == bfd_link_hash_indirect
1040 || h->root.type == bfd_link_hash_warning)
1041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1042 }
1043
1044 r_type = ELF32_R_TYPE (rel->r_info);
1045 switch (r_type)
1046 {
1047 case R_XTENSA_32:
1048 if (h == NULL)
1049 goto local_literal;
1050 if (h->got.refcount > 0)
1051 h->got.refcount--;
1052 break;
1053
1054 case R_XTENSA_PLT:
1055 if (h == NULL)
1056 goto local_literal;
1057 if (h->plt.refcount > 0)
1058 h->plt.refcount--;
1059 break;
1060
1061 local_literal:
1062 if (local_got_refcounts[r_symndx] > 0)
1063 local_got_refcounts[r_symndx] -= 1;
1064 break;
1065
1066 default:
1067 break;
1068 }
1069 }
1070
1071 return TRUE;
1072 }
1073
1074
1075 /* Create all the dynamic sections. */
1076
1077 static bfd_boolean
elf_xtensa_create_dynamic_sections(bfd * dynobj,struct bfd_link_info * info)1078 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1079 {
1080 flagword flags, noalloc_flags;
1081 asection *s;
1082
1083 /* First do all the standard stuff. */
1084 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1085 return FALSE;
1086
1087 /* Create any extra PLT sections in case check_relocs has already
1088 been called on all the non-dynamic input files. */
1089 if (!add_extra_plt_sections (dynobj, plt_reloc_count))
1090 return FALSE;
1091
1092 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1093 | SEC_LINKER_CREATED | SEC_READONLY);
1094 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1095
1096 /* Mark the ".got.plt" section READONLY. */
1097 s = bfd_get_section_by_name (dynobj, ".got.plt");
1098 if (s == NULL
1099 || ! bfd_set_section_flags (dynobj, s, flags))
1100 return FALSE;
1101
1102 /* Create ".rela.got". */
1103 s = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1104 if (s == NULL
1105 || ! bfd_set_section_alignment (dynobj, s, 2))
1106 return FALSE;
1107
1108 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1109 s = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1110 if (s == NULL
1111 || ! bfd_set_section_alignment (dynobj, s, 2))
1112 return FALSE;
1113
1114 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1115 s = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1116 noalloc_flags);
1117 if (s == NULL
1118 || ! bfd_set_section_alignment (dynobj, s, 2))
1119 return FALSE;
1120
1121 return TRUE;
1122 }
1123
1124
1125 static bfd_boolean
add_extra_plt_sections(bfd * dynobj,int count)1126 add_extra_plt_sections (bfd *dynobj, int count)
1127 {
1128 int chunk;
1129
1130 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1131 ".got.plt" sections. */
1132 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1133 {
1134 char *sname;
1135 flagword flags;
1136 asection *s;
1137
1138 /* Stop when we find a section has already been created. */
1139 if (elf_xtensa_get_plt_section (dynobj, chunk))
1140 break;
1141
1142 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1143 | SEC_LINKER_CREATED | SEC_READONLY);
1144
1145 sname = (char *) bfd_malloc (10);
1146 sprintf (sname, ".plt.%u", chunk);
1147 s = bfd_make_section_with_flags (dynobj, sname,
1148 flags | SEC_CODE);
1149 if (s == NULL
1150 || ! bfd_set_section_alignment (dynobj, s, 2))
1151 return FALSE;
1152
1153 sname = (char *) bfd_malloc (14);
1154 sprintf (sname, ".got.plt.%u", chunk);
1155 s = bfd_make_section_with_flags (dynobj, sname, flags);
1156 if (s == NULL
1157 || ! bfd_set_section_alignment (dynobj, s, 2))
1158 return FALSE;
1159 }
1160
1161 return TRUE;
1162 }
1163
1164
1165 /* Adjust a symbol defined by a dynamic object and referenced by a
1166 regular object. The current definition is in some section of the
1167 dynamic object, but we're not including those sections. We have to
1168 change the definition to something the rest of the link can
1169 understand. */
1170
1171 static bfd_boolean
elf_xtensa_adjust_dynamic_symbol(struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf_link_hash_entry * h)1172 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1173 struct elf_link_hash_entry *h)
1174 {
1175 /* If this is a weak symbol, and there is a real definition, the
1176 processor independent code will have arranged for us to see the
1177 real definition first, and we can just use the same value. */
1178 if (h->u.weakdef)
1179 {
1180 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1181 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1182 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1183 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1184 return TRUE;
1185 }
1186
1187 /* This is a reference to a symbol defined by a dynamic object. The
1188 reference must go through the GOT, so there's no need for COPY relocs,
1189 .dynbss, etc. */
1190
1191 return TRUE;
1192 }
1193
1194
1195 static bfd_boolean
elf_xtensa_fix_refcounts(struct elf_link_hash_entry * h,void * arg)1196 elf_xtensa_fix_refcounts (struct elf_link_hash_entry *h, void *arg)
1197 {
1198 struct bfd_link_info *info = (struct bfd_link_info *) arg;
1199
1200 if (h->root.type == bfd_link_hash_warning)
1201 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1202
1203 if (! xtensa_elf_dynamic_symbol_p (h, info))
1204 elf_xtensa_make_sym_local (info, h);
1205
1206 return TRUE;
1207 }
1208
1209
1210 static bfd_boolean
elf_xtensa_allocate_plt_size(struct elf_link_hash_entry * h,void * arg)1211 elf_xtensa_allocate_plt_size (struct elf_link_hash_entry *h, void *arg)
1212 {
1213 asection *srelplt = (asection *) arg;
1214
1215 if (h->root.type == bfd_link_hash_warning)
1216 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1217
1218 if (h->plt.refcount > 0)
1219 srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1220
1221 return TRUE;
1222 }
1223
1224
1225 static bfd_boolean
elf_xtensa_allocate_got_size(struct elf_link_hash_entry * h,void * arg)1226 elf_xtensa_allocate_got_size (struct elf_link_hash_entry *h, void *arg)
1227 {
1228 asection *srelgot = (asection *) arg;
1229
1230 if (h->root.type == bfd_link_hash_warning)
1231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1232
1233 if (h->got.refcount > 0)
1234 srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1235
1236 return TRUE;
1237 }
1238
1239
1240 static void
elf_xtensa_allocate_local_got_size(struct bfd_link_info * info,asection * srelgot)1241 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info,
1242 asection *srelgot)
1243 {
1244 bfd *i;
1245
1246 for (i = info->input_bfds; i; i = i->link_next)
1247 {
1248 bfd_signed_vma *local_got_refcounts;
1249 bfd_size_type j, cnt;
1250 Elf_Internal_Shdr *symtab_hdr;
1251
1252 local_got_refcounts = elf_local_got_refcounts (i);
1253 if (!local_got_refcounts)
1254 continue;
1255
1256 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1257 cnt = symtab_hdr->sh_info;
1258
1259 for (j = 0; j < cnt; ++j)
1260 {
1261 if (local_got_refcounts[j] > 0)
1262 srelgot->size += (local_got_refcounts[j]
1263 * sizeof (Elf32_External_Rela));
1264 }
1265 }
1266 }
1267
1268
1269 /* Set the sizes of the dynamic sections. */
1270
1271 static bfd_boolean
elf_xtensa_size_dynamic_sections(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info)1272 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1273 struct bfd_link_info *info)
1274 {
1275 bfd *dynobj, *abfd;
1276 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1277 bfd_boolean relplt, relgot;
1278 int plt_entries, plt_chunks, chunk;
1279
1280 plt_entries = 0;
1281 plt_chunks = 0;
1282 srelgot = 0;
1283
1284 dynobj = elf_hash_table (info)->dynobj;
1285 if (dynobj == NULL)
1286 abort ();
1287
1288 if (elf_hash_table (info)->dynamic_sections_created)
1289 {
1290 /* Set the contents of the .interp section to the interpreter. */
1291 if (info->executable)
1292 {
1293 s = bfd_get_section_by_name (dynobj, ".interp");
1294 if (s == NULL)
1295 abort ();
1296 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1297 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1298 }
1299
1300 /* Allocate room for one word in ".got". */
1301 s = bfd_get_section_by_name (dynobj, ".got");
1302 if (s == NULL)
1303 abort ();
1304 s->size = 4;
1305
1306 /* Adjust refcounts for symbols that we now know are not "dynamic". */
1307 elf_link_hash_traverse (elf_hash_table (info),
1308 elf_xtensa_fix_refcounts,
1309 (void *) info);
1310
1311 /* Allocate space in ".rela.got" for literals that reference
1312 global symbols. */
1313 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1314 if (srelgot == NULL)
1315 abort ();
1316 elf_link_hash_traverse (elf_hash_table (info),
1317 elf_xtensa_allocate_got_size,
1318 (void *) srelgot);
1319
1320 /* If we are generating a shared object, we also need space in
1321 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1322 reference local symbols. */
1323 if (info->shared)
1324 elf_xtensa_allocate_local_got_size (info, srelgot);
1325
1326 /* Allocate space in ".rela.plt" for literals that have PLT entries. */
1327 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1328 if (srelplt == NULL)
1329 abort ();
1330 elf_link_hash_traverse (elf_hash_table (info),
1331 elf_xtensa_allocate_plt_size,
1332 (void *) srelplt);
1333
1334 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1335 each PLT entry, we need the PLT code plus a 4-byte literal.
1336 For each chunk of ".plt", we also need two more 4-byte
1337 literals, two corresponding entries in ".rela.got", and an
1338 8-byte entry in ".xt.lit.plt". */
1339 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
1340 if (spltlittbl == NULL)
1341 abort ();
1342
1343 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1344 plt_chunks =
1345 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1346
1347 /* Iterate over all the PLT chunks, including any extra sections
1348 created earlier because the initial count of PLT relocations
1349 was an overestimate. */
1350 for (chunk = 0;
1351 (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL;
1352 chunk++)
1353 {
1354 int chunk_entries;
1355
1356 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1357 if (sgotplt == NULL)
1358 abort ();
1359
1360 if (chunk < plt_chunks - 1)
1361 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1362 else if (chunk == plt_chunks - 1)
1363 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1364 else
1365 chunk_entries = 0;
1366
1367 if (chunk_entries != 0)
1368 {
1369 sgotplt->size = 4 * (chunk_entries + 2);
1370 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1371 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1372 spltlittbl->size += 8;
1373 }
1374 else
1375 {
1376 sgotplt->size = 0;
1377 splt->size = 0;
1378 }
1379 }
1380
1381 /* Allocate space in ".got.loc" to match the total size of all the
1382 literal tables. */
1383 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
1384 if (sgotloc == NULL)
1385 abort ();
1386 sgotloc->size = spltlittbl->size;
1387 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1388 {
1389 if (abfd->flags & DYNAMIC)
1390 continue;
1391 for (s = abfd->sections; s != NULL; s = s->next)
1392 {
1393 if (! elf_discarded_section (s)
1394 && xtensa_is_littable_section (s)
1395 && s != spltlittbl)
1396 sgotloc->size += s->size;
1397 }
1398 }
1399 }
1400
1401 /* Allocate memory for dynamic sections. */
1402 relplt = FALSE;
1403 relgot = FALSE;
1404 for (s = dynobj->sections; s != NULL; s = s->next)
1405 {
1406 const char *name;
1407
1408 if ((s->flags & SEC_LINKER_CREATED) == 0)
1409 continue;
1410
1411 /* It's OK to base decisions on the section name, because none
1412 of the dynobj section names depend upon the input files. */
1413 name = bfd_get_section_name (dynobj, s);
1414
1415 if (strncmp (name, ".rela", 5) == 0)
1416 {
1417 if (s->size != 0)
1418 {
1419 if (strcmp (name, ".rela.plt") == 0)
1420 relplt = TRUE;
1421 else if (strcmp (name, ".rela.got") == 0)
1422 relgot = TRUE;
1423
1424 /* We use the reloc_count field as a counter if we need
1425 to copy relocs into the output file. */
1426 s->reloc_count = 0;
1427 }
1428 }
1429 else if (strncmp (name, ".plt.", 5) != 0
1430 && strncmp (name, ".got.plt.", 9) != 0
1431 && strcmp (name, ".got") != 0
1432 && strcmp (name, ".plt") != 0
1433 && strcmp (name, ".got.plt") != 0
1434 && strcmp (name, ".xt.lit.plt") != 0
1435 && strcmp (name, ".got.loc") != 0)
1436 {
1437 /* It's not one of our sections, so don't allocate space. */
1438 continue;
1439 }
1440
1441 if (s->size == 0)
1442 {
1443 /* If we don't need this section, strip it from the output
1444 file. We must create the ".plt*" and ".got.plt*"
1445 sections in create_dynamic_sections and/or check_relocs
1446 based on a conservative estimate of the PLT relocation
1447 count, because the sections must be created before the
1448 linker maps input sections to output sections. The
1449 linker does that before size_dynamic_sections, where we
1450 compute the exact size of the PLT, so there may be more
1451 of these sections than are actually needed. */
1452 s->flags |= SEC_EXCLUDE;
1453 }
1454 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1455 {
1456 /* Allocate memory for the section contents. */
1457 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1458 if (s->contents == NULL)
1459 return FALSE;
1460 }
1461 }
1462
1463 if (elf_hash_table (info)->dynamic_sections_created)
1464 {
1465 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1466 known until finish_dynamic_sections, but we need to get the relocs
1467 in place before they are sorted. */
1468 if (srelgot == NULL)
1469 abort ();
1470 for (chunk = 0; chunk < plt_chunks; chunk++)
1471 {
1472 Elf_Internal_Rela irela;
1473 bfd_byte *loc;
1474
1475 irela.r_offset = 0;
1476 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1477 irela.r_addend = 0;
1478
1479 loc = (srelgot->contents
1480 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1481 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1482 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1483 loc + sizeof (Elf32_External_Rela));
1484 srelgot->reloc_count += 2;
1485 }
1486
1487 /* Add some entries to the .dynamic section. We fill in the
1488 values later, in elf_xtensa_finish_dynamic_sections, but we
1489 must add the entries now so that we get the correct size for
1490 the .dynamic section. The DT_DEBUG entry is filled in by the
1491 dynamic linker and used by the debugger. */
1492 #define add_dynamic_entry(TAG, VAL) \
1493 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1494
1495 if (! info->shared)
1496 {
1497 if (!add_dynamic_entry (DT_DEBUG, 0))
1498 return FALSE;
1499 }
1500
1501 if (relplt)
1502 {
1503 if (!add_dynamic_entry (DT_PLTGOT, 0)
1504 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1505 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1506 || !add_dynamic_entry (DT_JMPREL, 0))
1507 return FALSE;
1508 }
1509
1510 if (relgot)
1511 {
1512 if (!add_dynamic_entry (DT_RELA, 0)
1513 || !add_dynamic_entry (DT_RELASZ, 0)
1514 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1515 return FALSE;
1516 }
1517
1518 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1519 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1520 return FALSE;
1521 }
1522 #undef add_dynamic_entry
1523
1524 return TRUE;
1525 }
1526
1527
1528 /* Remove any PT_LOAD segments with no allocated sections. Prior to
1529 binutils 2.13, this function used to remove the non-SEC_ALLOC
1530 sections from PT_LOAD segments, but that task has now been moved
1531 into elf.c. We still need this function to remove any empty
1532 segments that result, but there's nothing Xtensa-specific about
1533 this and it probably ought to be moved into elf.c as well. */
1534
1535 static bfd_boolean
elf_xtensa_modify_segment_map(bfd * abfd,struct bfd_link_info * info ATTRIBUTE_UNUSED)1536 elf_xtensa_modify_segment_map (bfd *abfd,
1537 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1538 {
1539 struct elf_segment_map **m_p;
1540
1541 m_p = &elf_tdata (abfd)->segment_map;
1542 while (*m_p)
1543 {
1544 if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0)
1545 *m_p = (*m_p)->next;
1546 else
1547 m_p = &(*m_p)->next;
1548 }
1549 return TRUE;
1550 }
1551
1552
1553 /* Perform the specified relocation. The instruction at (contents + address)
1554 is modified to set one operand to represent the value in "relocation". The
1555 operand position is determined by the relocation type recorded in the
1556 howto. */
1557
1558 #define CALL_SEGMENT_BITS (30)
1559 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1560
1561 static bfd_reloc_status_type
elf_xtensa_do_reloc(reloc_howto_type * howto,bfd * abfd,asection * input_section,bfd_vma relocation,bfd_byte * contents,bfd_vma address,bfd_boolean is_weak_undef,char ** error_message)1562 elf_xtensa_do_reloc (reloc_howto_type *howto,
1563 bfd *abfd,
1564 asection *input_section,
1565 bfd_vma relocation,
1566 bfd_byte *contents,
1567 bfd_vma address,
1568 bfd_boolean is_weak_undef,
1569 char **error_message)
1570 {
1571 xtensa_format fmt;
1572 xtensa_opcode opcode;
1573 xtensa_isa isa = xtensa_default_isa;
1574 static xtensa_insnbuf ibuff = NULL;
1575 static xtensa_insnbuf sbuff = NULL;
1576 bfd_vma self_address = 0;
1577 bfd_size_type input_size;
1578 int opnd, slot;
1579 uint32 newval;
1580
1581 if (!ibuff)
1582 {
1583 ibuff = xtensa_insnbuf_alloc (isa);
1584 sbuff = xtensa_insnbuf_alloc (isa);
1585 }
1586
1587 input_size = bfd_get_section_limit (abfd, input_section);
1588
1589 switch (howto->type)
1590 {
1591 case R_XTENSA_NONE:
1592 case R_XTENSA_DIFF8:
1593 case R_XTENSA_DIFF16:
1594 case R_XTENSA_DIFF32:
1595 return bfd_reloc_ok;
1596
1597 case R_XTENSA_ASM_EXPAND:
1598 if (!is_weak_undef)
1599 {
1600 /* Check for windowed CALL across a 1GB boundary. */
1601 xtensa_opcode opcode =
1602 get_expanded_call_opcode (contents + address,
1603 input_size - address, 0);
1604 if (is_windowed_call_opcode (opcode))
1605 {
1606 self_address = (input_section->output_section->vma
1607 + input_section->output_offset
1608 + address);
1609 if ((self_address >> CALL_SEGMENT_BITS)
1610 != (relocation >> CALL_SEGMENT_BITS))
1611 {
1612 *error_message = "windowed longcall crosses 1GB boundary; "
1613 "return may fail";
1614 return bfd_reloc_dangerous;
1615 }
1616 }
1617 }
1618 return bfd_reloc_ok;
1619
1620 case R_XTENSA_ASM_SIMPLIFY:
1621 {
1622 /* Convert the L32R/CALLX to CALL. */
1623 bfd_reloc_status_type retval =
1624 elf_xtensa_do_asm_simplify (contents, address, input_size,
1625 error_message);
1626 if (retval != bfd_reloc_ok)
1627 return bfd_reloc_dangerous;
1628
1629 /* The CALL needs to be relocated. Continue below for that part. */
1630 address += 3;
1631 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1632 }
1633 break;
1634
1635 case R_XTENSA_32:
1636 case R_XTENSA_PLT:
1637 {
1638 bfd_vma x;
1639 x = bfd_get_32 (abfd, contents + address);
1640 x = x + relocation;
1641 bfd_put_32 (abfd, x, contents + address);
1642 }
1643 return bfd_reloc_ok;
1644 }
1645
1646 /* Only instruction slot-specific relocations handled below.... */
1647 slot = get_relocation_slot (howto->type);
1648 if (slot == XTENSA_UNDEFINED)
1649 {
1650 *error_message = "unexpected relocation";
1651 return bfd_reloc_dangerous;
1652 }
1653
1654 /* Read the instruction into a buffer and decode the opcode. */
1655 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1656 input_size - address);
1657 fmt = xtensa_format_decode (isa, ibuff);
1658 if (fmt == XTENSA_UNDEFINED)
1659 {
1660 *error_message = "cannot decode instruction format";
1661 return bfd_reloc_dangerous;
1662 }
1663
1664 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1665
1666 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1667 if (opcode == XTENSA_UNDEFINED)
1668 {
1669 *error_message = "cannot decode instruction opcode";
1670 return bfd_reloc_dangerous;
1671 }
1672
1673 /* Check for opcode-specific "alternate" relocations. */
1674 if (is_alt_relocation (howto->type))
1675 {
1676 if (opcode == get_l32r_opcode ())
1677 {
1678 /* Handle the special-case of non-PC-relative L32R instructions. */
1679 bfd *output_bfd = input_section->output_section->owner;
1680 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1681 if (!lit4_sec)
1682 {
1683 *error_message = "relocation references missing .lit4 section";
1684 return bfd_reloc_dangerous;
1685 }
1686 self_address = ((lit4_sec->vma & ~0xfff)
1687 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1688 newval = relocation;
1689 opnd = 1;
1690 }
1691 else if (opcode == get_const16_opcode ())
1692 {
1693 /* ALT used for high 16 bits. */
1694 newval = relocation >> 16;
1695 opnd = 1;
1696 }
1697 else
1698 {
1699 /* No other "alternate" relocations currently defined. */
1700 *error_message = "unexpected relocation";
1701 return bfd_reloc_dangerous;
1702 }
1703 }
1704 else /* Not an "alternate" relocation.... */
1705 {
1706 if (opcode == get_const16_opcode ())
1707 {
1708 newval = relocation & 0xffff;
1709 opnd = 1;
1710 }
1711 else
1712 {
1713 /* ...normal PC-relative relocation.... */
1714
1715 /* Determine which operand is being relocated. */
1716 opnd = get_relocation_opnd (opcode, howto->type);
1717 if (opnd == XTENSA_UNDEFINED)
1718 {
1719 *error_message = "unexpected relocation";
1720 return bfd_reloc_dangerous;
1721 }
1722
1723 if (!howto->pc_relative)
1724 {
1725 *error_message = "expected PC-relative relocation";
1726 return bfd_reloc_dangerous;
1727 }
1728
1729 /* Calculate the PC address for this instruction. */
1730 self_address = (input_section->output_section->vma
1731 + input_section->output_offset
1732 + address);
1733
1734 newval = relocation;
1735 }
1736 }
1737
1738 /* Apply the relocation. */
1739 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1740 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1741 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1742 sbuff, newval))
1743 {
1744 const char *opname = xtensa_opcode_name (isa, opcode);
1745 const char *msg;
1746
1747 msg = "cannot encode";
1748 if (is_direct_call_opcode (opcode))
1749 {
1750 if ((relocation & 0x3) != 0)
1751 msg = "misaligned call target";
1752 else
1753 msg = "call target out of range";
1754 }
1755 else if (opcode == get_l32r_opcode ())
1756 {
1757 if ((relocation & 0x3) != 0)
1758 msg = "misaligned literal target";
1759 else if (is_alt_relocation (howto->type))
1760 msg = "literal target out of range (too many literals)";
1761 else if (self_address > relocation)
1762 msg = "literal target out of range (try using text-section-literals)";
1763 else
1764 msg = "literal placed after use";
1765 }
1766
1767 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
1768 return bfd_reloc_dangerous;
1769 }
1770
1771 /* Check for calls across 1GB boundaries. */
1772 if (is_direct_call_opcode (opcode)
1773 && is_windowed_call_opcode (opcode))
1774 {
1775 if ((self_address >> CALL_SEGMENT_BITS)
1776 != (relocation >> CALL_SEGMENT_BITS))
1777 {
1778 *error_message =
1779 "windowed call crosses 1GB boundary; return may fail";
1780 return bfd_reloc_dangerous;
1781 }
1782 }
1783
1784 /* Write the modified instruction back out of the buffer. */
1785 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1786 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1787 input_size - address);
1788 return bfd_reloc_ok;
1789 }
1790
1791
1792 static char *
vsprint_msg(const char * origmsg,const char * fmt,int arglen,...)1793 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
1794 {
1795 /* To reduce the size of the memory leak,
1796 we only use a single message buffer. */
1797 static bfd_size_type alloc_size = 0;
1798 static char *message = NULL;
1799 bfd_size_type orig_len, len = 0;
1800 bfd_boolean is_append;
1801
1802 VA_OPEN (ap, arglen);
1803 VA_FIXEDARG (ap, const char *, origmsg);
1804
1805 is_append = (origmsg == message);
1806
1807 orig_len = strlen (origmsg);
1808 len = orig_len + strlen (fmt) + arglen + 20;
1809 if (len > alloc_size)
1810 {
1811 message = (char *) bfd_realloc (message, len);
1812 alloc_size = len;
1813 }
1814 if (!is_append)
1815 memcpy (message, origmsg, orig_len);
1816 vsprintf (message + orig_len, fmt, ap);
1817 VA_CLOSE (ap);
1818 return message;
1819 }
1820
1821
1822 /* This function is registered as the "special_function" in the
1823 Xtensa howto for handling simplify operations.
1824 bfd_perform_relocation / bfd_install_relocation use it to
1825 perform (install) the specified relocation. Since this replaces the code
1826 in bfd_perform_relocation, it is basically an Xtensa-specific,
1827 stripped-down version of bfd_perform_relocation. */
1828
1829 static bfd_reloc_status_type
bfd_elf_xtensa_reloc(bfd * abfd,arelent * reloc_entry,asymbol * symbol,void * data,asection * input_section,bfd * output_bfd,char ** error_message)1830 bfd_elf_xtensa_reloc (bfd *abfd,
1831 arelent *reloc_entry,
1832 asymbol *symbol,
1833 void *data,
1834 asection *input_section,
1835 bfd *output_bfd,
1836 char **error_message)
1837 {
1838 bfd_vma relocation;
1839 bfd_reloc_status_type flag;
1840 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1841 bfd_vma output_base = 0;
1842 reloc_howto_type *howto = reloc_entry->howto;
1843 asection *reloc_target_output_section;
1844 bfd_boolean is_weak_undef;
1845
1846 if (!xtensa_default_isa)
1847 xtensa_default_isa = xtensa_isa_init (0, 0);
1848
1849 /* ELF relocs are against symbols. If we are producing relocatable
1850 output, and the reloc is against an external symbol, the resulting
1851 reloc will also be against the same symbol. In such a case, we
1852 don't want to change anything about the way the reloc is handled,
1853 since it will all be done at final link time. This test is similar
1854 to what bfd_elf_generic_reloc does except that it lets relocs with
1855 howto->partial_inplace go through even if the addend is non-zero.
1856 (The real problem is that partial_inplace is set for XTENSA_32
1857 relocs to begin with, but that's a long story and there's little we
1858 can do about it now....) */
1859
1860 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
1861 {
1862 reloc_entry->address += input_section->output_offset;
1863 return bfd_reloc_ok;
1864 }
1865
1866 /* Is the address of the relocation really within the section? */
1867 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1868 return bfd_reloc_outofrange;
1869
1870 /* Work out which section the relocation is targeted at and the
1871 initial relocation command value. */
1872
1873 /* Get symbol value. (Common symbols are special.) */
1874 if (bfd_is_com_section (symbol->section))
1875 relocation = 0;
1876 else
1877 relocation = symbol->value;
1878
1879 reloc_target_output_section = symbol->section->output_section;
1880
1881 /* Convert input-section-relative symbol value to absolute. */
1882 if ((output_bfd && !howto->partial_inplace)
1883 || reloc_target_output_section == NULL)
1884 output_base = 0;
1885 else
1886 output_base = reloc_target_output_section->vma;
1887
1888 relocation += output_base + symbol->section->output_offset;
1889
1890 /* Add in supplied addend. */
1891 relocation += reloc_entry->addend;
1892
1893 /* Here the variable relocation holds the final address of the
1894 symbol we are relocating against, plus any addend. */
1895 if (output_bfd)
1896 {
1897 if (!howto->partial_inplace)
1898 {
1899 /* This is a partial relocation, and we want to apply the relocation
1900 to the reloc entry rather than the raw data. Everything except
1901 relocations against section symbols has already been handled
1902 above. */
1903
1904 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1905 reloc_entry->addend = relocation;
1906 reloc_entry->address += input_section->output_offset;
1907 return bfd_reloc_ok;
1908 }
1909 else
1910 {
1911 reloc_entry->address += input_section->output_offset;
1912 reloc_entry->addend = 0;
1913 }
1914 }
1915
1916 is_weak_undef = (bfd_is_und_section (symbol->section)
1917 && (symbol->flags & BSF_WEAK) != 0);
1918 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1919 (bfd_byte *) data, (bfd_vma) octets,
1920 is_weak_undef, error_message);
1921
1922 if (flag == bfd_reloc_dangerous)
1923 {
1924 /* Add the symbol name to the error message. */
1925 if (! *error_message)
1926 *error_message = "";
1927 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1928 strlen (symbol->name) + 17,
1929 symbol->name,
1930 (unsigned long) reloc_entry->addend);
1931 }
1932
1933 return flag;
1934 }
1935
1936
1937 /* Set up an entry in the procedure linkage table. */
1938
1939 static bfd_vma
elf_xtensa_create_plt_entry(bfd * dynobj,bfd * output_bfd,unsigned reloc_index)1940 elf_xtensa_create_plt_entry (bfd *dynobj,
1941 bfd *output_bfd,
1942 unsigned reloc_index)
1943 {
1944 asection *splt, *sgotplt;
1945 bfd_vma plt_base, got_base;
1946 bfd_vma code_offset, lit_offset;
1947 int chunk;
1948
1949 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1950 splt = elf_xtensa_get_plt_section (dynobj, chunk);
1951 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
1952 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1953
1954 plt_base = splt->output_section->vma + splt->output_offset;
1955 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1956
1957 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1958 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1959
1960 /* Fill in the literal entry. This is the offset of the dynamic
1961 relocation entry. */
1962 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1963 sgotplt->contents + lit_offset);
1964
1965 /* Fill in the entry in the procedure linkage table. */
1966 memcpy (splt->contents + code_offset,
1967 (bfd_big_endian (output_bfd)
1968 ? elf_xtensa_be_plt_entry
1969 : elf_xtensa_le_plt_entry),
1970 PLT_ENTRY_SIZE);
1971 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1972 plt_base + code_offset + 3),
1973 splt->contents + code_offset + 4);
1974 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1975 plt_base + code_offset + 6),
1976 splt->contents + code_offset + 7);
1977 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1978 plt_base + code_offset + 9),
1979 splt->contents + code_offset + 10);
1980
1981 return plt_base + code_offset;
1982 }
1983
1984
1985 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1986 both relocatable and final links. */
1987
1988 static bfd_boolean
elf_xtensa_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,Elf_Internal_Rela * relocs,Elf_Internal_Sym * local_syms,asection ** local_sections)1989 elf_xtensa_relocate_section (bfd *output_bfd,
1990 struct bfd_link_info *info,
1991 bfd *input_bfd,
1992 asection *input_section,
1993 bfd_byte *contents,
1994 Elf_Internal_Rela *relocs,
1995 Elf_Internal_Sym *local_syms,
1996 asection **local_sections)
1997 {
1998 Elf_Internal_Shdr *symtab_hdr;
1999 Elf_Internal_Rela *rel;
2000 Elf_Internal_Rela *relend;
2001 struct elf_link_hash_entry **sym_hashes;
2002 asection *srelgot, *srelplt;
2003 bfd *dynobj;
2004 property_table_entry *lit_table = 0;
2005 int ltblsize = 0;
2006 char *error_message = NULL;
2007 bfd_size_type input_size;
2008
2009 if (!xtensa_default_isa)
2010 xtensa_default_isa = xtensa_isa_init (0, 0);
2011
2012 dynobj = elf_hash_table (info)->dynobj;
2013 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2014 sym_hashes = elf_sym_hashes (input_bfd);
2015
2016 srelgot = NULL;
2017 srelplt = NULL;
2018 if (dynobj)
2019 {
2020 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2021 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2022 }
2023
2024 if (elf_hash_table (info)->dynamic_sections_created)
2025 {
2026 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2027 &lit_table, XTENSA_LIT_SEC_NAME,
2028 TRUE);
2029 if (ltblsize < 0)
2030 return FALSE;
2031 }
2032
2033 input_size = bfd_get_section_limit (input_bfd, input_section);
2034
2035 rel = relocs;
2036 relend = relocs + input_section->reloc_count;
2037 for (; rel < relend; rel++)
2038 {
2039 int r_type;
2040 reloc_howto_type *howto;
2041 unsigned long r_symndx;
2042 struct elf_link_hash_entry *h;
2043 Elf_Internal_Sym *sym;
2044 asection *sec;
2045 bfd_vma relocation;
2046 bfd_reloc_status_type r;
2047 bfd_boolean is_weak_undef;
2048 bfd_boolean unresolved_reloc;
2049 bfd_boolean warned;
2050
2051 r_type = ELF32_R_TYPE (rel->r_info);
2052 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2053 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2054 continue;
2055
2056 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2057 {
2058 bfd_set_error (bfd_error_bad_value);
2059 return FALSE;
2060 }
2061 howto = &elf_howto_table[r_type];
2062
2063 r_symndx = ELF32_R_SYM (rel->r_info);
2064
2065 if (info->relocatable)
2066 {
2067 /* This is a relocatable link.
2068 1) If the reloc is against a section symbol, adjust
2069 according to the output section.
2070 2) If there is a new target for this relocation,
2071 the new target will be in the same output section.
2072 We adjust the relocation by the output section
2073 difference. */
2074
2075 if (relaxing_section)
2076 {
2077 /* Check if this references a section in another input file. */
2078 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2079 contents))
2080 return FALSE;
2081 r_type = ELF32_R_TYPE (rel->r_info);
2082 }
2083
2084 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2085 {
2086 char *error_message = NULL;
2087 /* Convert ASM_SIMPLIFY into the simpler relocation
2088 so that they never escape a relaxing link. */
2089 r = contract_asm_expansion (contents, input_size, rel,
2090 &error_message);
2091 if (r != bfd_reloc_ok)
2092 {
2093 if (!((*info->callbacks->reloc_dangerous)
2094 (info, error_message, input_bfd, input_section,
2095 rel->r_offset)))
2096 return FALSE;
2097 }
2098 r_type = ELF32_R_TYPE (rel->r_info);
2099 }
2100
2101 /* This is a relocatable link, so we don't have to change
2102 anything unless the reloc is against a section symbol,
2103 in which case we have to adjust according to where the
2104 section symbol winds up in the output section. */
2105 if (r_symndx < symtab_hdr->sh_info)
2106 {
2107 sym = local_syms + r_symndx;
2108 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2109 {
2110 sec = local_sections[r_symndx];
2111 rel->r_addend += sec->output_offset + sym->st_value;
2112 }
2113 }
2114
2115 /* If there is an addend with a partial_inplace howto,
2116 then move the addend to the contents. This is a hack
2117 to work around problems with DWARF in relocatable links
2118 with some previous version of BFD. Now we can't easily get
2119 rid of the hack without breaking backward compatibility.... */
2120 if (rel->r_addend)
2121 {
2122 howto = &elf_howto_table[r_type];
2123 if (howto->partial_inplace)
2124 {
2125 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2126 rel->r_addend, contents,
2127 rel->r_offset, FALSE,
2128 &error_message);
2129 if (r != bfd_reloc_ok)
2130 {
2131 if (!((*info->callbacks->reloc_dangerous)
2132 (info, error_message, input_bfd, input_section,
2133 rel->r_offset)))
2134 return FALSE;
2135 }
2136 rel->r_addend = 0;
2137 }
2138 }
2139
2140 /* Done with work for relocatable link; continue with next reloc. */
2141 continue;
2142 }
2143
2144 /* This is a final link. */
2145
2146 h = NULL;
2147 sym = NULL;
2148 sec = NULL;
2149 is_weak_undef = FALSE;
2150 unresolved_reloc = FALSE;
2151 warned = FALSE;
2152
2153 if (howto->partial_inplace)
2154 {
2155 /* Because R_XTENSA_32 was made partial_inplace to fix some
2156 problems with DWARF info in partial links, there may be
2157 an addend stored in the contents. Take it out of there
2158 and move it back into the addend field of the reloc. */
2159 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2160 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2161 }
2162
2163 if (r_symndx < symtab_hdr->sh_info)
2164 {
2165 sym = local_syms + r_symndx;
2166 sec = local_sections[r_symndx];
2167 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2168 }
2169 else
2170 {
2171 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2172 r_symndx, symtab_hdr, sym_hashes,
2173 h, sec, relocation,
2174 unresolved_reloc, warned);
2175
2176 if (relocation == 0
2177 && !unresolved_reloc
2178 && h->root.type == bfd_link_hash_undefweak)
2179 is_weak_undef = TRUE;
2180 }
2181
2182 if (relaxing_section)
2183 {
2184 /* Check if this references a section in another input file. */
2185 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2186 &relocation);
2187
2188 /* Update some already cached values. */
2189 r_type = ELF32_R_TYPE (rel->r_info);
2190 howto = &elf_howto_table[r_type];
2191 }
2192
2193 /* Sanity check the address. */
2194 if (rel->r_offset >= input_size
2195 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2196 {
2197 (*_bfd_error_handler)
2198 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2199 input_bfd, input_section, rel->r_offset, input_size);
2200 bfd_set_error (bfd_error_bad_value);
2201 return FALSE;
2202 }
2203
2204 /* Generate dynamic relocations. */
2205 if (elf_hash_table (info)->dynamic_sections_created)
2206 {
2207 bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
2208
2209 if (dynamic_symbol && is_operand_relocation (r_type))
2210 {
2211 /* This is an error. The symbol's real value won't be known
2212 until runtime and it's likely to be out of range anyway. */
2213 const char *name = h->root.root.string;
2214 error_message = vsprint_msg ("invalid relocation for dynamic "
2215 "symbol", ": %s",
2216 strlen (name) + 2, name);
2217 if (!((*info->callbacks->reloc_dangerous)
2218 (info, error_message, input_bfd, input_section,
2219 rel->r_offset)))
2220 return FALSE;
2221 }
2222 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2223 && (input_section->flags & SEC_ALLOC) != 0
2224 && (dynamic_symbol || info->shared))
2225 {
2226 Elf_Internal_Rela outrel;
2227 bfd_byte *loc;
2228 asection *srel;
2229
2230 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2231 srel = srelplt;
2232 else
2233 srel = srelgot;
2234
2235 BFD_ASSERT (srel != NULL);
2236
2237 outrel.r_offset =
2238 _bfd_elf_section_offset (output_bfd, info,
2239 input_section, rel->r_offset);
2240
2241 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2242 memset (&outrel, 0, sizeof outrel);
2243 else
2244 {
2245 outrel.r_offset += (input_section->output_section->vma
2246 + input_section->output_offset);
2247
2248 /* Complain if the relocation is in a read-only section
2249 and not in a literal pool. */
2250 if ((input_section->flags & SEC_READONLY) != 0
2251 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2252 outrel.r_offset))
2253 {
2254 error_message =
2255 _("dynamic relocation in read-only section");
2256 if (!((*info->callbacks->reloc_dangerous)
2257 (info, error_message, input_bfd, input_section,
2258 rel->r_offset)))
2259 return FALSE;
2260 }
2261
2262 if (dynamic_symbol)
2263 {
2264 outrel.r_addend = rel->r_addend;
2265 rel->r_addend = 0;
2266
2267 if (r_type == R_XTENSA_32)
2268 {
2269 outrel.r_info =
2270 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2271 relocation = 0;
2272 }
2273 else /* r_type == R_XTENSA_PLT */
2274 {
2275 outrel.r_info =
2276 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2277
2278 /* Create the PLT entry and set the initial
2279 contents of the literal entry to the address of
2280 the PLT entry. */
2281 relocation =
2282 elf_xtensa_create_plt_entry (dynobj, output_bfd,
2283 srel->reloc_count);
2284 }
2285 unresolved_reloc = FALSE;
2286 }
2287 else
2288 {
2289 /* Generate a RELATIVE relocation. */
2290 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2291 outrel.r_addend = 0;
2292 }
2293 }
2294
2295 loc = (srel->contents
2296 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2297 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2298 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2299 <= srel->size);
2300 }
2301 }
2302
2303 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2304 because such sections are not SEC_ALLOC and thus ld.so will
2305 not process them. */
2306 if (unresolved_reloc
2307 && !((input_section->flags & SEC_DEBUGGING) != 0
2308 && h->def_dynamic))
2309 (*_bfd_error_handler)
2310 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2311 input_bfd,
2312 input_section,
2313 (long) rel->r_offset,
2314 howto->name,
2315 h->root.root.string);
2316
2317 /* There's no point in calling bfd_perform_relocation here.
2318 Just go directly to our "special function". */
2319 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2320 relocation + rel->r_addend,
2321 contents, rel->r_offset, is_weak_undef,
2322 &error_message);
2323
2324 if (r != bfd_reloc_ok && !warned)
2325 {
2326 const char *name;
2327
2328 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2329 BFD_ASSERT (error_message != NULL);
2330
2331 if (h)
2332 name = h->root.root.string;
2333 else
2334 {
2335 name = bfd_elf_string_from_elf_section
2336 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2337 if (name && *name == '\0')
2338 name = bfd_section_name (input_bfd, sec);
2339 }
2340 if (name)
2341 {
2342 if (rel->r_addend == 0)
2343 error_message = vsprint_msg (error_message, ": %s",
2344 strlen (name) + 2, name);
2345 else
2346 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2347 strlen (name) + 22,
2348 name, (int)rel->r_addend);
2349 }
2350
2351 if (!((*info->callbacks->reloc_dangerous)
2352 (info, error_message, input_bfd, input_section,
2353 rel->r_offset)))
2354 return FALSE;
2355 }
2356 }
2357
2358 if (lit_table)
2359 free (lit_table);
2360
2361 input_section->reloc_done = TRUE;
2362
2363 return TRUE;
2364 }
2365
2366
2367 /* Finish up dynamic symbol handling. There's not much to do here since
2368 the PLT and GOT entries are all set up by relocate_section. */
2369
2370 static bfd_boolean
elf_xtensa_finish_dynamic_symbol(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info ATTRIBUTE_UNUSED,struct elf_link_hash_entry * h,Elf_Internal_Sym * sym)2371 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2372 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2373 struct elf_link_hash_entry *h,
2374 Elf_Internal_Sym *sym)
2375 {
2376 if (h->needs_plt
2377 && !h->def_regular)
2378 {
2379 /* Mark the symbol as undefined, rather than as defined in
2380 the .plt section. Leave the value alone. */
2381 sym->st_shndx = SHN_UNDEF;
2382 }
2383
2384 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2385 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2386 || h == elf_hash_table (info)->hgot)
2387 sym->st_shndx = SHN_ABS;
2388
2389 return TRUE;
2390 }
2391
2392
2393 /* Combine adjacent literal table entries in the output. Adjacent
2394 entries within each input section may have been removed during
2395 relaxation, but we repeat the process here, even though it's too late
2396 to shrink the output section, because it's important to minimize the
2397 number of literal table entries to reduce the start-up work for the
2398 runtime linker. Returns the number of remaining table entries or -1
2399 on error. */
2400
2401 static int
elf_xtensa_combine_prop_entries(bfd * output_bfd,asection * sxtlit,asection * sgotloc)2402 elf_xtensa_combine_prop_entries (bfd *output_bfd,
2403 asection *sxtlit,
2404 asection *sgotloc)
2405 {
2406 bfd_byte *contents;
2407 property_table_entry *table;
2408 bfd_size_type section_size, sgotloc_size;
2409 bfd_vma offset;
2410 int n, m, num;
2411
2412 section_size = sxtlit->size;
2413 BFD_ASSERT (section_size % 8 == 0);
2414 num = section_size / 8;
2415
2416 sgotloc_size = sgotloc->size;
2417 if (sgotloc_size != section_size)
2418 {
2419 (*_bfd_error_handler)
2420 (_("internal inconsistency in size of .got.loc section"));
2421 return -1;
2422 }
2423
2424 table = bfd_malloc (num * sizeof (property_table_entry));
2425 if (table == 0)
2426 return -1;
2427
2428 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2429 propagates to the output section, where it doesn't really apply and
2430 where it breaks the following call to bfd_malloc_and_get_section. */
2431 sxtlit->flags &= ~SEC_IN_MEMORY;
2432
2433 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2434 {
2435 if (contents != 0)
2436 free (contents);
2437 free (table);
2438 return -1;
2439 }
2440
2441 /* There should never be any relocations left at this point, so this
2442 is quite a bit easier than what is done during relaxation. */
2443
2444 /* Copy the raw contents into a property table array and sort it. */
2445 offset = 0;
2446 for (n = 0; n < num; n++)
2447 {
2448 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2449 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2450 offset += 8;
2451 }
2452 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2453
2454 for (n = 0; n < num; n++)
2455 {
2456 bfd_boolean remove = FALSE;
2457
2458 if (table[n].size == 0)
2459 remove = TRUE;
2460 else if (n > 0 &&
2461 (table[n-1].address + table[n-1].size == table[n].address))
2462 {
2463 table[n-1].size += table[n].size;
2464 remove = TRUE;
2465 }
2466
2467 if (remove)
2468 {
2469 for (m = n; m < num - 1; m++)
2470 {
2471 table[m].address = table[m+1].address;
2472 table[m].size = table[m+1].size;
2473 }
2474
2475 n--;
2476 num--;
2477 }
2478 }
2479
2480 /* Copy the data back to the raw contents. */
2481 offset = 0;
2482 for (n = 0; n < num; n++)
2483 {
2484 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2485 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2486 offset += 8;
2487 }
2488
2489 /* Clear the removed bytes. */
2490 if ((bfd_size_type) (num * 8) < section_size)
2491 memset (&contents[num * 8], 0, section_size - num * 8);
2492
2493 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2494 section_size))
2495 return -1;
2496
2497 /* Copy the contents to ".got.loc". */
2498 memcpy (sgotloc->contents, contents, section_size);
2499
2500 free (contents);
2501 free (table);
2502 return num;
2503 }
2504
2505
2506 /* Finish up the dynamic sections. */
2507
2508 static bfd_boolean
elf_xtensa_finish_dynamic_sections(bfd * output_bfd,struct bfd_link_info * info)2509 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2510 struct bfd_link_info *info)
2511 {
2512 bfd *dynobj;
2513 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
2514 Elf32_External_Dyn *dyncon, *dynconend;
2515 int num_xtlit_entries;
2516
2517 if (! elf_hash_table (info)->dynamic_sections_created)
2518 return TRUE;
2519
2520 dynobj = elf_hash_table (info)->dynobj;
2521 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2522 BFD_ASSERT (sdyn != NULL);
2523
2524 /* Set the first entry in the global offset table to the address of
2525 the dynamic section. */
2526 sgot = bfd_get_section_by_name (dynobj, ".got");
2527 if (sgot)
2528 {
2529 BFD_ASSERT (sgot->size == 4);
2530 if (sdyn == NULL)
2531 bfd_put_32 (output_bfd, 0, sgot->contents);
2532 else
2533 bfd_put_32 (output_bfd,
2534 sdyn->output_section->vma + sdyn->output_offset,
2535 sgot->contents);
2536 }
2537
2538 srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
2539 if (srelplt && srelplt->size != 0)
2540 {
2541 asection *sgotplt, *srelgot, *spltlittbl;
2542 int chunk, plt_chunks, plt_entries;
2543 Elf_Internal_Rela irela;
2544 bfd_byte *loc;
2545 unsigned rtld_reloc;
2546
2547 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");;
2548 BFD_ASSERT (srelgot != NULL);
2549
2550 spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt");
2551 BFD_ASSERT (spltlittbl != NULL);
2552
2553 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2554 of them follow immediately after.... */
2555 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2556 {
2557 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2558 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2559 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2560 break;
2561 }
2562 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2563
2564 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
2565 plt_chunks =
2566 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2567
2568 for (chunk = 0; chunk < plt_chunks; chunk++)
2569 {
2570 int chunk_entries = 0;
2571
2572 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
2573 BFD_ASSERT (sgotplt != NULL);
2574
2575 /* Emit special RTLD relocations for the first two entries in
2576 each chunk of the .got.plt section. */
2577
2578 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2579 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2580 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2581 irela.r_offset = (sgotplt->output_section->vma
2582 + sgotplt->output_offset);
2583 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2584 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2585 rtld_reloc += 1;
2586 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2587
2588 /* Next literal immediately follows the first. */
2589 loc += sizeof (Elf32_External_Rela);
2590 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2591 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2592 irela.r_offset = (sgotplt->output_section->vma
2593 + sgotplt->output_offset + 4);
2594 /* Tell rtld to set value to object's link map. */
2595 irela.r_addend = 2;
2596 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2597 rtld_reloc += 1;
2598 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2599
2600 /* Fill in the literal table. */
2601 if (chunk < plt_chunks - 1)
2602 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2603 else
2604 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2605
2606 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
2607 bfd_put_32 (output_bfd,
2608 sgotplt->output_section->vma + sgotplt->output_offset,
2609 spltlittbl->contents + (chunk * 8) + 0);
2610 bfd_put_32 (output_bfd,
2611 8 + (chunk_entries * 4),
2612 spltlittbl->contents + (chunk * 8) + 4);
2613 }
2614
2615 /* All the dynamic relocations have been emitted at this point.
2616 Make sure the relocation sections are the correct size. */
2617 if (srelgot->size != (sizeof (Elf32_External_Rela)
2618 * srelgot->reloc_count)
2619 || srelplt->size != (sizeof (Elf32_External_Rela)
2620 * srelplt->reloc_count))
2621 abort ();
2622
2623 /* The .xt.lit.plt section has just been modified. This must
2624 happen before the code below which combines adjacent literal
2625 table entries, and the .xt.lit.plt contents have to be forced to
2626 the output here. */
2627 if (! bfd_set_section_contents (output_bfd,
2628 spltlittbl->output_section,
2629 spltlittbl->contents,
2630 spltlittbl->output_offset,
2631 spltlittbl->size))
2632 return FALSE;
2633 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2634 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2635 }
2636
2637 /* Combine adjacent literal table entries. */
2638 BFD_ASSERT (! info->relocatable);
2639 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2640 sgotloc = bfd_get_section_by_name (dynobj, ".got.loc");
2641 BFD_ASSERT (sxtlit && sgotloc);
2642 num_xtlit_entries =
2643 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2644 if (num_xtlit_entries < 0)
2645 return FALSE;
2646
2647 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2648 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
2649 for (; dyncon < dynconend; dyncon++)
2650 {
2651 Elf_Internal_Dyn dyn;
2652 const char *name;
2653 asection *s;
2654
2655 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2656
2657 switch (dyn.d_tag)
2658 {
2659 default:
2660 break;
2661
2662 case DT_XTENSA_GOT_LOC_SZ:
2663 dyn.d_un.d_val = num_xtlit_entries;
2664 break;
2665
2666 case DT_XTENSA_GOT_LOC_OFF:
2667 name = ".got.loc";
2668 goto get_vma;
2669 case DT_PLTGOT:
2670 name = ".got";
2671 goto get_vma;
2672 case DT_JMPREL:
2673 name = ".rela.plt";
2674 get_vma:
2675 s = bfd_get_section_by_name (output_bfd, name);
2676 BFD_ASSERT (s);
2677 dyn.d_un.d_ptr = s->vma;
2678 break;
2679
2680 case DT_PLTRELSZ:
2681 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2682 BFD_ASSERT (s);
2683 dyn.d_un.d_val = s->size;
2684 break;
2685
2686 case DT_RELASZ:
2687 /* Adjust RELASZ to not include JMPREL. This matches what
2688 glibc expects and what is done for several other ELF
2689 targets (e.g., i386, alpha), but the "correct" behavior
2690 seems to be unresolved. Since the linker script arranges
2691 for .rela.plt to follow all other relocation sections, we
2692 don't have to worry about changing the DT_RELA entry. */
2693 s = bfd_get_section_by_name (output_bfd, ".rela.plt");
2694 if (s)
2695 dyn.d_un.d_val -= s->size;
2696 break;
2697 }
2698
2699 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2700 }
2701
2702 return TRUE;
2703 }
2704
2705
2706 /* Functions for dealing with the e_flags field. */
2707
2708 /* Merge backend specific data from an object file to the output
2709 object file when linking. */
2710
2711 static bfd_boolean
elf_xtensa_merge_private_bfd_data(bfd * ibfd,bfd * obfd)2712 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2713 {
2714 unsigned out_mach, in_mach;
2715 flagword out_flag, in_flag;
2716
2717 /* Check if we have the same endianess. */
2718 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2719 return FALSE;
2720
2721 /* Don't even pretend to support mixed-format linking. */
2722 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2723 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2724 return FALSE;
2725
2726 out_flag = elf_elfheader (obfd)->e_flags;
2727 in_flag = elf_elfheader (ibfd)->e_flags;
2728
2729 out_mach = out_flag & EF_XTENSA_MACH;
2730 in_mach = in_flag & EF_XTENSA_MACH;
2731 if (out_mach != in_mach)
2732 {
2733 (*_bfd_error_handler)
2734 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2735 ibfd, out_mach, in_mach);
2736 bfd_set_error (bfd_error_wrong_format);
2737 return FALSE;
2738 }
2739
2740 if (! elf_flags_init (obfd))
2741 {
2742 elf_flags_init (obfd) = TRUE;
2743 elf_elfheader (obfd)->e_flags = in_flag;
2744
2745 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2746 && bfd_get_arch_info (obfd)->the_default)
2747 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2748 bfd_get_mach (ibfd));
2749
2750 return TRUE;
2751 }
2752
2753 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2754 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
2755
2756 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2757 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
2758
2759 return TRUE;
2760 }
2761
2762
2763 static bfd_boolean
elf_xtensa_set_private_flags(bfd * abfd,flagword flags)2764 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
2765 {
2766 BFD_ASSERT (!elf_flags_init (abfd)
2767 || elf_elfheader (abfd)->e_flags == flags);
2768
2769 elf_elfheader (abfd)->e_flags |= flags;
2770 elf_flags_init (abfd) = TRUE;
2771
2772 return TRUE;
2773 }
2774
2775
2776 static bfd_boolean
elf_xtensa_print_private_bfd_data(bfd * abfd,void * farg)2777 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
2778 {
2779 FILE *f = (FILE *) farg;
2780 flagword e_flags = elf_elfheader (abfd)->e_flags;
2781
2782 fprintf (f, "\nXtensa header:\n");
2783 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
2784 fprintf (f, "\nMachine = Base\n");
2785 else
2786 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2787
2788 fprintf (f, "Insn tables = %s\n",
2789 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2790
2791 fprintf (f, "Literal tables = %s\n",
2792 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2793
2794 return _bfd_elf_print_private_bfd_data (abfd, farg);
2795 }
2796
2797
2798 /* Set the right machine number for an Xtensa ELF file. */
2799
2800 static bfd_boolean
elf_xtensa_object_p(bfd * abfd)2801 elf_xtensa_object_p (bfd *abfd)
2802 {
2803 int mach;
2804 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2805
2806 switch (arch)
2807 {
2808 case E_XTENSA_MACH:
2809 mach = bfd_mach_xtensa;
2810 break;
2811 default:
2812 return FALSE;
2813 }
2814
2815 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2816 return TRUE;
2817 }
2818
2819
2820 /* The final processing done just before writing out an Xtensa ELF object
2821 file. This gets the Xtensa architecture right based on the machine
2822 number. */
2823
2824 static void
elf_xtensa_final_write_processing(bfd * abfd,bfd_boolean linker ATTRIBUTE_UNUSED)2825 elf_xtensa_final_write_processing (bfd *abfd,
2826 bfd_boolean linker ATTRIBUTE_UNUSED)
2827 {
2828 int mach;
2829 unsigned long val;
2830
2831 switch (mach = bfd_get_mach (abfd))
2832 {
2833 case bfd_mach_xtensa:
2834 val = E_XTENSA_MACH;
2835 break;
2836 default:
2837 return;
2838 }
2839
2840 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2841 elf_elfheader (abfd)->e_flags |= val;
2842 }
2843
2844
2845 static enum elf_reloc_type_class
elf_xtensa_reloc_type_class(const Elf_Internal_Rela * rela)2846 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
2847 {
2848 switch ((int) ELF32_R_TYPE (rela->r_info))
2849 {
2850 case R_XTENSA_RELATIVE:
2851 return reloc_class_relative;
2852 case R_XTENSA_JMP_SLOT:
2853 return reloc_class_plt;
2854 default:
2855 return reloc_class_normal;
2856 }
2857 }
2858
2859
2860 static bfd_boolean
elf_xtensa_discard_info_for_section(bfd * abfd,struct elf_reloc_cookie * cookie,struct bfd_link_info * info,asection * sec)2861 elf_xtensa_discard_info_for_section (bfd *abfd,
2862 struct elf_reloc_cookie *cookie,
2863 struct bfd_link_info *info,
2864 asection *sec)
2865 {
2866 bfd_byte *contents;
2867 bfd_vma section_size;
2868 bfd_vma offset, actual_offset;
2869 size_t removed_bytes = 0;
2870
2871 section_size = sec->size;
2872 if (section_size == 0 || section_size % 8 != 0)
2873 return FALSE;
2874
2875 if (sec->output_section
2876 && bfd_is_abs_section (sec->output_section))
2877 return FALSE;
2878
2879 contents = retrieve_contents (abfd, sec, info->keep_memory);
2880 if (!contents)
2881 return FALSE;
2882
2883 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2884 if (!cookie->rels)
2885 {
2886 release_contents (sec, contents);
2887 return FALSE;
2888 }
2889
2890 cookie->rel = cookie->rels;
2891 cookie->relend = cookie->rels + sec->reloc_count;
2892
2893 for (offset = 0; offset < section_size; offset += 8)
2894 {
2895 actual_offset = offset - removed_bytes;
2896
2897 /* The ...symbol_deleted_p function will skip over relocs but it
2898 won't adjust their offsets, so do that here. */
2899 while (cookie->rel < cookie->relend
2900 && cookie->rel->r_offset < offset)
2901 {
2902 cookie->rel->r_offset -= removed_bytes;
2903 cookie->rel++;
2904 }
2905
2906 while (cookie->rel < cookie->relend
2907 && cookie->rel->r_offset == offset)
2908 {
2909 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
2910 {
2911 /* Remove the table entry. (If the reloc type is NONE, then
2912 the entry has already been merged with another and deleted
2913 during relaxation.) */
2914 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2915 {
2916 /* Shift the contents up. */
2917 if (offset + 8 < section_size)
2918 memmove (&contents[actual_offset],
2919 &contents[actual_offset+8],
2920 section_size - offset - 8);
2921 removed_bytes += 8;
2922 }
2923
2924 /* Remove this relocation. */
2925 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2926 }
2927
2928 /* Adjust the relocation offset for previous removals. This
2929 should not be done before calling ...symbol_deleted_p
2930 because it might mess up the offset comparisons there.
2931 Make sure the offset doesn't underflow in the case where
2932 the first entry is removed. */
2933 if (cookie->rel->r_offset >= removed_bytes)
2934 cookie->rel->r_offset -= removed_bytes;
2935 else
2936 cookie->rel->r_offset = 0;
2937
2938 cookie->rel++;
2939 }
2940 }
2941
2942 if (removed_bytes != 0)
2943 {
2944 /* Adjust any remaining relocs (shouldn't be any). */
2945 for (; cookie->rel < cookie->relend; cookie->rel++)
2946 {
2947 if (cookie->rel->r_offset >= removed_bytes)
2948 cookie->rel->r_offset -= removed_bytes;
2949 else
2950 cookie->rel->r_offset = 0;
2951 }
2952
2953 /* Clear the removed bytes. */
2954 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2955
2956 pin_contents (sec, contents);
2957 pin_internal_relocs (sec, cookie->rels);
2958
2959 /* Shrink size. */
2960 sec->size = section_size - removed_bytes;
2961
2962 if (xtensa_is_littable_section (sec))
2963 {
2964 bfd *dynobj = elf_hash_table (info)->dynobj;
2965 if (dynobj)
2966 {
2967 asection *sgotloc =
2968 bfd_get_section_by_name (dynobj, ".got.loc");
2969 if (sgotloc)
2970 sgotloc->size -= removed_bytes;
2971 }
2972 }
2973 }
2974 else
2975 {
2976 release_contents (sec, contents);
2977 release_internal_relocs (sec, cookie->rels);
2978 }
2979
2980 return (removed_bytes != 0);
2981 }
2982
2983
2984 static bfd_boolean
elf_xtensa_discard_info(bfd * abfd,struct elf_reloc_cookie * cookie,struct bfd_link_info * info)2985 elf_xtensa_discard_info (bfd *abfd,
2986 struct elf_reloc_cookie *cookie,
2987 struct bfd_link_info *info)
2988 {
2989 asection *sec;
2990 bfd_boolean changed = FALSE;
2991
2992 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2993 {
2994 if (xtensa_is_property_section (sec))
2995 {
2996 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2997 changed = TRUE;
2998 }
2999 }
3000
3001 return changed;
3002 }
3003
3004
3005 static bfd_boolean
elf_xtensa_ignore_discarded_relocs(asection * sec)3006 elf_xtensa_ignore_discarded_relocs (asection *sec)
3007 {
3008 return xtensa_is_property_section (sec);
3009 }
3010
3011
3012 /* Support for core dump NOTE sections. */
3013
3014 static bfd_boolean
elf_xtensa_grok_prstatus(bfd * abfd,Elf_Internal_Note * note)3015 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3016 {
3017 int offset;
3018 unsigned int size;
3019
3020 /* The size for Xtensa is variable, so don't try to recognize the format
3021 based on the size. Just assume this is GNU/Linux. */
3022
3023 /* pr_cursig */
3024 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3025
3026 /* pr_pid */
3027 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3028
3029 /* pr_reg */
3030 offset = 72;
3031 size = note->descsz - offset - 4;
3032
3033 /* Make a ".reg/999" section. */
3034 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3035 size, note->descpos + offset);
3036 }
3037
3038
3039 static bfd_boolean
elf_xtensa_grok_psinfo(bfd * abfd,Elf_Internal_Note * note)3040 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3041 {
3042 switch (note->descsz)
3043 {
3044 default:
3045 return FALSE;
3046
3047 case 128: /* GNU/Linux elf_prpsinfo */
3048 elf_tdata (abfd)->core_program
3049 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3050 elf_tdata (abfd)->core_command
3051 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3052 }
3053
3054 /* Note that for some reason, a spurious space is tacked
3055 onto the end of the args in some (at least one anyway)
3056 implementations, so strip it off if it exists. */
3057
3058 {
3059 char *command = elf_tdata (abfd)->core_command;
3060 int n = strlen (command);
3061
3062 if (0 < n && command[n - 1] == ' ')
3063 command[n - 1] = '\0';
3064 }
3065
3066 return TRUE;
3067 }
3068
3069
3070 /* Generic Xtensa configurability stuff. */
3071
3072 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3073 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3074 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3075 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3076 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3077 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3078 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3079 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3080
3081 static void
init_call_opcodes(void)3082 init_call_opcodes (void)
3083 {
3084 if (callx0_op == XTENSA_UNDEFINED)
3085 {
3086 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3087 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3088 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3089 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3090 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3091 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3092 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3093 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3094 }
3095 }
3096
3097
3098 static bfd_boolean
is_indirect_call_opcode(xtensa_opcode opcode)3099 is_indirect_call_opcode (xtensa_opcode opcode)
3100 {
3101 init_call_opcodes ();
3102 return (opcode == callx0_op
3103 || opcode == callx4_op
3104 || opcode == callx8_op
3105 || opcode == callx12_op);
3106 }
3107
3108
3109 static bfd_boolean
is_direct_call_opcode(xtensa_opcode opcode)3110 is_direct_call_opcode (xtensa_opcode opcode)
3111 {
3112 init_call_opcodes ();
3113 return (opcode == call0_op
3114 || opcode == call4_op
3115 || opcode == call8_op
3116 || opcode == call12_op);
3117 }
3118
3119
3120 static bfd_boolean
is_windowed_call_opcode(xtensa_opcode opcode)3121 is_windowed_call_opcode (xtensa_opcode opcode)
3122 {
3123 init_call_opcodes ();
3124 return (opcode == call4_op
3125 || opcode == call8_op
3126 || opcode == call12_op
3127 || opcode == callx4_op
3128 || opcode == callx8_op
3129 || opcode == callx12_op);
3130 }
3131
3132
3133 static xtensa_opcode
get_const16_opcode(void)3134 get_const16_opcode (void)
3135 {
3136 static bfd_boolean done_lookup = FALSE;
3137 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3138 if (!done_lookup)
3139 {
3140 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3141 done_lookup = TRUE;
3142 }
3143 return const16_opcode;
3144 }
3145
3146
3147 static xtensa_opcode
get_l32r_opcode(void)3148 get_l32r_opcode (void)
3149 {
3150 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3151 static bfd_boolean done_lookup = FALSE;
3152
3153 if (!done_lookup)
3154 {
3155 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3156 done_lookup = TRUE;
3157 }
3158 return l32r_opcode;
3159 }
3160
3161
3162 static bfd_vma
l32r_offset(bfd_vma addr,bfd_vma pc)3163 l32r_offset (bfd_vma addr, bfd_vma pc)
3164 {
3165 bfd_vma offset;
3166
3167 offset = addr - ((pc+3) & -4);
3168 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3169 offset = (signed int) offset >> 2;
3170 BFD_ASSERT ((signed int) offset >> 16 == -1);
3171 return offset;
3172 }
3173
3174
3175 static int
get_relocation_opnd(xtensa_opcode opcode,int r_type)3176 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3177 {
3178 xtensa_isa isa = xtensa_default_isa;
3179 int last_immed, last_opnd, opi;
3180
3181 if (opcode == XTENSA_UNDEFINED)
3182 return XTENSA_UNDEFINED;
3183
3184 /* Find the last visible PC-relative immediate operand for the opcode.
3185 If there are no PC-relative immediates, then choose the last visible
3186 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3187 last_immed = XTENSA_UNDEFINED;
3188 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3189 for (opi = last_opnd - 1; opi >= 0; opi--)
3190 {
3191 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3192 continue;
3193 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3194 {
3195 last_immed = opi;
3196 break;
3197 }
3198 if (last_immed == XTENSA_UNDEFINED
3199 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3200 last_immed = opi;
3201 }
3202 if (last_immed < 0)
3203 return XTENSA_UNDEFINED;
3204
3205 /* If the operand number was specified in an old-style relocation,
3206 check for consistency with the operand computed above. */
3207 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3208 {
3209 int reloc_opnd = r_type - R_XTENSA_OP0;
3210 if (reloc_opnd != last_immed)
3211 return XTENSA_UNDEFINED;
3212 }
3213
3214 return last_immed;
3215 }
3216
3217
3218 int
get_relocation_slot(int r_type)3219 get_relocation_slot (int r_type)
3220 {
3221 switch (r_type)
3222 {
3223 case R_XTENSA_OP0:
3224 case R_XTENSA_OP1:
3225 case R_XTENSA_OP2:
3226 return 0;
3227
3228 default:
3229 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3230 return r_type - R_XTENSA_SLOT0_OP;
3231 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3232 return r_type - R_XTENSA_SLOT0_ALT;
3233 break;
3234 }
3235
3236 return XTENSA_UNDEFINED;
3237 }
3238
3239
3240 /* Get the opcode for a relocation. */
3241
3242 static xtensa_opcode
get_relocation_opcode(bfd * abfd,asection * sec,bfd_byte * contents,Elf_Internal_Rela * irel)3243 get_relocation_opcode (bfd *abfd,
3244 asection *sec,
3245 bfd_byte *contents,
3246 Elf_Internal_Rela *irel)
3247 {
3248 static xtensa_insnbuf ibuff = NULL;
3249 static xtensa_insnbuf sbuff = NULL;
3250 xtensa_isa isa = xtensa_default_isa;
3251 xtensa_format fmt;
3252 int slot;
3253
3254 if (contents == NULL)
3255 return XTENSA_UNDEFINED;
3256
3257 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3258 return XTENSA_UNDEFINED;
3259
3260 if (ibuff == NULL)
3261 {
3262 ibuff = xtensa_insnbuf_alloc (isa);
3263 sbuff = xtensa_insnbuf_alloc (isa);
3264 }
3265
3266 /* Decode the instruction. */
3267 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3268 sec->size - irel->r_offset);
3269 fmt = xtensa_format_decode (isa, ibuff);
3270 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3271 if (slot == XTENSA_UNDEFINED)
3272 return XTENSA_UNDEFINED;
3273 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3274 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3275 }
3276
3277
3278 bfd_boolean
is_l32r_relocation(bfd * abfd,asection * sec,bfd_byte * contents,Elf_Internal_Rela * irel)3279 is_l32r_relocation (bfd *abfd,
3280 asection *sec,
3281 bfd_byte *contents,
3282 Elf_Internal_Rela *irel)
3283 {
3284 xtensa_opcode opcode;
3285 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3286 return FALSE;
3287 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3288 return (opcode == get_l32r_opcode ());
3289 }
3290
3291
3292 static bfd_size_type
get_asm_simplify_size(bfd_byte * contents,bfd_size_type content_len,bfd_size_type offset)3293 get_asm_simplify_size (bfd_byte *contents,
3294 bfd_size_type content_len,
3295 bfd_size_type offset)
3296 {
3297 bfd_size_type insnlen, size = 0;
3298
3299 /* Decode the size of the next two instructions. */
3300 insnlen = insn_decode_len (contents, content_len, offset);
3301 if (insnlen == 0)
3302 return 0;
3303
3304 size += insnlen;
3305
3306 insnlen = insn_decode_len (contents, content_len, offset + size);
3307 if (insnlen == 0)
3308 return 0;
3309
3310 size += insnlen;
3311 return size;
3312 }
3313
3314
3315 bfd_boolean
is_alt_relocation(int r_type)3316 is_alt_relocation (int r_type)
3317 {
3318 return (r_type >= R_XTENSA_SLOT0_ALT
3319 && r_type <= R_XTENSA_SLOT14_ALT);
3320 }
3321
3322
3323 bfd_boolean
is_operand_relocation(int r_type)3324 is_operand_relocation (int r_type)
3325 {
3326 switch (r_type)
3327 {
3328 case R_XTENSA_OP0:
3329 case R_XTENSA_OP1:
3330 case R_XTENSA_OP2:
3331 return TRUE;
3332
3333 default:
3334 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3335 return TRUE;
3336 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3337 return TRUE;
3338 break;
3339 }
3340
3341 return FALSE;
3342 }
3343
3344
3345 #define MIN_INSN_LENGTH 2
3346
3347 /* Return 0 if it fails to decode. */
3348
3349 bfd_size_type
insn_decode_len(bfd_byte * contents,bfd_size_type content_len,bfd_size_type offset)3350 insn_decode_len (bfd_byte *contents,
3351 bfd_size_type content_len,
3352 bfd_size_type offset)
3353 {
3354 int insn_len;
3355 xtensa_isa isa = xtensa_default_isa;
3356 xtensa_format fmt;
3357 static xtensa_insnbuf ibuff = NULL;
3358
3359 if (offset + MIN_INSN_LENGTH > content_len)
3360 return 0;
3361
3362 if (ibuff == NULL)
3363 ibuff = xtensa_insnbuf_alloc (isa);
3364 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3365 content_len - offset);
3366 fmt = xtensa_format_decode (isa, ibuff);
3367 if (fmt == XTENSA_UNDEFINED)
3368 return 0;
3369 insn_len = xtensa_format_length (isa, fmt);
3370 if (insn_len == XTENSA_UNDEFINED)
3371 return 0;
3372 return insn_len;
3373 }
3374
3375
3376 /* Decode the opcode for a single slot instruction.
3377 Return 0 if it fails to decode or the instruction is multi-slot. */
3378
3379 xtensa_opcode
insn_decode_opcode(bfd_byte * contents,bfd_size_type content_len,bfd_size_type offset,int slot)3380 insn_decode_opcode (bfd_byte *contents,
3381 bfd_size_type content_len,
3382 bfd_size_type offset,
3383 int slot)
3384 {
3385 xtensa_isa isa = xtensa_default_isa;
3386 xtensa_format fmt;
3387 static xtensa_insnbuf insnbuf = NULL;
3388 static xtensa_insnbuf slotbuf = NULL;
3389
3390 if (offset + MIN_INSN_LENGTH > content_len)
3391 return XTENSA_UNDEFINED;
3392
3393 if (insnbuf == NULL)
3394 {
3395 insnbuf = xtensa_insnbuf_alloc (isa);
3396 slotbuf = xtensa_insnbuf_alloc (isa);
3397 }
3398
3399 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3400 content_len - offset);
3401 fmt = xtensa_format_decode (isa, insnbuf);
3402 if (fmt == XTENSA_UNDEFINED)
3403 return XTENSA_UNDEFINED;
3404
3405 if (slot >= xtensa_format_num_slots (isa, fmt))
3406 return XTENSA_UNDEFINED;
3407
3408 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3409 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3410 }
3411
3412
3413 /* The offset is the offset in the contents.
3414 The address is the address of that offset. */
3415
3416 static bfd_boolean
check_branch_target_aligned(bfd_byte * contents,bfd_size_type content_length,bfd_vma offset,bfd_vma address)3417 check_branch_target_aligned (bfd_byte *contents,
3418 bfd_size_type content_length,
3419 bfd_vma offset,
3420 bfd_vma address)
3421 {
3422 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3423 if (insn_len == 0)
3424 return FALSE;
3425 return check_branch_target_aligned_address (address, insn_len);
3426 }
3427
3428
3429 static bfd_boolean
check_loop_aligned(bfd_byte * contents,bfd_size_type content_length,bfd_vma offset,bfd_vma address)3430 check_loop_aligned (bfd_byte *contents,
3431 bfd_size_type content_length,
3432 bfd_vma offset,
3433 bfd_vma address)
3434 {
3435 bfd_size_type loop_len, insn_len;
3436 xtensa_opcode opcode =
3437 insn_decode_opcode (contents, content_length, offset, 0);
3438 BFD_ASSERT (opcode != XTENSA_UNDEFINED);
3439 if (opcode != XTENSA_UNDEFINED)
3440 return FALSE;
3441 BFD_ASSERT (xtensa_opcode_is_loop (xtensa_default_isa, opcode));
3442 if (!xtensa_opcode_is_loop (xtensa_default_isa, opcode))
3443 return FALSE;
3444
3445 loop_len = insn_decode_len (contents, content_length, offset);
3446 BFD_ASSERT (loop_len != 0);
3447 if (loop_len == 0)
3448 return FALSE;
3449
3450 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3451 BFD_ASSERT (insn_len != 0);
3452 if (insn_len == 0)
3453 return FALSE;
3454
3455 return check_branch_target_aligned_address (address + loop_len, insn_len);
3456 }
3457
3458
3459 static bfd_boolean
check_branch_target_aligned_address(bfd_vma addr,int len)3460 check_branch_target_aligned_address (bfd_vma addr, int len)
3461 {
3462 if (len == 8)
3463 return (addr % 8 == 0);
3464 return ((addr >> 2) == ((addr + len - 1) >> 2));
3465 }
3466
3467
3468 /* Instruction widening and narrowing. */
3469
3470 /* When FLIX is available we need to access certain instructions only
3471 when they are 16-bit or 24-bit instructions. This table caches
3472 information about such instructions by walking through all the
3473 opcodes and finding the smallest single-slot format into which each
3474 can be encoded. */
3475
3476 static xtensa_format *op_single_fmt_table = NULL;
3477
3478
3479 static void
init_op_single_format_table(void)3480 init_op_single_format_table (void)
3481 {
3482 xtensa_isa isa = xtensa_default_isa;
3483 xtensa_insnbuf ibuf;
3484 xtensa_opcode opcode;
3485 xtensa_format fmt;
3486 int num_opcodes;
3487
3488 if (op_single_fmt_table)
3489 return;
3490
3491 ibuf = xtensa_insnbuf_alloc (isa);
3492 num_opcodes = xtensa_isa_num_opcodes (isa);
3493
3494 op_single_fmt_table = (xtensa_format *)
3495 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3496 for (opcode = 0; opcode < num_opcodes; opcode++)
3497 {
3498 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3499 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3500 {
3501 if (xtensa_format_num_slots (isa, fmt) == 1
3502 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3503 {
3504 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3505 int fmt_length = xtensa_format_length (isa, fmt);
3506 if (old_fmt == XTENSA_UNDEFINED
3507 || fmt_length < xtensa_format_length (isa, old_fmt))
3508 op_single_fmt_table[opcode] = fmt;
3509 }
3510 }
3511 }
3512 xtensa_insnbuf_free (isa, ibuf);
3513 }
3514
3515
3516 static xtensa_format
get_single_format(xtensa_opcode opcode)3517 get_single_format (xtensa_opcode opcode)
3518 {
3519 init_op_single_format_table ();
3520 return op_single_fmt_table[opcode];
3521 }
3522
3523
3524 /* For the set of narrowable instructions we do NOT include the
3525 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3526 involved during linker relaxation that may require these to
3527 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3528 requires special case code to ensure it only works when op1 == op2. */
3529
3530 struct string_pair
3531 {
3532 const char *wide;
3533 const char *narrow;
3534 };
3535
3536 struct string_pair narrowable[] =
3537 {
3538 { "add", "add.n" },
3539 { "addi", "addi.n" },
3540 { "addmi", "addi.n" },
3541 { "l32i", "l32i.n" },
3542 { "movi", "movi.n" },
3543 { "ret", "ret.n" },
3544 { "retw", "retw.n" },
3545 { "s32i", "s32i.n" },
3546 { "or", "mov.n" } /* special case only when op1 == op2 */
3547 };
3548
3549 struct string_pair widenable[] =
3550 {
3551 { "add", "add.n" },
3552 { "addi", "addi.n" },
3553 { "addmi", "addi.n" },
3554 { "beqz", "beqz.n" },
3555 { "bnez", "bnez.n" },
3556 { "l32i", "l32i.n" },
3557 { "movi", "movi.n" },
3558 { "ret", "ret.n" },
3559 { "retw", "retw.n" },
3560 { "s32i", "s32i.n" },
3561 { "or", "mov.n" } /* special case only when op1 == op2 */
3562 };
3563
3564
3565 /* Attempt to narrow an instruction. Return true if the narrowing is
3566 valid. If the do_it parameter is non-zero, then perform the action
3567 in-place directly into the contents. Otherwise, do not modify the
3568 contents. The set of valid narrowing are specified by a string table
3569 but require some special case operand checks in some cases. */
3570
3571 static bfd_boolean
narrow_instruction(bfd_byte * contents,bfd_size_type content_length,bfd_size_type offset,bfd_boolean do_it)3572 narrow_instruction (bfd_byte *contents,
3573 bfd_size_type content_length,
3574 bfd_size_type offset,
3575 bfd_boolean do_it)
3576 {
3577 xtensa_opcode opcode;
3578 bfd_size_type insn_len, opi;
3579 xtensa_isa isa = xtensa_default_isa;
3580 xtensa_format fmt, o_fmt;
3581
3582 static xtensa_insnbuf insnbuf = NULL;
3583 static xtensa_insnbuf slotbuf = NULL;
3584 static xtensa_insnbuf o_insnbuf = NULL;
3585 static xtensa_insnbuf o_slotbuf = NULL;
3586
3587 if (insnbuf == NULL)
3588 {
3589 insnbuf = xtensa_insnbuf_alloc (isa);
3590 slotbuf = xtensa_insnbuf_alloc (isa);
3591 o_insnbuf = xtensa_insnbuf_alloc (isa);
3592 o_slotbuf = xtensa_insnbuf_alloc (isa);
3593 }
3594
3595 BFD_ASSERT (offset < content_length);
3596
3597 if (content_length < 2)
3598 return FALSE;
3599
3600 /* We will hand-code a few of these for a little while.
3601 These have all been specified in the assembler aleady. */
3602 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3603 content_length - offset);
3604 fmt = xtensa_format_decode (isa, insnbuf);
3605 if (xtensa_format_num_slots (isa, fmt) != 1)
3606 return FALSE;
3607
3608 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3609 return FALSE;
3610
3611 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3612 if (opcode == XTENSA_UNDEFINED)
3613 return FALSE;
3614 insn_len = xtensa_format_length (isa, fmt);
3615 if (insn_len > content_length)
3616 return FALSE;
3617
3618 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); ++opi)
3619 {
3620 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
3621
3622 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3623 {
3624 uint32 value, newval;
3625 int i, operand_count, o_operand_count;
3626 xtensa_opcode o_opcode;
3627
3628 /* Address does not matter in this case. We might need to
3629 fix it to handle branches/jumps. */
3630 bfd_vma self_address = 0;
3631
3632 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3633 if (o_opcode == XTENSA_UNDEFINED)
3634 return FALSE;
3635 o_fmt = get_single_format (o_opcode);
3636 if (o_fmt == XTENSA_UNDEFINED)
3637 return FALSE;
3638
3639 if (xtensa_format_length (isa, fmt) != 3
3640 || xtensa_format_length (isa, o_fmt) != 2)
3641 return FALSE;
3642
3643 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3644 operand_count = xtensa_opcode_num_operands (isa, opcode);
3645 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3646
3647 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3648 return FALSE;
3649
3650 if (!is_or)
3651 {
3652 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3653 return FALSE;
3654 }
3655 else
3656 {
3657 uint32 rawval0, rawval1, rawval2;
3658
3659 if (o_operand_count + 1 != operand_count)
3660 return FALSE;
3661 if (xtensa_operand_get_field (isa, opcode, 0,
3662 fmt, 0, slotbuf, &rawval0) != 0)
3663 return FALSE;
3664 if (xtensa_operand_get_field (isa, opcode, 1,
3665 fmt, 0, slotbuf, &rawval1) != 0)
3666 return FALSE;
3667 if (xtensa_operand_get_field (isa, opcode, 2,
3668 fmt, 0, slotbuf, &rawval2) != 0)
3669 return FALSE;
3670
3671 if (rawval1 != rawval2)
3672 return FALSE;
3673 if (rawval0 == rawval1) /* it is a nop */
3674 return FALSE;
3675 }
3676
3677 for (i = 0; i < o_operand_count; ++i)
3678 {
3679 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3680 slotbuf, &value)
3681 || xtensa_operand_decode (isa, opcode, i, &value))
3682 return FALSE;
3683
3684 /* PC-relative branches need adjustment, but
3685 the PC-rel operand will always have a relocation. */
3686 newval = value;
3687 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3688 self_address)
3689 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3690 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3691 o_slotbuf, newval))
3692 return FALSE;
3693 }
3694
3695 if (xtensa_format_set_slot (isa, o_fmt, 0,
3696 o_insnbuf, o_slotbuf) != 0)
3697 return FALSE;
3698
3699 if (do_it)
3700 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3701 content_length - offset);
3702 return TRUE;
3703 }
3704 }
3705 return FALSE;
3706 }
3707
3708
3709 /* Attempt to widen an instruction. Return true if the widening is
3710 valid. If the do_it parameter is non-zero, then the action should
3711 be performed inplace into the contents. Otherwise, do not modify
3712 the contents. The set of valid widenings are specified by a string
3713 table but require some special case operand checks in some
3714 cases. */
3715
3716 static bfd_boolean
widen_instruction(bfd_byte * contents,bfd_size_type content_length,bfd_size_type offset,bfd_boolean do_it)3717 widen_instruction (bfd_byte *contents,
3718 bfd_size_type content_length,
3719 bfd_size_type offset,
3720 bfd_boolean do_it)
3721 {
3722 xtensa_opcode opcode;
3723 bfd_size_type insn_len, opi;
3724 xtensa_isa isa = xtensa_default_isa;
3725 xtensa_format fmt, o_fmt;
3726
3727 static xtensa_insnbuf insnbuf = NULL;
3728 static xtensa_insnbuf slotbuf = NULL;
3729 static xtensa_insnbuf o_insnbuf = NULL;
3730 static xtensa_insnbuf o_slotbuf = NULL;
3731
3732 if (insnbuf == NULL)
3733 {
3734 insnbuf = xtensa_insnbuf_alloc (isa);
3735 slotbuf = xtensa_insnbuf_alloc (isa);
3736 o_insnbuf = xtensa_insnbuf_alloc (isa);
3737 o_slotbuf = xtensa_insnbuf_alloc (isa);
3738 }
3739
3740 BFD_ASSERT (offset < content_length);
3741
3742 if (content_length < 2)
3743 return FALSE;
3744
3745 /* We will hand code a few of these for a little while.
3746 These have all been specified in the assembler aleady. */
3747 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3748 content_length - offset);
3749 fmt = xtensa_format_decode (isa, insnbuf);
3750 if (xtensa_format_num_slots (isa, fmt) != 1)
3751 return FALSE;
3752
3753 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3754 return FALSE;
3755
3756 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3757 if (opcode == XTENSA_UNDEFINED)
3758 return FALSE;
3759 insn_len = xtensa_format_length (isa, fmt);
3760 if (insn_len > content_length)
3761 return FALSE;
3762
3763 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); ++opi)
3764 {
3765 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3766 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3767 || strcmp ("bnez", widenable[opi].wide) == 0);
3768
3769 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3770 {
3771 uint32 value, newval;
3772 int i, operand_count, o_operand_count, check_operand_count;
3773 xtensa_opcode o_opcode;
3774
3775 /* Address does not matter in this case. We might need to fix it
3776 to handle branches/jumps. */
3777 bfd_vma self_address = 0;
3778
3779 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3780 if (o_opcode == XTENSA_UNDEFINED)
3781 return FALSE;
3782 o_fmt = get_single_format (o_opcode);
3783 if (o_fmt == XTENSA_UNDEFINED)
3784 return FALSE;
3785
3786 if (xtensa_format_length (isa, fmt) != 2
3787 || xtensa_format_length (isa, o_fmt) != 3)
3788 return FALSE;
3789
3790 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3791 operand_count = xtensa_opcode_num_operands (isa, opcode);
3792 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3793 check_operand_count = o_operand_count;
3794
3795 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3796 return FALSE;
3797
3798 if (!is_or)
3799 {
3800 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3801 return FALSE;
3802 }
3803 else
3804 {
3805 uint32 rawval0, rawval1;
3806
3807 if (o_operand_count != operand_count + 1)
3808 return FALSE;
3809 if (xtensa_operand_get_field (isa, opcode, 0,
3810 fmt, 0, slotbuf, &rawval0) != 0)
3811 return FALSE;
3812 if (xtensa_operand_get_field (isa, opcode, 1,
3813 fmt, 0, slotbuf, &rawval1) != 0)
3814 return FALSE;
3815 if (rawval0 == rawval1) /* it is a nop */
3816 return FALSE;
3817 }
3818 if (is_branch)
3819 check_operand_count--;
3820
3821 for (i = 0; i < check_operand_count; ++i)
3822 {
3823 int new_i = i;
3824 if (is_or && i == o_operand_count - 1)
3825 new_i = i - 1;
3826 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3827 slotbuf, &value)
3828 || xtensa_operand_decode (isa, opcode, new_i, &value))
3829 return FALSE;
3830
3831 /* PC-relative branches need adjustment, but
3832 the PC-rel operand will always have a relocation. */
3833 newval = value;
3834 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3835 self_address)
3836 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3837 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3838 o_slotbuf, newval))
3839 return FALSE;
3840 }
3841
3842 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3843 return FALSE;
3844
3845 if (do_it)
3846 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3847 content_length - offset);
3848 return TRUE;
3849 }
3850 }
3851 return FALSE;
3852 }
3853
3854
3855 /* Code for transforming CALLs at link-time. */
3856
3857 static bfd_reloc_status_type
elf_xtensa_do_asm_simplify(bfd_byte * contents,bfd_vma address,bfd_vma content_length,char ** error_message)3858 elf_xtensa_do_asm_simplify (bfd_byte *contents,
3859 bfd_vma address,
3860 bfd_vma content_length,
3861 char **error_message)
3862 {
3863 static xtensa_insnbuf insnbuf = NULL;
3864 static xtensa_insnbuf slotbuf = NULL;
3865 xtensa_format core_format = XTENSA_UNDEFINED;
3866 xtensa_opcode opcode;
3867 xtensa_opcode direct_call_opcode;
3868 xtensa_isa isa = xtensa_default_isa;
3869 bfd_byte *chbuf = contents + address;
3870 int opn;
3871
3872 if (insnbuf == NULL)
3873 {
3874 insnbuf = xtensa_insnbuf_alloc (isa);
3875 slotbuf = xtensa_insnbuf_alloc (isa);
3876 }
3877
3878 if (content_length < address)
3879 {
3880 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3881 return bfd_reloc_other;
3882 }
3883
3884 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3885 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3886 if (direct_call_opcode == XTENSA_UNDEFINED)
3887 {
3888 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3889 return bfd_reloc_other;
3890 }
3891
3892 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3893 core_format = xtensa_format_lookup (isa, "x24");
3894 opcode = xtensa_opcode_lookup (isa, "or");
3895 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3896 for (opn = 0; opn < 3; opn++)
3897 {
3898 uint32 regno = 1;
3899 xtensa_operand_encode (isa, opcode, opn, ®no);
3900 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3901 slotbuf, regno);
3902 }
3903 xtensa_format_encode (isa, core_format, insnbuf);
3904 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3905 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
3906
3907 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3908 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3909 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
3910
3911 xtensa_format_encode (isa, core_format, insnbuf);
3912 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3913 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3914 content_length - address - 3);
3915
3916 return bfd_reloc_ok;
3917 }
3918
3919
3920 static bfd_reloc_status_type
contract_asm_expansion(bfd_byte * contents,bfd_vma content_length,Elf_Internal_Rela * irel,char ** error_message)3921 contract_asm_expansion (bfd_byte *contents,
3922 bfd_vma content_length,
3923 Elf_Internal_Rela *irel,
3924 char **error_message)
3925 {
3926 bfd_reloc_status_type retval =
3927 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3928 error_message);
3929
3930 if (retval != bfd_reloc_ok)
3931 return bfd_reloc_dangerous;
3932
3933 /* Update the irel->r_offset field so that the right immediate and
3934 the right instruction are modified during the relocation. */
3935 irel->r_offset += 3;
3936 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3937 return bfd_reloc_ok;
3938 }
3939
3940
3941 static xtensa_opcode
swap_callx_for_call_opcode(xtensa_opcode opcode)3942 swap_callx_for_call_opcode (xtensa_opcode opcode)
3943 {
3944 init_call_opcodes ();
3945
3946 if (opcode == callx0_op) return call0_op;
3947 if (opcode == callx4_op) return call4_op;
3948 if (opcode == callx8_op) return call8_op;
3949 if (opcode == callx12_op) return call12_op;
3950
3951 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3952 return XTENSA_UNDEFINED;
3953 }
3954
3955
3956 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3957 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3958 If not, return XTENSA_UNDEFINED. */
3959
3960 #define L32R_TARGET_REG_OPERAND 0
3961 #define CONST16_TARGET_REG_OPERAND 0
3962 #define CALLN_SOURCE_OPERAND 0
3963
3964 static xtensa_opcode
get_expanded_call_opcode(bfd_byte * buf,int bufsize,bfd_boolean * p_uses_l32r)3965 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
3966 {
3967 static xtensa_insnbuf insnbuf = NULL;
3968 static xtensa_insnbuf slotbuf = NULL;
3969 xtensa_format fmt;
3970 xtensa_opcode opcode;
3971 xtensa_isa isa = xtensa_default_isa;
3972 uint32 regno, const16_regno, call_regno;
3973 int offset = 0;
3974
3975 if (insnbuf == NULL)
3976 {
3977 insnbuf = xtensa_insnbuf_alloc (isa);
3978 slotbuf = xtensa_insnbuf_alloc (isa);
3979 }
3980
3981 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
3982 fmt = xtensa_format_decode (isa, insnbuf);
3983 if (fmt == XTENSA_UNDEFINED
3984 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
3985 return XTENSA_UNDEFINED;
3986
3987 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3988 if (opcode == XTENSA_UNDEFINED)
3989 return XTENSA_UNDEFINED;
3990
3991 if (opcode == get_l32r_opcode ())
3992 {
3993 if (p_uses_l32r)
3994 *p_uses_l32r = TRUE;
3995 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
3996 fmt, 0, slotbuf, ®no)
3997 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
3998 ®no))
3999 return XTENSA_UNDEFINED;
4000 }
4001 else if (opcode == get_const16_opcode ())
4002 {
4003 if (p_uses_l32r)
4004 *p_uses_l32r = FALSE;
4005 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4006 fmt, 0, slotbuf, ®no)
4007 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4008 ®no))
4009 return XTENSA_UNDEFINED;
4010
4011 /* Check that the next instruction is also CONST16. */
4012 offset += xtensa_format_length (isa, fmt);
4013 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4014 fmt = xtensa_format_decode (isa, insnbuf);
4015 if (fmt == XTENSA_UNDEFINED
4016 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4017 return XTENSA_UNDEFINED;
4018 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4019 if (opcode != get_const16_opcode ())
4020 return XTENSA_UNDEFINED;
4021
4022 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4023 fmt, 0, slotbuf, &const16_regno)
4024 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4025 &const16_regno)
4026 || const16_regno != regno)
4027 return XTENSA_UNDEFINED;
4028 }
4029 else
4030 return XTENSA_UNDEFINED;
4031
4032 /* Next instruction should be an CALLXn with operand 0 == regno. */
4033 offset += xtensa_format_length (isa, fmt);
4034 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4035 fmt = xtensa_format_decode (isa, insnbuf);
4036 if (fmt == XTENSA_UNDEFINED
4037 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4038 return XTENSA_UNDEFINED;
4039 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4040 if (opcode == XTENSA_UNDEFINED
4041 || !is_indirect_call_opcode (opcode))
4042 return XTENSA_UNDEFINED;
4043
4044 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4045 fmt, 0, slotbuf, &call_regno)
4046 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4047 &call_regno))
4048 return XTENSA_UNDEFINED;
4049
4050 if (call_regno != regno)
4051 return XTENSA_UNDEFINED;
4052
4053 return opcode;
4054 }
4055
4056
4057 /* Data structures used during relaxation. */
4058
4059 /* r_reloc: relocation values. */
4060
4061 /* Through the relaxation process, we need to keep track of the values
4062 that will result from evaluating relocations. The standard ELF
4063 relocation structure is not sufficient for this purpose because we're
4064 operating on multiple input files at once, so we need to know which
4065 input file a relocation refers to. The r_reloc structure thus
4066 records both the input file (bfd) and ELF relocation.
4067
4068 For efficiency, an r_reloc also contains a "target_offset" field to
4069 cache the target-section-relative offset value that is represented by
4070 the relocation.
4071
4072 The r_reloc also contains a virtual offset that allows multiple
4073 inserted literals to be placed at the same "address" with
4074 different offsets. */
4075
4076 typedef struct r_reloc_struct r_reloc;
4077
4078 struct r_reloc_struct
4079 {
4080 bfd *abfd;
4081 Elf_Internal_Rela rela;
4082 bfd_vma target_offset;
4083 bfd_vma virtual_offset;
4084 };
4085
4086
4087 /* The r_reloc structure is included by value in literal_value, but not
4088 every literal_value has an associated relocation -- some are simple
4089 constants. In such cases, we set all the fields in the r_reloc
4090 struct to zero. The r_reloc_is_const function should be used to
4091 detect this case. */
4092
4093 static bfd_boolean
r_reloc_is_const(const r_reloc * r_rel)4094 r_reloc_is_const (const r_reloc *r_rel)
4095 {
4096 return (r_rel->abfd == NULL);
4097 }
4098
4099
4100 static bfd_vma
r_reloc_get_target_offset(const r_reloc * r_rel)4101 r_reloc_get_target_offset (const r_reloc *r_rel)
4102 {
4103 bfd_vma target_offset;
4104 unsigned long r_symndx;
4105
4106 BFD_ASSERT (!r_reloc_is_const (r_rel));
4107 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4108 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4109 return (target_offset + r_rel->rela.r_addend);
4110 }
4111
4112
4113 static struct elf_link_hash_entry *
r_reloc_get_hash_entry(const r_reloc * r_rel)4114 r_reloc_get_hash_entry (const r_reloc *r_rel)
4115 {
4116 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4117 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4118 }
4119
4120
4121 static asection *
r_reloc_get_section(const r_reloc * r_rel)4122 r_reloc_get_section (const r_reloc *r_rel)
4123 {
4124 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4125 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4126 }
4127
4128
4129 static bfd_boolean
r_reloc_is_defined(const r_reloc * r_rel)4130 r_reloc_is_defined (const r_reloc *r_rel)
4131 {
4132 asection *sec;
4133 if (r_rel == NULL)
4134 return FALSE;
4135
4136 sec = r_reloc_get_section (r_rel);
4137 if (sec == bfd_abs_section_ptr
4138 || sec == bfd_com_section_ptr
4139 || sec == bfd_und_section_ptr)
4140 return FALSE;
4141 return TRUE;
4142 }
4143
4144
4145 static void
r_reloc_init(r_reloc * r_rel,bfd * abfd,Elf_Internal_Rela * irel,bfd_byte * contents,bfd_size_type content_length)4146 r_reloc_init (r_reloc *r_rel,
4147 bfd *abfd,
4148 Elf_Internal_Rela *irel,
4149 bfd_byte *contents,
4150 bfd_size_type content_length)
4151 {
4152 int r_type;
4153 reloc_howto_type *howto;
4154
4155 if (irel)
4156 {
4157 r_rel->rela = *irel;
4158 r_rel->abfd = abfd;
4159 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4160 r_rel->virtual_offset = 0;
4161 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4162 howto = &elf_howto_table[r_type];
4163 if (howto->partial_inplace)
4164 {
4165 bfd_vma inplace_val;
4166 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4167
4168 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4169 r_rel->target_offset += inplace_val;
4170 }
4171 }
4172 else
4173 memset (r_rel, 0, sizeof (r_reloc));
4174 }
4175
4176
4177 #if DEBUG
4178
4179 static void
print_r_reloc(FILE * fp,const r_reloc * r_rel)4180 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4181 {
4182 if (r_reloc_is_defined (r_rel))
4183 {
4184 asection *sec = r_reloc_get_section (r_rel);
4185 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4186 }
4187 else if (r_reloc_get_hash_entry (r_rel))
4188 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4189 else
4190 fprintf (fp, " ?? + ");
4191
4192 fprintf_vma (fp, r_rel->target_offset);
4193 if (r_rel->virtual_offset)
4194 {
4195 fprintf (fp, " + ");
4196 fprintf_vma (fp, r_rel->virtual_offset);
4197 }
4198
4199 fprintf (fp, ")");
4200 }
4201
4202 #endif /* DEBUG */
4203
4204
4205 /* source_reloc: relocations that reference literals. */
4206
4207 /* To determine whether literals can be coalesced, we need to first
4208 record all the relocations that reference the literals. The
4209 source_reloc structure below is used for this purpose. The
4210 source_reloc entries are kept in a per-literal-section array, sorted
4211 by offset within the literal section (i.e., target offset).
4212
4213 The source_sec and r_rel.rela.r_offset fields identify the source of
4214 the relocation. The r_rel field records the relocation value, i.e.,
4215 the offset of the literal being referenced. The opnd field is needed
4216 to determine the range of the immediate field to which the relocation
4217 applies, so we can determine whether another literal with the same
4218 value is within range. The is_null field is true when the relocation
4219 is being removed (e.g., when an L32R is being removed due to a CALLX
4220 that is converted to a direct CALL). */
4221
4222 typedef struct source_reloc_struct source_reloc;
4223
4224 struct source_reloc_struct
4225 {
4226 asection *source_sec;
4227 r_reloc r_rel;
4228 xtensa_opcode opcode;
4229 int opnd;
4230 bfd_boolean is_null;
4231 bfd_boolean is_abs_literal;
4232 };
4233
4234
4235 static void
init_source_reloc(source_reloc * reloc,asection * source_sec,const r_reloc * r_rel,xtensa_opcode opcode,int opnd,bfd_boolean is_abs_literal)4236 init_source_reloc (source_reloc *reloc,
4237 asection *source_sec,
4238 const r_reloc *r_rel,
4239 xtensa_opcode opcode,
4240 int opnd,
4241 bfd_boolean is_abs_literal)
4242 {
4243 reloc->source_sec = source_sec;
4244 reloc->r_rel = *r_rel;
4245 reloc->opcode = opcode;
4246 reloc->opnd = opnd;
4247 reloc->is_null = FALSE;
4248 reloc->is_abs_literal = is_abs_literal;
4249 }
4250
4251
4252 /* Find the source_reloc for a particular source offset and relocation
4253 type. Note that the array is sorted by _target_ offset, so this is
4254 just a linear search. */
4255
4256 static source_reloc *
find_source_reloc(source_reloc * src_relocs,int src_count,asection * sec,Elf_Internal_Rela * irel)4257 find_source_reloc (source_reloc *src_relocs,
4258 int src_count,
4259 asection *sec,
4260 Elf_Internal_Rela *irel)
4261 {
4262 int i;
4263
4264 for (i = 0; i < src_count; i++)
4265 {
4266 if (src_relocs[i].source_sec == sec
4267 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4268 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4269 == ELF32_R_TYPE (irel->r_info)))
4270 return &src_relocs[i];
4271 }
4272
4273 return NULL;
4274 }
4275
4276
4277 static int
source_reloc_compare(const void * ap,const void * bp)4278 source_reloc_compare (const void *ap, const void *bp)
4279 {
4280 const source_reloc *a = (const source_reloc *) ap;
4281 const source_reloc *b = (const source_reloc *) bp;
4282
4283 if (a->r_rel.target_offset != b->r_rel.target_offset)
4284 return (a->r_rel.target_offset - b->r_rel.target_offset);
4285
4286 /* We don't need to sort on these criteria for correctness,
4287 but enforcing a more strict ordering prevents unstable qsort
4288 from behaving differently with different implementations.
4289 Without the code below we get correct but different results
4290 on Solaris 2.7 and 2.8. We would like to always produce the
4291 same results no matter the host. */
4292
4293 if ((!a->is_null) - (!b->is_null))
4294 return ((!a->is_null) - (!b->is_null));
4295 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
4296 }
4297
4298
4299 /* Literal values and value hash tables. */
4300
4301 /* Literals with the same value can be coalesced. The literal_value
4302 structure records the value of a literal: the "r_rel" field holds the
4303 information from the relocation on the literal (if there is one) and
4304 the "value" field holds the contents of the literal word itself.
4305
4306 The value_map structure records a literal value along with the
4307 location of a literal holding that value. The value_map hash table
4308 is indexed by the literal value, so that we can quickly check if a
4309 particular literal value has been seen before and is thus a candidate
4310 for coalescing. */
4311
4312 typedef struct literal_value_struct literal_value;
4313 typedef struct value_map_struct value_map;
4314 typedef struct value_map_hash_table_struct value_map_hash_table;
4315
4316 struct literal_value_struct
4317 {
4318 r_reloc r_rel;
4319 unsigned long value;
4320 bfd_boolean is_abs_literal;
4321 };
4322
4323 struct value_map_struct
4324 {
4325 literal_value val; /* The literal value. */
4326 r_reloc loc; /* Location of the literal. */
4327 value_map *next;
4328 };
4329
4330 struct value_map_hash_table_struct
4331 {
4332 unsigned bucket_count;
4333 value_map **buckets;
4334 unsigned count;
4335 bfd_boolean has_last_loc;
4336 r_reloc last_loc;
4337 };
4338
4339
4340 static void
init_literal_value(literal_value * lit,const r_reloc * r_rel,unsigned long value,bfd_boolean is_abs_literal)4341 init_literal_value (literal_value *lit,
4342 const r_reloc *r_rel,
4343 unsigned long value,
4344 bfd_boolean is_abs_literal)
4345 {
4346 lit->r_rel = *r_rel;
4347 lit->value = value;
4348 lit->is_abs_literal = is_abs_literal;
4349 }
4350
4351
4352 static bfd_boolean
literal_value_equal(const literal_value * src1,const literal_value * src2,bfd_boolean final_static_link)4353 literal_value_equal (const literal_value *src1,
4354 const literal_value *src2,
4355 bfd_boolean final_static_link)
4356 {
4357 struct elf_link_hash_entry *h1, *h2;
4358
4359 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4360 return FALSE;
4361
4362 if (r_reloc_is_const (&src1->r_rel))
4363 return (src1->value == src2->value);
4364
4365 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4366 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4367 return FALSE;
4368
4369 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4370 return FALSE;
4371
4372 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4373 return FALSE;
4374
4375 if (src1->value != src2->value)
4376 return FALSE;
4377
4378 /* Now check for the same section (if defined) or the same elf_hash
4379 (if undefined or weak). */
4380 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4381 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4382 if (r_reloc_is_defined (&src1->r_rel)
4383 && (final_static_link
4384 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4385 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4386 {
4387 if (r_reloc_get_section (&src1->r_rel)
4388 != r_reloc_get_section (&src2->r_rel))
4389 return FALSE;
4390 }
4391 else
4392 {
4393 /* Require that the hash entries (i.e., symbols) be identical. */
4394 if (h1 != h2 || h1 == 0)
4395 return FALSE;
4396 }
4397
4398 if (src1->is_abs_literal != src2->is_abs_literal)
4399 return FALSE;
4400
4401 return TRUE;
4402 }
4403
4404
4405 /* Must be power of 2. */
4406 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4407
4408 static value_map_hash_table *
value_map_hash_table_init(void)4409 value_map_hash_table_init (void)
4410 {
4411 value_map_hash_table *values;
4412
4413 values = (value_map_hash_table *)
4414 bfd_zmalloc (sizeof (value_map_hash_table));
4415 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4416 values->count = 0;
4417 values->buckets = (value_map **)
4418 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4419 if (values->buckets == NULL)
4420 {
4421 free (values);
4422 return NULL;
4423 }
4424 values->has_last_loc = FALSE;
4425
4426 return values;
4427 }
4428
4429
4430 static void
value_map_hash_table_delete(value_map_hash_table * table)4431 value_map_hash_table_delete (value_map_hash_table *table)
4432 {
4433 free (table->buckets);
4434 free (table);
4435 }
4436
4437
4438 static unsigned
hash_bfd_vma(bfd_vma val)4439 hash_bfd_vma (bfd_vma val)
4440 {
4441 return (val >> 2) + (val >> 10);
4442 }
4443
4444
4445 static unsigned
literal_value_hash(const literal_value * src)4446 literal_value_hash (const literal_value *src)
4447 {
4448 unsigned hash_val;
4449
4450 hash_val = hash_bfd_vma (src->value);
4451 if (!r_reloc_is_const (&src->r_rel))
4452 {
4453 void *sec_or_hash;
4454
4455 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4456 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4457 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4458
4459 /* Now check for the same section and the same elf_hash. */
4460 if (r_reloc_is_defined (&src->r_rel))
4461 sec_or_hash = r_reloc_get_section (&src->r_rel);
4462 else
4463 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
4464 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
4465 }
4466 return hash_val;
4467 }
4468
4469
4470 /* Check if the specified literal_value has been seen before. */
4471
4472 static value_map *
value_map_get_cached_value(value_map_hash_table * map,const literal_value * val,bfd_boolean final_static_link)4473 value_map_get_cached_value (value_map_hash_table *map,
4474 const literal_value *val,
4475 bfd_boolean final_static_link)
4476 {
4477 value_map *map_e;
4478 value_map *bucket;
4479 unsigned idx;
4480
4481 idx = literal_value_hash (val);
4482 idx = idx & (map->bucket_count - 1);
4483 bucket = map->buckets[idx];
4484 for (map_e = bucket; map_e; map_e = map_e->next)
4485 {
4486 if (literal_value_equal (&map_e->val, val, final_static_link))
4487 return map_e;
4488 }
4489 return NULL;
4490 }
4491
4492
4493 /* Record a new literal value. It is illegal to call this if VALUE
4494 already has an entry here. */
4495
4496 static value_map *
add_value_map(value_map_hash_table * map,const literal_value * val,const r_reloc * loc,bfd_boolean final_static_link)4497 add_value_map (value_map_hash_table *map,
4498 const literal_value *val,
4499 const r_reloc *loc,
4500 bfd_boolean final_static_link)
4501 {
4502 value_map **bucket_p;
4503 unsigned idx;
4504
4505 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4506 if (val_e == NULL)
4507 {
4508 bfd_set_error (bfd_error_no_memory);
4509 return NULL;
4510 }
4511
4512 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4513 val_e->val = *val;
4514 val_e->loc = *loc;
4515
4516 idx = literal_value_hash (val);
4517 idx = idx & (map->bucket_count - 1);
4518 bucket_p = &map->buckets[idx];
4519
4520 val_e->next = *bucket_p;
4521 *bucket_p = val_e;
4522 map->count++;
4523 /* FIXME: Consider resizing the hash table if we get too many entries. */
4524
4525 return val_e;
4526 }
4527
4528
4529 /* Lists of text actions (ta_) for narrowing, widening, longcall
4530 conversion, space fill, code & literal removal, etc. */
4531
4532 /* The following text actions are generated:
4533
4534 "ta_remove_insn" remove an instruction or instructions
4535 "ta_remove_longcall" convert longcall to call
4536 "ta_convert_longcall" convert longcall to nop/call
4537 "ta_narrow_insn" narrow a wide instruction
4538 "ta_widen" widen a narrow instruction
4539 "ta_fill" add fill or remove fill
4540 removed < 0 is a fill; branches to the fill address will be
4541 changed to address + fill size (e.g., address - removed)
4542 removed >= 0 branches to the fill address will stay unchanged
4543 "ta_remove_literal" remove a literal; this action is
4544 indicated when a literal is removed
4545 or replaced.
4546 "ta_add_literal" insert a new literal; this action is
4547 indicated when a literal has been moved.
4548 It may use a virtual_offset because
4549 multiple literals can be placed at the
4550 same location.
4551
4552 For each of these text actions, we also record the number of bytes
4553 removed by performing the text action. In the case of a "ta_widen"
4554 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4555
4556 typedef struct text_action_struct text_action;
4557 typedef struct text_action_list_struct text_action_list;
4558 typedef enum text_action_enum_t text_action_t;
4559
4560 enum text_action_enum_t
4561 {
4562 ta_none,
4563 ta_remove_insn, /* removed = -size */
4564 ta_remove_longcall, /* removed = -size */
4565 ta_convert_longcall, /* removed = 0 */
4566 ta_narrow_insn, /* removed = -1 */
4567 ta_widen_insn, /* removed = +1 */
4568 ta_fill, /* removed = +size */
4569 ta_remove_literal,
4570 ta_add_literal
4571 };
4572
4573
4574 /* Structure for a text action record. */
4575 struct text_action_struct
4576 {
4577 text_action_t action;
4578 asection *sec; /* Optional */
4579 bfd_vma offset;
4580 bfd_vma virtual_offset; /* Zero except for adding literals. */
4581 int removed_bytes;
4582 literal_value value; /* Only valid when adding literals. */
4583
4584 text_action *next;
4585 };
4586
4587
4588 /* List of all of the actions taken on a text section. */
4589 struct text_action_list_struct
4590 {
4591 text_action *head;
4592 };
4593
4594
4595 static text_action *
find_fill_action(text_action_list * l,asection * sec,bfd_vma offset)4596 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
4597 {
4598 text_action **m_p;
4599
4600 /* It is not necessary to fill at the end of a section. */
4601 if (sec->size == offset)
4602 return NULL;
4603
4604 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4605 {
4606 text_action *t = *m_p;
4607 /* When the action is another fill at the same address,
4608 just increase the size. */
4609 if (t->offset == offset && t->action == ta_fill)
4610 return t;
4611 }
4612 return NULL;
4613 }
4614
4615
4616 static int
compute_removed_action_diff(const text_action * ta,asection * sec,bfd_vma offset,int removed,int removable_space)4617 compute_removed_action_diff (const text_action *ta,
4618 asection *sec,
4619 bfd_vma offset,
4620 int removed,
4621 int removable_space)
4622 {
4623 int new_removed;
4624 int current_removed = 0;
4625
4626 if (ta)
4627 current_removed = ta->removed_bytes;
4628
4629 BFD_ASSERT (ta == NULL || ta->offset == offset);
4630 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4631
4632 /* It is not necessary to fill at the end of a section. Clean this up. */
4633 if (sec->size == offset)
4634 new_removed = removable_space - 0;
4635 else
4636 {
4637 int space;
4638 int added = -removed - current_removed;
4639 /* Ignore multiples of the section alignment. */
4640 added = ((1 << sec->alignment_power) - 1) & added;
4641 new_removed = (-added);
4642
4643 /* Modify for removable. */
4644 space = removable_space - new_removed;
4645 new_removed = (removable_space
4646 - (((1 << sec->alignment_power) - 1) & space));
4647 }
4648 return (new_removed - current_removed);
4649 }
4650
4651
4652 static void
adjust_fill_action(text_action * ta,int fill_diff)4653 adjust_fill_action (text_action *ta, int fill_diff)
4654 {
4655 ta->removed_bytes += fill_diff;
4656 }
4657
4658
4659 /* Add a modification action to the text. For the case of adding or
4660 removing space, modify any current fill and assume that
4661 "unreachable_space" bytes can be freely contracted. Note that a
4662 negative removed value is a fill. */
4663
4664 static void
text_action_add(text_action_list * l,text_action_t action,asection * sec,bfd_vma offset,int removed)4665 text_action_add (text_action_list *l,
4666 text_action_t action,
4667 asection *sec,
4668 bfd_vma offset,
4669 int removed)
4670 {
4671 text_action **m_p;
4672 text_action *ta;
4673
4674 /* It is not necessary to fill at the end of a section. */
4675 if (action == ta_fill && sec->size == offset)
4676 return;
4677
4678 /* It is not necessary to fill 0 bytes. */
4679 if (action == ta_fill && removed == 0)
4680 return;
4681
4682 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4683 {
4684 text_action *t = *m_p;
4685 /* When the action is another fill at the same address,
4686 just increase the size. */
4687 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4688 {
4689 t->removed_bytes += removed;
4690 return;
4691 }
4692 }
4693
4694 /* Create a new record and fill it up. */
4695 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4696 ta->action = action;
4697 ta->sec = sec;
4698 ta->offset = offset;
4699 ta->removed_bytes = removed;
4700 ta->next = (*m_p);
4701 *m_p = ta;
4702 }
4703
4704
4705 static void
text_action_add_literal(text_action_list * l,text_action_t action,const r_reloc * loc,const literal_value * value,int removed)4706 text_action_add_literal (text_action_list *l,
4707 text_action_t action,
4708 const r_reloc *loc,
4709 const literal_value *value,
4710 int removed)
4711 {
4712 text_action **m_p;
4713 text_action *ta;
4714 asection *sec = r_reloc_get_section (loc);
4715 bfd_vma offset = loc->target_offset;
4716 bfd_vma virtual_offset = loc->virtual_offset;
4717
4718 BFD_ASSERT (action == ta_add_literal);
4719
4720 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4721 {
4722 if ((*m_p)->offset > offset
4723 && ((*m_p)->offset != offset
4724 || (*m_p)->virtual_offset > virtual_offset))
4725 break;
4726 }
4727
4728 /* Create a new record and fill it up. */
4729 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4730 ta->action = action;
4731 ta->sec = sec;
4732 ta->offset = offset;
4733 ta->virtual_offset = virtual_offset;
4734 ta->value = *value;
4735 ta->removed_bytes = removed;
4736 ta->next = (*m_p);
4737 *m_p = ta;
4738 }
4739
4740
4741 static bfd_vma
offset_with_removed_text(text_action_list * action_list,bfd_vma offset)4742 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4743 {
4744 text_action *r;
4745 int removed = 0;
4746
4747 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4748 {
4749 if (r->offset < offset
4750 || (r->action == ta_fill && r->removed_bytes < 0))
4751 removed += r->removed_bytes;
4752 }
4753
4754 return (offset - removed);
4755 }
4756
4757
4758 static unsigned
action_list_count(text_action_list * action_list)4759 action_list_count (text_action_list *action_list)
4760 {
4761 text_action *r = action_list->head;
4762 unsigned count = 0;
4763 for (r = action_list->head; r != NULL; r = r->next)
4764 {
4765 count++;
4766 }
4767 return count;
4768 }
4769
4770
4771 static bfd_vma
offset_with_removed_text_before_fill(text_action_list * action_list,bfd_vma offset)4772 offset_with_removed_text_before_fill (text_action_list *action_list,
4773 bfd_vma offset)
4774 {
4775 text_action *r;
4776 int removed = 0;
4777
4778 for (r = action_list->head; r && r->offset < offset; r = r->next)
4779 removed += r->removed_bytes;
4780
4781 return (offset - removed);
4782 }
4783
4784
4785 /* The find_insn_action routine will only find non-fill actions. */
4786
4787 static text_action *
find_insn_action(text_action_list * action_list,bfd_vma offset)4788 find_insn_action (text_action_list *action_list, bfd_vma offset)
4789 {
4790 text_action *t;
4791 for (t = action_list->head; t; t = t->next)
4792 {
4793 if (t->offset == offset)
4794 {
4795 switch (t->action)
4796 {
4797 case ta_none:
4798 case ta_fill:
4799 break;
4800 case ta_remove_insn:
4801 case ta_remove_longcall:
4802 case ta_convert_longcall:
4803 case ta_narrow_insn:
4804 case ta_widen_insn:
4805 return t;
4806 case ta_remove_literal:
4807 case ta_add_literal:
4808 BFD_ASSERT (0);
4809 break;
4810 }
4811 }
4812 }
4813 return NULL;
4814 }
4815
4816
4817 #if DEBUG
4818
4819 static void
print_action_list(FILE * fp,text_action_list * action_list)4820 print_action_list (FILE *fp, text_action_list *action_list)
4821 {
4822 text_action *r;
4823
4824 fprintf (fp, "Text Action\n");
4825 for (r = action_list->head; r != NULL; r = r->next)
4826 {
4827 const char *t = "unknown";
4828 switch (r->action)
4829 {
4830 case ta_remove_insn:
4831 t = "remove_insn"; break;
4832 case ta_remove_longcall:
4833 t = "remove_longcall"; break;
4834 case ta_convert_longcall:
4835 t = "remove_longcall"; break;
4836 case ta_narrow_insn:
4837 t = "narrow_insn"; break;
4838 case ta_widen_insn:
4839 t = "widen_insn"; break;
4840 case ta_fill:
4841 t = "fill"; break;
4842 case ta_none:
4843 t = "none"; break;
4844 case ta_remove_literal:
4845 t = "remove_literal"; break;
4846 case ta_add_literal:
4847 t = "add_literal"; break;
4848 }
4849
4850 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4851 r->sec->owner->filename,
4852 r->sec->name, r->offset, t, r->removed_bytes);
4853 }
4854 }
4855
4856 #endif /* DEBUG */
4857
4858
4859 /* Lists of literals being coalesced or removed. */
4860
4861 /* In the usual case, the literal identified by "from" is being
4862 coalesced with another literal identified by "to". If the literal is
4863 unused and is being removed altogether, "to.abfd" will be NULL.
4864 The removed_literal entries are kept on a per-section list, sorted
4865 by the "from" offset field. */
4866
4867 typedef struct removed_literal_struct removed_literal;
4868 typedef struct removed_literal_list_struct removed_literal_list;
4869
4870 struct removed_literal_struct
4871 {
4872 r_reloc from;
4873 r_reloc to;
4874 removed_literal *next;
4875 };
4876
4877 struct removed_literal_list_struct
4878 {
4879 removed_literal *head;
4880 removed_literal *tail;
4881 };
4882
4883
4884 /* Record that the literal at "from" is being removed. If "to" is not
4885 NULL, the "from" literal is being coalesced with the "to" literal. */
4886
4887 static void
add_removed_literal(removed_literal_list * removed_list,const r_reloc * from,const r_reloc * to)4888 add_removed_literal (removed_literal_list *removed_list,
4889 const r_reloc *from,
4890 const r_reloc *to)
4891 {
4892 removed_literal *r, *new_r, *next_r;
4893
4894 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4895
4896 new_r->from = *from;
4897 if (to)
4898 new_r->to = *to;
4899 else
4900 new_r->to.abfd = NULL;
4901 new_r->next = NULL;
4902
4903 r = removed_list->head;
4904 if (r == NULL)
4905 {
4906 removed_list->head = new_r;
4907 removed_list->tail = new_r;
4908 }
4909 /* Special check for common case of append. */
4910 else if (removed_list->tail->from.target_offset < from->target_offset)
4911 {
4912 removed_list->tail->next = new_r;
4913 removed_list->tail = new_r;
4914 }
4915 else
4916 {
4917 while (r->from.target_offset < from->target_offset && r->next)
4918 {
4919 r = r->next;
4920 }
4921 next_r = r->next;
4922 r->next = new_r;
4923 new_r->next = next_r;
4924 if (next_r == NULL)
4925 removed_list->tail = new_r;
4926 }
4927 }
4928
4929
4930 /* Check if the list of removed literals contains an entry for the
4931 given address. Return the entry if found. */
4932
4933 static removed_literal *
find_removed_literal(removed_literal_list * removed_list,bfd_vma addr)4934 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
4935 {
4936 removed_literal *r = removed_list->head;
4937 while (r && r->from.target_offset < addr)
4938 r = r->next;
4939 if (r && r->from.target_offset == addr)
4940 return r;
4941 return NULL;
4942 }
4943
4944
4945 #if DEBUG
4946
4947 static void
print_removed_literals(FILE * fp,removed_literal_list * removed_list)4948 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
4949 {
4950 removed_literal *r;
4951 r = removed_list->head;
4952 if (r)
4953 fprintf (fp, "Removed Literals\n");
4954 for (; r != NULL; r = r->next)
4955 {
4956 print_r_reloc (fp, &r->from);
4957 fprintf (fp, " => ");
4958 if (r->to.abfd == NULL)
4959 fprintf (fp, "REMOVED");
4960 else
4961 print_r_reloc (fp, &r->to);
4962 fprintf (fp, "\n");
4963 }
4964 }
4965
4966 #endif /* DEBUG */
4967
4968
4969 /* Per-section data for relaxation. */
4970
4971 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
4972
4973 struct xtensa_relax_info_struct
4974 {
4975 bfd_boolean is_relaxable_literal_section;
4976 bfd_boolean is_relaxable_asm_section;
4977 int visited; /* Number of times visited. */
4978
4979 source_reloc *src_relocs; /* Array[src_count]. */
4980 int src_count;
4981 int src_next; /* Next src_relocs entry to assign. */
4982
4983 removed_literal_list removed_list;
4984 text_action_list action_list;
4985
4986 reloc_bfd_fix *fix_list;
4987 reloc_bfd_fix *fix_array;
4988 unsigned fix_array_count;
4989
4990 /* Support for expanding the reloc array that is stored
4991 in the section structure. If the relocations have been
4992 reallocated, the newly allocated relocations will be referenced
4993 here along with the actual size allocated. The relocation
4994 count will always be found in the section structure. */
4995 Elf_Internal_Rela *allocated_relocs;
4996 unsigned relocs_count;
4997 unsigned allocated_relocs_count;
4998 };
4999
5000 struct elf_xtensa_section_data
5001 {
5002 struct bfd_elf_section_data elf;
5003 xtensa_relax_info relax_info;
5004 };
5005
5006
5007 static bfd_boolean
elf_xtensa_new_section_hook(bfd * abfd,asection * sec)5008 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5009 {
5010 struct elf_xtensa_section_data *sdata;
5011 bfd_size_type amt = sizeof (*sdata);
5012
5013 sdata = (struct elf_xtensa_section_data *) bfd_zalloc (abfd, amt);
5014 if (sdata == NULL)
5015 return FALSE;
5016 sec->used_by_bfd = (void *) sdata;
5017
5018 return _bfd_elf_new_section_hook (abfd, sec);
5019 }
5020
5021
5022 static xtensa_relax_info *
get_xtensa_relax_info(asection * sec)5023 get_xtensa_relax_info (asection *sec)
5024 {
5025 struct elf_xtensa_section_data *section_data;
5026
5027 /* No info available if no section or if it is an output section. */
5028 if (!sec || sec == sec->output_section)
5029 return NULL;
5030
5031 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5032 return §ion_data->relax_info;
5033 }
5034
5035
5036 static void
init_xtensa_relax_info(asection * sec)5037 init_xtensa_relax_info (asection *sec)
5038 {
5039 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5040
5041 relax_info->is_relaxable_literal_section = FALSE;
5042 relax_info->is_relaxable_asm_section = FALSE;
5043 relax_info->visited = 0;
5044
5045 relax_info->src_relocs = NULL;
5046 relax_info->src_count = 0;
5047 relax_info->src_next = 0;
5048
5049 relax_info->removed_list.head = NULL;
5050 relax_info->removed_list.tail = NULL;
5051
5052 relax_info->action_list.head = NULL;
5053
5054 relax_info->fix_list = NULL;
5055 relax_info->fix_array = NULL;
5056 relax_info->fix_array_count = 0;
5057
5058 relax_info->allocated_relocs = NULL;
5059 relax_info->relocs_count = 0;
5060 relax_info->allocated_relocs_count = 0;
5061 }
5062
5063
5064 /* Coalescing literals may require a relocation to refer to a section in
5065 a different input file, but the standard relocation information
5066 cannot express that. Instead, the reloc_bfd_fix structures are used
5067 to "fix" the relocations that refer to sections in other input files.
5068 These structures are kept on per-section lists. The "src_type" field
5069 records the relocation type in case there are multiple relocations on
5070 the same location. FIXME: This is ugly; an alternative might be to
5071 add new symbols with the "owner" field to some other input file. */
5072
5073 struct reloc_bfd_fix_struct
5074 {
5075 asection *src_sec;
5076 bfd_vma src_offset;
5077 unsigned src_type; /* Relocation type. */
5078
5079 bfd *target_abfd;
5080 asection *target_sec;
5081 bfd_vma target_offset;
5082 bfd_boolean translated;
5083
5084 reloc_bfd_fix *next;
5085 };
5086
5087
5088 static reloc_bfd_fix *
reloc_bfd_fix_init(asection * src_sec,bfd_vma src_offset,unsigned src_type,bfd * target_abfd,asection * target_sec,bfd_vma target_offset,bfd_boolean translated)5089 reloc_bfd_fix_init (asection *src_sec,
5090 bfd_vma src_offset,
5091 unsigned src_type,
5092 bfd *target_abfd,
5093 asection *target_sec,
5094 bfd_vma target_offset,
5095 bfd_boolean translated)
5096 {
5097 reloc_bfd_fix *fix;
5098
5099 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5100 fix->src_sec = src_sec;
5101 fix->src_offset = src_offset;
5102 fix->src_type = src_type;
5103 fix->target_abfd = target_abfd;
5104 fix->target_sec = target_sec;
5105 fix->target_offset = target_offset;
5106 fix->translated = translated;
5107
5108 return fix;
5109 }
5110
5111
5112 static void
add_fix(asection * src_sec,reloc_bfd_fix * fix)5113 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5114 {
5115 xtensa_relax_info *relax_info;
5116
5117 relax_info = get_xtensa_relax_info (src_sec);
5118 fix->next = relax_info->fix_list;
5119 relax_info->fix_list = fix;
5120 }
5121
5122
5123 static int
fix_compare(const void * ap,const void * bp)5124 fix_compare (const void *ap, const void *bp)
5125 {
5126 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5127 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5128
5129 if (a->src_offset != b->src_offset)
5130 return (a->src_offset - b->src_offset);
5131 return (a->src_type - b->src_type);
5132 }
5133
5134
5135 static void
cache_fix_array(asection * sec)5136 cache_fix_array (asection *sec)
5137 {
5138 unsigned i, count = 0;
5139 reloc_bfd_fix *r;
5140 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5141
5142 if (relax_info == NULL)
5143 return;
5144 if (relax_info->fix_list == NULL)
5145 return;
5146
5147 for (r = relax_info->fix_list; r != NULL; r = r->next)
5148 count++;
5149
5150 relax_info->fix_array =
5151 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5152 relax_info->fix_array_count = count;
5153
5154 r = relax_info->fix_list;
5155 for (i = 0; i < count; i++, r = r->next)
5156 {
5157 relax_info->fix_array[count - 1 - i] = *r;
5158 relax_info->fix_array[count - 1 - i].next = NULL;
5159 }
5160
5161 qsort (relax_info->fix_array, relax_info->fix_array_count,
5162 sizeof (reloc_bfd_fix), fix_compare);
5163 }
5164
5165
5166 static reloc_bfd_fix *
get_bfd_fix(asection * sec,bfd_vma offset,unsigned type)5167 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5168 {
5169 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5170 reloc_bfd_fix *rv;
5171 reloc_bfd_fix key;
5172
5173 if (relax_info == NULL)
5174 return NULL;
5175 if (relax_info->fix_list == NULL)
5176 return NULL;
5177
5178 if (relax_info->fix_array == NULL)
5179 cache_fix_array (sec);
5180
5181 key.src_offset = offset;
5182 key.src_type = type;
5183 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5184 sizeof (reloc_bfd_fix), fix_compare);
5185 return rv;
5186 }
5187
5188
5189 /* Section caching. */
5190
5191 typedef struct section_cache_struct section_cache_t;
5192
5193 struct section_cache_struct
5194 {
5195 asection *sec;
5196
5197 bfd_byte *contents; /* Cache of the section contents. */
5198 bfd_size_type content_length;
5199
5200 property_table_entry *ptbl; /* Cache of the section property table. */
5201 unsigned pte_count;
5202
5203 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5204 unsigned reloc_count;
5205 };
5206
5207
5208 static void
init_section_cache(section_cache_t * sec_cache)5209 init_section_cache (section_cache_t *sec_cache)
5210 {
5211 memset (sec_cache, 0, sizeof (*sec_cache));
5212 }
5213
5214
5215 static void
clear_section_cache(section_cache_t * sec_cache)5216 clear_section_cache (section_cache_t *sec_cache)
5217 {
5218 if (sec_cache->sec)
5219 {
5220 release_contents (sec_cache->sec, sec_cache->contents);
5221 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5222 if (sec_cache->ptbl)
5223 free (sec_cache->ptbl);
5224 memset (sec_cache, 0, sizeof (sec_cache));
5225 }
5226 }
5227
5228
5229 static bfd_boolean
section_cache_section(section_cache_t * sec_cache,asection * sec,struct bfd_link_info * link_info)5230 section_cache_section (section_cache_t *sec_cache,
5231 asection *sec,
5232 struct bfd_link_info *link_info)
5233 {
5234 bfd *abfd;
5235 property_table_entry *prop_table = NULL;
5236 int ptblsize = 0;
5237 bfd_byte *contents = NULL;
5238 Elf_Internal_Rela *internal_relocs = NULL;
5239 bfd_size_type sec_size;
5240
5241 if (sec == NULL)
5242 return FALSE;
5243 if (sec == sec_cache->sec)
5244 return TRUE;
5245
5246 abfd = sec->owner;
5247 sec_size = bfd_get_section_limit (abfd, sec);
5248
5249 /* Get the contents. */
5250 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5251 if (contents == NULL && sec_size != 0)
5252 goto err;
5253
5254 /* Get the relocations. */
5255 internal_relocs = retrieve_internal_relocs (abfd, sec,
5256 link_info->keep_memory);
5257
5258 /* Get the entry table. */
5259 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5260 XTENSA_PROP_SEC_NAME, FALSE);
5261 if (ptblsize < 0)
5262 goto err;
5263
5264 /* Fill in the new section cache. */
5265 clear_section_cache (sec_cache);
5266 memset (sec_cache, 0, sizeof (sec_cache));
5267
5268 sec_cache->sec = sec;
5269 sec_cache->contents = contents;
5270 sec_cache->content_length = sec_size;
5271 sec_cache->relocs = internal_relocs;
5272 sec_cache->reloc_count = sec->reloc_count;
5273 sec_cache->pte_count = ptblsize;
5274 sec_cache->ptbl = prop_table;
5275
5276 return TRUE;
5277
5278 err:
5279 release_contents (sec, contents);
5280 release_internal_relocs (sec, internal_relocs);
5281 if (prop_table)
5282 free (prop_table);
5283 return FALSE;
5284 }
5285
5286
5287 /* Extended basic blocks. */
5288
5289 /* An ebb_struct represents an Extended Basic Block. Within this
5290 range, we guarantee that all instructions are decodable, the
5291 property table entries are contiguous, and no property table
5292 specifies a segment that cannot have instructions moved. This
5293 structure contains caches of the contents, property table and
5294 relocations for the specified section for easy use. The range is
5295 specified by ranges of indices for the byte offset, property table
5296 offsets and relocation offsets. These must be consistent. */
5297
5298 typedef struct ebb_struct ebb_t;
5299
5300 struct ebb_struct
5301 {
5302 asection *sec;
5303
5304 bfd_byte *contents; /* Cache of the section contents. */
5305 bfd_size_type content_length;
5306
5307 property_table_entry *ptbl; /* Cache of the section property table. */
5308 unsigned pte_count;
5309
5310 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5311 unsigned reloc_count;
5312
5313 bfd_vma start_offset; /* Offset in section. */
5314 unsigned start_ptbl_idx; /* Offset in the property table. */
5315 unsigned start_reloc_idx; /* Offset in the relocations. */
5316
5317 bfd_vma end_offset;
5318 unsigned end_ptbl_idx;
5319 unsigned end_reloc_idx;
5320
5321 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5322
5323 /* The unreachable property table at the end of this set of blocks;
5324 NULL if the end is not an unreachable block. */
5325 property_table_entry *ends_unreachable;
5326 };
5327
5328
5329 enum ebb_target_enum
5330 {
5331 EBB_NO_ALIGN = 0,
5332 EBB_DESIRE_TGT_ALIGN,
5333 EBB_REQUIRE_TGT_ALIGN,
5334 EBB_REQUIRE_LOOP_ALIGN,
5335 EBB_REQUIRE_ALIGN
5336 };
5337
5338
5339 /* proposed_action_struct is similar to the text_action_struct except
5340 that is represents a potential transformation, not one that will
5341 occur. We build a list of these for an extended basic block
5342 and use them to compute the actual actions desired. We must be
5343 careful that the entire set of actual actions we perform do not
5344 break any relocations that would fit if the actions were not
5345 performed. */
5346
5347 typedef struct proposed_action_struct proposed_action;
5348
5349 struct proposed_action_struct
5350 {
5351 enum ebb_target_enum align_type; /* for the target alignment */
5352 bfd_vma alignment_pow;
5353 text_action_t action;
5354 bfd_vma offset;
5355 int removed_bytes;
5356 bfd_boolean do_action; /* If false, then we will not perform the action. */
5357 };
5358
5359
5360 /* The ebb_constraint_struct keeps a set of proposed actions for an
5361 extended basic block. */
5362
5363 typedef struct ebb_constraint_struct ebb_constraint;
5364
5365 struct ebb_constraint_struct
5366 {
5367 ebb_t ebb;
5368 bfd_boolean start_movable;
5369
5370 /* Bytes of extra space at the beginning if movable. */
5371 int start_extra_space;
5372
5373 enum ebb_target_enum start_align;
5374
5375 bfd_boolean end_movable;
5376
5377 /* Bytes of extra space at the end if movable. */
5378 int end_extra_space;
5379
5380 unsigned action_count;
5381 unsigned action_allocated;
5382
5383 /* Array of proposed actions. */
5384 proposed_action *actions;
5385
5386 /* Action alignments -- one for each proposed action. */
5387 enum ebb_target_enum *action_aligns;
5388 };
5389
5390
5391 static void
init_ebb_constraint(ebb_constraint * c)5392 init_ebb_constraint (ebb_constraint *c)
5393 {
5394 memset (c, 0, sizeof (ebb_constraint));
5395 }
5396
5397
5398 static void
free_ebb_constraint(ebb_constraint * c)5399 free_ebb_constraint (ebb_constraint *c)
5400 {
5401 if (c->actions)
5402 free (c->actions);
5403 }
5404
5405
5406 static void
init_ebb(ebb_t * ebb,asection * sec,bfd_byte * contents,bfd_size_type content_length,property_table_entry * prop_table,unsigned ptblsize,Elf_Internal_Rela * internal_relocs,unsigned reloc_count)5407 init_ebb (ebb_t *ebb,
5408 asection *sec,
5409 bfd_byte *contents,
5410 bfd_size_type content_length,
5411 property_table_entry *prop_table,
5412 unsigned ptblsize,
5413 Elf_Internal_Rela *internal_relocs,
5414 unsigned reloc_count)
5415 {
5416 memset (ebb, 0, sizeof (ebb_t));
5417 ebb->sec = sec;
5418 ebb->contents = contents;
5419 ebb->content_length = content_length;
5420 ebb->ptbl = prop_table;
5421 ebb->pte_count = ptblsize;
5422 ebb->relocs = internal_relocs;
5423 ebb->reloc_count = reloc_count;
5424 ebb->start_offset = 0;
5425 ebb->end_offset = ebb->content_length - 1;
5426 ebb->start_ptbl_idx = 0;
5427 ebb->end_ptbl_idx = ptblsize;
5428 ebb->start_reloc_idx = 0;
5429 ebb->end_reloc_idx = reloc_count;
5430 }
5431
5432
5433 /* Extend the ebb to all decodable contiguous sections. The algorithm
5434 for building a basic block around an instruction is to push it
5435 forward until we hit the end of a section, an unreachable block or
5436 a block that cannot be transformed. Then we push it backwards
5437 searching for similar conditions. */
5438
5439 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5440 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5441 static bfd_size_type insn_block_decodable_len
5442 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5443
5444 static bfd_boolean
extend_ebb_bounds(ebb_t * ebb)5445 extend_ebb_bounds (ebb_t *ebb)
5446 {
5447 if (!extend_ebb_bounds_forward (ebb))
5448 return FALSE;
5449 if (!extend_ebb_bounds_backward (ebb))
5450 return FALSE;
5451 return TRUE;
5452 }
5453
5454
5455 static bfd_boolean
extend_ebb_bounds_forward(ebb_t * ebb)5456 extend_ebb_bounds_forward (ebb_t *ebb)
5457 {
5458 property_table_entry *the_entry, *new_entry;
5459
5460 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5461
5462 /* Stop when (1) we cannot decode an instruction, (2) we are at
5463 the end of the property tables, (3) we hit a non-contiguous property
5464 table entry, (4) we hit a NO_TRANSFORM region. */
5465
5466 while (1)
5467 {
5468 bfd_vma entry_end;
5469 bfd_size_type insn_block_len;
5470
5471 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5472 insn_block_len =
5473 insn_block_decodable_len (ebb->contents, ebb->content_length,
5474 ebb->end_offset,
5475 entry_end - ebb->end_offset);
5476 if (insn_block_len != (entry_end - ebb->end_offset))
5477 {
5478 (*_bfd_error_handler)
5479 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5480 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5481 return FALSE;
5482 }
5483 ebb->end_offset += insn_block_len;
5484
5485 if (ebb->end_offset == ebb->sec->size)
5486 ebb->ends_section = TRUE;
5487
5488 /* Update the reloc counter. */
5489 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5490 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5491 < ebb->end_offset))
5492 {
5493 ebb->end_reloc_idx++;
5494 }
5495
5496 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5497 return TRUE;
5498
5499 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5500 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5501 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5502 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5503 break;
5504
5505 if (the_entry->address + the_entry->size != new_entry->address)
5506 break;
5507
5508 the_entry = new_entry;
5509 ebb->end_ptbl_idx++;
5510 }
5511
5512 /* Quick check for an unreachable or end of file just at the end. */
5513 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5514 {
5515 if (ebb->end_offset == ebb->content_length)
5516 ebb->ends_section = TRUE;
5517 }
5518 else
5519 {
5520 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5521 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5522 && the_entry->address + the_entry->size == new_entry->address)
5523 ebb->ends_unreachable = new_entry;
5524 }
5525
5526 /* Any other ending requires exact alignment. */
5527 return TRUE;
5528 }
5529
5530
5531 static bfd_boolean
extend_ebb_bounds_backward(ebb_t * ebb)5532 extend_ebb_bounds_backward (ebb_t *ebb)
5533 {
5534 property_table_entry *the_entry, *new_entry;
5535
5536 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5537
5538 /* Stop when (1) we cannot decode the instructions in the current entry.
5539 (2) we are at the beginning of the property tables, (3) we hit a
5540 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5541
5542 while (1)
5543 {
5544 bfd_vma block_begin;
5545 bfd_size_type insn_block_len;
5546
5547 block_begin = the_entry->address - ebb->sec->vma;
5548 insn_block_len =
5549 insn_block_decodable_len (ebb->contents, ebb->content_length,
5550 block_begin,
5551 ebb->start_offset - block_begin);
5552 if (insn_block_len != ebb->start_offset - block_begin)
5553 {
5554 (*_bfd_error_handler)
5555 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5556 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5557 return FALSE;
5558 }
5559 ebb->start_offset -= insn_block_len;
5560
5561 /* Update the reloc counter. */
5562 while (ebb->start_reloc_idx > 0
5563 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5564 >= ebb->start_offset))
5565 {
5566 ebb->start_reloc_idx--;
5567 }
5568
5569 if (ebb->start_ptbl_idx == 0)
5570 return TRUE;
5571
5572 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5573 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5574 || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0)
5575 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5576 return TRUE;
5577 if (new_entry->address + new_entry->size != the_entry->address)
5578 return TRUE;
5579
5580 the_entry = new_entry;
5581 ebb->start_ptbl_idx--;
5582 }
5583 return TRUE;
5584 }
5585
5586
5587 static bfd_size_type
insn_block_decodable_len(bfd_byte * contents,bfd_size_type content_len,bfd_vma block_offset,bfd_size_type block_len)5588 insn_block_decodable_len (bfd_byte *contents,
5589 bfd_size_type content_len,
5590 bfd_vma block_offset,
5591 bfd_size_type block_len)
5592 {
5593 bfd_vma offset = block_offset;
5594
5595 while (offset < block_offset + block_len)
5596 {
5597 bfd_size_type insn_len = 0;
5598
5599 insn_len = insn_decode_len (contents, content_len, offset);
5600 if (insn_len == 0)
5601 return (offset - block_offset);
5602 offset += insn_len;
5603 }
5604 return (offset - block_offset);
5605 }
5606
5607
5608 static void
ebb_propose_action(ebb_constraint * c,enum ebb_target_enum align_type,bfd_vma alignment_pow,text_action_t action,bfd_vma offset,int removed_bytes,bfd_boolean do_action)5609 ebb_propose_action (ebb_constraint *c,
5610 enum ebb_target_enum align_type,
5611 bfd_vma alignment_pow,
5612 text_action_t action,
5613 bfd_vma offset,
5614 int removed_bytes,
5615 bfd_boolean do_action)
5616 {
5617 proposed_action *act;
5618
5619 if (c->action_allocated <= c->action_count)
5620 {
5621 unsigned new_allocated, i;
5622 proposed_action *new_actions;
5623
5624 new_allocated = (c->action_count + 2) * 2;
5625 new_actions = (proposed_action *)
5626 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5627
5628 for (i = 0; i < c->action_count; i++)
5629 new_actions[i] = c->actions[i];
5630 if (c->actions)
5631 free (c->actions);
5632 c->actions = new_actions;
5633 c->action_allocated = new_allocated;
5634 }
5635
5636 act = &c->actions[c->action_count];
5637 act->align_type = align_type;
5638 act->alignment_pow = alignment_pow;
5639 act->action = action;
5640 act->offset = offset;
5641 act->removed_bytes = removed_bytes;
5642 act->do_action = do_action;
5643
5644 c->action_count++;
5645 }
5646
5647
5648 /* Access to internal relocations, section contents and symbols. */
5649
5650 /* During relaxation, we need to modify relocations, section contents,
5651 and symbol definitions, and we need to keep the original values from
5652 being reloaded from the input files, i.e., we need to "pin" the
5653 modified values in memory. We also want to continue to observe the
5654 setting of the "keep-memory" flag. The following functions wrap the
5655 standard BFD functions to take care of this for us. */
5656
5657 static Elf_Internal_Rela *
retrieve_internal_relocs(bfd * abfd,asection * sec,bfd_boolean keep_memory)5658 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5659 {
5660 Elf_Internal_Rela *internal_relocs;
5661
5662 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5663 return NULL;
5664
5665 internal_relocs = elf_section_data (sec)->relocs;
5666 if (internal_relocs == NULL)
5667 internal_relocs = (_bfd_elf_link_read_relocs
5668 (abfd, sec, NULL, NULL, keep_memory));
5669 return internal_relocs;
5670 }
5671
5672
5673 static void
pin_internal_relocs(asection * sec,Elf_Internal_Rela * internal_relocs)5674 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5675 {
5676 elf_section_data (sec)->relocs = internal_relocs;
5677 }
5678
5679
5680 static void
release_internal_relocs(asection * sec,Elf_Internal_Rela * internal_relocs)5681 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5682 {
5683 if (internal_relocs
5684 && elf_section_data (sec)->relocs != internal_relocs)
5685 free (internal_relocs);
5686 }
5687
5688
5689 static bfd_byte *
retrieve_contents(bfd * abfd,asection * sec,bfd_boolean keep_memory)5690 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5691 {
5692 bfd_byte *contents;
5693 bfd_size_type sec_size;
5694
5695 sec_size = bfd_get_section_limit (abfd, sec);
5696 contents = elf_section_data (sec)->this_hdr.contents;
5697
5698 if (contents == NULL && sec_size != 0)
5699 {
5700 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5701 {
5702 if (contents)
5703 free (contents);
5704 return NULL;
5705 }
5706 if (keep_memory)
5707 elf_section_data (sec)->this_hdr.contents = contents;
5708 }
5709 return contents;
5710 }
5711
5712
5713 static void
pin_contents(asection * sec,bfd_byte * contents)5714 pin_contents (asection *sec, bfd_byte *contents)
5715 {
5716 elf_section_data (sec)->this_hdr.contents = contents;
5717 }
5718
5719
5720 static void
release_contents(asection * sec,bfd_byte * contents)5721 release_contents (asection *sec, bfd_byte *contents)
5722 {
5723 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5724 free (contents);
5725 }
5726
5727
5728 static Elf_Internal_Sym *
retrieve_local_syms(bfd * input_bfd)5729 retrieve_local_syms (bfd *input_bfd)
5730 {
5731 Elf_Internal_Shdr *symtab_hdr;
5732 Elf_Internal_Sym *isymbuf;
5733 size_t locsymcount;
5734
5735 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5736 locsymcount = symtab_hdr->sh_info;
5737
5738 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5739 if (isymbuf == NULL && locsymcount != 0)
5740 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5741 NULL, NULL, NULL);
5742
5743 /* Save the symbols for this input file so they won't be read again. */
5744 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5745 symtab_hdr->contents = (unsigned char *) isymbuf;
5746
5747 return isymbuf;
5748 }
5749
5750
5751 /* Code for link-time relaxation. */
5752
5753 /* Initialization for relaxation: */
5754 static bfd_boolean analyze_relocations (struct bfd_link_info *);
5755 static bfd_boolean find_relaxable_sections
5756 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
5757 static bfd_boolean collect_source_relocs
5758 (bfd *, asection *, struct bfd_link_info *);
5759 static bfd_boolean is_resolvable_asm_expansion
5760 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5761 bfd_boolean *);
5762 static Elf_Internal_Rela *find_associated_l32r_irel
5763 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
5764 static bfd_boolean compute_text_actions
5765 (bfd *, asection *, struct bfd_link_info *);
5766 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5767 static bfd_boolean compute_ebb_actions (ebb_constraint *);
5768 static bfd_boolean check_section_ebb_pcrels_fit
5769 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5770 const xtensa_opcode *);
5771 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
5772 static void text_action_add_proposed
5773 (text_action_list *, const ebb_constraint *, asection *);
5774 static int compute_fill_extra_space (property_table_entry *);
5775
5776 /* First pass: */
5777 static bfd_boolean compute_removed_literals
5778 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
5779 static Elf_Internal_Rela *get_irel_at_offset
5780 (asection *, Elf_Internal_Rela *, bfd_vma);
5781 static bfd_boolean is_removable_literal
5782 (const source_reloc *, int, const source_reloc *, int);
5783 static bfd_boolean remove_dead_literal
5784 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5785 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5786 static bfd_boolean identify_literal_placement
5787 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5788 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5789 source_reloc *, property_table_entry *, int, section_cache_t *,
5790 bfd_boolean);
5791 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
5792 static bfd_boolean coalesce_shared_literal
5793 (asection *, source_reloc *, property_table_entry *, int, value_map *);
5794 static bfd_boolean move_shared_literal
5795 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5796 int, const r_reloc *, const literal_value *, section_cache_t *);
5797
5798 /* Second pass: */
5799 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5800 static bfd_boolean translate_section_fixes (asection *);
5801 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5802 static void translate_reloc (const r_reloc *, r_reloc *);
5803 static void shrink_dynamic_reloc_sections
5804 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
5805 static bfd_boolean move_literal
5806 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5807 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
5808 static bfd_boolean relax_property_section
5809 (bfd *, asection *, struct bfd_link_info *);
5810
5811 /* Third pass: */
5812 static bfd_boolean relax_section_symbols (bfd *, asection *);
5813
5814
5815 static bfd_boolean
elf_xtensa_relax_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info,bfd_boolean * again)5816 elf_xtensa_relax_section (bfd *abfd,
5817 asection *sec,
5818 struct bfd_link_info *link_info,
5819 bfd_boolean *again)
5820 {
5821 static value_map_hash_table *values = NULL;
5822 static bfd_boolean relocations_analyzed = FALSE;
5823 xtensa_relax_info *relax_info;
5824
5825 if (!relocations_analyzed)
5826 {
5827 /* Do some overall initialization for relaxation. */
5828 values = value_map_hash_table_init ();
5829 if (values == NULL)
5830 return FALSE;
5831 relaxing_section = TRUE;
5832 if (!analyze_relocations (link_info))
5833 return FALSE;
5834 relocations_analyzed = TRUE;
5835 }
5836 *again = FALSE;
5837
5838 /* Don't mess with linker-created sections. */
5839 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5840 return TRUE;
5841
5842 relax_info = get_xtensa_relax_info (sec);
5843 BFD_ASSERT (relax_info != NULL);
5844
5845 switch (relax_info->visited)
5846 {
5847 case 0:
5848 /* Note: It would be nice to fold this pass into
5849 analyze_relocations, but it is important for this step that the
5850 sections be examined in link order. */
5851 if (!compute_removed_literals (abfd, sec, link_info, values))
5852 return FALSE;
5853 *again = TRUE;
5854 break;
5855
5856 case 1:
5857 if (values)
5858 value_map_hash_table_delete (values);
5859 values = NULL;
5860 if (!relax_section (abfd, sec, link_info))
5861 return FALSE;
5862 *again = TRUE;
5863 break;
5864
5865 case 2:
5866 if (!relax_section_symbols (abfd, sec))
5867 return FALSE;
5868 break;
5869 }
5870
5871 relax_info->visited++;
5872 return TRUE;
5873 }
5874
5875
5876 /* Initialization for relaxation. */
5877
5878 /* This function is called once at the start of relaxation. It scans
5879 all the input sections and marks the ones that are relaxable (i.e.,
5880 literal sections with L32R relocations against them), and then
5881 collects source_reloc information for all the relocations against
5882 those relaxable sections. During this process, it also detects
5883 longcalls, i.e., calls relaxed by the assembler into indirect
5884 calls, that can be optimized back into direct calls. Within each
5885 extended basic block (ebb) containing an optimized longcall, it
5886 computes a set of "text actions" that can be performed to remove
5887 the L32R associated with the longcall while optionally preserving
5888 branch target alignments. */
5889
5890 static bfd_boolean
analyze_relocations(struct bfd_link_info * link_info)5891 analyze_relocations (struct bfd_link_info *link_info)
5892 {
5893 bfd *abfd;
5894 asection *sec;
5895 bfd_boolean is_relaxable = FALSE;
5896
5897 /* Initialize the per-section relaxation info. */
5898 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5899 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5900 {
5901 init_xtensa_relax_info (sec);
5902 }
5903
5904 /* Mark relaxable sections (and count relocations against each one). */
5905 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5906 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5907 {
5908 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5909 return FALSE;
5910 }
5911
5912 /* Bail out if there are no relaxable sections. */
5913 if (!is_relaxable)
5914 return TRUE;
5915
5916 /* Allocate space for source_relocs. */
5917 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5918 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5919 {
5920 xtensa_relax_info *relax_info;
5921
5922 relax_info = get_xtensa_relax_info (sec);
5923 if (relax_info->is_relaxable_literal_section
5924 || relax_info->is_relaxable_asm_section)
5925 {
5926 relax_info->src_relocs = (source_reloc *)
5927 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5928 }
5929 }
5930
5931 /* Collect info on relocations against each relaxable section. */
5932 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5933 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5934 {
5935 if (!collect_source_relocs (abfd, sec, link_info))
5936 return FALSE;
5937 }
5938
5939 /* Compute the text actions. */
5940 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5941 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5942 {
5943 if (!compute_text_actions (abfd, sec, link_info))
5944 return FALSE;
5945 }
5946
5947 return TRUE;
5948 }
5949
5950
5951 /* Find all the sections that might be relaxed. The motivation for
5952 this pass is that collect_source_relocs() needs to record _all_ the
5953 relocations that target each relaxable section. That is expensive
5954 and unnecessary unless the target section is actually going to be
5955 relaxed. This pass identifies all such sections by checking if
5956 they have L32Rs pointing to them. In the process, the total number
5957 of relocations targeting each section is also counted so that we
5958 know how much space to allocate for source_relocs against each
5959 relaxable literal section. */
5960
5961 static bfd_boolean
find_relaxable_sections(bfd * abfd,asection * sec,struct bfd_link_info * link_info,bfd_boolean * is_relaxable_p)5962 find_relaxable_sections (bfd *abfd,
5963 asection *sec,
5964 struct bfd_link_info *link_info,
5965 bfd_boolean *is_relaxable_p)
5966 {
5967 Elf_Internal_Rela *internal_relocs;
5968 bfd_byte *contents;
5969 bfd_boolean ok = TRUE;
5970 unsigned i;
5971 xtensa_relax_info *source_relax_info;
5972
5973 internal_relocs = retrieve_internal_relocs (abfd, sec,
5974 link_info->keep_memory);
5975 if (internal_relocs == NULL)
5976 return ok;
5977
5978 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5979 if (contents == NULL && sec->size != 0)
5980 {
5981 ok = FALSE;
5982 goto error_return;
5983 }
5984
5985 source_relax_info = get_xtensa_relax_info (sec);
5986 for (i = 0; i < sec->reloc_count; i++)
5987 {
5988 Elf_Internal_Rela *irel = &internal_relocs[i];
5989 r_reloc r_rel;
5990 asection *target_sec;
5991 xtensa_relax_info *target_relax_info;
5992
5993 /* If this section has not already been marked as "relaxable", and
5994 if it contains any ASM_EXPAND relocations (marking expanded
5995 longcalls) that can be optimized into direct calls, then mark
5996 the section as "relaxable". */
5997 if (source_relax_info
5998 && !source_relax_info->is_relaxable_asm_section
5999 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6000 {
6001 bfd_boolean is_reachable = FALSE;
6002 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6003 link_info, &is_reachable)
6004 && is_reachable)
6005 {
6006 source_relax_info->is_relaxable_asm_section = TRUE;
6007 *is_relaxable_p = TRUE;
6008 }
6009 }
6010
6011 r_reloc_init (&r_rel, abfd, irel, contents,
6012 bfd_get_section_limit (abfd, sec));
6013
6014 target_sec = r_reloc_get_section (&r_rel);
6015 target_relax_info = get_xtensa_relax_info (target_sec);
6016 if (!target_relax_info)
6017 continue;
6018
6019 /* Count PC-relative operand relocations against the target section.
6020 Note: The conditions tested here must match the conditions under
6021 which init_source_reloc is called in collect_source_relocs(). */
6022 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))
6023 && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6024 || is_l32r_relocation (abfd, sec, contents, irel)))
6025 target_relax_info->src_count++;
6026
6027 if (is_l32r_relocation (abfd, sec, contents, irel)
6028 && r_reloc_is_defined (&r_rel))
6029 {
6030 /* Mark the target section as relaxable. */
6031 target_relax_info->is_relaxable_literal_section = TRUE;
6032 *is_relaxable_p = TRUE;
6033 }
6034 }
6035
6036 error_return:
6037 release_contents (sec, contents);
6038 release_internal_relocs (sec, internal_relocs);
6039 return ok;
6040 }
6041
6042
6043 /* Record _all_ the relocations that point to relaxable sections, and
6044 get rid of ASM_EXPAND relocs by either converting them to
6045 ASM_SIMPLIFY or by removing them. */
6046
6047 static bfd_boolean
collect_source_relocs(bfd * abfd,asection * sec,struct bfd_link_info * link_info)6048 collect_source_relocs (bfd *abfd,
6049 asection *sec,
6050 struct bfd_link_info *link_info)
6051 {
6052 Elf_Internal_Rela *internal_relocs;
6053 bfd_byte *contents;
6054 bfd_boolean ok = TRUE;
6055 unsigned i;
6056 bfd_size_type sec_size;
6057
6058 internal_relocs = retrieve_internal_relocs (abfd, sec,
6059 link_info->keep_memory);
6060 if (internal_relocs == NULL)
6061 return ok;
6062
6063 sec_size = bfd_get_section_limit (abfd, sec);
6064 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6065 if (contents == NULL && sec_size != 0)
6066 {
6067 ok = FALSE;
6068 goto error_return;
6069 }
6070
6071 /* Record relocations against relaxable literal sections. */
6072 for (i = 0; i < sec->reloc_count; i++)
6073 {
6074 Elf_Internal_Rela *irel = &internal_relocs[i];
6075 r_reloc r_rel;
6076 asection *target_sec;
6077 xtensa_relax_info *target_relax_info;
6078
6079 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6080
6081 target_sec = r_reloc_get_section (&r_rel);
6082 target_relax_info = get_xtensa_relax_info (target_sec);
6083
6084 if (target_relax_info
6085 && (target_relax_info->is_relaxable_literal_section
6086 || target_relax_info->is_relaxable_asm_section))
6087 {
6088 xtensa_opcode opcode = XTENSA_UNDEFINED;
6089 int opnd = -1;
6090 bfd_boolean is_abs_literal = FALSE;
6091
6092 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6093 {
6094 /* None of the current alternate relocs are PC-relative,
6095 and only PC-relative relocs matter here. However, we
6096 still need to record the opcode for literal
6097 coalescing. */
6098 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6099 if (opcode == get_l32r_opcode ())
6100 {
6101 is_abs_literal = TRUE;
6102 opnd = 1;
6103 }
6104 else
6105 opcode = XTENSA_UNDEFINED;
6106 }
6107 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6108 {
6109 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6110 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6111 }
6112
6113 if (opcode != XTENSA_UNDEFINED)
6114 {
6115 int src_next = target_relax_info->src_next++;
6116 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6117
6118 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6119 is_abs_literal);
6120 }
6121 }
6122 }
6123
6124 /* Now get rid of ASM_EXPAND relocations. At this point, the
6125 src_relocs array for the target literal section may still be
6126 incomplete, but it must at least contain the entries for the L32R
6127 relocations associated with ASM_EXPANDs because they were just
6128 added in the preceding loop over the relocations. */
6129
6130 for (i = 0; i < sec->reloc_count; i++)
6131 {
6132 Elf_Internal_Rela *irel = &internal_relocs[i];
6133 bfd_boolean is_reachable;
6134
6135 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6136 &is_reachable))
6137 continue;
6138
6139 if (is_reachable)
6140 {
6141 Elf_Internal_Rela *l32r_irel;
6142 r_reloc r_rel;
6143 asection *target_sec;
6144 xtensa_relax_info *target_relax_info;
6145
6146 /* Mark the source_reloc for the L32R so that it will be
6147 removed in compute_removed_literals(), along with the
6148 associated literal. */
6149 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6150 irel, internal_relocs);
6151 if (l32r_irel == NULL)
6152 continue;
6153
6154 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6155
6156 target_sec = r_reloc_get_section (&r_rel);
6157 target_relax_info = get_xtensa_relax_info (target_sec);
6158
6159 if (target_relax_info
6160 && (target_relax_info->is_relaxable_literal_section
6161 || target_relax_info->is_relaxable_asm_section))
6162 {
6163 source_reloc *s_reloc;
6164
6165 /* Search the source_relocs for the entry corresponding to
6166 the l32r_irel. Note: The src_relocs array is not yet
6167 sorted, but it wouldn't matter anyway because we're
6168 searching by source offset instead of target offset. */
6169 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6170 target_relax_info->src_next,
6171 sec, l32r_irel);
6172 BFD_ASSERT (s_reloc);
6173 s_reloc->is_null = TRUE;
6174 }
6175
6176 /* Convert this reloc to ASM_SIMPLIFY. */
6177 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6178 R_XTENSA_ASM_SIMPLIFY);
6179 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6180
6181 pin_internal_relocs (sec, internal_relocs);
6182 }
6183 else
6184 {
6185 /* It is resolvable but doesn't reach. We resolve now
6186 by eliminating the relocation -- the call will remain
6187 expanded into L32R/CALLX. */
6188 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6189 pin_internal_relocs (sec, internal_relocs);
6190 }
6191 }
6192
6193 error_return:
6194 release_contents (sec, contents);
6195 release_internal_relocs (sec, internal_relocs);
6196 return ok;
6197 }
6198
6199
6200 /* Return TRUE if the asm expansion can be resolved. Generally it can
6201 be resolved on a final link or when a partial link locates it in the
6202 same section as the target. Set "is_reachable" flag if the target of
6203 the call is within the range of a direct call, given the current VMA
6204 for this section and the target section. */
6205
6206 bfd_boolean
is_resolvable_asm_expansion(bfd * abfd,asection * sec,bfd_byte * contents,Elf_Internal_Rela * irel,struct bfd_link_info * link_info,bfd_boolean * is_reachable_p)6207 is_resolvable_asm_expansion (bfd *abfd,
6208 asection *sec,
6209 bfd_byte *contents,
6210 Elf_Internal_Rela *irel,
6211 struct bfd_link_info *link_info,
6212 bfd_boolean *is_reachable_p)
6213 {
6214 asection *target_sec;
6215 bfd_vma target_offset;
6216 r_reloc r_rel;
6217 xtensa_opcode opcode, direct_call_opcode;
6218 bfd_vma self_address;
6219 bfd_vma dest_address;
6220 bfd_boolean uses_l32r;
6221 bfd_size_type sec_size;
6222
6223 *is_reachable_p = FALSE;
6224
6225 if (contents == NULL)
6226 return FALSE;
6227
6228 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6229 return FALSE;
6230
6231 sec_size = bfd_get_section_limit (abfd, sec);
6232 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6233 sec_size - irel->r_offset, &uses_l32r);
6234 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6235 if (!uses_l32r)
6236 return FALSE;
6237
6238 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6239 if (direct_call_opcode == XTENSA_UNDEFINED)
6240 return FALSE;
6241
6242 /* Check and see that the target resolves. */
6243 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6244 if (!r_reloc_is_defined (&r_rel))
6245 return FALSE;
6246
6247 target_sec = r_reloc_get_section (&r_rel);
6248 target_offset = r_rel.target_offset;
6249
6250 /* If the target is in a shared library, then it doesn't reach. This
6251 isn't supposed to come up because the compiler should never generate
6252 non-PIC calls on systems that use shared libraries, but the linker
6253 shouldn't crash regardless. */
6254 if (!target_sec->output_section)
6255 return FALSE;
6256
6257 /* For relocatable sections, we can only simplify when the output
6258 section of the target is the same as the output section of the
6259 source. */
6260 if (link_info->relocatable
6261 && (target_sec->output_section != sec->output_section
6262 || is_reloc_sym_weak (abfd, irel)))
6263 return FALSE;
6264
6265 self_address = (sec->output_section->vma
6266 + sec->output_offset + irel->r_offset + 3);
6267 dest_address = (target_sec->output_section->vma
6268 + target_sec->output_offset + target_offset);
6269
6270 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6271 self_address, dest_address);
6272
6273 if ((self_address >> CALL_SEGMENT_BITS) !=
6274 (dest_address >> CALL_SEGMENT_BITS))
6275 return FALSE;
6276
6277 return TRUE;
6278 }
6279
6280
6281 static Elf_Internal_Rela *
find_associated_l32r_irel(bfd * abfd,asection * sec,bfd_byte * contents,Elf_Internal_Rela * other_irel,Elf_Internal_Rela * internal_relocs)6282 find_associated_l32r_irel (bfd *abfd,
6283 asection *sec,
6284 bfd_byte *contents,
6285 Elf_Internal_Rela *other_irel,
6286 Elf_Internal_Rela *internal_relocs)
6287 {
6288 unsigned i;
6289
6290 for (i = 0; i < sec->reloc_count; i++)
6291 {
6292 Elf_Internal_Rela *irel = &internal_relocs[i];
6293
6294 if (irel == other_irel)
6295 continue;
6296 if (irel->r_offset != other_irel->r_offset)
6297 continue;
6298 if (is_l32r_relocation (abfd, sec, contents, irel))
6299 return irel;
6300 }
6301
6302 return NULL;
6303 }
6304
6305
6306 static xtensa_opcode *
build_reloc_opcodes(bfd * abfd,asection * sec,bfd_byte * contents,Elf_Internal_Rela * internal_relocs)6307 build_reloc_opcodes (bfd *abfd,
6308 asection *sec,
6309 bfd_byte *contents,
6310 Elf_Internal_Rela *internal_relocs)
6311 {
6312 unsigned i;
6313 xtensa_opcode *reloc_opcodes =
6314 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6315 for (i = 0; i < sec->reloc_count; i++)
6316 {
6317 Elf_Internal_Rela *irel = &internal_relocs[i];
6318 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6319 }
6320 return reloc_opcodes;
6321 }
6322
6323
6324 /* The compute_text_actions function will build a list of potential
6325 transformation actions for code in the extended basic block of each
6326 longcall that is optimized to a direct call. From this list we
6327 generate a set of actions to actually perform that optimizes for
6328 space and, if not using size_opt, maintains branch target
6329 alignments.
6330
6331 These actions to be performed are placed on a per-section list.
6332 The actual changes are performed by relax_section() in the second
6333 pass. */
6334
6335 bfd_boolean
compute_text_actions(bfd * abfd,asection * sec,struct bfd_link_info * link_info)6336 compute_text_actions (bfd *abfd,
6337 asection *sec,
6338 struct bfd_link_info *link_info)
6339 {
6340 xtensa_opcode *reloc_opcodes = NULL;
6341 xtensa_relax_info *relax_info;
6342 bfd_byte *contents;
6343 Elf_Internal_Rela *internal_relocs;
6344 bfd_boolean ok = TRUE;
6345 unsigned i;
6346 property_table_entry *prop_table = 0;
6347 int ptblsize = 0;
6348 bfd_size_type sec_size;
6349 static bfd_boolean no_insn_move = FALSE;
6350
6351 if (no_insn_move)
6352 return ok;
6353
6354 /* Do nothing if the section contains no optimized longcalls. */
6355 relax_info = get_xtensa_relax_info (sec);
6356 BFD_ASSERT (relax_info);
6357 if (!relax_info->is_relaxable_asm_section)
6358 return ok;
6359
6360 internal_relocs = retrieve_internal_relocs (abfd, sec,
6361 link_info->keep_memory);
6362
6363 if (internal_relocs)
6364 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6365 internal_reloc_compare);
6366
6367 sec_size = bfd_get_section_limit (abfd, sec);
6368 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6369 if (contents == NULL && sec_size != 0)
6370 {
6371 ok = FALSE;
6372 goto error_return;
6373 }
6374
6375 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6376 XTENSA_PROP_SEC_NAME, FALSE);
6377 if (ptblsize < 0)
6378 {
6379 ok = FALSE;
6380 goto error_return;
6381 }
6382
6383 for (i = 0; i < sec->reloc_count; i++)
6384 {
6385 Elf_Internal_Rela *irel = &internal_relocs[i];
6386 bfd_vma r_offset;
6387 property_table_entry *the_entry;
6388 int ptbl_idx;
6389 ebb_t *ebb;
6390 ebb_constraint ebb_table;
6391 bfd_size_type simplify_size;
6392
6393 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6394 continue;
6395 r_offset = irel->r_offset;
6396
6397 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6398 if (simplify_size == 0)
6399 {
6400 (*_bfd_error_handler)
6401 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6402 sec->owner, sec, r_offset);
6403 continue;
6404 }
6405
6406 /* If the instruction table is not around, then don't do this
6407 relaxation. */
6408 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6409 sec->vma + irel->r_offset);
6410 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6411 {
6412 text_action_add (&relax_info->action_list,
6413 ta_convert_longcall, sec, r_offset,
6414 0);
6415 continue;
6416 }
6417
6418 /* If the next longcall happens to be at the same address as an
6419 unreachable section of size 0, then skip forward. */
6420 ptbl_idx = the_entry - prop_table;
6421 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6422 && the_entry->size == 0
6423 && ptbl_idx + 1 < ptblsize
6424 && (prop_table[ptbl_idx + 1].address
6425 == prop_table[ptbl_idx].address))
6426 {
6427 ptbl_idx++;
6428 the_entry++;
6429 }
6430
6431 if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)
6432 /* NO_REORDER is OK */
6433 continue;
6434
6435 init_ebb_constraint (&ebb_table);
6436 ebb = &ebb_table.ebb;
6437 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6438 internal_relocs, sec->reloc_count);
6439 ebb->start_offset = r_offset + simplify_size;
6440 ebb->end_offset = r_offset + simplify_size;
6441 ebb->start_ptbl_idx = ptbl_idx;
6442 ebb->end_ptbl_idx = ptbl_idx;
6443 ebb->start_reloc_idx = i;
6444 ebb->end_reloc_idx = i;
6445
6446 /* Precompute the opcode for each relocation. */
6447 if (reloc_opcodes == NULL)
6448 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6449 internal_relocs);
6450
6451 if (!extend_ebb_bounds (ebb)
6452 || !compute_ebb_proposed_actions (&ebb_table)
6453 || !compute_ebb_actions (&ebb_table)
6454 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6455 internal_relocs, &ebb_table,
6456 reloc_opcodes)
6457 || !check_section_ebb_reduces (&ebb_table))
6458 {
6459 /* If anything goes wrong or we get unlucky and something does
6460 not fit, with our plan because of expansion between
6461 critical branches, just convert to a NOP. */
6462
6463 text_action_add (&relax_info->action_list,
6464 ta_convert_longcall, sec, r_offset, 0);
6465 i = ebb_table.ebb.end_reloc_idx;
6466 free_ebb_constraint (&ebb_table);
6467 continue;
6468 }
6469
6470 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6471
6472 /* Update the index so we do not go looking at the relocations
6473 we have already processed. */
6474 i = ebb_table.ebb.end_reloc_idx;
6475 free_ebb_constraint (&ebb_table);
6476 }
6477
6478 #if DEBUG
6479 if (relax_info->action_list.head)
6480 print_action_list (stderr, &relax_info->action_list);
6481 #endif
6482
6483 error_return:
6484 release_contents (sec, contents);
6485 release_internal_relocs (sec, internal_relocs);
6486 if (prop_table)
6487 free (prop_table);
6488 if (reloc_opcodes)
6489 free (reloc_opcodes);
6490
6491 return ok;
6492 }
6493
6494
6495 /* Find all of the possible actions for an extended basic block. */
6496
6497 bfd_boolean
compute_ebb_proposed_actions(ebb_constraint * ebb_table)6498 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
6499 {
6500 const ebb_t *ebb = &ebb_table->ebb;
6501 unsigned rel_idx = ebb->start_reloc_idx;
6502 property_table_entry *entry, *start_entry, *end_entry;
6503
6504 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6505 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6506
6507 for (entry = start_entry; entry <= end_entry; entry++)
6508 {
6509 bfd_vma offset, start_offset, end_offset;
6510 bfd_size_type insn_len;
6511
6512 start_offset = entry->address - ebb->sec->vma;
6513 end_offset = entry->address + entry->size - ebb->sec->vma;
6514
6515 if (entry == start_entry)
6516 start_offset = ebb->start_offset;
6517 if (entry == end_entry)
6518 end_offset = ebb->end_offset;
6519 offset = start_offset;
6520
6521 if (offset == entry->address - ebb->sec->vma
6522 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6523 {
6524 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6525 BFD_ASSERT (offset != end_offset);
6526 if (offset == end_offset)
6527 return FALSE;
6528
6529 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6530 offset);
6531
6532 /* Propose no actions for a section with an undecodable offset. */
6533 if (insn_len == 0)
6534 {
6535 (*_bfd_error_handler)
6536 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6537 ebb->sec->owner, ebb->sec, offset);
6538 return FALSE;
6539 }
6540 if (check_branch_target_aligned_address (offset, insn_len))
6541 align_type = EBB_REQUIRE_TGT_ALIGN;
6542
6543 ebb_propose_action (ebb_table, align_type, 0,
6544 ta_none, offset, 0, TRUE);
6545 }
6546
6547 while (offset != end_offset)
6548 {
6549 Elf_Internal_Rela *irel;
6550 xtensa_opcode opcode;
6551
6552 while (rel_idx < ebb->end_reloc_idx
6553 && (ebb->relocs[rel_idx].r_offset < offset
6554 || (ebb->relocs[rel_idx].r_offset == offset
6555 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6556 != R_XTENSA_ASM_SIMPLIFY))))
6557 rel_idx++;
6558
6559 /* Check for longcall. */
6560 irel = &ebb->relocs[rel_idx];
6561 if (irel->r_offset == offset
6562 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6563 {
6564 bfd_size_type simplify_size;
6565
6566 simplify_size = get_asm_simplify_size (ebb->contents,
6567 ebb->content_length,
6568 irel->r_offset);
6569 if (simplify_size == 0)
6570 {
6571 (*_bfd_error_handler)
6572 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6573 ebb->sec->owner, ebb->sec, offset);
6574 return FALSE;
6575 }
6576
6577 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6578 ta_convert_longcall, offset, 0, TRUE);
6579
6580 offset += simplify_size;
6581 continue;
6582 }
6583
6584 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6585 offset);
6586 /* If the instruction is undecodable, then report an error. */
6587 if (insn_len == 0)
6588 {
6589 (*_bfd_error_handler)
6590 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6591 ebb->sec->owner, ebb->sec, offset);
6592 return FALSE;
6593 }
6594
6595 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6596 && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6597 && narrow_instruction (ebb->contents, ebb->content_length,
6598 offset, FALSE))
6599 {
6600 /* Add an instruction narrow action. */
6601 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6602 ta_narrow_insn, offset, 0, FALSE);
6603 offset += insn_len;
6604 continue;
6605 }
6606 if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0
6607 && widen_instruction (ebb->contents, ebb->content_length,
6608 offset, FALSE))
6609 {
6610 /* Add an instruction widen action. */
6611 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6612 ta_widen_insn, offset, 0, FALSE);
6613 offset += insn_len;
6614 continue;
6615 }
6616 opcode = insn_decode_opcode (ebb->contents, ebb->content_length,
6617 offset, 0);
6618 if (xtensa_opcode_is_loop (xtensa_default_isa, opcode))
6619 {
6620 /* Check for branch targets. */
6621 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6622 ta_none, offset, 0, TRUE);
6623 offset += insn_len;
6624 continue;
6625 }
6626
6627 offset += insn_len;
6628 }
6629 }
6630
6631 if (ebb->ends_unreachable)
6632 {
6633 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6634 ta_fill, ebb->end_offset, 0, TRUE);
6635 }
6636
6637 return TRUE;
6638 }
6639
6640
6641 /* After all of the information has collected about the
6642 transformations possible in an EBB, compute the appropriate actions
6643 here in compute_ebb_actions. We still must check later to make
6644 sure that the actions do not break any relocations. The algorithm
6645 used here is pretty greedy. Basically, it removes as many no-ops
6646 as possible so that the end of the EBB has the same alignment
6647 characteristics as the original. First, it uses narrowing, then
6648 fill space at the end of the EBB, and finally widenings. If that
6649 does not work, it tries again with one fewer no-op removed. The
6650 optimization will only be performed if all of the branch targets
6651 that were aligned before transformation are also aligned after the
6652 transformation.
6653
6654 When the size_opt flag is set, ignore the branch target alignments,
6655 narrow all wide instructions, and remove all no-ops unless the end
6656 of the EBB prevents it. */
6657
6658 bfd_boolean
compute_ebb_actions(ebb_constraint * ebb_table)6659 compute_ebb_actions (ebb_constraint *ebb_table)
6660 {
6661 unsigned i = 0;
6662 unsigned j;
6663 int removed_bytes = 0;
6664 ebb_t *ebb = &ebb_table->ebb;
6665 unsigned seg_idx_start = 0;
6666 unsigned seg_idx_end = 0;
6667
6668 /* We perform this like the assembler relaxation algorithm: Start by
6669 assuming all instructions are narrow and all no-ops removed; then
6670 walk through.... */
6671
6672 /* For each segment of this that has a solid constraint, check to
6673 see if there are any combinations that will keep the constraint.
6674 If so, use it. */
6675 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
6676 {
6677 bfd_boolean requires_text_end_align = FALSE;
6678 unsigned longcall_count = 0;
6679 unsigned longcall_convert_count = 0;
6680 unsigned narrowable_count = 0;
6681 unsigned narrowable_convert_count = 0;
6682 unsigned widenable_count = 0;
6683 unsigned widenable_convert_count = 0;
6684
6685 proposed_action *action = NULL;
6686 int align = (1 << ebb_table->ebb.sec->alignment_power);
6687
6688 seg_idx_start = seg_idx_end;
6689
6690 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6691 {
6692 action = &ebb_table->actions[i];
6693 if (action->action == ta_convert_longcall)
6694 longcall_count++;
6695 if (action->action == ta_narrow_insn)
6696 narrowable_count++;
6697 if (action->action == ta_widen_insn)
6698 widenable_count++;
6699 if (action->action == ta_fill)
6700 break;
6701 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6702 break;
6703 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6704 && !elf32xtensa_size_opt)
6705 break;
6706 }
6707 seg_idx_end = i;
6708
6709 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6710 requires_text_end_align = TRUE;
6711
6712 if (elf32xtensa_size_opt && !requires_text_end_align
6713 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6714 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6715 {
6716 longcall_convert_count = longcall_count;
6717 narrowable_convert_count = narrowable_count;
6718 widenable_convert_count = 0;
6719 }
6720 else
6721 {
6722 /* There is a constraint. Convert the max number of longcalls. */
6723 narrowable_convert_count = 0;
6724 longcall_convert_count = 0;
6725 widenable_convert_count = 0;
6726
6727 for (j = 0; j < longcall_count; j++)
6728 {
6729 int removed = (longcall_count - j) * 3 & (align - 1);
6730 unsigned desire_narrow = (align - removed) & (align - 1);
6731 unsigned desire_widen = removed;
6732 if (desire_narrow <= narrowable_count)
6733 {
6734 narrowable_convert_count = desire_narrow;
6735 narrowable_convert_count +=
6736 (align * ((narrowable_count - narrowable_convert_count)
6737 / align));
6738 longcall_convert_count = (longcall_count - j);
6739 widenable_convert_count = 0;
6740 break;
6741 }
6742 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6743 {
6744 narrowable_convert_count = 0;
6745 longcall_convert_count = longcall_count - j;
6746 widenable_convert_count = desire_widen;
6747 break;
6748 }
6749 }
6750 }
6751
6752 /* Now the number of conversions are saved. Do them. */
6753 for (i = seg_idx_start; i < seg_idx_end; i++)
6754 {
6755 action = &ebb_table->actions[i];
6756 switch (action->action)
6757 {
6758 case ta_convert_longcall:
6759 if (longcall_convert_count != 0)
6760 {
6761 action->action = ta_remove_longcall;
6762 action->do_action = TRUE;
6763 action->removed_bytes += 3;
6764 longcall_convert_count--;
6765 }
6766 break;
6767 case ta_narrow_insn:
6768 if (narrowable_convert_count != 0)
6769 {
6770 action->do_action = TRUE;
6771 action->removed_bytes += 1;
6772 narrowable_convert_count--;
6773 }
6774 break;
6775 case ta_widen_insn:
6776 if (widenable_convert_count != 0)
6777 {
6778 action->do_action = TRUE;
6779 action->removed_bytes -= 1;
6780 widenable_convert_count--;
6781 }
6782 break;
6783 default:
6784 break;
6785 }
6786 }
6787 }
6788
6789 /* Now we move on to some local opts. Try to remove each of the
6790 remaining longcalls. */
6791
6792 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6793 {
6794 removed_bytes = 0;
6795 for (i = 0; i < ebb_table->action_count; i++)
6796 {
6797 int old_removed_bytes = removed_bytes;
6798 proposed_action *action = &ebb_table->actions[i];
6799
6800 if (action->do_action && action->action == ta_convert_longcall)
6801 {
6802 bfd_boolean bad_alignment = FALSE;
6803 removed_bytes += 3;
6804 for (j = i + 1; j < ebb_table->action_count; j++)
6805 {
6806 proposed_action *new_action = &ebb_table->actions[j];
6807 bfd_vma offset = new_action->offset;
6808 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6809 {
6810 if (!check_branch_target_aligned
6811 (ebb_table->ebb.contents,
6812 ebb_table->ebb.content_length,
6813 offset, offset - removed_bytes))
6814 {
6815 bad_alignment = TRUE;
6816 break;
6817 }
6818 }
6819 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6820 {
6821 if (!check_loop_aligned (ebb_table->ebb.contents,
6822 ebb_table->ebb.content_length,
6823 offset,
6824 offset - removed_bytes))
6825 {
6826 bad_alignment = TRUE;
6827 break;
6828 }
6829 }
6830 if (new_action->action == ta_narrow_insn
6831 && !new_action->do_action
6832 && ebb_table->ebb.sec->alignment_power == 2)
6833 {
6834 /* Narrow an instruction and we are done. */
6835 new_action->do_action = TRUE;
6836 new_action->removed_bytes += 1;
6837 bad_alignment = FALSE;
6838 break;
6839 }
6840 if (new_action->action == ta_widen_insn
6841 && new_action->do_action
6842 && ebb_table->ebb.sec->alignment_power == 2)
6843 {
6844 /* Narrow an instruction and we are done. */
6845 new_action->do_action = FALSE;
6846 new_action->removed_bytes += 1;
6847 bad_alignment = FALSE;
6848 break;
6849 }
6850 }
6851 if (!bad_alignment)
6852 {
6853 action->removed_bytes += 3;
6854 action->action = ta_remove_longcall;
6855 action->do_action = TRUE;
6856 }
6857 }
6858 removed_bytes = old_removed_bytes;
6859 if (action->do_action)
6860 removed_bytes += action->removed_bytes;
6861 }
6862 }
6863
6864 removed_bytes = 0;
6865 for (i = 0; i < ebb_table->action_count; ++i)
6866 {
6867 proposed_action *action = &ebb_table->actions[i];
6868 if (action->do_action)
6869 removed_bytes += action->removed_bytes;
6870 }
6871
6872 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6873 && ebb->ends_unreachable)
6874 {
6875 proposed_action *action;
6876 int br;
6877 int extra_space;
6878
6879 BFD_ASSERT (ebb_table->action_count != 0);
6880 action = &ebb_table->actions[ebb_table->action_count - 1];
6881 BFD_ASSERT (action->action == ta_fill);
6882 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6883
6884 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6885 br = action->removed_bytes + removed_bytes + extra_space;
6886 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6887
6888 action->removed_bytes = extra_space - br;
6889 }
6890 return TRUE;
6891 }
6892
6893
6894 /* The xlate_map is a sorted array of address mappings designed to
6895 answer the offset_with_removed_text() query with a binary search instead
6896 of a linear search through the section's action_list. */
6897
6898 typedef struct xlate_map_entry xlate_map_entry_t;
6899 typedef struct xlate_map xlate_map_t;
6900
6901 struct xlate_map_entry
6902 {
6903 unsigned orig_address;
6904 unsigned new_address;
6905 unsigned size;
6906 };
6907
6908 struct xlate_map
6909 {
6910 unsigned entry_count;
6911 xlate_map_entry_t *entry;
6912 };
6913
6914
6915 static int
xlate_compare(const void * a_v,const void * b_v)6916 xlate_compare (const void *a_v, const void *b_v)
6917 {
6918 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6919 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6920 if (a->orig_address < b->orig_address)
6921 return -1;
6922 if (a->orig_address > (b->orig_address + b->size - 1))
6923 return 1;
6924 return 0;
6925 }
6926
6927
6928 static bfd_vma
xlate_offset_with_removed_text(const xlate_map_t * map,text_action_list * action_list,bfd_vma offset)6929 xlate_offset_with_removed_text (const xlate_map_t *map,
6930 text_action_list *action_list,
6931 bfd_vma offset)
6932 {
6933 xlate_map_entry_t tmp;
6934 void *r;
6935 xlate_map_entry_t *e;
6936
6937 if (map == NULL)
6938 return offset_with_removed_text (action_list, offset);
6939
6940 if (map->entry_count == 0)
6941 return offset;
6942
6943 tmp.orig_address = offset;
6944 tmp.new_address = offset;
6945 tmp.size = 1;
6946
6947 r = bsearch (&offset, map->entry, map->entry_count,
6948 sizeof (xlate_map_entry_t), &xlate_compare);
6949 e = (xlate_map_entry_t *) r;
6950
6951 BFD_ASSERT (e != NULL);
6952 if (e == NULL)
6953 return offset;
6954 return e->new_address - e->orig_address + offset;
6955 }
6956
6957
6958 /* Build a binary searchable offset translation map from a section's
6959 action list. */
6960
6961 static xlate_map_t *
build_xlate_map(asection * sec,xtensa_relax_info * relax_info)6962 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
6963 {
6964 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
6965 text_action_list *action_list = &relax_info->action_list;
6966 unsigned num_actions = 0;
6967 text_action *r;
6968 int removed;
6969 xlate_map_entry_t *current_entry;
6970
6971 if (map == NULL)
6972 return NULL;
6973
6974 num_actions = action_list_count (action_list);
6975 map->entry = (xlate_map_entry_t *)
6976 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
6977 if (map->entry == NULL)
6978 {
6979 free (map);
6980 return NULL;
6981 }
6982 map->entry_count = 0;
6983
6984 removed = 0;
6985 current_entry = &map->entry[0];
6986
6987 current_entry->orig_address = 0;
6988 current_entry->new_address = 0;
6989 current_entry->size = 0;
6990
6991 for (r = action_list->head; r != NULL; r = r->next)
6992 {
6993 unsigned orig_size = 0;
6994 switch (r->action)
6995 {
6996 case ta_none:
6997 case ta_remove_insn:
6998 case ta_convert_longcall:
6999 case ta_remove_literal:
7000 case ta_add_literal:
7001 break;
7002 case ta_remove_longcall:
7003 orig_size = 6;
7004 break;
7005 case ta_narrow_insn:
7006 orig_size = 3;
7007 break;
7008 case ta_widen_insn:
7009 orig_size = 2;
7010 break;
7011 case ta_fill:
7012 break;
7013 }
7014 current_entry->size =
7015 r->offset + orig_size - current_entry->orig_address;
7016 if (current_entry->size != 0)
7017 {
7018 current_entry++;
7019 map->entry_count++;
7020 }
7021 current_entry->orig_address = r->offset + orig_size;
7022 removed += r->removed_bytes;
7023 current_entry->new_address = r->offset + orig_size - removed;
7024 current_entry->size = 0;
7025 }
7026
7027 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7028 - current_entry->orig_address);
7029 if (current_entry->size != 0)
7030 map->entry_count++;
7031
7032 return map;
7033 }
7034
7035
7036 /* Free an offset translation map. */
7037
7038 static void
free_xlate_map(xlate_map_t * map)7039 free_xlate_map (xlate_map_t *map)
7040 {
7041 if (map && map->entry)
7042 free (map->entry);
7043 if (map)
7044 free (map);
7045 }
7046
7047
7048 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7049 relocations in a section will fit if a proposed set of actions
7050 are performed. */
7051
7052 static bfd_boolean
check_section_ebb_pcrels_fit(bfd * abfd,asection * sec,bfd_byte * contents,Elf_Internal_Rela * internal_relocs,const ebb_constraint * constraint,const xtensa_opcode * reloc_opcodes)7053 check_section_ebb_pcrels_fit (bfd *abfd,
7054 asection *sec,
7055 bfd_byte *contents,
7056 Elf_Internal_Rela *internal_relocs,
7057 const ebb_constraint *constraint,
7058 const xtensa_opcode *reloc_opcodes)
7059 {
7060 unsigned i, j;
7061 Elf_Internal_Rela *irel;
7062 xlate_map_t *xmap = NULL;
7063 bfd_boolean ok = TRUE;
7064 xtensa_relax_info *relax_info;
7065
7066 relax_info = get_xtensa_relax_info (sec);
7067
7068 if (relax_info && sec->reloc_count > 100)
7069 {
7070 xmap = build_xlate_map (sec, relax_info);
7071 /* NULL indicates out of memory, but the slow version
7072 can still be used. */
7073 }
7074
7075 for (i = 0; i < sec->reloc_count; i++)
7076 {
7077 r_reloc r_rel;
7078 bfd_vma orig_self_offset, orig_target_offset;
7079 bfd_vma self_offset, target_offset;
7080 int r_type;
7081 reloc_howto_type *howto;
7082 int self_removed_bytes, target_removed_bytes;
7083
7084 irel = &internal_relocs[i];
7085 r_type = ELF32_R_TYPE (irel->r_info);
7086
7087 howto = &elf_howto_table[r_type];
7088 /* We maintain the required invariant: PC-relative relocations
7089 that fit before linking must fit after linking. Thus we only
7090 need to deal with relocations to the same section that are
7091 PC-relative. */
7092 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7093 || !howto->pc_relative)
7094 continue;
7095
7096 r_reloc_init (&r_rel, abfd, irel, contents,
7097 bfd_get_section_limit (abfd, sec));
7098
7099 if (r_reloc_get_section (&r_rel) != sec)
7100 continue;
7101
7102 orig_self_offset = irel->r_offset;
7103 orig_target_offset = r_rel.target_offset;
7104
7105 self_offset = orig_self_offset;
7106 target_offset = orig_target_offset;
7107
7108 if (relax_info)
7109 {
7110 self_offset =
7111 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7112 orig_self_offset);
7113 target_offset =
7114 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7115 orig_target_offset);
7116 }
7117
7118 self_removed_bytes = 0;
7119 target_removed_bytes = 0;
7120
7121 for (j = 0; j < constraint->action_count; ++j)
7122 {
7123 proposed_action *action = &constraint->actions[j];
7124 bfd_vma offset = action->offset;
7125 int removed_bytes = action->removed_bytes;
7126 if (offset < orig_self_offset
7127 || (offset == orig_self_offset && action->action == ta_fill
7128 && action->removed_bytes < 0))
7129 self_removed_bytes += removed_bytes;
7130 if (offset < orig_target_offset
7131 || (offset == orig_target_offset && action->action == ta_fill
7132 && action->removed_bytes < 0))
7133 target_removed_bytes += removed_bytes;
7134 }
7135 self_offset -= self_removed_bytes;
7136 target_offset -= target_removed_bytes;
7137
7138 /* Try to encode it. Get the operand and check. */
7139 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7140 {
7141 /* None of the current alternate relocs are PC-relative,
7142 and only PC-relative relocs matter here. */
7143 }
7144 else
7145 {
7146 xtensa_opcode opcode;
7147 int opnum;
7148
7149 if (reloc_opcodes)
7150 opcode = reloc_opcodes[i];
7151 else
7152 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7153 if (opcode == XTENSA_UNDEFINED)
7154 {
7155 ok = FALSE;
7156 break;
7157 }
7158
7159 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7160 if (opnum == XTENSA_UNDEFINED)
7161 {
7162 ok = FALSE;
7163 break;
7164 }
7165
7166 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
7167 {
7168 ok = FALSE;
7169 break;
7170 }
7171 }
7172 }
7173
7174 if (xmap)
7175 free_xlate_map (xmap);
7176
7177 return ok;
7178 }
7179
7180
7181 static bfd_boolean
check_section_ebb_reduces(const ebb_constraint * constraint)7182 check_section_ebb_reduces (const ebb_constraint *constraint)
7183 {
7184 int removed = 0;
7185 unsigned i;
7186
7187 for (i = 0; i < constraint->action_count; i++)
7188 {
7189 const proposed_action *action = &constraint->actions[i];
7190 if (action->do_action)
7191 removed += action->removed_bytes;
7192 }
7193 if (removed < 0)
7194 return FALSE;
7195
7196 return TRUE;
7197 }
7198
7199
7200 void
text_action_add_proposed(text_action_list * l,const ebb_constraint * ebb_table,asection * sec)7201 text_action_add_proposed (text_action_list *l,
7202 const ebb_constraint *ebb_table,
7203 asection *sec)
7204 {
7205 unsigned i;
7206
7207 for (i = 0; i < ebb_table->action_count; i++)
7208 {
7209 proposed_action *action = &ebb_table->actions[i];
7210
7211 if (!action->do_action)
7212 continue;
7213 switch (action->action)
7214 {
7215 case ta_remove_insn:
7216 case ta_remove_longcall:
7217 case ta_convert_longcall:
7218 case ta_narrow_insn:
7219 case ta_widen_insn:
7220 case ta_fill:
7221 case ta_remove_literal:
7222 text_action_add (l, action->action, sec, action->offset,
7223 action->removed_bytes);
7224 break;
7225 case ta_none:
7226 break;
7227 default:
7228 BFD_ASSERT (0);
7229 break;
7230 }
7231 }
7232 }
7233
7234
7235 int
compute_fill_extra_space(property_table_entry * entry)7236 compute_fill_extra_space (property_table_entry *entry)
7237 {
7238 int fill_extra_space;
7239
7240 if (!entry)
7241 return 0;
7242
7243 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7244 return 0;
7245
7246 fill_extra_space = entry->size;
7247 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7248 {
7249 /* Fill bytes for alignment:
7250 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7251 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7252 int nsm = (1 << pow) - 1;
7253 bfd_vma addr = entry->address + entry->size;
7254 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7255 fill_extra_space += align_fill;
7256 }
7257 return fill_extra_space;
7258 }
7259
7260
7261 /* First relaxation pass. */
7262
7263 /* If the section contains relaxable literals, check each literal to
7264 see if it has the same value as another literal that has already
7265 been seen, either in the current section or a previous one. If so,
7266 add an entry to the per-section list of removed literals. The
7267 actual changes are deferred until the next pass. */
7268
7269 static bfd_boolean
compute_removed_literals(bfd * abfd,asection * sec,struct bfd_link_info * link_info,value_map_hash_table * values)7270 compute_removed_literals (bfd *abfd,
7271 asection *sec,
7272 struct bfd_link_info *link_info,
7273 value_map_hash_table *values)
7274 {
7275 xtensa_relax_info *relax_info;
7276 bfd_byte *contents;
7277 Elf_Internal_Rela *internal_relocs;
7278 source_reloc *src_relocs, *rel;
7279 bfd_boolean ok = TRUE;
7280 property_table_entry *prop_table = NULL;
7281 int ptblsize;
7282 int i, prev_i;
7283 bfd_boolean last_loc_is_prev = FALSE;
7284 bfd_vma last_target_offset = 0;
7285 section_cache_t target_sec_cache;
7286 bfd_size_type sec_size;
7287
7288 init_section_cache (&target_sec_cache);
7289
7290 /* Do nothing if it is not a relaxable literal section. */
7291 relax_info = get_xtensa_relax_info (sec);
7292 BFD_ASSERT (relax_info);
7293 if (!relax_info->is_relaxable_literal_section)
7294 return ok;
7295
7296 internal_relocs = retrieve_internal_relocs (abfd, sec,
7297 link_info->keep_memory);
7298
7299 sec_size = bfd_get_section_limit (abfd, sec);
7300 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7301 if (contents == NULL && sec_size != 0)
7302 {
7303 ok = FALSE;
7304 goto error_return;
7305 }
7306
7307 /* Sort the source_relocs by target offset. */
7308 src_relocs = relax_info->src_relocs;
7309 qsort (src_relocs, relax_info->src_count,
7310 sizeof (source_reloc), source_reloc_compare);
7311 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7312 internal_reloc_compare);
7313
7314 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7315 XTENSA_PROP_SEC_NAME, FALSE);
7316 if (ptblsize < 0)
7317 {
7318 ok = FALSE;
7319 goto error_return;
7320 }
7321
7322 prev_i = -1;
7323 for (i = 0; i < relax_info->src_count; i++)
7324 {
7325 Elf_Internal_Rela *irel = NULL;
7326
7327 rel = &src_relocs[i];
7328 if (get_l32r_opcode () != rel->opcode)
7329 continue;
7330 irel = get_irel_at_offset (sec, internal_relocs,
7331 rel->r_rel.target_offset);
7332
7333 /* If the relocation on this is not a simple R_XTENSA_32 or
7334 R_XTENSA_PLT then do not consider it. This may happen when
7335 the difference of two symbols is used in a literal. */
7336 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7337 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7338 continue;
7339
7340 /* If the target_offset for this relocation is the same as the
7341 previous relocation, then we've already considered whether the
7342 literal can be coalesced. Skip to the next one.... */
7343 if (i != 0 && prev_i != -1
7344 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
7345 continue;
7346 prev_i = i;
7347
7348 if (last_loc_is_prev &&
7349 last_target_offset + 4 != rel->r_rel.target_offset)
7350 last_loc_is_prev = FALSE;
7351
7352 /* Check if the relocation was from an L32R that is being removed
7353 because a CALLX was converted to a direct CALL, and check if
7354 there are no other relocations to the literal. */
7355 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count))
7356 {
7357 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7358 irel, rel, prop_table, ptblsize))
7359 {
7360 ok = FALSE;
7361 goto error_return;
7362 }
7363 last_target_offset = rel->r_rel.target_offset;
7364 continue;
7365 }
7366
7367 if (!identify_literal_placement (abfd, sec, contents, link_info,
7368 values,
7369 &last_loc_is_prev, irel,
7370 relax_info->src_count - i, rel,
7371 prop_table, ptblsize,
7372 &target_sec_cache, rel->is_abs_literal))
7373 {
7374 ok = FALSE;
7375 goto error_return;
7376 }
7377 last_target_offset = rel->r_rel.target_offset;
7378 }
7379
7380 #if DEBUG
7381 print_removed_literals (stderr, &relax_info->removed_list);
7382 print_action_list (stderr, &relax_info->action_list);
7383 #endif /* DEBUG */
7384
7385 error_return:
7386 if (prop_table) free (prop_table);
7387 clear_section_cache (&target_sec_cache);
7388
7389 release_contents (sec, contents);
7390 release_internal_relocs (sec, internal_relocs);
7391 return ok;
7392 }
7393
7394
7395 static Elf_Internal_Rela *
get_irel_at_offset(asection * sec,Elf_Internal_Rela * internal_relocs,bfd_vma offset)7396 get_irel_at_offset (asection *sec,
7397 Elf_Internal_Rela *internal_relocs,
7398 bfd_vma offset)
7399 {
7400 unsigned i;
7401 Elf_Internal_Rela *irel;
7402 unsigned r_type;
7403 Elf_Internal_Rela key;
7404
7405 if (!internal_relocs)
7406 return NULL;
7407
7408 key.r_offset = offset;
7409 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7410 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7411 if (!irel)
7412 return NULL;
7413
7414 /* bsearch does not guarantee which will be returned if there are
7415 multiple matches. We need the first that is not an alignment. */
7416 i = irel - internal_relocs;
7417 while (i > 0)
7418 {
7419 if (internal_relocs[i-1].r_offset != offset)
7420 break;
7421 i--;
7422 }
7423 for ( ; i < sec->reloc_count; i++)
7424 {
7425 irel = &internal_relocs[i];
7426 r_type = ELF32_R_TYPE (irel->r_info);
7427 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7428 return irel;
7429 }
7430
7431 return NULL;
7432 }
7433
7434
7435 bfd_boolean
is_removable_literal(const source_reloc * rel,int i,const source_reloc * src_relocs,int src_count)7436 is_removable_literal (const source_reloc *rel,
7437 int i,
7438 const source_reloc *src_relocs,
7439 int src_count)
7440 {
7441 const source_reloc *curr_rel;
7442 if (!rel->is_null)
7443 return FALSE;
7444
7445 for (++i; i < src_count; ++i)
7446 {
7447 curr_rel = &src_relocs[i];
7448 /* If all others have the same target offset.... */
7449 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7450 return TRUE;
7451
7452 if (!curr_rel->is_null
7453 && !xtensa_is_property_section (curr_rel->source_sec)
7454 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7455 return FALSE;
7456 }
7457 return TRUE;
7458 }
7459
7460
7461 bfd_boolean
remove_dead_literal(bfd * abfd,asection * sec,struct bfd_link_info * link_info,Elf_Internal_Rela * internal_relocs,Elf_Internal_Rela * irel,source_reloc * rel,property_table_entry * prop_table,int ptblsize)7462 remove_dead_literal (bfd *abfd,
7463 asection *sec,
7464 struct bfd_link_info *link_info,
7465 Elf_Internal_Rela *internal_relocs,
7466 Elf_Internal_Rela *irel,
7467 source_reloc *rel,
7468 property_table_entry *prop_table,
7469 int ptblsize)
7470 {
7471 property_table_entry *entry;
7472 xtensa_relax_info *relax_info;
7473
7474 relax_info = get_xtensa_relax_info (sec);
7475 if (!relax_info)
7476 return FALSE;
7477
7478 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7479 sec->vma + rel->r_rel.target_offset);
7480
7481 /* Mark the unused literal so that it will be removed. */
7482 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7483
7484 text_action_add (&relax_info->action_list,
7485 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7486
7487 /* If the section is 4-byte aligned, do not add fill. */
7488 if (sec->alignment_power > 2)
7489 {
7490 int fill_extra_space;
7491 bfd_vma entry_sec_offset;
7492 text_action *fa;
7493 property_table_entry *the_add_entry;
7494 int removed_diff;
7495
7496 if (entry)
7497 entry_sec_offset = entry->address - sec->vma + entry->size;
7498 else
7499 entry_sec_offset = rel->r_rel.target_offset + 4;
7500
7501 /* If the literal range is at the end of the section,
7502 do not add fill. */
7503 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7504 entry_sec_offset);
7505 fill_extra_space = compute_fill_extra_space (the_add_entry);
7506
7507 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7508 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7509 -4, fill_extra_space);
7510 if (fa)
7511 adjust_fill_action (fa, removed_diff);
7512 else
7513 text_action_add (&relax_info->action_list,
7514 ta_fill, sec, entry_sec_offset, removed_diff);
7515 }
7516
7517 /* Zero out the relocation on this literal location. */
7518 if (irel)
7519 {
7520 if (elf_hash_table (link_info)->dynamic_sections_created)
7521 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7522
7523 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7524 pin_internal_relocs (sec, internal_relocs);
7525 }
7526
7527 /* Do not modify "last_loc_is_prev". */
7528 return TRUE;
7529 }
7530
7531
7532 bfd_boolean
identify_literal_placement(bfd * abfd,asection * sec,bfd_byte * contents,struct bfd_link_info * link_info,value_map_hash_table * values,bfd_boolean * last_loc_is_prev_p,Elf_Internal_Rela * irel,int remaining_src_rels,source_reloc * rel,property_table_entry * prop_table,int ptblsize,section_cache_t * target_sec_cache,bfd_boolean is_abs_literal)7533 identify_literal_placement (bfd *abfd,
7534 asection *sec,
7535 bfd_byte *contents,
7536 struct bfd_link_info *link_info,
7537 value_map_hash_table *values,
7538 bfd_boolean *last_loc_is_prev_p,
7539 Elf_Internal_Rela *irel,
7540 int remaining_src_rels,
7541 source_reloc *rel,
7542 property_table_entry *prop_table,
7543 int ptblsize,
7544 section_cache_t *target_sec_cache,
7545 bfd_boolean is_abs_literal)
7546 {
7547 literal_value val;
7548 value_map *val_map;
7549 xtensa_relax_info *relax_info;
7550 bfd_boolean literal_placed = FALSE;
7551 r_reloc r_rel;
7552 unsigned long value;
7553 bfd_boolean final_static_link;
7554 bfd_size_type sec_size;
7555
7556 relax_info = get_xtensa_relax_info (sec);
7557 if (!relax_info)
7558 return FALSE;
7559
7560 sec_size = bfd_get_section_limit (abfd, sec);
7561
7562 final_static_link =
7563 (!link_info->relocatable
7564 && !elf_hash_table (link_info)->dynamic_sections_created);
7565
7566 /* The placement algorithm first checks to see if the literal is
7567 already in the value map. If so and the value map is reachable
7568 from all uses, then the literal is moved to that location. If
7569 not, then we identify the last location where a fresh literal was
7570 placed. If the literal can be safely moved there, then we do so.
7571 If not, then we assume that the literal is not to move and leave
7572 the literal where it is, marking it as the last literal
7573 location. */
7574
7575 /* Find the literal value. */
7576 value = 0;
7577 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7578 if (!irel)
7579 {
7580 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7581 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7582 }
7583 init_literal_value (&val, &r_rel, value, is_abs_literal);
7584
7585 /* Check if we've seen another literal with the same value that
7586 is in the same output section. */
7587 val_map = value_map_get_cached_value (values, &val, final_static_link);
7588
7589 if (val_map
7590 && (r_reloc_get_section (&val_map->loc)->output_section
7591 == sec->output_section)
7592 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7593 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7594 {
7595 /* No change to last_loc_is_prev. */
7596 literal_placed = TRUE;
7597 }
7598
7599 /* For relocatable links, do not try to move literals. To do it
7600 correctly might increase the number of relocations in an input
7601 section making the default relocatable linking fail. */
7602 if (!link_info->relocatable && !literal_placed
7603 && values->has_last_loc && !(*last_loc_is_prev_p))
7604 {
7605 asection *target_sec = r_reloc_get_section (&values->last_loc);
7606 if (target_sec && target_sec->output_section == sec->output_section)
7607 {
7608 /* Increment the virtual offset. */
7609 r_reloc try_loc = values->last_loc;
7610 try_loc.virtual_offset += 4;
7611
7612 /* There is a last loc that was in the same output section. */
7613 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7614 && move_shared_literal (sec, link_info, rel,
7615 prop_table, ptblsize,
7616 &try_loc, &val, target_sec_cache))
7617 {
7618 values->last_loc.virtual_offset += 4;
7619 literal_placed = TRUE;
7620 if (!val_map)
7621 val_map = add_value_map (values, &val, &try_loc,
7622 final_static_link);
7623 else
7624 val_map->loc = try_loc;
7625 }
7626 }
7627 }
7628
7629 if (!literal_placed)
7630 {
7631 /* Nothing worked, leave the literal alone but update the last loc. */
7632 values->has_last_loc = TRUE;
7633 values->last_loc = rel->r_rel;
7634 if (!val_map)
7635 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
7636 else
7637 val_map->loc = rel->r_rel;
7638 *last_loc_is_prev_p = TRUE;
7639 }
7640
7641 return TRUE;
7642 }
7643
7644
7645 /* Check if the original relocations (presumably on L32R instructions)
7646 identified by reloc[0..N] can be changed to reference the literal
7647 identified by r_rel. If r_rel is out of range for any of the
7648 original relocations, then we don't want to coalesce the original
7649 literal with the one at r_rel. We only check reloc[0..N], where the
7650 offsets are all the same as for reloc[0] (i.e., they're all
7651 referencing the same literal) and where N is also bounded by the
7652 number of remaining entries in the "reloc" array. The "reloc" array
7653 is sorted by target offset so we know all the entries for the same
7654 literal will be contiguous. */
7655
7656 static bfd_boolean
relocations_reach(source_reloc * reloc,int remaining_relocs,const r_reloc * r_rel)7657 relocations_reach (source_reloc *reloc,
7658 int remaining_relocs,
7659 const r_reloc *r_rel)
7660 {
7661 bfd_vma from_offset, source_address, dest_address;
7662 asection *sec;
7663 int i;
7664
7665 if (!r_reloc_is_defined (r_rel))
7666 return FALSE;
7667
7668 sec = r_reloc_get_section (r_rel);
7669 from_offset = reloc[0].r_rel.target_offset;
7670
7671 for (i = 0; i < remaining_relocs; i++)
7672 {
7673 if (reloc[i].r_rel.target_offset != from_offset)
7674 break;
7675
7676 /* Ignore relocations that have been removed. */
7677 if (reloc[i].is_null)
7678 continue;
7679
7680 /* The original and new output section for these must be the same
7681 in order to coalesce. */
7682 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7683 != sec->output_section)
7684 return FALSE;
7685
7686 /* Absolute literals in the same output section can always be
7687 combined. */
7688 if (reloc[i].is_abs_literal)
7689 continue;
7690
7691 /* A literal with no PC-relative relocations can be moved anywhere. */
7692 if (reloc[i].opnd != -1)
7693 {
7694 /* Otherwise, check to see that it fits. */
7695 source_address = (reloc[i].source_sec->output_section->vma
7696 + reloc[i].source_sec->output_offset
7697 + reloc[i].r_rel.rela.r_offset);
7698 dest_address = (sec->output_section->vma
7699 + sec->output_offset
7700 + r_rel->target_offset);
7701
7702 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7703 source_address, dest_address))
7704 return FALSE;
7705 }
7706 }
7707
7708 return TRUE;
7709 }
7710
7711
7712 /* Move a literal to another literal location because it is
7713 the same as the other literal value. */
7714
7715 static bfd_boolean
coalesce_shared_literal(asection * sec,source_reloc * rel,property_table_entry * prop_table,int ptblsize,value_map * val_map)7716 coalesce_shared_literal (asection *sec,
7717 source_reloc *rel,
7718 property_table_entry *prop_table,
7719 int ptblsize,
7720 value_map *val_map)
7721 {
7722 property_table_entry *entry;
7723 text_action *fa;
7724 property_table_entry *the_add_entry;
7725 int removed_diff;
7726 xtensa_relax_info *relax_info;
7727
7728 relax_info = get_xtensa_relax_info (sec);
7729 if (!relax_info)
7730 return FALSE;
7731
7732 entry = elf_xtensa_find_property_entry
7733 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7734 if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM))
7735 return TRUE;
7736
7737 /* Mark that the literal will be coalesced. */
7738 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7739
7740 text_action_add (&relax_info->action_list,
7741 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7742
7743 /* If the section is 4-byte aligned, do not add fill. */
7744 if (sec->alignment_power > 2)
7745 {
7746 int fill_extra_space;
7747 bfd_vma entry_sec_offset;
7748
7749 if (entry)
7750 entry_sec_offset = entry->address - sec->vma + entry->size;
7751 else
7752 entry_sec_offset = rel->r_rel.target_offset + 4;
7753
7754 /* If the literal range is at the end of the section,
7755 do not add fill. */
7756 fill_extra_space = 0;
7757 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7758 entry_sec_offset);
7759 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7760 fill_extra_space = the_add_entry->size;
7761
7762 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7763 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7764 -4, fill_extra_space);
7765 if (fa)
7766 adjust_fill_action (fa, removed_diff);
7767 else
7768 text_action_add (&relax_info->action_list,
7769 ta_fill, sec, entry_sec_offset, removed_diff);
7770 }
7771
7772 return TRUE;
7773 }
7774
7775
7776 /* Move a literal to another location. This may actually increase the
7777 total amount of space used because of alignments so we need to do
7778 this carefully. Also, it may make a branch go out of range. */
7779
7780 static bfd_boolean
move_shared_literal(asection * sec,struct bfd_link_info * link_info,source_reloc * rel,property_table_entry * prop_table,int ptblsize,const r_reloc * target_loc,const literal_value * lit_value,section_cache_t * target_sec_cache)7781 move_shared_literal (asection *sec,
7782 struct bfd_link_info *link_info,
7783 source_reloc *rel,
7784 property_table_entry *prop_table,
7785 int ptblsize,
7786 const r_reloc *target_loc,
7787 const literal_value *lit_value,
7788 section_cache_t *target_sec_cache)
7789 {
7790 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7791 text_action *fa, *target_fa;
7792 int removed_diff;
7793 xtensa_relax_info *relax_info, *target_relax_info;
7794 asection *target_sec;
7795 ebb_t *ebb;
7796 ebb_constraint ebb_table;
7797 bfd_boolean relocs_fit;
7798
7799 /* If this routine always returns FALSE, the literals that cannot be
7800 coalesced will not be moved. */
7801 if (elf32xtensa_no_literal_movement)
7802 return FALSE;
7803
7804 relax_info = get_xtensa_relax_info (sec);
7805 if (!relax_info)
7806 return FALSE;
7807
7808 target_sec = r_reloc_get_section (target_loc);
7809 target_relax_info = get_xtensa_relax_info (target_sec);
7810
7811 /* Literals to undefined sections may not be moved because they
7812 must report an error. */
7813 if (bfd_is_und_section (target_sec))
7814 return FALSE;
7815
7816 src_entry = elf_xtensa_find_property_entry
7817 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7818
7819 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7820 return FALSE;
7821
7822 target_entry = elf_xtensa_find_property_entry
7823 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7824 target_sec->vma + target_loc->target_offset);
7825
7826 if (!target_entry)
7827 return FALSE;
7828
7829 /* Make sure that we have not broken any branches. */
7830 relocs_fit = FALSE;
7831
7832 init_ebb_constraint (&ebb_table);
7833 ebb = &ebb_table.ebb;
7834 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7835 target_sec_cache->content_length,
7836 target_sec_cache->ptbl, target_sec_cache->pte_count,
7837 target_sec_cache->relocs, target_sec_cache->reloc_count);
7838
7839 /* Propose to add 4 bytes + worst-case alignment size increase to
7840 destination. */
7841 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7842 ta_fill, target_loc->target_offset,
7843 -4 - (1 << target_sec->alignment_power), TRUE);
7844
7845 /* Check all of the PC-relative relocations to make sure they still fit. */
7846 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7847 target_sec_cache->contents,
7848 target_sec_cache->relocs,
7849 &ebb_table, NULL);
7850
7851 if (!relocs_fit)
7852 return FALSE;
7853
7854 text_action_add_literal (&target_relax_info->action_list,
7855 ta_add_literal, target_loc, lit_value, -4);
7856
7857 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7858 {
7859 /* May need to add or remove some fill to maintain alignment. */
7860 int fill_extra_space;
7861 bfd_vma entry_sec_offset;
7862
7863 entry_sec_offset =
7864 target_entry->address - target_sec->vma + target_entry->size;
7865
7866 /* If the literal range is at the end of the section,
7867 do not add fill. */
7868 fill_extra_space = 0;
7869 the_add_entry =
7870 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7871 target_sec_cache->pte_count,
7872 entry_sec_offset);
7873 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7874 fill_extra_space = the_add_entry->size;
7875
7876 target_fa = find_fill_action (&target_relax_info->action_list,
7877 target_sec, entry_sec_offset);
7878 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7879 entry_sec_offset, 4,
7880 fill_extra_space);
7881 if (target_fa)
7882 adjust_fill_action (target_fa, removed_diff);
7883 else
7884 text_action_add (&target_relax_info->action_list,
7885 ta_fill, target_sec, entry_sec_offset, removed_diff);
7886 }
7887
7888 /* Mark that the literal will be moved to the new location. */
7889 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7890
7891 /* Remove the literal. */
7892 text_action_add (&relax_info->action_list,
7893 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7894
7895 /* If the section is 4-byte aligned, do not add fill. */
7896 if (sec->alignment_power > 2 && target_entry != src_entry)
7897 {
7898 int fill_extra_space;
7899 bfd_vma entry_sec_offset;
7900
7901 if (src_entry)
7902 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7903 else
7904 entry_sec_offset = rel->r_rel.target_offset+4;
7905
7906 /* If the literal range is at the end of the section,
7907 do not add fill. */
7908 fill_extra_space = 0;
7909 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7910 entry_sec_offset);
7911 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7912 fill_extra_space = the_add_entry->size;
7913
7914 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7915 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7916 -4, fill_extra_space);
7917 if (fa)
7918 adjust_fill_action (fa, removed_diff);
7919 else
7920 text_action_add (&relax_info->action_list,
7921 ta_fill, sec, entry_sec_offset, removed_diff);
7922 }
7923
7924 return TRUE;
7925 }
7926
7927
7928 /* Second relaxation pass. */
7929
7930 /* Modify all of the relocations to point to the right spot, and if this
7931 is a relaxable section, delete the unwanted literals and fix the
7932 section size. */
7933
7934 bfd_boolean
relax_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info)7935 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
7936 {
7937 Elf_Internal_Rela *internal_relocs;
7938 xtensa_relax_info *relax_info;
7939 bfd_byte *contents;
7940 bfd_boolean ok = TRUE;
7941 unsigned i;
7942 bfd_boolean rv = FALSE;
7943 bfd_boolean virtual_action;
7944 bfd_size_type sec_size;
7945
7946 sec_size = bfd_get_section_limit (abfd, sec);
7947 relax_info = get_xtensa_relax_info (sec);
7948 BFD_ASSERT (relax_info);
7949
7950 /* First translate any of the fixes that have been added already. */
7951 translate_section_fixes (sec);
7952
7953 /* Handle property sections (e.g., literal tables) specially. */
7954 if (xtensa_is_property_section (sec))
7955 {
7956 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
7957 return relax_property_section (abfd, sec, link_info);
7958 }
7959
7960 internal_relocs = retrieve_internal_relocs (abfd, sec,
7961 link_info->keep_memory);
7962 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7963 if (contents == NULL && sec_size != 0)
7964 {
7965 ok = FALSE;
7966 goto error_return;
7967 }
7968
7969 if (internal_relocs)
7970 {
7971 for (i = 0; i < sec->reloc_count; i++)
7972 {
7973 Elf_Internal_Rela *irel;
7974 xtensa_relax_info *target_relax_info;
7975 bfd_vma source_offset, old_source_offset;
7976 r_reloc r_rel;
7977 unsigned r_type;
7978 asection *target_sec;
7979
7980 /* Locally change the source address.
7981 Translate the target to the new target address.
7982 If it points to this section and has been removed,
7983 NULLify it.
7984 Write it back. */
7985
7986 irel = &internal_relocs[i];
7987 source_offset = irel->r_offset;
7988 old_source_offset = source_offset;
7989
7990 r_type = ELF32_R_TYPE (irel->r_info);
7991 r_reloc_init (&r_rel, abfd, irel, contents,
7992 bfd_get_section_limit (abfd, sec));
7993
7994 /* If this section could have changed then we may need to
7995 change the relocation's offset. */
7996
7997 if (relax_info->is_relaxable_literal_section
7998 || relax_info->is_relaxable_asm_section)
7999 {
8000 if (r_type != R_XTENSA_NONE
8001 && find_removed_literal (&relax_info->removed_list,
8002 irel->r_offset))
8003 {
8004 /* Remove this relocation. */
8005 if (elf_hash_table (link_info)->dynamic_sections_created)
8006 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8007 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8008 irel->r_offset = offset_with_removed_text
8009 (&relax_info->action_list, irel->r_offset);
8010 pin_internal_relocs (sec, internal_relocs);
8011 continue;
8012 }
8013
8014 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8015 {
8016 text_action *action =
8017 find_insn_action (&relax_info->action_list,
8018 irel->r_offset);
8019 if (action && (action->action == ta_convert_longcall
8020 || action->action == ta_remove_longcall))
8021 {
8022 bfd_reloc_status_type retval;
8023 char *error_message = NULL;
8024
8025 retval = contract_asm_expansion (contents, sec_size,
8026 irel, &error_message);
8027 if (retval != bfd_reloc_ok)
8028 {
8029 (*link_info->callbacks->reloc_dangerous)
8030 (link_info, error_message, abfd, sec,
8031 irel->r_offset);
8032 goto error_return;
8033 }
8034 /* Update the action so that the code that moves
8035 the contents will do the right thing. */
8036 if (action->action == ta_remove_longcall)
8037 action->action = ta_remove_insn;
8038 else
8039 action->action = ta_none;
8040 /* Refresh the info in the r_rel. */
8041 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8042 r_type = ELF32_R_TYPE (irel->r_info);
8043 }
8044 }
8045
8046 source_offset = offset_with_removed_text
8047 (&relax_info->action_list, irel->r_offset);
8048 irel->r_offset = source_offset;
8049 }
8050
8051 /* If the target section could have changed then
8052 we may need to change the relocation's target offset. */
8053
8054 target_sec = r_reloc_get_section (&r_rel);
8055 target_relax_info = get_xtensa_relax_info (target_sec);
8056
8057 if (target_relax_info
8058 && (target_relax_info->is_relaxable_literal_section
8059 || target_relax_info->is_relaxable_asm_section))
8060 {
8061 r_reloc new_reloc;
8062 reloc_bfd_fix *fix;
8063 bfd_vma addend_displacement;
8064
8065 translate_reloc (&r_rel, &new_reloc);
8066
8067 if (r_type == R_XTENSA_DIFF8
8068 || r_type == R_XTENSA_DIFF16
8069 || r_type == R_XTENSA_DIFF32)
8070 {
8071 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8072
8073 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8074 {
8075 (*link_info->callbacks->reloc_dangerous)
8076 (link_info, _("invalid relocation address"),
8077 abfd, sec, old_source_offset);
8078 goto error_return;
8079 }
8080
8081 switch (r_type)
8082 {
8083 case R_XTENSA_DIFF8:
8084 diff_value =
8085 bfd_get_8 (abfd, &contents[old_source_offset]);
8086 break;
8087 case R_XTENSA_DIFF16:
8088 diff_value =
8089 bfd_get_16 (abfd, &contents[old_source_offset]);
8090 break;
8091 case R_XTENSA_DIFF32:
8092 diff_value =
8093 bfd_get_32 (abfd, &contents[old_source_offset]);
8094 break;
8095 }
8096
8097 new_end_offset = offset_with_removed_text
8098 (&target_relax_info->action_list,
8099 r_rel.target_offset + diff_value);
8100 diff_value = new_end_offset - new_reloc.target_offset;
8101
8102 switch (r_type)
8103 {
8104 case R_XTENSA_DIFF8:
8105 diff_mask = 0xff;
8106 bfd_put_8 (abfd, diff_value,
8107 &contents[old_source_offset]);
8108 break;
8109 case R_XTENSA_DIFF16:
8110 diff_mask = 0xffff;
8111 bfd_put_16 (abfd, diff_value,
8112 &contents[old_source_offset]);
8113 break;
8114 case R_XTENSA_DIFF32:
8115 diff_mask = 0xffffffff;
8116 bfd_put_32 (abfd, diff_value,
8117 &contents[old_source_offset]);
8118 break;
8119 }
8120
8121 /* Check for overflow. */
8122 if ((diff_value & ~diff_mask) != 0)
8123 {
8124 (*link_info->callbacks->reloc_dangerous)
8125 (link_info, _("overflow after relaxation"),
8126 abfd, sec, old_source_offset);
8127 goto error_return;
8128 }
8129
8130 pin_contents (sec, contents);
8131 }
8132
8133 /* FIXME: If the relocation still references a section in
8134 the same input file, the relocation should be modified
8135 directly instead of adding a "fix" record. */
8136
8137 addend_displacement =
8138 new_reloc.target_offset + new_reloc.virtual_offset;
8139
8140 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0,
8141 r_reloc_get_section (&new_reloc),
8142 addend_displacement, TRUE);
8143 add_fix (sec, fix);
8144 }
8145
8146 pin_internal_relocs (sec, internal_relocs);
8147 }
8148 }
8149
8150 if ((relax_info->is_relaxable_literal_section
8151 || relax_info->is_relaxable_asm_section)
8152 && relax_info->action_list.head)
8153 {
8154 /* Walk through the planned actions and build up a table
8155 of move, copy and fill records. Use the move, copy and
8156 fill records to perform the actions once. */
8157
8158 bfd_size_type size = sec->size;
8159 int removed = 0;
8160 bfd_size_type final_size, copy_size, orig_insn_size;
8161 bfd_byte *scratch = NULL;
8162 bfd_byte *dup_contents = NULL;
8163 bfd_size_type orig_size = size;
8164 bfd_vma orig_dot = 0;
8165 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8166 orig dot in physical memory. */
8167 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8168 bfd_vma dup_dot = 0;
8169
8170 text_action *action = relax_info->action_list.head;
8171
8172 final_size = sec->size;
8173 for (action = relax_info->action_list.head; action;
8174 action = action->next)
8175 {
8176 final_size -= action->removed_bytes;
8177 }
8178
8179 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8180 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8181
8182 /* The dot is the current fill location. */
8183 #if DEBUG
8184 print_action_list (stderr, &relax_info->action_list);
8185 #endif
8186
8187 for (action = relax_info->action_list.head; action;
8188 action = action->next)
8189 {
8190 virtual_action = FALSE;
8191 if (action->offset > orig_dot)
8192 {
8193 orig_dot += orig_dot_copied;
8194 orig_dot_copied = 0;
8195 orig_dot_vo = 0;
8196 /* Out of the virtual world. */
8197 }
8198
8199 if (action->offset > orig_dot)
8200 {
8201 copy_size = action->offset - orig_dot;
8202 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8203 orig_dot += copy_size;
8204 dup_dot += copy_size;
8205 BFD_ASSERT (action->offset == orig_dot);
8206 }
8207 else if (action->offset < orig_dot)
8208 {
8209 if (action->action == ta_fill
8210 && action->offset - action->removed_bytes == orig_dot)
8211 {
8212 /* This is OK because the fill only effects the dup_dot. */
8213 }
8214 else if (action->action == ta_add_literal)
8215 {
8216 /* TBD. Might need to handle this. */
8217 }
8218 }
8219 if (action->offset == orig_dot)
8220 {
8221 if (action->virtual_offset > orig_dot_vo)
8222 {
8223 if (orig_dot_vo == 0)
8224 {
8225 /* Need to copy virtual_offset bytes. Probably four. */
8226 copy_size = action->virtual_offset - orig_dot_vo;
8227 memmove (&dup_contents[dup_dot],
8228 &contents[orig_dot], copy_size);
8229 orig_dot_copied = copy_size;
8230 dup_dot += copy_size;
8231 }
8232 virtual_action = TRUE;
8233 }
8234 else
8235 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8236 }
8237 switch (action->action)
8238 {
8239 case ta_remove_literal:
8240 case ta_remove_insn:
8241 BFD_ASSERT (action->removed_bytes >= 0);
8242 orig_dot += action->removed_bytes;
8243 break;
8244
8245 case ta_narrow_insn:
8246 orig_insn_size = 3;
8247 copy_size = 2;
8248 memmove (scratch, &contents[orig_dot], orig_insn_size);
8249 BFD_ASSERT (action->removed_bytes == 1);
8250 rv = narrow_instruction (scratch, final_size, 0, TRUE);
8251 BFD_ASSERT (rv);
8252 memmove (&dup_contents[dup_dot], scratch, copy_size);
8253 orig_dot += orig_insn_size;
8254 dup_dot += copy_size;
8255 break;
8256
8257 case ta_fill:
8258 if (action->removed_bytes >= 0)
8259 orig_dot += action->removed_bytes;
8260 else
8261 {
8262 /* Already zeroed in dup_contents. Just bump the
8263 counters. */
8264 dup_dot += (-action->removed_bytes);
8265 }
8266 break;
8267
8268 case ta_none:
8269 BFD_ASSERT (action->removed_bytes == 0);
8270 break;
8271
8272 case ta_convert_longcall:
8273 case ta_remove_longcall:
8274 /* These will be removed or converted before we get here. */
8275 BFD_ASSERT (0);
8276 break;
8277
8278 case ta_widen_insn:
8279 orig_insn_size = 2;
8280 copy_size = 3;
8281 memmove (scratch, &contents[orig_dot], orig_insn_size);
8282 BFD_ASSERT (action->removed_bytes == -1);
8283 rv = widen_instruction (scratch, final_size, 0, TRUE);
8284 BFD_ASSERT (rv);
8285 memmove (&dup_contents[dup_dot], scratch, copy_size);
8286 orig_dot += orig_insn_size;
8287 dup_dot += copy_size;
8288 break;
8289
8290 case ta_add_literal:
8291 orig_insn_size = 0;
8292 copy_size = 4;
8293 BFD_ASSERT (action->removed_bytes == -4);
8294 /* TBD -- place the literal value here and insert
8295 into the table. */
8296 memset (&dup_contents[dup_dot], 0, 4);
8297 pin_internal_relocs (sec, internal_relocs);
8298 pin_contents (sec, contents);
8299
8300 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8301 relax_info, &internal_relocs, &action->value))
8302 goto error_return;
8303
8304 if (virtual_action)
8305 orig_dot_vo += copy_size;
8306
8307 orig_dot += orig_insn_size;
8308 dup_dot += copy_size;
8309 break;
8310
8311 default:
8312 /* Not implemented yet. */
8313 BFD_ASSERT (0);
8314 break;
8315 }
8316
8317 size -= action->removed_bytes;
8318 removed += action->removed_bytes;
8319 BFD_ASSERT (dup_dot <= final_size);
8320 BFD_ASSERT (orig_dot <= orig_size);
8321 }
8322
8323 orig_dot += orig_dot_copied;
8324 orig_dot_copied = 0;
8325
8326 if (orig_dot != orig_size)
8327 {
8328 copy_size = orig_size - orig_dot;
8329 BFD_ASSERT (orig_size > orig_dot);
8330 BFD_ASSERT (dup_dot + copy_size == final_size);
8331 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8332 orig_dot += copy_size;
8333 dup_dot += copy_size;
8334 }
8335 BFD_ASSERT (orig_size == orig_dot);
8336 BFD_ASSERT (final_size == dup_dot);
8337
8338 /* Move the dup_contents back. */
8339 if (final_size > orig_size)
8340 {
8341 /* Contents need to be reallocated. Swap the dup_contents into
8342 contents. */
8343 sec->contents = dup_contents;
8344 free (contents);
8345 contents = dup_contents;
8346 pin_contents (sec, contents);
8347 }
8348 else
8349 {
8350 BFD_ASSERT (final_size <= orig_size);
8351 memset (contents, 0, orig_size);
8352 memcpy (contents, dup_contents, final_size);
8353 free (dup_contents);
8354 }
8355 free (scratch);
8356 pin_contents (sec, contents);
8357
8358 sec->size = final_size;
8359 }
8360
8361 error_return:
8362 release_internal_relocs (sec, internal_relocs);
8363 release_contents (sec, contents);
8364 return ok;
8365 }
8366
8367
8368 static bfd_boolean
translate_section_fixes(asection * sec)8369 translate_section_fixes (asection *sec)
8370 {
8371 xtensa_relax_info *relax_info;
8372 reloc_bfd_fix *r;
8373
8374 relax_info = get_xtensa_relax_info (sec);
8375 if (!relax_info)
8376 return TRUE;
8377
8378 for (r = relax_info->fix_list; r != NULL; r = r->next)
8379 if (!translate_reloc_bfd_fix (r))
8380 return FALSE;
8381
8382 return TRUE;
8383 }
8384
8385
8386 /* Translate a fix given the mapping in the relax info for the target
8387 section. If it has already been translated, no work is required. */
8388
8389 static bfd_boolean
translate_reloc_bfd_fix(reloc_bfd_fix * fix)8390 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
8391 {
8392 reloc_bfd_fix new_fix;
8393 asection *sec;
8394 xtensa_relax_info *relax_info;
8395 removed_literal *removed;
8396 bfd_vma new_offset, target_offset;
8397
8398 if (fix->translated)
8399 return TRUE;
8400
8401 sec = fix->target_sec;
8402 target_offset = fix->target_offset;
8403
8404 relax_info = get_xtensa_relax_info (sec);
8405 if (!relax_info)
8406 {
8407 fix->translated = TRUE;
8408 return TRUE;
8409 }
8410
8411 new_fix = *fix;
8412
8413 /* The fix does not need to be translated if the section cannot change. */
8414 if (!relax_info->is_relaxable_literal_section
8415 && !relax_info->is_relaxable_asm_section)
8416 {
8417 fix->translated = TRUE;
8418 return TRUE;
8419 }
8420
8421 /* If the literal has been moved and this relocation was on an
8422 opcode, then the relocation should move to the new literal
8423 location. Otherwise, the relocation should move within the
8424 section. */
8425
8426 removed = FALSE;
8427 if (is_operand_relocation (fix->src_type))
8428 {
8429 /* Check if the original relocation is against a literal being
8430 removed. */
8431 removed = find_removed_literal (&relax_info->removed_list,
8432 target_offset);
8433 }
8434
8435 if (removed)
8436 {
8437 asection *new_sec;
8438
8439 /* The fact that there is still a relocation to this literal indicates
8440 that the literal is being coalesced, not simply removed. */
8441 BFD_ASSERT (removed->to.abfd != NULL);
8442
8443 /* This was moved to some other address (possibly another section). */
8444 new_sec = r_reloc_get_section (&removed->to);
8445 if (new_sec != sec)
8446 {
8447 sec = new_sec;
8448 relax_info = get_xtensa_relax_info (sec);
8449 if (!relax_info ||
8450 (!relax_info->is_relaxable_literal_section
8451 && !relax_info->is_relaxable_asm_section))
8452 {
8453 target_offset = removed->to.target_offset;
8454 new_fix.target_sec = new_sec;
8455 new_fix.target_offset = target_offset;
8456 new_fix.translated = TRUE;
8457 *fix = new_fix;
8458 return TRUE;
8459 }
8460 }
8461 target_offset = removed->to.target_offset;
8462 new_fix.target_sec = new_sec;
8463 }
8464
8465 /* The target address may have been moved within its section. */
8466 new_offset = offset_with_removed_text (&relax_info->action_list,
8467 target_offset);
8468
8469 new_fix.target_offset = new_offset;
8470 new_fix.target_offset = new_offset;
8471 new_fix.translated = TRUE;
8472 *fix = new_fix;
8473 return TRUE;
8474 }
8475
8476
8477 /* Fix up a relocation to take account of removed literals. */
8478
8479 static void
translate_reloc(const r_reloc * orig_rel,r_reloc * new_rel)8480 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
8481 {
8482 asection *sec;
8483 xtensa_relax_info *relax_info;
8484 removed_literal *removed;
8485 bfd_vma new_offset, target_offset, removed_bytes;
8486
8487 *new_rel = *orig_rel;
8488
8489 if (!r_reloc_is_defined (orig_rel))
8490 return;
8491 sec = r_reloc_get_section (orig_rel);
8492
8493 relax_info = get_xtensa_relax_info (sec);
8494 BFD_ASSERT (relax_info);
8495
8496 if (!relax_info->is_relaxable_literal_section
8497 && !relax_info->is_relaxable_asm_section)
8498 return;
8499
8500 target_offset = orig_rel->target_offset;
8501
8502 removed = FALSE;
8503 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8504 {
8505 /* Check if the original relocation is against a literal being
8506 removed. */
8507 removed = find_removed_literal (&relax_info->removed_list,
8508 target_offset);
8509 }
8510 if (removed && removed->to.abfd)
8511 {
8512 asection *new_sec;
8513
8514 /* The fact that there is still a relocation to this literal indicates
8515 that the literal is being coalesced, not simply removed. */
8516 BFD_ASSERT (removed->to.abfd != NULL);
8517
8518 /* This was moved to some other address
8519 (possibly in another section). */
8520 *new_rel = removed->to;
8521 new_sec = r_reloc_get_section (new_rel);
8522 if (new_sec != sec)
8523 {
8524 sec = new_sec;
8525 relax_info = get_xtensa_relax_info (sec);
8526 if (!relax_info
8527 || (!relax_info->is_relaxable_literal_section
8528 && !relax_info->is_relaxable_asm_section))
8529 return;
8530 }
8531 target_offset = new_rel->target_offset;
8532 }
8533
8534 /* ...and the target address may have been moved within its section. */
8535 new_offset = offset_with_removed_text (&relax_info->action_list,
8536 target_offset);
8537
8538 /* Modify the offset and addend. */
8539 removed_bytes = target_offset - new_offset;
8540 new_rel->target_offset = new_offset;
8541 new_rel->rela.r_addend -= removed_bytes;
8542 }
8543
8544
8545 /* For dynamic links, there may be a dynamic relocation for each
8546 literal. The number of dynamic relocations must be computed in
8547 size_dynamic_sections, which occurs before relaxation. When a
8548 literal is removed, this function checks if there is a corresponding
8549 dynamic relocation and shrinks the size of the appropriate dynamic
8550 relocation section accordingly. At this point, the contents of the
8551 dynamic relocation sections have not yet been filled in, so there's
8552 nothing else that needs to be done. */
8553
8554 static void
shrink_dynamic_reloc_sections(struct bfd_link_info * info,bfd * abfd,asection * input_section,Elf_Internal_Rela * rel)8555 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8556 bfd *abfd,
8557 asection *input_section,
8558 Elf_Internal_Rela *rel)
8559 {
8560 Elf_Internal_Shdr *symtab_hdr;
8561 struct elf_link_hash_entry **sym_hashes;
8562 unsigned long r_symndx;
8563 int r_type;
8564 struct elf_link_hash_entry *h;
8565 bfd_boolean dynamic_symbol;
8566
8567 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8568 sym_hashes = elf_sym_hashes (abfd);
8569
8570 r_type = ELF32_R_TYPE (rel->r_info);
8571 r_symndx = ELF32_R_SYM (rel->r_info);
8572
8573 if (r_symndx < symtab_hdr->sh_info)
8574 h = NULL;
8575 else
8576 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8577
8578 dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info);
8579
8580 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8581 && (input_section->flags & SEC_ALLOC) != 0
8582 && (dynamic_symbol || info->shared))
8583 {
8584 bfd *dynobj;
8585 const char *srel_name;
8586 asection *srel;
8587 bfd_boolean is_plt = FALSE;
8588
8589 dynobj = elf_hash_table (info)->dynobj;
8590 BFD_ASSERT (dynobj != NULL);
8591
8592 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8593 {
8594 srel_name = ".rela.plt";
8595 is_plt = TRUE;
8596 }
8597 else
8598 srel_name = ".rela.got";
8599
8600 /* Reduce size of the .rela.* section by one reloc. */
8601 srel = bfd_get_section_by_name (dynobj, srel_name);
8602 BFD_ASSERT (srel != NULL);
8603 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8604 srel->size -= sizeof (Elf32_External_Rela);
8605
8606 if (is_plt)
8607 {
8608 asection *splt, *sgotplt, *srelgot;
8609 int reloc_index, chunk;
8610
8611 /* Find the PLT reloc index of the entry being removed. This
8612 is computed from the size of ".rela.plt". It is needed to
8613 figure out which PLT chunk to resize. Usually "last index
8614 = size - 1" since the index starts at zero, but in this
8615 context, the size has just been decremented so there's no
8616 need to subtract one. */
8617 reloc_index = srel->size / sizeof (Elf32_External_Rela);
8618
8619 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8620 splt = elf_xtensa_get_plt_section (dynobj, chunk);
8621 sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk);
8622 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8623
8624 /* Check if an entire PLT chunk has just been eliminated. */
8625 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8626 {
8627 /* The two magic GOT entries for that chunk can go away. */
8628 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
8629 BFD_ASSERT (srelgot != NULL);
8630 srelgot->reloc_count -= 2;
8631 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8632 sgotplt->size -= 8;
8633
8634 /* There should be only one entry left (and it will be
8635 removed below). */
8636 BFD_ASSERT (sgotplt->size == 4);
8637 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
8638 }
8639
8640 BFD_ASSERT (sgotplt->size >= 4);
8641 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
8642
8643 sgotplt->size -= 4;
8644 splt->size -= PLT_ENTRY_SIZE;
8645 }
8646 }
8647 }
8648
8649
8650 /* Take an r_rel and move it to another section. This usually
8651 requires extending the interal_relocation array and pinning it. If
8652 the original r_rel is from the same BFD, we can complete this here.
8653 Otherwise, we add a fix record to let the final link fix the
8654 appropriate address. Contents and internal relocations for the
8655 section must be pinned after calling this routine. */
8656
8657 static bfd_boolean
move_literal(bfd * abfd,struct bfd_link_info * link_info,asection * sec,bfd_vma offset,bfd_byte * contents,xtensa_relax_info * relax_info,Elf_Internal_Rela ** internal_relocs_p,const literal_value * lit)8658 move_literal (bfd *abfd,
8659 struct bfd_link_info *link_info,
8660 asection *sec,
8661 bfd_vma offset,
8662 bfd_byte *contents,
8663 xtensa_relax_info *relax_info,
8664 Elf_Internal_Rela **internal_relocs_p,
8665 const literal_value *lit)
8666 {
8667 Elf_Internal_Rela *new_relocs = NULL;
8668 size_t new_relocs_count = 0;
8669 Elf_Internal_Rela this_rela;
8670 const r_reloc *r_rel;
8671
8672 r_rel = &lit->r_rel;
8673 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8674
8675 if (r_reloc_is_const (r_rel))
8676 bfd_put_32 (abfd, lit->value, contents + offset);
8677 else
8678 {
8679 int r_type;
8680 unsigned i;
8681 asection *target_sec;
8682 reloc_bfd_fix *fix;
8683 unsigned insert_at;
8684
8685 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8686 target_sec = r_reloc_get_section (r_rel);
8687
8688 /* This is the difficult case. We have to create a fix up. */
8689 this_rela.r_offset = offset;
8690 this_rela.r_info = ELF32_R_INFO (0, r_type);
8691 this_rela.r_addend =
8692 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8693 bfd_put_32 (abfd, lit->value, contents + offset);
8694
8695 /* Currently, we cannot move relocations during a relocatable link. */
8696 BFD_ASSERT (!link_info->relocatable);
8697 fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd,
8698 r_reloc_get_section (r_rel),
8699 r_rel->target_offset + r_rel->virtual_offset,
8700 FALSE);
8701 /* We also need to mark that relocations are needed here. */
8702 sec->flags |= SEC_RELOC;
8703
8704 translate_reloc_bfd_fix (fix);
8705 /* This fix has not yet been translated. */
8706 add_fix (sec, fix);
8707
8708 /* Add the relocation. If we have already allocated our own
8709 space for the relocations and we have room for more, then use
8710 it. Otherwise, allocate new space and move the literals. */
8711 insert_at = sec->reloc_count;
8712 for (i = 0; i < sec->reloc_count; ++i)
8713 {
8714 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8715 {
8716 insert_at = i;
8717 break;
8718 }
8719 }
8720
8721 if (*internal_relocs_p != relax_info->allocated_relocs
8722 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8723 {
8724 BFD_ASSERT (relax_info->allocated_relocs == NULL
8725 || sec->reloc_count == relax_info->relocs_count);
8726
8727 if (relax_info->allocated_relocs_count == 0)
8728 new_relocs_count = (sec->reloc_count + 2) * 2;
8729 else
8730 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8731
8732 new_relocs = (Elf_Internal_Rela *)
8733 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8734 if (!new_relocs)
8735 return FALSE;
8736
8737 /* We could handle this more quickly by finding the split point. */
8738 if (insert_at != 0)
8739 memcpy (new_relocs, *internal_relocs_p,
8740 insert_at * sizeof (Elf_Internal_Rela));
8741
8742 new_relocs[insert_at] = this_rela;
8743
8744 if (insert_at != sec->reloc_count)
8745 memcpy (new_relocs + insert_at + 1,
8746 (*internal_relocs_p) + insert_at,
8747 (sec->reloc_count - insert_at)
8748 * sizeof (Elf_Internal_Rela));
8749
8750 if (*internal_relocs_p != relax_info->allocated_relocs)
8751 {
8752 /* The first time we re-allocate, we can only free the
8753 old relocs if they were allocated with bfd_malloc.
8754 This is not true when keep_memory is in effect. */
8755 if (!link_info->keep_memory)
8756 free (*internal_relocs_p);
8757 }
8758 else
8759 free (*internal_relocs_p);
8760 relax_info->allocated_relocs = new_relocs;
8761 relax_info->allocated_relocs_count = new_relocs_count;
8762 elf_section_data (sec)->relocs = new_relocs;
8763 sec->reloc_count++;
8764 relax_info->relocs_count = sec->reloc_count;
8765 *internal_relocs_p = new_relocs;
8766 }
8767 else
8768 {
8769 if (insert_at != sec->reloc_count)
8770 {
8771 unsigned idx;
8772 for (idx = sec->reloc_count; idx > insert_at; idx--)
8773 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8774 }
8775 (*internal_relocs_p)[insert_at] = this_rela;
8776 sec->reloc_count++;
8777 if (relax_info->allocated_relocs)
8778 relax_info->relocs_count = sec->reloc_count;
8779 }
8780 }
8781 return TRUE;
8782 }
8783
8784
8785 /* This is similar to relax_section except that when a target is moved,
8786 we shift addresses up. We also need to modify the size. This
8787 algorithm does NOT allow for relocations into the middle of the
8788 property sections. */
8789
8790 static bfd_boolean
relax_property_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info)8791 relax_property_section (bfd *abfd,
8792 asection *sec,
8793 struct bfd_link_info *link_info)
8794 {
8795 Elf_Internal_Rela *internal_relocs;
8796 bfd_byte *contents;
8797 unsigned i, nexti;
8798 bfd_boolean ok = TRUE;
8799 bfd_boolean is_full_prop_section;
8800 size_t last_zfill_target_offset = 0;
8801 asection *last_zfill_target_sec = NULL;
8802 bfd_size_type sec_size;
8803
8804 sec_size = bfd_get_section_limit (abfd, sec);
8805 internal_relocs = retrieve_internal_relocs (abfd, sec,
8806 link_info->keep_memory);
8807 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8808 if (contents == NULL && sec_size != 0)
8809 {
8810 ok = FALSE;
8811 goto error_return;
8812 }
8813
8814 is_full_prop_section =
8815 ((strcmp (sec->name, XTENSA_PROP_SEC_NAME) == 0)
8816 || (strncmp (sec->name, ".gnu.linkonce.prop.",
8817 sizeof ".gnu.linkonce.prop." - 1) == 0));
8818
8819 if (internal_relocs)
8820 {
8821 for (i = 0; i < sec->reloc_count; i++)
8822 {
8823 Elf_Internal_Rela *irel;
8824 xtensa_relax_info *target_relax_info;
8825 unsigned r_type;
8826 asection *target_sec;
8827 literal_value val;
8828 bfd_byte *size_p, *flags_p;
8829
8830 /* Locally change the source address.
8831 Translate the target to the new target address.
8832 If it points to this section and has been removed, MOVE IT.
8833 Also, don't forget to modify the associated SIZE at
8834 (offset + 4). */
8835
8836 irel = &internal_relocs[i];
8837 r_type = ELF32_R_TYPE (irel->r_info);
8838 if (r_type == R_XTENSA_NONE)
8839 continue;
8840
8841 /* Find the literal value. */
8842 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8843 size_p = &contents[irel->r_offset + 4];
8844 flags_p = NULL;
8845 if (is_full_prop_section)
8846 {
8847 flags_p = &contents[irel->r_offset + 8];
8848 BFD_ASSERT (irel->r_offset + 12 <= sec_size);
8849 }
8850 else
8851 BFD_ASSERT (irel->r_offset + 8 <= sec_size);
8852
8853 target_sec = r_reloc_get_section (&val.r_rel);
8854 target_relax_info = get_xtensa_relax_info (target_sec);
8855
8856 if (target_relax_info
8857 && (target_relax_info->is_relaxable_literal_section
8858 || target_relax_info->is_relaxable_asm_section ))
8859 {
8860 /* Translate the relocation's destination. */
8861 bfd_vma new_offset, new_end_offset;
8862 long old_size, new_size;
8863
8864 new_offset = offset_with_removed_text
8865 (&target_relax_info->action_list, val.r_rel.target_offset);
8866
8867 /* Assert that we are not out of bounds. */
8868 old_size = bfd_get_32 (abfd, size_p);
8869
8870 if (old_size == 0)
8871 {
8872 /* Only the first zero-sized unreachable entry is
8873 allowed to expand. In this case the new offset
8874 should be the offset before the fill and the new
8875 size is the expansion size. For other zero-sized
8876 entries the resulting size should be zero with an
8877 offset before or after the fill address depending
8878 on whether the expanding unreachable entry
8879 preceeds it. */
8880 if (last_zfill_target_sec
8881 && last_zfill_target_sec == target_sec
8882 && last_zfill_target_offset == val.r_rel.target_offset)
8883 new_end_offset = new_offset;
8884 else
8885 {
8886 new_end_offset = new_offset;
8887 new_offset = offset_with_removed_text_before_fill
8888 (&target_relax_info->action_list,
8889 val.r_rel.target_offset);
8890
8891 /* If it is not unreachable and we have not yet
8892 seen an unreachable at this address, place it
8893 before the fill address. */
8894 if (!flags_p
8895 || (bfd_get_32 (abfd, flags_p)
8896 & XTENSA_PROP_UNREACHABLE) == 0)
8897 new_end_offset = new_offset;
8898 else
8899 {
8900 last_zfill_target_sec = target_sec;
8901 last_zfill_target_offset = val.r_rel.target_offset;
8902 }
8903 }
8904 }
8905 else
8906 {
8907 new_end_offset = offset_with_removed_text_before_fill
8908 (&target_relax_info->action_list,
8909 val.r_rel.target_offset + old_size);
8910 }
8911
8912 new_size = new_end_offset - new_offset;
8913
8914 if (new_size != old_size)
8915 {
8916 bfd_put_32 (abfd, new_size, size_p);
8917 pin_contents (sec, contents);
8918 }
8919
8920 if (new_offset != val.r_rel.target_offset)
8921 {
8922 bfd_vma diff = new_offset - val.r_rel.target_offset;
8923 irel->r_addend += diff;
8924 pin_internal_relocs (sec, internal_relocs);
8925 }
8926 }
8927 }
8928 }
8929
8930 /* Combine adjacent property table entries. This is also done in
8931 finish_dynamic_sections() but at that point it's too late to
8932 reclaim the space in the output section, so we do this twice. */
8933
8934 if (internal_relocs && (!link_info->relocatable
8935 || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0))
8936 {
8937 Elf_Internal_Rela *last_irel = NULL;
8938 int removed_bytes = 0;
8939 bfd_vma offset, last_irel_offset;
8940 bfd_vma section_size;
8941 bfd_size_type entry_size;
8942 flagword predef_flags;
8943
8944 if (is_full_prop_section)
8945 entry_size = 12;
8946 else
8947 entry_size = 8;
8948
8949 predef_flags = xtensa_get_property_predef_flags (sec);
8950
8951 /* Walk over memory and irels at the same time.
8952 This REQUIRES that the internal_relocs be sorted by offset. */
8953 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8954 internal_reloc_compare);
8955 nexti = 0; /* Index into internal_relocs. */
8956
8957 pin_internal_relocs (sec, internal_relocs);
8958 pin_contents (sec, contents);
8959
8960 last_irel_offset = (bfd_vma) -1;
8961 section_size = sec->size;
8962 BFD_ASSERT (section_size % entry_size == 0);
8963
8964 for (offset = 0; offset < section_size; offset += entry_size)
8965 {
8966 Elf_Internal_Rela *irel, *next_irel;
8967 bfd_vma bytes_to_remove, size, actual_offset;
8968 bfd_boolean remove_this_irel;
8969 flagword flags;
8970
8971 irel = NULL;
8972 next_irel = NULL;
8973
8974 /* Find the next two relocations (if there are that many left),
8975 skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is
8976 the starting reloc index. After these two loops, "i"
8977 is the index of the first non-NONE reloc past that starting
8978 index, and "nexti" is the index for the next non-NONE reloc
8979 after "i". */
8980
8981 for (i = nexti; i < sec->reloc_count; i++)
8982 {
8983 if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE)
8984 {
8985 irel = &internal_relocs[i];
8986 break;
8987 }
8988 internal_relocs[i].r_offset -= removed_bytes;
8989 }
8990
8991 for (nexti = i + 1; nexti < sec->reloc_count; nexti++)
8992 {
8993 if (ELF32_R_TYPE (internal_relocs[nexti].r_info)
8994 != R_XTENSA_NONE)
8995 {
8996 next_irel = &internal_relocs[nexti];
8997 break;
8998 }
8999 internal_relocs[nexti].r_offset -= removed_bytes;
9000 }
9001
9002 remove_this_irel = FALSE;
9003 bytes_to_remove = 0;
9004 actual_offset = offset - removed_bytes;
9005 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9006
9007 if (is_full_prop_section)
9008 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9009 else
9010 flags = predef_flags;
9011
9012 /* Check that the irels are sorted by offset,
9013 with only one per address. */
9014 BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset);
9015 BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset);
9016
9017 /* Make sure there aren't relocs on the size or flag fields. */
9018 if ((irel && irel->r_offset == offset + 4)
9019 || (is_full_prop_section
9020 && irel && irel->r_offset == offset + 8))
9021 {
9022 irel->r_offset -= removed_bytes;
9023 last_irel_offset = irel->r_offset;
9024 }
9025 else if (next_irel && (next_irel->r_offset == offset + 4
9026 || (is_full_prop_section
9027 && next_irel->r_offset == offset + 8)))
9028 {
9029 nexti += 1;
9030 irel->r_offset -= removed_bytes;
9031 next_irel->r_offset -= removed_bytes;
9032 last_irel_offset = next_irel->r_offset;
9033 }
9034 else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0
9035 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9036 {
9037 /* Always remove entries with zero size and no alignment. */
9038 bytes_to_remove = entry_size;
9039 if (irel && irel->r_offset == offset)
9040 {
9041 remove_this_irel = TRUE;
9042
9043 irel->r_offset -= removed_bytes;
9044 last_irel_offset = irel->r_offset;
9045 }
9046 }
9047 else if (irel && irel->r_offset == offset)
9048 {
9049 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32)
9050 {
9051 if (last_irel)
9052 {
9053 flagword old_flags;
9054 bfd_vma old_size =
9055 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9056 bfd_vma old_address =
9057 (last_irel->r_addend
9058 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9059 bfd_vma new_address =
9060 (irel->r_addend
9061 + bfd_get_32 (abfd, &contents[actual_offset]));
9062 if (is_full_prop_section)
9063 old_flags = bfd_get_32
9064 (abfd, &contents[last_irel->r_offset + 8]);
9065 else
9066 old_flags = predef_flags;
9067
9068 if ((ELF32_R_SYM (irel->r_info)
9069 == ELF32_R_SYM (last_irel->r_info))
9070 && old_address + old_size == new_address
9071 && old_flags == flags
9072 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9073 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
9074 {
9075 /* Fix the old size. */
9076 bfd_put_32 (abfd, old_size + size,
9077 &contents[last_irel->r_offset + 4]);
9078 bytes_to_remove = entry_size;
9079 remove_this_irel = TRUE;
9080 }
9081 else
9082 last_irel = irel;
9083 }
9084 else
9085 last_irel = irel;
9086 }
9087
9088 irel->r_offset -= removed_bytes;
9089 last_irel_offset = irel->r_offset;
9090 }
9091
9092 if (remove_this_irel)
9093 {
9094 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9095 irel->r_offset -= bytes_to_remove;
9096 }
9097
9098 if (bytes_to_remove != 0)
9099 {
9100 removed_bytes += bytes_to_remove;
9101 if (offset + bytes_to_remove < section_size)
9102 memmove (&contents[actual_offset],
9103 &contents[actual_offset + bytes_to_remove],
9104 section_size - offset - bytes_to_remove);
9105 }
9106 }
9107
9108 if (removed_bytes)
9109 {
9110 /* Clear the removed bytes. */
9111 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9112
9113 sec->size = section_size - removed_bytes;
9114
9115 if (xtensa_is_littable_section (sec))
9116 {
9117 bfd *dynobj = elf_hash_table (link_info)->dynobj;
9118 if (dynobj)
9119 {
9120 asection *sgotloc =
9121 bfd_get_section_by_name (dynobj, ".got.loc");
9122 if (sgotloc)
9123 sgotloc->size -= removed_bytes;
9124 }
9125 }
9126 }
9127 }
9128
9129 error_return:
9130 release_internal_relocs (sec, internal_relocs);
9131 release_contents (sec, contents);
9132 return ok;
9133 }
9134
9135
9136 /* Third relaxation pass. */
9137
9138 /* Change symbol values to account for removed literals. */
9139
9140 bfd_boolean
relax_section_symbols(bfd * abfd,asection * sec)9141 relax_section_symbols (bfd *abfd, asection *sec)
9142 {
9143 xtensa_relax_info *relax_info;
9144 unsigned int sec_shndx;
9145 Elf_Internal_Shdr *symtab_hdr;
9146 Elf_Internal_Sym *isymbuf;
9147 unsigned i, num_syms, num_locals;
9148
9149 relax_info = get_xtensa_relax_info (sec);
9150 BFD_ASSERT (relax_info);
9151
9152 if (!relax_info->is_relaxable_literal_section
9153 && !relax_info->is_relaxable_asm_section)
9154 return TRUE;
9155
9156 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9157
9158 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9159 isymbuf = retrieve_local_syms (abfd);
9160
9161 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9162 num_locals = symtab_hdr->sh_info;
9163
9164 /* Adjust the local symbols defined in this section. */
9165 for (i = 0; i < num_locals; i++)
9166 {
9167 Elf_Internal_Sym *isym = &isymbuf[i];
9168
9169 if (isym->st_shndx == sec_shndx)
9170 {
9171 bfd_vma new_address = offset_with_removed_text
9172 (&relax_info->action_list, isym->st_value);
9173 bfd_vma new_size = isym->st_size;
9174
9175 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9176 {
9177 bfd_vma new_end = offset_with_removed_text
9178 (&relax_info->action_list, isym->st_value + isym->st_size);
9179 new_size = new_end - new_address;
9180 }
9181
9182 isym->st_value = new_address;
9183 isym->st_size = new_size;
9184 }
9185 }
9186
9187 /* Now adjust the global symbols defined in this section. */
9188 for (i = 0; i < (num_syms - num_locals); i++)
9189 {
9190 struct elf_link_hash_entry *sym_hash;
9191
9192 sym_hash = elf_sym_hashes (abfd)[i];
9193
9194 if (sym_hash->root.type == bfd_link_hash_warning)
9195 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9196
9197 if ((sym_hash->root.type == bfd_link_hash_defined
9198 || sym_hash->root.type == bfd_link_hash_defweak)
9199 && sym_hash->root.u.def.section == sec)
9200 {
9201 bfd_vma new_address = offset_with_removed_text
9202 (&relax_info->action_list, sym_hash->root.u.def.value);
9203 bfd_vma new_size = sym_hash->size;
9204
9205 if (sym_hash->type == STT_FUNC)
9206 {
9207 bfd_vma new_end = offset_with_removed_text
9208 (&relax_info->action_list,
9209 sym_hash->root.u.def.value + sym_hash->size);
9210 new_size = new_end - new_address;
9211 }
9212
9213 sym_hash->root.u.def.value = new_address;
9214 sym_hash->size = new_size;
9215 }
9216 }
9217
9218 return TRUE;
9219 }
9220
9221
9222 /* "Fix" handling functions, called while performing relocations. */
9223
9224 static bfd_boolean
do_fix_for_relocatable_link(Elf_Internal_Rela * rel,bfd * input_bfd,asection * input_section,bfd_byte * contents)9225 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9226 bfd *input_bfd,
9227 asection *input_section,
9228 bfd_byte *contents)
9229 {
9230 r_reloc r_rel;
9231 asection *sec, *old_sec;
9232 bfd_vma old_offset;
9233 int r_type = ELF32_R_TYPE (rel->r_info);
9234 reloc_bfd_fix *fix;
9235
9236 if (r_type == R_XTENSA_NONE)
9237 return TRUE;
9238
9239 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9240 if (!fix)
9241 return TRUE;
9242
9243 r_reloc_init (&r_rel, input_bfd, rel, contents,
9244 bfd_get_section_limit (input_bfd, input_section));
9245 old_sec = r_reloc_get_section (&r_rel);
9246 old_offset = r_rel.target_offset;
9247
9248 if (!old_sec || !r_reloc_is_defined (&r_rel))
9249 {
9250 if (r_type != R_XTENSA_ASM_EXPAND)
9251 {
9252 (*_bfd_error_handler)
9253 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9254 input_bfd, input_section, rel->r_offset,
9255 elf_howto_table[r_type].name);
9256 return FALSE;
9257 }
9258 /* Leave it be. Resolution will happen in a later stage. */
9259 }
9260 else
9261 {
9262 sec = fix->target_sec;
9263 rel->r_addend += ((sec->output_offset + fix->target_offset)
9264 - (old_sec->output_offset + old_offset));
9265 }
9266 return TRUE;
9267 }
9268
9269
9270 static void
do_fix_for_final_link(Elf_Internal_Rela * rel,bfd * input_bfd,asection * input_section,bfd_byte * contents,bfd_vma * relocationp)9271 do_fix_for_final_link (Elf_Internal_Rela *rel,
9272 bfd *input_bfd,
9273 asection *input_section,
9274 bfd_byte *contents,
9275 bfd_vma *relocationp)
9276 {
9277 asection *sec;
9278 int r_type = ELF32_R_TYPE (rel->r_info);
9279 reloc_bfd_fix *fix;
9280 bfd_vma fixup_diff;
9281
9282 if (r_type == R_XTENSA_NONE)
9283 return;
9284
9285 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9286 if (!fix)
9287 return;
9288
9289 sec = fix->target_sec;
9290
9291 fixup_diff = rel->r_addend;
9292 if (elf_howto_table[fix->src_type].partial_inplace)
9293 {
9294 bfd_vma inplace_val;
9295 BFD_ASSERT (fix->src_offset
9296 < bfd_get_section_limit (input_bfd, input_section));
9297 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9298 fixup_diff += inplace_val;
9299 }
9300
9301 *relocationp = (sec->output_section->vma
9302 + sec->output_offset
9303 + fix->target_offset - fixup_diff);
9304 }
9305
9306
9307 /* Miscellaneous utility functions.... */
9308
9309 static asection *
elf_xtensa_get_plt_section(bfd * dynobj,int chunk)9310 elf_xtensa_get_plt_section (bfd *dynobj, int chunk)
9311 {
9312 char plt_name[10];
9313
9314 if (chunk == 0)
9315 return bfd_get_section_by_name (dynobj, ".plt");
9316
9317 sprintf (plt_name, ".plt.%u", chunk);
9318 return bfd_get_section_by_name (dynobj, plt_name);
9319 }
9320
9321
9322 static asection *
elf_xtensa_get_gotplt_section(bfd * dynobj,int chunk)9323 elf_xtensa_get_gotplt_section (bfd *dynobj, int chunk)
9324 {
9325 char got_name[14];
9326
9327 if (chunk == 0)
9328 return bfd_get_section_by_name (dynobj, ".got.plt");
9329
9330 sprintf (got_name, ".got.plt.%u", chunk);
9331 return bfd_get_section_by_name (dynobj, got_name);
9332 }
9333
9334
9335 /* Get the input section for a given symbol index.
9336 If the symbol is:
9337 . a section symbol, return the section;
9338 . a common symbol, return the common section;
9339 . an undefined symbol, return the undefined section;
9340 . an indirect symbol, follow the links;
9341 . an absolute value, return the absolute section. */
9342
9343 static asection *
get_elf_r_symndx_section(bfd * abfd,unsigned long r_symndx)9344 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
9345 {
9346 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9347 asection *target_sec = NULL;
9348 if (r_symndx < symtab_hdr->sh_info)
9349 {
9350 Elf_Internal_Sym *isymbuf;
9351 unsigned int section_index;
9352
9353 isymbuf = retrieve_local_syms (abfd);
9354 section_index = isymbuf[r_symndx].st_shndx;
9355
9356 if (section_index == SHN_UNDEF)
9357 target_sec = bfd_und_section_ptr;
9358 else if (section_index > 0 && section_index < SHN_LORESERVE)
9359 target_sec = bfd_section_from_elf_index (abfd, section_index);
9360 else if (section_index == SHN_ABS)
9361 target_sec = bfd_abs_section_ptr;
9362 else if (section_index == SHN_COMMON)
9363 target_sec = bfd_com_section_ptr;
9364 else
9365 /* Who knows? */
9366 target_sec = NULL;
9367 }
9368 else
9369 {
9370 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9371 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9372
9373 while (h->root.type == bfd_link_hash_indirect
9374 || h->root.type == bfd_link_hash_warning)
9375 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9376
9377 switch (h->root.type)
9378 {
9379 case bfd_link_hash_defined:
9380 case bfd_link_hash_defweak:
9381 target_sec = h->root.u.def.section;
9382 break;
9383 case bfd_link_hash_common:
9384 target_sec = bfd_com_section_ptr;
9385 break;
9386 case bfd_link_hash_undefined:
9387 case bfd_link_hash_undefweak:
9388 target_sec = bfd_und_section_ptr;
9389 break;
9390 default: /* New indirect warning. */
9391 target_sec = bfd_und_section_ptr;
9392 break;
9393 }
9394 }
9395 return target_sec;
9396 }
9397
9398
9399 static struct elf_link_hash_entry *
get_elf_r_symndx_hash_entry(bfd * abfd,unsigned long r_symndx)9400 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
9401 {
9402 unsigned long indx;
9403 struct elf_link_hash_entry *h;
9404 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9405
9406 if (r_symndx < symtab_hdr->sh_info)
9407 return NULL;
9408
9409 indx = r_symndx - symtab_hdr->sh_info;
9410 h = elf_sym_hashes (abfd)[indx];
9411 while (h->root.type == bfd_link_hash_indirect
9412 || h->root.type == bfd_link_hash_warning)
9413 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9414 return h;
9415 }
9416
9417
9418 /* Get the section-relative offset for a symbol number. */
9419
9420 static bfd_vma
get_elf_r_symndx_offset(bfd * abfd,unsigned long r_symndx)9421 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
9422 {
9423 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9424 bfd_vma offset = 0;
9425
9426 if (r_symndx < symtab_hdr->sh_info)
9427 {
9428 Elf_Internal_Sym *isymbuf;
9429 isymbuf = retrieve_local_syms (abfd);
9430 offset = isymbuf[r_symndx].st_value;
9431 }
9432 else
9433 {
9434 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9435 struct elf_link_hash_entry *h =
9436 elf_sym_hashes (abfd)[indx];
9437
9438 while (h->root.type == bfd_link_hash_indirect
9439 || h->root.type == bfd_link_hash_warning)
9440 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9441 if (h->root.type == bfd_link_hash_defined
9442 || h->root.type == bfd_link_hash_defweak)
9443 offset = h->root.u.def.value;
9444 }
9445 return offset;
9446 }
9447
9448
9449 static bfd_boolean
is_reloc_sym_weak(bfd * abfd,Elf_Internal_Rela * rel)9450 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
9451 {
9452 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9453 struct elf_link_hash_entry *h;
9454
9455 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9456 if (h && h->root.type == bfd_link_hash_defweak)
9457 return TRUE;
9458 return FALSE;
9459 }
9460
9461
9462 static bfd_boolean
pcrel_reloc_fits(xtensa_opcode opc,int opnd,bfd_vma self_address,bfd_vma dest_address)9463 pcrel_reloc_fits (xtensa_opcode opc,
9464 int opnd,
9465 bfd_vma self_address,
9466 bfd_vma dest_address)
9467 {
9468 xtensa_isa isa = xtensa_default_isa;
9469 uint32 valp = dest_address;
9470 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9471 || xtensa_operand_encode (isa, opc, opnd, &valp))
9472 return FALSE;
9473 return TRUE;
9474 }
9475
9476
9477 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9478 static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1;
9479 static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1;
9480 static int prop_sec_len = sizeof (XTENSA_PROP_SEC_NAME) - 1;
9481
9482
9483 static bfd_boolean
xtensa_is_property_section(asection * sec)9484 xtensa_is_property_section (asection *sec)
9485 {
9486 if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0
9487 || strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0
9488 || strncmp (XTENSA_PROP_SEC_NAME, sec->name, prop_sec_len) == 0)
9489 return TRUE;
9490
9491 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9492 && (strncmp (&sec->name[linkonce_len], "x.", 2) == 0
9493 || strncmp (&sec->name[linkonce_len], "p.", 2) == 0
9494 || strncmp (&sec->name[linkonce_len], "prop.", 5) == 0))
9495 return TRUE;
9496
9497 return FALSE;
9498 }
9499
9500
9501 static bfd_boolean
xtensa_is_littable_section(asection * sec)9502 xtensa_is_littable_section (asection *sec)
9503 {
9504 if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0)
9505 return TRUE;
9506
9507 if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0
9508 && sec->name[linkonce_len] == 'p'
9509 && sec->name[linkonce_len + 1] == '.')
9510 return TRUE;
9511
9512 return FALSE;
9513 }
9514
9515
9516 static int
internal_reloc_compare(const void * ap,const void * bp)9517 internal_reloc_compare (const void *ap, const void *bp)
9518 {
9519 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9520 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9521
9522 if (a->r_offset != b->r_offset)
9523 return (a->r_offset - b->r_offset);
9524
9525 /* We don't need to sort on these criteria for correctness,
9526 but enforcing a more strict ordering prevents unstable qsort
9527 from behaving differently with different implementations.
9528 Without the code below we get correct but different results
9529 on Solaris 2.7 and 2.8. We would like to always produce the
9530 same results no matter the host. */
9531
9532 if (a->r_info != b->r_info)
9533 return (a->r_info - b->r_info);
9534
9535 return (a->r_addend - b->r_addend);
9536 }
9537
9538
9539 static int
internal_reloc_matches(const void * ap,const void * bp)9540 internal_reloc_matches (const void *ap, const void *bp)
9541 {
9542 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9543 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9544
9545 /* Check if one entry overlaps with the other; this shouldn't happen
9546 except when searching for a match. */
9547 return (a->r_offset - b->r_offset);
9548 }
9549
9550
9551 char *
xtensa_get_property_section_name(asection * sec,const char * base_name)9552 xtensa_get_property_section_name (asection *sec, const char *base_name)
9553 {
9554 if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
9555 {
9556 char *prop_sec_name;
9557 const char *suffix;
9558 char *linkonce_kind = 0;
9559
9560 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
9561 linkonce_kind = "x.";
9562 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
9563 linkonce_kind = "p.";
9564 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9565 linkonce_kind = "prop.";
9566 else
9567 abort ();
9568
9569 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9570 + strlen (linkonce_kind) + 1);
9571 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
9572 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
9573
9574 suffix = sec->name + linkonce_len;
9575 /* For backward compatibility, replace "t." instead of inserting
9576 the new linkonce_kind (but not for "prop" sections). */
9577 if (strncmp (suffix, "t.", 2) == 0 && linkonce_kind[1] == '.')
9578 suffix += 2;
9579 strcat (prop_sec_name + linkonce_len, suffix);
9580
9581 return prop_sec_name;
9582 }
9583
9584 return strdup (base_name);
9585 }
9586
9587
9588 flagword
xtensa_get_property_predef_flags(asection * sec)9589 xtensa_get_property_predef_flags (asection *sec)
9590 {
9591 if (strcmp (sec->name, XTENSA_INSN_SEC_NAME) == 0
9592 || strncmp (sec->name, ".gnu.linkonce.x.",
9593 sizeof ".gnu.linkonce.x." - 1) == 0)
9594 return (XTENSA_PROP_INSN
9595 | XTENSA_PROP_INSN_NO_TRANSFORM
9596 | XTENSA_PROP_INSN_NO_REORDER);
9597
9598 if (xtensa_is_littable_section (sec))
9599 return (XTENSA_PROP_LITERAL
9600 | XTENSA_PROP_INSN_NO_TRANSFORM
9601 | XTENSA_PROP_INSN_NO_REORDER);
9602
9603 return 0;
9604 }
9605
9606
9607 /* Other functions called directly by the linker. */
9608
9609 bfd_boolean
xtensa_callback_required_dependence(bfd * abfd,asection * sec,struct bfd_link_info * link_info,deps_callback_t callback,void * closure)9610 xtensa_callback_required_dependence (bfd *abfd,
9611 asection *sec,
9612 struct bfd_link_info *link_info,
9613 deps_callback_t callback,
9614 void *closure)
9615 {
9616 Elf_Internal_Rela *internal_relocs;
9617 bfd_byte *contents;
9618 unsigned i;
9619 bfd_boolean ok = TRUE;
9620 bfd_size_type sec_size;
9621
9622 sec_size = bfd_get_section_limit (abfd, sec);
9623
9624 /* ".plt*" sections have no explicit relocations but they contain L32R
9625 instructions that reference the corresponding ".got.plt*" sections. */
9626 if ((sec->flags & SEC_LINKER_CREATED) != 0
9627 && strncmp (sec->name, ".plt", 4) == 0)
9628 {
9629 asection *sgotplt;
9630
9631 /* Find the corresponding ".got.plt*" section. */
9632 if (sec->name[4] == '\0')
9633 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9634 else
9635 {
9636 char got_name[14];
9637 int chunk = 0;
9638
9639 BFD_ASSERT (sec->name[4] == '.');
9640 chunk = strtol (&sec->name[5], NULL, 10);
9641
9642 sprintf (got_name, ".got.plt.%u", chunk);
9643 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9644 }
9645 BFD_ASSERT (sgotplt);
9646
9647 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9648 section referencing a literal at the very beginning of
9649 ".got.plt". This is very close to the real dependence, anyway. */
9650 (*callback) (sec, sec_size, sgotplt, 0, closure);
9651 }
9652
9653 internal_relocs = retrieve_internal_relocs (abfd, sec,
9654 link_info->keep_memory);
9655 if (internal_relocs == NULL
9656 || sec->reloc_count == 0)
9657 return ok;
9658
9659 /* Cache the contents for the duration of this scan. */
9660 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9661 if (contents == NULL && sec_size != 0)
9662 {
9663 ok = FALSE;
9664 goto error_return;
9665 }
9666
9667 if (!xtensa_default_isa)
9668 xtensa_default_isa = xtensa_isa_init (0, 0);
9669
9670 for (i = 0; i < sec->reloc_count; i++)
9671 {
9672 Elf_Internal_Rela *irel = &internal_relocs[i];
9673 if (is_l32r_relocation (abfd, sec, contents, irel))
9674 {
9675 r_reloc l32r_rel;
9676 asection *target_sec;
9677 bfd_vma target_offset;
9678
9679 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
9680 target_sec = NULL;
9681 target_offset = 0;
9682 /* L32Rs must be local to the input file. */
9683 if (r_reloc_is_defined (&l32r_rel))
9684 {
9685 target_sec = r_reloc_get_section (&l32r_rel);
9686 target_offset = l32r_rel.target_offset;
9687 }
9688 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9689 closure);
9690 }
9691 }
9692
9693 error_return:
9694 release_internal_relocs (sec, internal_relocs);
9695 release_contents (sec, contents);
9696 return ok;
9697 }
9698
9699 /* The default literal sections should always be marked as "code" (i.e.,
9700 SHF_EXECINSTR). This is particularly important for the Linux kernel
9701 module loader so that the literals are not placed after the text. */
9702 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
9703 {
9704 { ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9705 { ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9706 { ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9707 { NULL, 0, 0, 0, 0 }
9708 };
9709
9710 #ifndef ELF_ARCH
9711 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9712 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9713 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9714 #define TARGET_BIG_NAME "elf32-xtensa-be"
9715 #define ELF_ARCH bfd_arch_xtensa
9716
9717 #define ELF_MACHINE_CODE EM_XTENSA
9718 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9719
9720 #if XCHAL_HAVE_MMU
9721 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9722 #else /* !XCHAL_HAVE_MMU */
9723 #define ELF_MAXPAGESIZE 1
9724 #endif /* !XCHAL_HAVE_MMU */
9725 #endif /* ELF_ARCH */
9726
9727 #define elf_backend_can_gc_sections 1
9728 #define elf_backend_can_refcount 1
9729 #define elf_backend_plt_readonly 1
9730 #define elf_backend_got_header_size 4
9731 #define elf_backend_want_dynbss 0
9732 #define elf_backend_want_got_plt 1
9733
9734 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9735
9736 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9737 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9738 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9739 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9740 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9741 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9742
9743 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9744 #define elf_backend_check_relocs elf_xtensa_check_relocs
9745 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9746 #define elf_backend_discard_info elf_xtensa_discard_info
9747 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9748 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9749 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9750 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9751 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9752 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9753 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9754 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9755 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
9756 #define elf_backend_modify_segment_map elf_xtensa_modify_segment_map
9757 #define elf_backend_object_p elf_xtensa_object_p
9758 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9759 #define elf_backend_relocate_section elf_xtensa_relocate_section
9760 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9761 #define elf_backend_special_sections elf_xtensa_special_sections
9762
9763 #include "elf32-target.h"
9764