1 #pragma once
2 #ifndef FP16_FP16_H
3 #define FP16_FP16_H
4 
5 #if defined(__cplusplus) && (__cplusplus >= 201103L)
6 	#include <cstdint>
7 	#include <cmath>
8 #elif !defined(__OPENCL_VERSION__)
9 	#include <stdint.h>
10 	#include <math.h>
11 #endif
12 
13 #ifdef _MSC_VER
14 	#include <intrin.h>
15 #endif
16 
17 #include <fp16/bitcasts.h>
18 
19 
20 /*
21  * Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to
22  * a 32-bit floating-point number in IEEE single-precision format, in bit representation.
23  *
24  * @note The implementation doesn't use any floating-point operations.
25  */
fp16_ieee_to_fp32_bits(uint16_t h)26 static inline uint32_t fp16_ieee_to_fp32_bits(uint16_t h) {
27 	/*
28 	 * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
29 	 *      +---+-----+------------+-------------------+
30 	 *      | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
31 	 *      +---+-----+------------+-------------------+
32 	 * Bits  31  26-30    16-25            0-15
33 	 *
34 	 * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
35 	 */
36 	const uint32_t w = (uint32_t) h << 16;
37 	/*
38 	 * Extract the sign of the input number into the high bit of the 32-bit word:
39 	 *
40 	 *      +---+----------------------------------+
41 	 *      | S |0000000 00000000 00000000 00000000|
42 	 *      +---+----------------------------------+
43 	 * Bits  31                 0-31
44 	 */
45 	const uint32_t sign = w & UINT32_C(0x80000000);
46 	/*
47 	 * Extract mantissa and biased exponent of the input number into the bits 0-30 of the 32-bit word:
48 	 *
49 	 *      +---+-----+------------+-------------------+
50 	 *      | 0 |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
51 	 *      +---+-----+------------+-------------------+
52 	 * Bits  30  27-31     17-26            0-16
53 	 */
54 	const uint32_t nonsign = w & UINT32_C(0x7FFFFFFF);
55 	/*
56 	 * Renorm shift is the number of bits to shift mantissa left to make the half-precision number normalized.
57 	 * If the initial number is normalized, some of its high 6 bits (sign == 0 and 5-bit exponent) equals one.
58 	 * In this case renorm_shift == 0. If the number is denormalize, renorm_shift > 0. Note that if we shift
59 	 * denormalized nonsign by renorm_shift, the unit bit of mantissa will shift into exponent, turning the
60 	 * biased exponent into 1, and making mantissa normalized (i.e. without leading 1).
61 	 */
62 #ifdef _MSC_VER
63 	unsigned long nonsign_bsr;
64 	_BitScanReverse(&nonsign_bsr, (unsigned long) nonsign);
65 	uint32_t renorm_shift = (uint32_t) nonsign_bsr ^ 31;
66 #else
67 	uint32_t renorm_shift = __builtin_clz(nonsign);
68 #endif
69 	renorm_shift = renorm_shift > 5 ? renorm_shift - 5 : 0;
70 	/*
71 	 * Iff half-precision number has exponent of 15, the addition overflows it into bit 31,
72 	 * and the subsequent shift turns the high 9 bits into 1. Thus
73 	 *   inf_nan_mask ==
74 	 *                   0x7F800000 if the half-precision number had exponent of 15 (i.e. was NaN or infinity)
75 	 *                   0x00000000 otherwise
76 	 */
77 	const int32_t inf_nan_mask = ((int32_t) (nonsign + 0x04000000) >> 8) & INT32_C(0x7F800000);
78 	/*
79 	 * Iff nonsign is 0, it overflows into 0xFFFFFFFF, turning bit 31 into 1. Otherwise, bit 31 remains 0.
80 	 * The signed shift right by 31 broadcasts bit 31 into all bits of the zero_mask. Thus
81 	 *   zero_mask ==
82 	 *                0xFFFFFFFF if the half-precision number was zero (+0.0h or -0.0h)
83 	 *                0x00000000 otherwise
84 	 */
85 	const int32_t zero_mask = (int32_t) (nonsign - 1) >> 31;
86 	/*
87 	 * 1. Shift nonsign left by renorm_shift to normalize it (if the input was denormal)
88 	 * 2. Shift nonsign right by 3 so the exponent (5 bits originally) becomes an 8-bit field and 10-bit mantissa
89 	 *    shifts into the 10 high bits of the 23-bit mantissa of IEEE single-precision number.
90 	 * 3. Add 0x70 to the exponent (starting at bit 23) to compensate the different in exponent bias
91 	 *    (0x7F for single-precision number less 0xF for half-precision number).
92 	 * 4. Subtract renorm_shift from the exponent (starting at bit 23) to account for renormalization. As renorm_shift
93 	 *    is less than 0x70, this can be combined with step 3.
94 	 * 5. Binary OR with inf_nan_mask to turn the exponent into 0xFF if the input was NaN or infinity.
95 	 * 6. Binary ANDNOT with zero_mask to turn the mantissa and exponent into zero if the input was zero.
96 	 * 7. Combine with the sign of the input number.
97 	 */
98 	return sign | ((((nonsign << renorm_shift >> 3) + ((0x70 - renorm_shift) << 23)) | inf_nan_mask) & ~zero_mask);
99 }
100 
101 /*
102  * Convert a 16-bit floating-point number in IEEE half-precision format, in bit representation, to
103  * a 32-bit floating-point number in IEEE single-precision format.
104  *
105  * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
106  * floating-point operations and bitcasts between integer and floating-point variables.
107  */
fp16_ieee_to_fp32_value(uint16_t h)108 static inline float fp16_ieee_to_fp32_value(uint16_t h) {
109 	/*
110 	 * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
111 	 *      +---+-----+------------+-------------------+
112 	 *      | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
113 	 *      +---+-----+------------+-------------------+
114 	 * Bits  31  26-30    16-25            0-15
115 	 *
116 	 * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
117 	 */
118 	const uint32_t w = (uint32_t) h << 16;
119 	/*
120 	 * Extract the sign of the input number into the high bit of the 32-bit word:
121 	 *
122 	 *      +---+----------------------------------+
123 	 *      | S |0000000 00000000 00000000 00000000|
124 	 *      +---+----------------------------------+
125 	 * Bits  31                 0-31
126 	 */
127 	const uint32_t sign = w & UINT32_C(0x80000000);
128 	/*
129 	 * Extract mantissa and biased exponent of the input number into the high bits of the 32-bit word:
130 	 *
131 	 *      +-----+------------+---------------------+
132 	 *      |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000|
133 	 *      +-----+------------+---------------------+
134 	 * Bits  27-31    17-26            0-16
135 	 */
136 	const uint32_t two_w = w + w;
137 
138 	/*
139 	 * Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become mantissa and exponent
140 	 * of a single-precision floating-point number:
141 	 *
142 	 *       S|Exponent |          Mantissa
143 	 *      +-+---+-----+------------+----------------+
144 	 *      |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000|
145 	 *      +-+---+-----+------------+----------------+
146 	 * Bits   | 23-31   |           0-22
147 	 *
148 	 * Next, there are some adjustments to the exponent:
149 	 * - The exponent needs to be corrected by the difference in exponent bias between single-precision and half-precision
150 	 *   formats (0x7F - 0xF = 0x70)
151 	 * - Inf and NaN values in the inputs should become Inf and NaN values after conversion to the single-precision number.
152 	 *   Therefore, if the biased exponent of the half-precision input was 0x1F (max possible value), the biased exponent
153 	 *   of the single-precision output must be 0xFF (max possible value). We do this correction in two steps:
154 	 *   - First, we adjust the exponent by (0xFF - 0x1F) = 0xE0 (see exp_offset below) rather than by 0x70 suggested
155 	 *     by the difference in the exponent bias (see above).
156 	 *   - Then we multiply the single-precision result of exponent adjustment by 2**(-112) to reverse the effect of
157 	 *     exponent adjustment by 0xE0 less the necessary exponent adjustment by 0x70 due to difference in exponent bias.
158 	 *     The floating-point multiplication hardware would ensure than Inf and NaN would retain their value on at least
159 	 *     partially IEEE754-compliant implementations.
160 	 *
161 	 * Note that the above operations do not handle denormal inputs (where biased exponent == 0). However, they also do not
162 	 * operate on denormal inputs, and do not produce denormal results.
163 	 */
164 	const uint32_t exp_offset = UINT32_C(0xE0) << 23;
165 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
166 	const float exp_scale = 0x1.0p-112f;
167 #else
168 	const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
169 #endif
170 	const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
171 
172 	/*
173 	 * Convert denormalized half-precision inputs into single-precision results (always normalized).
174 	 * Zero inputs are also handled here.
175 	 *
176 	 * In a denormalized number the biased exponent is zero, and mantissa has on-zero bits.
177 	 * First, we shift mantissa into bits 0-9 of the 32-bit word.
178 	 *
179 	 *                  zeros           |  mantissa
180 	 *      +---------------------------+------------+
181 	 *      |0000 0000 0000 0000 0000 00|MM MMMM MMMM|
182 	 *      +---------------------------+------------+
183 	 * Bits             10-31                0-9
184 	 *
185 	 * Now, remember that denormalized half-precision numbers are represented as:
186 	 *    FP16 = mantissa * 2**(-24).
187 	 * The trick is to construct a normalized single-precision number with the same mantissa and thehalf-precision input
188 	 * and with an exponent which would scale the corresponding mantissa bits to 2**(-24).
189 	 * A normalized single-precision floating-point number is represented as:
190 	 *    FP32 = (1 + mantissa * 2**(-23)) * 2**(exponent - 127)
191 	 * Therefore, when the biased exponent is 126, a unit change in the mantissa of the input denormalized half-precision
192 	 * number causes a change of the constructud single-precision number by 2**(-24), i.e. the same ammount.
193 	 *
194 	 * The last step is to adjust the bias of the constructed single-precision number. When the input half-precision number
195 	 * is zero, the constructed single-precision number has the value of
196 	 *    FP32 = 1 * 2**(126 - 127) = 2**(-1) = 0.5
197 	 * Therefore, we need to subtract 0.5 from the constructed single-precision number to get the numerical equivalent of
198 	 * the input half-precision number.
199 	 */
200 	const uint32_t magic_mask = UINT32_C(126) << 23;
201 	const float magic_bias = 0.5f;
202 	const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
203 
204 	/*
205 	 * - Choose either results of conversion of input as a normalized number, or as a denormalized number, depending on the
206 	 *   input exponent. The variable two_w contains input exponent in bits 27-31, therefore if its smaller than 2**27, the
207 	 *   input is either a denormal number, or zero.
208 	 * - Combine the result of conversion of exponent and mantissa with the sign of the input number.
209 	 */
210 	const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
211 	const uint32_t result = sign |
212 		(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
213 	return fp32_from_bits(result);
214 }
215 
216 /*
217  * Convert a 32-bit floating-point number in IEEE single-precision format to a 16-bit floating-point number in
218  * IEEE half-precision format, in bit representation.
219  *
220  * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
221  * floating-point operations and bitcasts between integer and floating-point variables.
222  */
fp16_ieee_from_fp32_value(float f)223 static inline uint16_t fp16_ieee_from_fp32_value(float f) {
224 #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
225 	const float scale_to_inf = 0x1.0p+112f;
226 	const float scale_to_zero = 0x1.0p-110f;
227 #else
228 	const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
229 	const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
230 #endif
231 	float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
232 
233 	const uint32_t w = fp32_to_bits(f);
234 	const uint32_t shl1_w = w + w;
235 	const uint32_t sign = w & UINT32_C(0x80000000);
236 	uint32_t bias = shl1_w & UINT32_C(0xFF000000);
237 	if (bias < UINT32_C(0x71000000)) {
238 		bias = UINT32_C(0x71000000);
239 	}
240 
241 	base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
242 	const uint32_t bits = fp32_to_bits(base);
243 	const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
244 	const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
245 	const uint32_t nonsign = exp_bits + mantissa_bits;
246 	return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
247 }
248 
249 /*
250  * Convert a 16-bit floating-point number in ARM alternative half-precision format, in bit representation, to
251  * a 32-bit floating-point number in IEEE single-precision format, in bit representation.
252  *
253  * @note The implementation doesn't use any floating-point operations.
254  */
fp16_alt_to_fp32_bits(uint16_t h)255 static inline uint32_t fp16_alt_to_fp32_bits(uint16_t h) {
256 	/*
257 	 * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
258 	 *      +---+-----+------------+-------------------+
259 	 *      | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
260 	 *      +---+-----+------------+-------------------+
261 	 * Bits  31  26-30    16-25            0-15
262 	 *
263 	 * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
264 	 */
265 	const uint32_t w = (uint32_t) h << 16;
266 	/*
267 	 * Extract the sign of the input number into the high bit of the 32-bit word:
268 	 *
269 	 *      +---+----------------------------------+
270 	 *      | S |0000000 00000000 00000000 00000000|
271 	 *      +---+----------------------------------+
272 	 * Bits  31                 0-31
273 	 */
274 	const uint32_t sign = w & UINT32_C(0x80000000);
275 	/*
276 	 * Extract mantissa and biased exponent of the input number into the bits 0-30 of the 32-bit word:
277 	 *
278 	 *      +---+-----+------------+-------------------+
279 	 *      | 0 |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
280 	 *      +---+-----+------------+-------------------+
281 	 * Bits  30  27-31     17-26            0-16
282 	 */
283 	const uint32_t nonsign = w & UINT32_C(0x7FFFFFFF);
284 	/*
285 	 * Renorm shift is the number of bits to shift mantissa left to make the half-precision number normalized.
286 	 * If the initial number is normalized, some of its high 6 bits (sign == 0 and 5-bit exponent) equals one.
287 	 * In this case renorm_shift == 0. If the number is denormalize, renorm_shift > 0. Note that if we shift
288 	 * denormalized nonsign by renorm_shift, the unit bit of mantissa will shift into exponent, turning the
289 	 * biased exponent into 1, and making mantissa normalized (i.e. without leading 1).
290 	 */
291 #ifdef _MSC_VER
292 	unsigned long nonsign_bsr;
293 	_BitScanReverse(&nonsign_bsr, (unsigned long) nonsign);
294 	uint32_t renorm_shift = (uint32_t) nonsign_bsr ^ 31;
295 #else
296 	uint32_t renorm_shift = __builtin_clz(nonsign);
297 #endif
298 	renorm_shift = renorm_shift > 5 ? renorm_shift - 5 : 0;
299 	/*
300 	 * Iff nonsign is 0, it overflows into 0xFFFFFFFF, turning bit 31 into 1. Otherwise, bit 31 remains 0.
301 	 * The signed shift right by 31 broadcasts bit 31 into all bits of the zero_mask. Thus
302 	 *   zero_mask ==
303 	 *                0xFFFFFFFF if the half-precision number was zero (+0.0h or -0.0h)
304 	 *                0x00000000 otherwise
305 	 */
306 	const int32_t zero_mask = (int32_t) (nonsign - 1) >> 31;
307 	/*
308 	 * 1. Shift nonsign left by renorm_shift to normalize it (if the input was denormal)
309 	 * 2. Shift nonsign right by 3 so the exponent (5 bits originally) becomes an 8-bit field and 10-bit mantissa
310 	 *    shifts into the 10 high bits of the 23-bit mantissa of IEEE single-precision number.
311 	 * 3. Add 0x70 to the exponent (starting at bit 23) to compensate the different in exponent bias
312 	 *    (0x7F for single-precision number less 0xF for half-precision number).
313 	 * 4. Subtract renorm_shift from the exponent (starting at bit 23) to account for renormalization. As renorm_shift
314 	 *    is less than 0x70, this can be combined with step 3.
315 	 * 5. Binary ANDNOT with zero_mask to turn the mantissa and exponent into zero if the input was zero.
316 	 * 6. Combine with the sign of the input number.
317 	 */
318 	return sign | (((nonsign << renorm_shift >> 3) + ((0x70 - renorm_shift) << 23)) & ~zero_mask);
319 }
320 
321 /*
322  * Convert a 16-bit floating-point number in ARM alternative half-precision format, in bit representation, to
323  * a 32-bit floating-point number in IEEE single-precision format.
324  *
325  * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
326  * floating-point operations and bitcasts between integer and floating-point variables.
327  */
fp16_alt_to_fp32_value(uint16_t h)328 static inline float fp16_alt_to_fp32_value(uint16_t h) {
329 	/*
330 	 * Extend the half-precision floating-point number to 32 bits and shift to the upper part of the 32-bit word:
331 	 *      +---+-----+------------+-------------------+
332 	 *      | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
333 	 *      +---+-----+------------+-------------------+
334 	 * Bits  31  26-30    16-25            0-15
335 	 *
336 	 * S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0 - zero bits.
337 	 */
338 	const uint32_t w = (uint32_t) h << 16;
339 	/*
340 	 * Extract the sign of the input number into the high bit of the 32-bit word:
341 	 *
342 	 *      +---+----------------------------------+
343 	 *      | S |0000000 00000000 00000000 00000000|
344 	 *      +---+----------------------------------+
345 	 * Bits  31                 0-31
346 	 */
347 	const uint32_t sign = w & UINT32_C(0x80000000);
348 	/*
349 	 * Extract mantissa and biased exponent of the input number into the high bits of the 32-bit word:
350 	 *
351 	 *      +-----+------------+---------------------+
352 	 *      |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000|
353 	 *      +-----+------------+---------------------+
354 	 * Bits  27-31    17-26            0-16
355 	 */
356 	const uint32_t two_w = w + w;
357 
358 	/*
359 	 * Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become mantissa and exponent
360 	 * of a single-precision floating-point number:
361 	 *
362 	 *       S|Exponent |          Mantissa
363 	 *      +-+---+-----+------------+----------------+
364 	 *      |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000|
365 	 *      +-+---+-----+------------+----------------+
366 	 * Bits   | 23-31   |           0-22
367 	 *
368 	 * Next, the exponent is adjusted for the difference in exponent bias between single-precision and half-precision
369 	 * formats (0x7F - 0xF = 0x70). This operation never overflows or generates non-finite values, as the largest
370 	 * half-precision exponent is 0x1F and after the adjustment is can not exceed 0x8F < 0xFE (largest single-precision
371 	 * exponent for non-finite values).
372 	 *
373 	 * Note that this operation does not handle denormal inputs (where biased exponent == 0). However, they also do not
374 	 * operate on denormal inputs, and do not produce denormal results.
375 	 */
376 	const uint32_t exp_offset = UINT32_C(0x70) << 23;
377 	const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset);
378 
379 	/*
380 	 * Convert denormalized half-precision inputs into single-precision results (always normalized).
381 	 * Zero inputs are also handled here.
382 	 *
383 	 * In a denormalized number the biased exponent is zero, and mantissa has on-zero bits.
384 	 * First, we shift mantissa into bits 0-9 of the 32-bit word.
385 	 *
386 	 *                  zeros           |  mantissa
387 	 *      +---------------------------+------------+
388 	 *      |0000 0000 0000 0000 0000 00|MM MMMM MMMM|
389 	 *      +---------------------------+------------+
390 	 * Bits             10-31                0-9
391 	 *
392 	 * Now, remember that denormalized half-precision numbers are represented as:
393 	 *    FP16 = mantissa * 2**(-24).
394 	 * The trick is to construct a normalized single-precision number with the same mantissa and thehalf-precision input
395 	 * and with an exponent which would scale the corresponding mantissa bits to 2**(-24).
396 	 * A normalized single-precision floating-point number is represented as:
397 	 *    FP32 = (1 + mantissa * 2**(-23)) * 2**(exponent - 127)
398 	 * Therefore, when the biased exponent is 126, a unit change in the mantissa of the input denormalized half-precision
399 	 * number causes a change of the constructud single-precision number by 2**(-24), i.e. the same ammount.
400 	 *
401 	 * The last step is to adjust the bias of the constructed single-precision number. When the input half-precision number
402 	 * is zero, the constructed single-precision number has the value of
403 	 *    FP32 = 1 * 2**(126 - 127) = 2**(-1) = 0.5
404 	 * Therefore, we need to subtract 0.5 from the constructed single-precision number to get the numerical equivalent of
405 	 * the input half-precision number.
406 	 */
407 	const uint32_t magic_mask = UINT32_C(126) << 23;
408 	const float magic_bias = 0.5f;
409 	const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
410 
411 	/*
412 	 * - Choose either results of conversion of input as a normalized number, or as a denormalized number, depending on the
413 	 *   input exponent. The variable two_w contains input exponent in bits 27-31, therefore if its smaller than 2**27, the
414 	 *   input is either a denormal number, or zero.
415 	 * - Combine the result of conversion of exponent and mantissa with the sign of the input number.
416 	 */
417 	const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
418 	const uint32_t result = sign |
419 		(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
420 	return fp32_from_bits(result);
421 }
422 
423 /*
424  * Convert a 32-bit floating-point number in IEEE single-precision format to a 16-bit floating-point number in
425  * ARM alternative half-precision format, in bit representation.
426  *
427  * @note The implementation relies on IEEE-like (no assumption about rounding mode and no operations on denormals)
428  * floating-point operations and bitcasts between integer and floating-point variables.
429  */
fp16_alt_from_fp32_value(float f)430 static inline uint16_t fp16_alt_from_fp32_value(float f) {
431 	const uint32_t w = fp32_to_bits(f);
432 	const uint32_t sign = w & UINT32_C(0x80000000);
433 	const uint32_t shl1_w = w + w;
434 
435 	const uint32_t shl1_max_fp16_fp32 = UINT32_C(0x8FFFC000);
436 	const uint32_t shl1_base = shl1_w > shl1_max_fp16_fp32 ? shl1_max_fp16_fp32 : shl1_w;
437 	uint32_t shl1_bias = shl1_base & UINT32_C(0xFF000000);
438 	const uint32_t exp_difference = 23 - 10;
439 	const uint32_t shl1_bias_min = (127 - 1 - exp_difference) << 24;
440 	if (shl1_bias < shl1_bias_min) {
441 		shl1_bias = shl1_bias_min;
442 	}
443 
444 	const float bias = fp32_from_bits((shl1_bias >> 1) + ((exp_difference + 2) << 23));
445 	const float base = fp32_from_bits((shl1_base >> 1) + (2 << 23)) + bias;
446 
447 	const uint32_t exp_f = fp32_to_bits(base) >> 13;
448 	return (sign >> 16) | ((exp_f & UINT32_C(0x00007C00)) + (fp32_to_bits(base) & UINT32_C(0x00000FFF)));
449 }
450 
451 #endif /* FP16_FP16_H */
452