1 /* Target-dependent code for Lattice Mico32 processor, for GDB.
2    Contributed by Jon Beniston <jon@beniston.com>
3 
4    Copyright (C) 2009-2021 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "inferior.h"
26 #include "dis-asm.h"
27 #include "symfile.h"
28 #include "remote.h"
29 #include "gdbcore.h"
30 #include "gdb/sim-lm32.h"
31 #include "arch-utils.h"
32 #include "regcache.h"
33 #include "trad-frame.h"
34 #include "reggroups.h"
35 #include "opcodes/lm32-desc.h"
36 #include <algorithm>
37 
38 /* Macros to extract fields from an instruction.  */
39 #define LM32_OPCODE(insn)       ((insn >> 26) & 0x3f)
40 #define LM32_REG0(insn)         ((insn >> 21) & 0x1f)
41 #define LM32_REG1(insn)         ((insn >> 16) & 0x1f)
42 #define LM32_REG2(insn)         ((insn >> 11) & 0x1f)
43 #define LM32_IMM16(insn)        ((((long)insn & 0xffff) << 16) >> 16)
44 
45 struct gdbarch_tdep
46 {
47   /* gdbarch target dependent data here.  Currently unused for LM32.  */
48 };
49 
50 struct lm32_frame_cache
51 {
52   /* The frame's base.  Used when constructing a frame ID.  */
53   CORE_ADDR base;
54   CORE_ADDR pc;
55   /* Size of frame.  */
56   int size;
57   /* Table indicating the location of each and every register.  */
58   trad_frame_saved_reg *saved_regs;
59 };
60 
61 /* Add the available register groups.  */
62 
63 static void
lm32_add_reggroups(struct gdbarch * gdbarch)64 lm32_add_reggroups (struct gdbarch *gdbarch)
65 {
66   reggroup_add (gdbarch, general_reggroup);
67   reggroup_add (gdbarch, all_reggroup);
68   reggroup_add (gdbarch, system_reggroup);
69 }
70 
71 /* Return whether a given register is in a given group.  */
72 
73 static int
lm32_register_reggroup_p(struct gdbarch * gdbarch,int regnum,struct reggroup * group)74 lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
75 			  struct reggroup *group)
76 {
77   if (group == general_reggroup)
78     return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
79       || (regnum == SIM_LM32_PC_REGNUM);
80   else if (group == system_reggroup)
81     return ((regnum >= SIM_LM32_BA_REGNUM) && (regnum <= SIM_LM32_EA_REGNUM))
82       || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
83   return default_register_reggroup_p (gdbarch, regnum, group);
84 }
85 
86 /* Return a name that corresponds to the given register number.  */
87 
88 static const char *
lm32_register_name(struct gdbarch * gdbarch,int reg_nr)89 lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
90 {
91   static const char *register_names[] = {
92     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
93     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
94     "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
95     "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
96     "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
97   };
98 
99   if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
100     return NULL;
101   else
102     return register_names[reg_nr];
103 }
104 
105 /* Return type of register.  */
106 
107 static struct type *
lm32_register_type(struct gdbarch * gdbarch,int reg_nr)108 lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
109 {
110   return builtin_type (gdbarch)->builtin_int32;
111 }
112 
113 /* Return non-zero if a register can't be written.  */
114 
115 static int
lm32_cannot_store_register(struct gdbarch * gdbarch,int regno)116 lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
117 {
118   return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
119 }
120 
121 /* Analyze a function's prologue.  */
122 
123 static CORE_ADDR
lm32_analyze_prologue(struct gdbarch * gdbarch,CORE_ADDR pc,CORE_ADDR limit,struct lm32_frame_cache * info)124 lm32_analyze_prologue (struct gdbarch *gdbarch,
125 		       CORE_ADDR pc, CORE_ADDR limit,
126 		       struct lm32_frame_cache *info)
127 {
128   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
129   unsigned long instruction;
130 
131   /* Keep reading though instructions, until we come across an instruction
132      that isn't likely to be part of the prologue.  */
133   info->size = 0;
134   for (; pc < limit; pc += 4)
135     {
136 
137       /* Read an instruction.  */
138       instruction = read_memory_integer (pc, 4, byte_order);
139 
140       if ((LM32_OPCODE (instruction) == OP_SW)
141 	  && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
142 	{
143 	  /* Any stack displaced store is likely part of the prologue.
144 	     Record that the register is being saved, and the offset
145 	     into the stack.  */
146 	  info->saved_regs[LM32_REG1 (instruction)].set_addr (LM32_IMM16 (instruction));
147 	}
148       else if ((LM32_OPCODE (instruction) == OP_ADDI)
149 	       && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
150 	{
151 	  /* An add to the SP is likely to be part of the prologue.
152 	     Adjust stack size by whatever the instruction adds to the sp.  */
153 	  info->size -= LM32_IMM16 (instruction);
154 	}
155       else if (			/* add fp,fp,sp */
156 		((LM32_OPCODE (instruction) == OP_ADD)
157 		 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
158 		 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
159 		 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
160 		/* mv fp,imm */
161 		|| ((LM32_OPCODE (instruction) == OP_ADDI)
162 		    && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
163 		    && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
164 	{
165 	  /* Likely to be in the prologue for functions that require
166 	     a frame pointer.  */
167 	}
168       else
169 	{
170 	  /* Any other instruction is likely not to be part of the
171 	     prologue.  */
172 	  break;
173 	}
174     }
175 
176   return pc;
177 }
178 
179 /* Return PC of first non prologue instruction, for the function at the
180    specified address.  */
181 
182 static CORE_ADDR
lm32_skip_prologue(struct gdbarch * gdbarch,CORE_ADDR pc)183 lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
184 {
185   CORE_ADDR func_addr, limit_pc;
186   struct lm32_frame_cache frame_info;
187   trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
188 
189   /* See if we can determine the end of the prologue via the symbol table.
190      If so, then return either PC, or the PC after the prologue, whichever
191      is greater.  */
192   if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
193     {
194       CORE_ADDR post_prologue_pc
195 	= skip_prologue_using_sal (gdbarch, func_addr);
196       if (post_prologue_pc != 0)
197 	return std::max (pc, post_prologue_pc);
198     }
199 
200   /* Can't determine prologue from the symbol table, need to examine
201      instructions.  */
202 
203   /* Find an upper limit on the function prologue using the debug
204      information.  If the debug information could not be used to provide
205      that bound, then use an arbitrary large number as the upper bound.  */
206   limit_pc = skip_prologue_using_sal (gdbarch, pc);
207   if (limit_pc == 0)
208     limit_pc = pc + 100;	/* Magic.  */
209 
210   frame_info.saved_regs = saved_regs;
211   return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
212 }
213 
214 /* Create a breakpoint instruction.  */
215 constexpr gdb_byte lm32_break_insn[4] = { OP_RAISE << 2, 0, 0, 2 };
216 
217 typedef BP_MANIPULATION (lm32_break_insn) lm32_breakpoint;
218 
219 
220 /* Setup registers and stack for faking a call to a function in the
221    inferior.  */
222 
223 static CORE_ADDR
lm32_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,function_call_return_method return_method,CORE_ADDR struct_addr)224 lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
225 		      struct regcache *regcache, CORE_ADDR bp_addr,
226 		      int nargs, struct value **args, CORE_ADDR sp,
227 		      function_call_return_method return_method,
228 		      CORE_ADDR struct_addr)
229 {
230   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
231   int first_arg_reg = SIM_LM32_R1_REGNUM;
232   int num_arg_regs = 8;
233   int i;
234 
235   /* Set the return address.  */
236   regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
237 
238   /* If we're returning a large struct, a pointer to the address to
239      store it at is passed as a first hidden parameter.  */
240   if (return_method == return_method_struct)
241     {
242       regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
243       first_arg_reg++;
244       num_arg_regs--;
245       sp -= 4;
246     }
247 
248   /* Setup parameters.  */
249   for (i = 0; i < nargs; i++)
250     {
251       struct value *arg = args[i];
252       struct type *arg_type = check_typedef (value_type (arg));
253       gdb_byte *contents;
254       ULONGEST val;
255 
256       /* Promote small integer types to int.  */
257       switch (arg_type->code ())
258 	{
259 	case TYPE_CODE_INT:
260 	case TYPE_CODE_BOOL:
261 	case TYPE_CODE_CHAR:
262 	case TYPE_CODE_RANGE:
263 	case TYPE_CODE_ENUM:
264 	  if (TYPE_LENGTH (arg_type) < 4)
265 	    {
266 	      arg_type = builtin_type (gdbarch)->builtin_int32;
267 	      arg = value_cast (arg_type, arg);
268 	    }
269 	  break;
270 	}
271 
272       /* FIXME: Handle structures.  */
273 
274       contents = (gdb_byte *) value_contents (arg);
275       val = extract_unsigned_integer (contents, TYPE_LENGTH (arg_type),
276 				      byte_order);
277 
278       /* First num_arg_regs parameters are passed by registers,
279 	 and the rest are passed on the stack.  */
280       if (i < num_arg_regs)
281 	regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
282       else
283 	{
284 	  write_memory_unsigned_integer (sp, TYPE_LENGTH (arg_type), byte_order,
285 					 val);
286 	  sp -= 4;
287 	}
288     }
289 
290   /* Update stack pointer.  */
291   regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
292 
293   /* Return adjusted stack pointer.  */
294   return sp;
295 }
296 
297 /* Extract return value after calling a function in the inferior.  */
298 
299 static void
lm32_extract_return_value(struct type * type,struct regcache * regcache,gdb_byte * valbuf)300 lm32_extract_return_value (struct type *type, struct regcache *regcache,
301 			   gdb_byte *valbuf)
302 {
303   struct gdbarch *gdbarch = regcache->arch ();
304   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
305   ULONGEST l;
306   CORE_ADDR return_buffer;
307 
308   if (type->code () != TYPE_CODE_STRUCT
309       && type->code () != TYPE_CODE_UNION
310       && type->code () != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
311     {
312       /* Return value is returned in a single register.  */
313       regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
314       store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
315     }
316   else if ((type->code () == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
317     {
318       /* 64-bit values are returned in a register pair.  */
319       regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
320       memcpy (valbuf, &l, 4);
321       regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
322       memcpy (valbuf + 4, &l, 4);
323     }
324   else
325     {
326       /* Aggregate types greater than a single register are returned
327 	 in memory.  FIXME: Unless they are only 2 regs?.  */
328       regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
329       return_buffer = l;
330       read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
331     }
332 }
333 
334 /* Write into appropriate registers a function return value of type
335    TYPE, given in virtual format.  */
336 static void
lm32_store_return_value(struct type * type,struct regcache * regcache,const gdb_byte * valbuf)337 lm32_store_return_value (struct type *type, struct regcache *regcache,
338 			 const gdb_byte *valbuf)
339 {
340   struct gdbarch *gdbarch = regcache->arch ();
341   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
342   ULONGEST val;
343   int len = TYPE_LENGTH (type);
344 
345   if (len <= 4)
346     {
347       val = extract_unsigned_integer (valbuf, len, byte_order);
348       regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
349     }
350   else if (len <= 8)
351     {
352       val = extract_unsigned_integer (valbuf, 4, byte_order);
353       regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
354       val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
355       regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
356     }
357   else
358     error (_("lm32_store_return_value: type length too large."));
359 }
360 
361 /* Determine whether a functions return value is in a register or memory.  */
362 static enum return_value_convention
lm32_return_value(struct gdbarch * gdbarch,struct value * function,struct type * valtype,struct regcache * regcache,gdb_byte * readbuf,const gdb_byte * writebuf)363 lm32_return_value (struct gdbarch *gdbarch, struct value *function,
364 		   struct type *valtype, struct regcache *regcache,
365 		   gdb_byte *readbuf, const gdb_byte *writebuf)
366 {
367   enum type_code code = valtype->code ();
368 
369   if (code == TYPE_CODE_STRUCT
370       || code == TYPE_CODE_UNION
371       || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
372     return RETURN_VALUE_STRUCT_CONVENTION;
373 
374   if (readbuf)
375     lm32_extract_return_value (valtype, regcache, readbuf);
376   if (writebuf)
377     lm32_store_return_value (valtype, regcache, writebuf);
378 
379   return RETURN_VALUE_REGISTER_CONVENTION;
380 }
381 
382 /* Put here the code to store, into fi->saved_regs, the addresses of
383    the saved registers of frame described by FRAME_INFO.  This
384    includes special registers such as pc and fp saved in special ways
385    in the stack frame.  sp is even more special: the address we return
386    for it IS the sp for the next frame.  */
387 
388 static struct lm32_frame_cache *
lm32_frame_cache(struct frame_info * this_frame,void ** this_prologue_cache)389 lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
390 {
391   CORE_ADDR current_pc;
392   ULONGEST prev_sp;
393   ULONGEST this_base;
394   struct lm32_frame_cache *info;
395   int i;
396 
397   if ((*this_prologue_cache))
398     return (struct lm32_frame_cache *) (*this_prologue_cache);
399 
400   info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
401   (*this_prologue_cache) = info;
402   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
403 
404   info->pc = get_frame_func (this_frame);
405   current_pc = get_frame_pc (this_frame);
406   lm32_analyze_prologue (get_frame_arch (this_frame),
407 			 info->pc, current_pc, info);
408 
409   /* Compute the frame's base, and the previous frame's SP.  */
410   this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
411   prev_sp = this_base + info->size;
412   info->base = this_base;
413 
414   /* Convert callee save offsets into addresses.  */
415   for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
416     {
417       if (info->saved_regs[i].is_addr ())
418 	info->saved_regs[i].set_addr (this_base + info->saved_regs[i].addr ());
419     }
420 
421   /* The call instruction moves the caller's PC in the callee's RA register.
422      Since this is an unwind, do the reverse.  Copy the location of RA register
423      into PC (the address / regnum) so that a request for PC will be
424      converted into a request for the RA register.  */
425   info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
426 
427   /* The previous frame's SP needed to be computed.  Save the computed
428      value.  */
429   info->saved_regs[SIM_LM32_SP_REGNUM].set_value (prev_sp);
430 
431   return info;
432 }
433 
434 static void
lm32_frame_this_id(struct frame_info * this_frame,void ** this_cache,struct frame_id * this_id)435 lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
436 		    struct frame_id *this_id)
437 {
438   struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
439 
440   /* This marks the outermost frame.  */
441   if (cache->base == 0)
442     return;
443 
444   (*this_id) = frame_id_build (cache->base, cache->pc);
445 }
446 
447 static struct value *
lm32_frame_prev_register(struct frame_info * this_frame,void ** this_prologue_cache,int regnum)448 lm32_frame_prev_register (struct frame_info *this_frame,
449 			  void **this_prologue_cache, int regnum)
450 {
451   struct lm32_frame_cache *info;
452 
453   info = lm32_frame_cache (this_frame, this_prologue_cache);
454   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
455 }
456 
457 static const struct frame_unwind lm32_frame_unwind = {
458   "lm32 prologue",
459   NORMAL_FRAME,
460   default_frame_unwind_stop_reason,
461   lm32_frame_this_id,
462   lm32_frame_prev_register,
463   NULL,
464   default_frame_sniffer
465 };
466 
467 static CORE_ADDR
lm32_frame_base_address(struct frame_info * this_frame,void ** this_cache)468 lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
469 {
470   struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
471 
472   return info->base;
473 }
474 
475 static const struct frame_base lm32_frame_base = {
476   &lm32_frame_unwind,
477   lm32_frame_base_address,
478   lm32_frame_base_address,
479   lm32_frame_base_address
480 };
481 
482 static CORE_ADDR
lm32_frame_align(struct gdbarch * gdbarch,CORE_ADDR sp)483 lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
484 {
485   /* Align to the size of an instruction (so that they can safely be
486      pushed onto the stack.  */
487   return sp & ~3;
488 }
489 
490 static struct gdbarch *
lm32_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)491 lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
492 {
493   struct gdbarch *gdbarch;
494   struct gdbarch_tdep *tdep;
495 
496   /* If there is already a candidate, use it.  */
497   arches = gdbarch_list_lookup_by_info (arches, &info);
498   if (arches != NULL)
499     return arches->gdbarch;
500 
501   /* None found, create a new architecture from the information provided.  */
502   tdep = XCNEW (struct gdbarch_tdep);
503   gdbarch = gdbarch_alloc (&info, tdep);
504 
505   /* Type sizes.  */
506   set_gdbarch_short_bit (gdbarch, 16);
507   set_gdbarch_int_bit (gdbarch, 32);
508   set_gdbarch_long_bit (gdbarch, 32);
509   set_gdbarch_long_long_bit (gdbarch, 64);
510   set_gdbarch_float_bit (gdbarch, 32);
511   set_gdbarch_double_bit (gdbarch, 64);
512   set_gdbarch_long_double_bit (gdbarch, 64);
513   set_gdbarch_ptr_bit (gdbarch, 32);
514 
515   /* Register info.  */
516   set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
517   set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
518   set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
519   set_gdbarch_register_name (gdbarch, lm32_register_name);
520   set_gdbarch_register_type (gdbarch, lm32_register_type);
521   set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
522 
523   /* Frame info.  */
524   set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
525   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
526   set_gdbarch_decr_pc_after_break (gdbarch, 0);
527   set_gdbarch_frame_args_skip (gdbarch, 0);
528 
529   /* Frame unwinding.  */
530   set_gdbarch_frame_align (gdbarch, lm32_frame_align);
531   frame_base_set_default (gdbarch, &lm32_frame_base);
532   frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
533 
534   /* Breakpoints.  */
535   set_gdbarch_breakpoint_kind_from_pc (gdbarch, lm32_breakpoint::kind_from_pc);
536   set_gdbarch_sw_breakpoint_from_kind (gdbarch, lm32_breakpoint::bp_from_kind);
537   set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
538 
539   /* Calling functions in the inferior.  */
540   set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
541   set_gdbarch_return_value (gdbarch, lm32_return_value);
542 
543   lm32_add_reggroups (gdbarch);
544   set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
545 
546   return gdbarch;
547 }
548 
549 void _initialize_lm32_tdep ();
550 void
_initialize_lm32_tdep()551 _initialize_lm32_tdep ()
552 {
553   register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
554 }
555