1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2 
3    Copyright (C) 2004-2021 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "gdb/sim-m32c.h"
22 #include "gdbtypes.h"
23 #include "regcache.h"
24 #include "arch-utils.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "symtab.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "reggroups.h"
31 #include "prologue-value.h"
32 #include "objfiles.h"
33 
34 
35 /* The m32c tdep structure.  */
36 
37 static struct reggroup *m32c_dma_reggroup;
38 
39 /* The type of a function that moves the value of REG between CACHE or
40    BUF --- in either direction.  */
41 typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg,
42 						 struct regcache *cache,
43 						 const gdb_byte *buf);
44 
45 typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg,
46 						readable_regcache *cache,
47 						gdb_byte *buf);
48 
49 struct m32c_reg
50 {
51   /* The name of this register.  */
52   const char *name;
53 
54   /* Its type.  */
55   struct type *type;
56 
57   /* The architecture this register belongs to.  */
58   struct gdbarch *arch;
59 
60   /* Its GDB register number.  */
61   int num;
62 
63   /* Its sim register number.  */
64   int sim_num;
65 
66   /* Its DWARF register number, or -1 if it doesn't have one.  */
67   int dwarf_num;
68 
69   /* Register group memberships.  */
70   unsigned int general_p : 1;
71   unsigned int dma_p : 1;
72   unsigned int system_p : 1;
73   unsigned int save_restore_p : 1;
74 
75   /* Functions to read its value from a regcache, and write its value
76      to a regcache.  */
77   m32c_read_reg_t *read;
78   m32c_write_reg_t *write;
79 
80   /* Data for READ and WRITE functions.  The exact meaning depends on
81      the specific functions selected; see the comments for those
82      functions.  */
83   struct m32c_reg *rx, *ry;
84   int n;
85 };
86 
87 
88 /* An overestimate of the number of raw and pseudoregisters we will
89    have.  The exact answer depends on the variant of the architecture
90    at hand, but we can use this to declare statically allocated
91    arrays, and bump it up when needed.  */
92 #define M32C_MAX_NUM_REGS (75)
93 
94 /* The largest assigned DWARF register number.  */
95 #define M32C_MAX_DWARF_REGNUM (40)
96 
97 
98 struct gdbarch_tdep
99 {
100   /* All the registers for this variant, indexed by GDB register
101      number, and the number of registers present.  */
102   struct m32c_reg regs[M32C_MAX_NUM_REGS];
103 
104   /* The number of valid registers.  */
105   int num_regs;
106 
107   /* Interesting registers.  These are pointers into REGS.  */
108   struct m32c_reg *pc, *flg;
109   struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
110   struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
111   struct m32c_reg *sb, *fb, *sp;
112 
113   /* A table indexed by DWARF register numbers, pointing into
114      REGS.  */
115   struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
116 
117   /* Types for this architecture.  We can't use the builtin_type_foo
118      types, because they're not initialized when building a gdbarch
119      structure.  */
120   struct type *voyd, *ptr_voyd, *func_voyd;
121   struct type *uint8, *uint16;
122   struct type *int8, *int16, *int32, *int64;
123 
124   /* The types for data address and code address registers.  */
125   struct type *data_addr_reg_type, *code_addr_reg_type;
126 
127   /* The number of bytes a return address pushed by a 'jsr' instruction
128      occupies on the stack.  */
129   int ret_addr_bytes;
130 
131   /* The number of bytes an address register occupies on the stack
132      when saved by an 'enter' or 'pushm' instruction.  */
133   int push_addr_bytes;
134 };
135 
136 
137 /* Types.  */
138 
139 static void
make_types(struct gdbarch * arch)140 make_types (struct gdbarch *arch)
141 {
142   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
143   unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
144   int data_addr_reg_bits, code_addr_reg_bits;
145   char type_name[50];
146 
147 #if 0
148   /* This is used to clip CORE_ADDR values, so this value is
149      appropriate both on the m32c, where pointers are 32 bits long,
150      and on the m16c, where pointers are sixteen bits long, but there
151      may be code above the 64k boundary.  */
152   set_gdbarch_addr_bit (arch, 24);
153 #else
154   /* GCC uses 32 bits for addrs in the dwarf info, even though
155      only 16/24 bits are used.  Setting addr_bit to 24 causes
156      errors in reading the dwarf addresses.  */
157   set_gdbarch_addr_bit (arch, 32);
158 #endif
159 
160   set_gdbarch_int_bit (arch, 16);
161   switch (mach)
162     {
163     case bfd_mach_m16c:
164       data_addr_reg_bits = 16;
165       code_addr_reg_bits = 24;
166       set_gdbarch_ptr_bit (arch, 16);
167       tdep->ret_addr_bytes = 3;
168       tdep->push_addr_bytes = 2;
169       break;
170 
171     case bfd_mach_m32c:
172       data_addr_reg_bits = 24;
173       code_addr_reg_bits = 24;
174       set_gdbarch_ptr_bit (arch, 32);
175       tdep->ret_addr_bytes = 4;
176       tdep->push_addr_bytes = 4;
177       break;
178 
179     default:
180       gdb_assert_not_reached ("unexpected mach");
181     }
182 
183   /* The builtin_type_mumble variables are sometimes uninitialized when
184      this is called, so we avoid using them.  */
185   tdep->voyd = arch_type (arch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
186   tdep->ptr_voyd
187     = arch_pointer_type (arch, gdbarch_ptr_bit (arch), NULL, tdep->voyd);
188   tdep->func_voyd = lookup_function_type (tdep->voyd);
189 
190   xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
191 	     gdbarch_bfd_arch_info (arch)->printable_name);
192   tdep->data_addr_reg_type
193     = arch_pointer_type (arch, data_addr_reg_bits, type_name, tdep->voyd);
194 
195   xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
196 	     gdbarch_bfd_arch_info (arch)->printable_name);
197   tdep->code_addr_reg_type
198     = arch_pointer_type (arch, code_addr_reg_bits, type_name, tdep->func_voyd);
199 
200   tdep->uint8  = arch_integer_type (arch,  8, 1, "uint8_t");
201   tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
202   tdep->int8   = arch_integer_type (arch,  8, 0, "int8_t");
203   tdep->int16  = arch_integer_type (arch, 16, 0, "int16_t");
204   tdep->int32  = arch_integer_type (arch, 32, 0, "int32_t");
205   tdep->int64  = arch_integer_type (arch, 64, 0, "int64_t");
206 }
207 
208 
209 
210 /* Register set.  */
211 
212 static const char *
m32c_register_name(struct gdbarch * gdbarch,int num)213 m32c_register_name (struct gdbarch *gdbarch, int num)
214 {
215   return gdbarch_tdep (gdbarch)->regs[num].name;
216 }
217 
218 
219 static struct type *
m32c_register_type(struct gdbarch * arch,int reg_nr)220 m32c_register_type (struct gdbarch *arch, int reg_nr)
221 {
222   return gdbarch_tdep (arch)->regs[reg_nr].type;
223 }
224 
225 
226 static int
m32c_register_sim_regno(struct gdbarch * gdbarch,int reg_nr)227 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
228 {
229   return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
230 }
231 
232 
233 static int
m32c_debug_info_reg_to_regnum(struct gdbarch * gdbarch,int reg_nr)234 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
235 {
236   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237   if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
238       && tdep->dwarf_regs[reg_nr])
239     return tdep->dwarf_regs[reg_nr]->num;
240   else
241     /* The DWARF CFI code expects to see -1 for invalid register
242        numbers.  */
243     return -1;
244 }
245 
246 
247 static int
m32c_register_reggroup_p(struct gdbarch * gdbarch,int regnum,struct reggroup * group)248 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
249 			  struct reggroup *group)
250 {
251   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
252   struct m32c_reg *reg = &tdep->regs[regnum];
253 
254   /* The anonymous raw registers aren't in any groups.  */
255   if (! reg->name)
256     return 0;
257 
258   if (group == all_reggroup)
259     return 1;
260 
261   if (group == general_reggroup
262       && reg->general_p)
263     return 1;
264 
265   if (group == m32c_dma_reggroup
266       && reg->dma_p)
267     return 1;
268 
269   if (group == system_reggroup
270       && reg->system_p)
271     return 1;
272 
273   /* Since the m32c DWARF register numbers refer to cooked registers, not
274      raw registers, and frame_pop depends on the save and restore groups
275      containing registers the DWARF CFI will actually mention, our save
276      and restore groups are cooked registers, not raw registers.  (This is
277      why we can't use the default reggroup function.)  */
278   if ((group == save_reggroup
279        || group == restore_reggroup)
280       && reg->save_restore_p)
281     return 1;
282 
283   return 0;
284 }
285 
286 
287 /* Register move functions.  We declare them here using
288    m32c_{read,write}_reg_t to check the types.  */
289 static m32c_read_reg_t m32c_raw_read;
290 static m32c_read_reg_t m32c_banked_read;
291 static m32c_read_reg_t m32c_sb_read;
292 static m32c_read_reg_t m32c_part_read;
293 static m32c_read_reg_t m32c_cat_read;
294 static m32c_read_reg_t m32c_r3r2r1r0_read;
295 
296 static m32c_write_reg_t m32c_raw_write;
297 static m32c_write_reg_t m32c_banked_write;
298 static m32c_write_reg_t m32c_sb_write;
299 static m32c_write_reg_t m32c_part_write;
300 static m32c_write_reg_t m32c_cat_write;
301 static m32c_write_reg_t m32c_r3r2r1r0_write;
302 
303 /* Copy the value of the raw register REG from CACHE to BUF.  */
304 static enum register_status
m32c_raw_read(struct m32c_reg * reg,readable_regcache * cache,gdb_byte * buf)305 m32c_raw_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
306 {
307   return cache->raw_read (reg->num, buf);
308 }
309 
310 
311 /* Copy the value of the raw register REG from BUF to CACHE.  */
312 static enum register_status
m32c_raw_write(struct m32c_reg * reg,struct regcache * cache,const gdb_byte * buf)313 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache,
314 		const gdb_byte *buf)
315 {
316   cache->raw_write (reg->num, buf);
317 
318   return REG_VALID;
319 }
320 
321 
322 /* Return the value of the 'flg' register in CACHE.  */
323 static int
m32c_read_flg(readable_regcache * cache)324 m32c_read_flg (readable_regcache *cache)
325 {
326   struct gdbarch_tdep *tdep = gdbarch_tdep (cache->arch ());
327   ULONGEST flg;
328 
329   cache->raw_read (tdep->flg->num, &flg);
330   return flg & 0xffff;
331 }
332 
333 
334 /* Evaluate the real register number of a banked register.  */
335 static struct m32c_reg *
m32c_banked_register(struct m32c_reg * reg,readable_regcache * cache)336 m32c_banked_register (struct m32c_reg *reg, readable_regcache *cache)
337 {
338   return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
339 }
340 
341 
342 /* Move the value of a banked register from CACHE to BUF.
343    If the value of the 'flg' register in CACHE has any of the bits
344    masked in REG->n set, then read REG->ry.  Otherwise, read
345    REG->rx.  */
346 static enum register_status
m32c_banked_read(struct m32c_reg * reg,readable_regcache * cache,gdb_byte * buf)347 m32c_banked_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
348 {
349   struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
350   return cache->raw_read (bank_reg->num, buf);
351 }
352 
353 
354 /* Move the value of a banked register from BUF to CACHE.
355    If the value of the 'flg' register in CACHE has any of the bits
356    masked in REG->n set, then write REG->ry.  Otherwise, write
357    REG->rx.  */
358 static enum register_status
m32c_banked_write(struct m32c_reg * reg,struct regcache * cache,const gdb_byte * buf)359 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache,
360 		   const gdb_byte *buf)
361 {
362   struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
363   cache->raw_write (bank_reg->num, buf);
364 
365   return REG_VALID;
366 }
367 
368 
369 /* Move the value of SB from CACHE to BUF.  On bfd_mach_m32c, SB is a
370    banked register; on bfd_mach_m16c, it's not.  */
371 static enum register_status
m32c_sb_read(struct m32c_reg * reg,readable_regcache * cache,gdb_byte * buf)372 m32c_sb_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
373 {
374   if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
375     return m32c_raw_read (reg->rx, cache, buf);
376   else
377     return m32c_banked_read (reg, cache, buf);
378 }
379 
380 
381 /* Move the value of SB from BUF to CACHE.  On bfd_mach_m32c, SB is a
382    banked register; on bfd_mach_m16c, it's not.  */
383 static enum register_status
m32c_sb_write(struct m32c_reg * reg,struct regcache * cache,const gdb_byte * buf)384 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf)
385 {
386   if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
387     m32c_raw_write (reg->rx, cache, buf);
388   else
389     m32c_banked_write (reg, cache, buf);
390 
391   return REG_VALID;
392 }
393 
394 
395 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
396    and *LEN_P to the offset and length, in bytes, of the part REG
397    occupies in its underlying register.  The offset is from the
398    lower-addressed end, regardless of the architecture's endianness.
399    (The M32C family is always little-endian, but let's keep those
400    assumptions out of here.)  */
401 static void
m32c_find_part(struct m32c_reg * reg,int * offset_p,int * len_p)402 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
403 {
404   /* The length of the containing register, of which REG is one part.  */
405   int containing_len = TYPE_LENGTH (reg->rx->type);
406 
407   /* The length of one "element" in our imaginary array.  */
408   int elt_len = TYPE_LENGTH (reg->type);
409 
410   /* The offset of REG's "element" from the least significant end of
411      the containing register.  */
412   int elt_offset = reg->n * elt_len;
413 
414   /* If we extend off the end, trim the length of the element.  */
415   if (elt_offset + elt_len > containing_len)
416     {
417       elt_len = containing_len - elt_offset;
418       /* We shouldn't be declaring partial registers that go off the
419 	 end of their containing registers.  */
420       gdb_assert (elt_len > 0);
421     }
422 
423   /* Flip the offset around if we're big-endian.  */
424   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
425     elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
426 
427   *offset_p = elt_offset;
428   *len_p = elt_len;
429 }
430 
431 
432 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
433    to BUF.  Treating the value of the register REG->rx as an array of
434    REG->type values, where higher indices refer to more significant
435    bits, read the value of the REG->n'th element.  */
436 static enum register_status
m32c_part_read(struct m32c_reg * reg,readable_regcache * cache,gdb_byte * buf)437 m32c_part_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
438 {
439   int offset, len;
440 
441   memset (buf, 0, TYPE_LENGTH (reg->type));
442   m32c_find_part (reg, &offset, &len);
443   return cache->cooked_read_part (reg->rx->num, offset, len, buf);
444 }
445 
446 
447 /* Move the value of a banked register from BUF to CACHE.
448    Treating the value of the register REG->rx as an array of REG->type
449    values, where higher indices refer to more significant bits, write
450    the value of the REG->n'th element.  */
451 static enum register_status
m32c_part_write(struct m32c_reg * reg,struct regcache * cache,const gdb_byte * buf)452 m32c_part_write (struct m32c_reg *reg, struct regcache *cache,
453 		 const gdb_byte *buf)
454 {
455   int offset, len;
456 
457   m32c_find_part (reg, &offset, &len);
458   cache->cooked_write_part (reg->rx->num, offset, len, buf);
459 
460   return REG_VALID;
461 }
462 
463 
464 /* Move the value of REG from CACHE to BUF.  REG's value is the
465    concatenation of the values of the registers REG->rx and REG->ry,
466    with REG->rx contributing the more significant bits.  */
467 static enum register_status
m32c_cat_read(struct m32c_reg * reg,readable_regcache * cache,gdb_byte * buf)468 m32c_cat_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
469 {
470   int high_bytes = TYPE_LENGTH (reg->rx->type);
471   int low_bytes  = TYPE_LENGTH (reg->ry->type);
472   enum register_status status;
473 
474   gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
475 
476   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
477     {
478       status = cache->cooked_read (reg->rx->num, buf);
479       if (status == REG_VALID)
480 	status = cache->cooked_read (reg->ry->num, buf + high_bytes);
481     }
482   else
483     {
484       status = cache->cooked_read (reg->rx->num, buf + low_bytes);
485       if (status == REG_VALID)
486 	status = cache->cooked_read (reg->ry->num, buf);
487     }
488   return status;
489 }
490 
491 
492 /* Move the value of REG from CACHE to BUF.  REG's value is the
493    concatenation of the values of the registers REG->rx and REG->ry,
494    with REG->rx contributing the more significant bits.  */
495 static enum register_status
m32c_cat_write(struct m32c_reg * reg,struct regcache * cache,const gdb_byte * buf)496 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache,
497 		const gdb_byte *buf)
498 {
499   int high_bytes = TYPE_LENGTH (reg->rx->type);
500   int low_bytes  = TYPE_LENGTH (reg->ry->type);
501 
502   gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
503 
504   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
505     {
506       cache->cooked_write (reg->rx->num, buf);
507       cache->cooked_write (reg->ry->num, buf + high_bytes);
508     }
509   else
510     {
511       cache->cooked_write (reg->rx->num, buf + low_bytes);
512       cache->cooked_write (reg->ry->num, buf);
513     }
514 
515   return REG_VALID;
516 }
517 
518 
519 /* Copy the value of the raw register REG from CACHE to BUF.  REG is
520    the concatenation (from most significant to least) of r3, r2, r1,
521    and r0.  */
522 static enum register_status
m32c_r3r2r1r0_read(struct m32c_reg * reg,readable_regcache * cache,gdb_byte * buf)523 m32c_r3r2r1r0_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
524 {
525   struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
526   int len = TYPE_LENGTH (tdep->r0->type);
527   enum register_status status;
528 
529   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
530     {
531       status = cache->cooked_read (tdep->r0->num, buf + len * 3);
532       if (status == REG_VALID)
533 	status = cache->cooked_read (tdep->r1->num, buf + len * 2);
534       if (status == REG_VALID)
535 	status = cache->cooked_read (tdep->r2->num, buf + len * 1);
536       if (status == REG_VALID)
537 	status = cache->cooked_read (tdep->r3->num, buf);
538     }
539   else
540     {
541       status = cache->cooked_read (tdep->r0->num, buf);
542       if (status == REG_VALID)
543 	status = cache->cooked_read (tdep->r1->num, buf + len * 1);
544       if (status == REG_VALID)
545 	status = cache->cooked_read (tdep->r2->num, buf + len * 2);
546       if (status == REG_VALID)
547 	status = cache->cooked_read (tdep->r3->num, buf + len * 3);
548     }
549 
550   return status;
551 }
552 
553 
554 /* Copy the value of the raw register REG from BUF to CACHE.  REG is
555    the concatenation (from most significant to least) of r3, r2, r1,
556    and r0.  */
557 static enum register_status
m32c_r3r2r1r0_write(struct m32c_reg * reg,struct regcache * cache,const gdb_byte * buf)558 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache,
559 		     const gdb_byte *buf)
560 {
561   struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
562   int len = TYPE_LENGTH (tdep->r0->type);
563 
564   if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
565     {
566       cache->cooked_write (tdep->r0->num, buf + len * 3);
567       cache->cooked_write (tdep->r1->num, buf + len * 2);
568       cache->cooked_write (tdep->r2->num, buf + len * 1);
569       cache->cooked_write (tdep->r3->num, buf);
570     }
571   else
572     {
573       cache->cooked_write (tdep->r0->num, buf);
574       cache->cooked_write (tdep->r1->num, buf + len * 1);
575       cache->cooked_write (tdep->r2->num, buf + len * 2);
576       cache->cooked_write (tdep->r3->num, buf + len * 3);
577     }
578 
579   return REG_VALID;
580 }
581 
582 
583 static enum register_status
m32c_pseudo_register_read(struct gdbarch * arch,readable_regcache * cache,int cookednum,gdb_byte * buf)584 m32c_pseudo_register_read (struct gdbarch *arch,
585 			   readable_regcache *cache,
586 			   int cookednum,
587 			   gdb_byte *buf)
588 {
589   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
590   struct m32c_reg *reg;
591 
592   gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
593   gdb_assert (arch == cache->arch ());
594   gdb_assert (arch == tdep->regs[cookednum].arch);
595   reg = &tdep->regs[cookednum];
596 
597   return reg->read (reg, cache, buf);
598 }
599 
600 
601 static void
m32c_pseudo_register_write(struct gdbarch * arch,struct regcache * cache,int cookednum,const gdb_byte * buf)602 m32c_pseudo_register_write (struct gdbarch *arch,
603 			    struct regcache *cache,
604 			    int cookednum,
605 			    const gdb_byte *buf)
606 {
607   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
608   struct m32c_reg *reg;
609 
610   gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
611   gdb_assert (arch == cache->arch ());
612   gdb_assert (arch == tdep->regs[cookednum].arch);
613   reg = &tdep->regs[cookednum];
614 
615   reg->write (reg, cache, buf);
616 }
617 
618 
619 /* Add a register with the given fields to the end of ARCH's table.
620    Return a pointer to the newly added register.  */
621 static struct m32c_reg *
add_reg(struct gdbarch * arch,const char * name,struct type * type,int sim_num,m32c_read_reg_t * read,m32c_write_reg_t * write,struct m32c_reg * rx,struct m32c_reg * ry,int n)622 add_reg (struct gdbarch *arch,
623 	 const char *name,
624 	 struct type *type,
625 	 int sim_num,
626 	 m32c_read_reg_t *read,
627 	 m32c_write_reg_t *write,
628 	 struct m32c_reg *rx,
629 	 struct m32c_reg *ry,
630 	 int n)
631 {
632   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
633   struct m32c_reg *r = &tdep->regs[tdep->num_regs];
634 
635   gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
636 
637   r->name           = name;
638   r->type           = type;
639   r->arch           = arch;
640   r->num            = tdep->num_regs;
641   r->sim_num        = sim_num;
642   r->dwarf_num      = -1;
643   r->general_p      = 0;
644   r->dma_p          = 0;
645   r->system_p       = 0;
646   r->save_restore_p = 0;
647   r->read           = read;
648   r->write          = write;
649   r->rx             = rx;
650   r->ry             = ry;
651   r->n              = n;
652 
653   tdep->num_regs++;
654 
655   return r;
656 }
657 
658 
659 /* Record NUM as REG's DWARF register number.  */
660 static void
set_dwarf_regnum(struct m32c_reg * reg,int num)661 set_dwarf_regnum (struct m32c_reg *reg, int num)
662 {
663   gdb_assert (num < M32C_MAX_NUM_REGS);
664 
665   /* Update the reg->DWARF mapping.  Only count the first number
666      assigned to this register.  */
667   if (reg->dwarf_num == -1)
668     reg->dwarf_num = num;
669 
670   /* Update the DWARF->reg mapping.  */
671   gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
672 }
673 
674 
675 /* Mark REG as a general-purpose register, and return it.  */
676 static struct m32c_reg *
mark_general(struct m32c_reg * reg)677 mark_general (struct m32c_reg *reg)
678 {
679   reg->general_p = 1;
680   return reg;
681 }
682 
683 
684 /* Mark REG as a DMA register.  */
685 static void
mark_dma(struct m32c_reg * reg)686 mark_dma (struct m32c_reg *reg)
687 {
688   reg->dma_p = 1;
689 }
690 
691 
692 /* Mark REG as a SYSTEM register, and return it.  */
693 static struct m32c_reg *
mark_system(struct m32c_reg * reg)694 mark_system (struct m32c_reg *reg)
695 {
696   reg->system_p = 1;
697   return reg;
698 }
699 
700 
701 /* Mark REG as a save-restore register, and return it.  */
702 static struct m32c_reg *
mark_save_restore(struct m32c_reg * reg)703 mark_save_restore (struct m32c_reg *reg)
704 {
705   reg->save_restore_p = 1;
706   return reg;
707 }
708 
709 
710 #define FLAGBIT_B	0x0010
711 #define FLAGBIT_U	0x0080
712 
713 /* Handy macros for declaring registers.  These all evaluate to
714    pointers to the register declared.  Macros that define two
715    registers evaluate to a pointer to the first.  */
716 
717 /* A raw register named NAME, with type TYPE and sim number SIM_NUM.  */
718 #define R(name, type, sim_num)					\
719   (add_reg (arch, (name), (type), (sim_num),			\
720 	    m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
721 
722 /* The simulator register number for a raw register named NAME.  */
723 #define SIM(name) (m32c_sim_reg_ ## name)
724 
725 /* A raw unsigned 16-bit data register named NAME.
726    NAME should be an identifier, not a string.  */
727 #define R16U(name)						\
728   (R(#name, tdep->uint16, SIM (name)))
729 
730 /* A raw data address register named NAME.
731    NAME should be an identifier, not a string.  */
732 #define RA(name)						\
733   (R(#name, tdep->data_addr_reg_type, SIM (name)))
734 
735 /* A raw code address register named NAME.  NAME should
736    be an identifier, not a string.  */
737 #define RC(name)						\
738   (R(#name, tdep->code_addr_reg_type, SIM (name)))
739 
740 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
741    NAME should be an identifier, not a string.  */
742 #define RP(name, type)				\
743   (R(#name "0", (type), SIM (name ## 0)),	\
744    R(#name "1", (type), SIM (name ## 1)) - 1)
745 
746 /* A raw banked general-purpose data register named NAME.
747    NAME should be an identifier, not a string.  */
748 #define RBD(name)						\
749   (R(NULL, tdep->int16, SIM (name ## _bank0)),		\
750    R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
751 
752 /* A raw banked data address register named NAME.
753    NAME should be an identifier, not a string.  */
754 #define RBA(name)						\
755   (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)),	\
756    R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
757 
758 /* A cooked register named NAME referring to a raw banked register
759    from the bank selected by the current value of FLG.  RAW_PAIR
760    should be a pointer to the first register in the banked pair.
761    NAME must be an identifier, not a string.  */
762 #define CB(name, raw_pair)				\
763   (add_reg (arch, #name, (raw_pair)->type, 0,		\
764 	    m32c_banked_read, m32c_banked_write,	\
765 	    (raw_pair), (raw_pair + 1), FLAGBIT_B))
766 
767 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
768    access the top and bottom halves of the register pointed to by
769    NAME.  NAME should be an identifier.  */
770 #define CHL(name, type)							\
771   (add_reg (arch, #name "h", (type), 0,					\
772 	    m32c_part_read, m32c_part_write, name, NULL, 1),		\
773    add_reg (arch, #name "l", (type), 0,					\
774 	    m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
775 
776 /* A register constructed by concatenating the two registers HIGH and
777    LOW, whose name is HIGHLOW and whose type is TYPE.  */
778 #define CCAT(high, low, type)					\
779   (add_reg (arch, #high #low, (type), 0,			\
780 	    m32c_cat_read, m32c_cat_write, (high), (low), 0))
781 
782 /* Abbreviations for marking register group membership.  */
783 #define G(reg)   (mark_general (reg))
784 #define S(reg)   (mark_system  (reg))
785 #define DMA(reg) (mark_dma     (reg))
786 
787 
788 /* Construct the register set for ARCH.  */
789 static void
make_regs(struct gdbarch * arch)790 make_regs (struct gdbarch *arch)
791 {
792   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
793   int mach = gdbarch_bfd_arch_info (arch)->mach;
794   int num_raw_regs;
795   int num_cooked_regs;
796 
797   struct m32c_reg *r0;
798   struct m32c_reg *r1;
799   struct m32c_reg *r2;
800   struct m32c_reg *r3;
801   struct m32c_reg *a0;
802   struct m32c_reg *a1;
803   struct m32c_reg *fb;
804   struct m32c_reg *sb;
805   struct m32c_reg *sp;
806   struct m32c_reg *r0hl;
807   struct m32c_reg *r1hl;
808   struct m32c_reg *r2r0;
809   struct m32c_reg *r3r1;
810   struct m32c_reg *r3r1r2r0;
811   struct m32c_reg *r3r2r1r0;
812   struct m32c_reg *a1a0;
813 
814   struct m32c_reg *raw_r0_pair = RBD (r0);
815   struct m32c_reg *raw_r1_pair = RBD (r1);
816   struct m32c_reg *raw_r2_pair = RBD (r2);
817   struct m32c_reg *raw_r3_pair = RBD (r3);
818   struct m32c_reg *raw_a0_pair = RBA (a0);
819   struct m32c_reg *raw_a1_pair = RBA (a1);
820   struct m32c_reg *raw_fb_pair = RBA (fb);
821 
822   /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
823      We always declare both raw registers, and deal with the distinction
824      in the pseudoregister.  */
825   struct m32c_reg *raw_sb_pair = RBA (sb);
826 
827   struct m32c_reg *usp         = S (RA (usp));
828   struct m32c_reg *isp         = S (RA (isp));
829   struct m32c_reg *intb        = S (RC (intb));
830   struct m32c_reg *pc          = G (RC (pc));
831   struct m32c_reg *flg         = G (R16U (flg));
832 
833   if (mach == bfd_mach_m32c)
834     {
835       S (R16U (svf));
836       S (RC (svp));
837       S (RC (vct));
838 
839       DMA (RP (dmd, tdep->uint8));
840       DMA (RP (dct, tdep->uint16));
841       DMA (RP (drc, tdep->uint16));
842       DMA (RP (dma, tdep->data_addr_reg_type));
843       DMA (RP (dsa, tdep->data_addr_reg_type));
844       DMA (RP (dra, tdep->data_addr_reg_type));
845     }
846 
847   num_raw_regs = tdep->num_regs;
848 
849   r0 	      = G (CB (r0, raw_r0_pair));
850   r1 	      = G (CB (r1, raw_r1_pair));
851   r2          = G (CB (r2, raw_r2_pair));
852   r3          = G (CB (r3, raw_r3_pair));
853   a0          = G (CB (a0, raw_a0_pair));
854   a1          = G (CB (a1, raw_a1_pair));
855   fb          = G (CB (fb, raw_fb_pair));
856 
857   /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
858      Specify custom read/write functions that do the right thing.  */
859   sb          = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
860 			    m32c_sb_read, m32c_sb_write,
861 			    raw_sb_pair, raw_sb_pair + 1, 0));
862 
863   /* The current sp is either usp or isp, depending on the value of
864      the FLG register's U bit.  */
865   sp          = G (add_reg (arch, "sp", usp->type, 0,
866 			    m32c_banked_read, m32c_banked_write,
867 			    isp, usp, FLAGBIT_U));
868 
869   r0hl        = CHL (r0, tdep->int8);
870   r1hl        = CHL (r1, tdep->int8);
871   CHL (r2, tdep->int8);
872   CHL (r3, tdep->int8);
873   CHL (intb, tdep->int16);
874 
875   r2r0        = CCAT (r2,   r0,   tdep->int32);
876   r3r1        = CCAT (r3,   r1,   tdep->int32);
877   r3r1r2r0    = CCAT (r3r1, r2r0, tdep->int64);
878 
879   r3r2r1r0
880     = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
881 	       m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
882 
883   if (mach == bfd_mach_m16c)
884     a1a0 = CCAT (a1, a0, tdep->int32);
885   else
886     a1a0 = NULL;
887 
888   num_cooked_regs = tdep->num_regs - num_raw_regs;
889 
890   tdep->pc   	 = pc;
891   tdep->flg  	 = flg;
892   tdep->r0   	 = r0;
893   tdep->r1   	 = r1;
894   tdep->r2   	 = r2;
895   tdep->r3   	 = r3;
896   tdep->r2r0 	 = r2r0;
897   tdep->r3r2r1r0 = r3r2r1r0;
898   tdep->r3r1r2r0 = r3r1r2r0;
899   tdep->a0       = a0;
900   tdep->a1       = a1;
901   tdep->sb       = sb;
902   tdep->fb   	 = fb;
903   tdep->sp   	 = sp;
904 
905   /* Set up the DWARF register table.  */
906   memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
907   set_dwarf_regnum (r0hl + 1, 0x01);
908   set_dwarf_regnum (r0hl + 0, 0x02);
909   set_dwarf_regnum (r1hl + 1, 0x03);
910   set_dwarf_regnum (r1hl + 0, 0x04);
911   set_dwarf_regnum (r0,       0x05);
912   set_dwarf_regnum (r1,       0x06);
913   set_dwarf_regnum (r2,       0x07);
914   set_dwarf_regnum (r3,       0x08);
915   set_dwarf_regnum (a0,       0x09);
916   set_dwarf_regnum (a1,       0x0a);
917   set_dwarf_regnum (fb,       0x0b);
918   set_dwarf_regnum (sp,       0x0c);
919   set_dwarf_regnum (pc,       0x0d); /* GCC's invention */
920   set_dwarf_regnum (sb,       0x13);
921   set_dwarf_regnum (r2r0,     0x15);
922   set_dwarf_regnum (r3r1,     0x16);
923   if (a1a0)
924     set_dwarf_regnum (a1a0,   0x17);
925 
926   /* Enumerate the save/restore register group.
927 
928      The regcache_save and regcache_restore functions apply their read
929      function to each register in this group.
930 
931      Since frame_pop supplies frame_unwind_register as its read
932      function, the registers meaningful to the Dwarf unwinder need to
933      be in this group.
934 
935      On the other hand, when we make inferior calls, save_inferior_status
936      and restore_inferior_status use them to preserve the current register
937      values across the inferior call.  For this, you'd kind of like to
938      preserve all the raw registers, to protect the interrupted code from
939      any sort of bank switching the callee might have done.  But we handle
940      those cases so badly anyway --- for example, it matters whether we
941      restore FLG before or after we restore the general-purpose registers,
942      but there's no way to express that --- that it isn't worth worrying
943      about.
944 
945      We omit control registers like inthl: if you call a function that
946      changes those, it's probably because you wanted that change to be
947      visible to the interrupted code.  */
948   mark_save_restore (r0);
949   mark_save_restore (r1);
950   mark_save_restore (r2);
951   mark_save_restore (r3);
952   mark_save_restore (a0);
953   mark_save_restore (a1);
954   mark_save_restore (sb);
955   mark_save_restore (fb);
956   mark_save_restore (sp);
957   mark_save_restore (pc);
958   mark_save_restore (flg);
959 
960   set_gdbarch_num_regs (arch, num_raw_regs);
961   set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
962   set_gdbarch_pc_regnum (arch, pc->num);
963   set_gdbarch_sp_regnum (arch, sp->num);
964   set_gdbarch_register_name (arch, m32c_register_name);
965   set_gdbarch_register_type (arch, m32c_register_type);
966   set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
967   set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
968   set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
969   set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
970   set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
971   set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
972 
973   reggroup_add (arch, general_reggroup);
974   reggroup_add (arch, all_reggroup);
975   reggroup_add (arch, save_reggroup);
976   reggroup_add (arch, restore_reggroup);
977   reggroup_add (arch, system_reggroup);
978   reggroup_add (arch, m32c_dma_reggroup);
979 }
980 
981 
982 
983 /* Breakpoints.  */
984 constexpr gdb_byte m32c_break_insn[] = { 0x00 };	/* brk */
985 
986 typedef BP_MANIPULATION (m32c_break_insn) m32c_breakpoint;
987 
988 
989 /* Prologue analysis.  */
990 
991 enum m32c_prologue_kind
992 {
993   /* This function uses a frame pointer.  */
994   prologue_with_frame_ptr,
995 
996   /* This function has no frame pointer.  */
997   prologue_sans_frame_ptr,
998 
999   /* This function sets up the stack, so its frame is the first
1000      frame on the stack.  */
1001   prologue_first_frame
1002 };
1003 
1004 struct m32c_prologue
1005 {
1006   /* For consistency with the DWARF 2 .debug_frame info generated by
1007      GCC, a frame's CFA is the address immediately after the saved
1008      return address.  */
1009 
1010   /* The architecture for which we generated this prologue info.  */
1011   struct gdbarch *arch;
1012 
1013   enum m32c_prologue_kind kind;
1014 
1015   /* If KIND is prologue_with_frame_ptr, this is the offset from the
1016      CFA to where the frame pointer points.  This is always zero or
1017      negative.  */
1018   LONGEST frame_ptr_offset;
1019 
1020   /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1021      the stack pointer --- always zero or negative.
1022 
1023      Calling this a "size" is a bit misleading, but given that the
1024      stack grows downwards, using offsets for everything keeps one
1025      from going completely sign-crazy: you never change anything's
1026      sign for an ADD instruction; always change the second operand's
1027      sign for a SUB instruction; and everything takes care of
1028      itself.
1029 
1030      Functions that use alloca don't have a constant frame size.  But
1031      they always have frame pointers, so we must use that to find the
1032      CFA (and perhaps to unwind the stack pointer).  */
1033   LONGEST frame_size;
1034 
1035   /* The address of the first instruction at which the frame has been
1036      set up and the arguments are where the debug info says they are
1037      --- as best as we can tell.  */
1038   CORE_ADDR prologue_end;
1039 
1040   /* reg_offset[R] is the offset from the CFA at which register R is
1041      saved, or 1 if register R has not been saved.  (Real values are
1042      always zero or negative.)  */
1043   LONGEST reg_offset[M32C_MAX_NUM_REGS];
1044 };
1045 
1046 
1047 /* The longest I've seen, anyway.  */
1048 #define M32C_MAX_INSN_LEN (9)
1049 
1050 /* Processor state, for the prologue analyzer.  */
1051 struct m32c_pv_state
1052 {
1053   struct gdbarch *arch;
1054   pv_t r0, r1, r2, r3;
1055   pv_t a0, a1;
1056   pv_t sb, fb, sp;
1057   pv_t pc;
1058   struct pv_area *stack;
1059 
1060   /* Bytes from the current PC, the address they were read from,
1061      and the address of the next unconsumed byte.  */
1062   gdb_byte insn[M32C_MAX_INSN_LEN];
1063   CORE_ADDR scan_pc, next_addr;
1064 };
1065 
1066 
1067 /* Push VALUE on STATE's stack, occupying SIZE bytes.  Return zero if
1068    all went well, or non-zero if simulating the action would trash our
1069    state.  */
1070 static int
m32c_pv_push(struct m32c_pv_state * state,pv_t value,int size)1071 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1072 {
1073   if (state->stack->store_would_trash (state->sp))
1074     return 1;
1075 
1076   state->sp = pv_add_constant (state->sp, -size);
1077   state->stack->store (state->sp, size, value);
1078 
1079   return 0;
1080 }
1081 
1082 
1083 enum srcdest_kind
1084 {
1085   srcdest_reg,
1086   srcdest_partial_reg,
1087   srcdest_mem
1088 };
1089 
1090 /* A source or destination location for an m16c or m32c
1091    instruction.  */
1092 struct srcdest
1093 {
1094   /* If srcdest_reg, the location is a register pointed to by REG.
1095      If srcdest_partial_reg, the location is part of a register pointed
1096      to by REG.  We don't try to handle this too well.
1097      If srcdest_mem, the location is memory whose address is ADDR.  */
1098   enum srcdest_kind kind;
1099   pv_t *reg, addr;
1100 };
1101 
1102 
1103 /* Return the SIZE-byte value at LOC in STATE.  */
1104 static pv_t
m32c_srcdest_fetch(struct m32c_pv_state * state,struct srcdest loc,int size)1105 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1106 {
1107   if (loc.kind == srcdest_mem)
1108     return state->stack->fetch (loc.addr, size);
1109   else if (loc.kind == srcdest_partial_reg)
1110     return pv_unknown ();
1111   else
1112     return *loc.reg;
1113 }
1114 
1115 
1116 /* Write VALUE, a SIZE-byte value, to LOC in STATE.  Return zero if
1117    all went well, or non-zero if simulating the store would trash our
1118    state.  */
1119 static int
m32c_srcdest_store(struct m32c_pv_state * state,struct srcdest loc,pv_t value,int size)1120 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1121 		    pv_t value, int size)
1122 {
1123   if (loc.kind == srcdest_mem)
1124     {
1125       if (state->stack->store_would_trash (loc.addr))
1126 	return 1;
1127       state->stack->store (loc.addr, size, value);
1128     }
1129   else if (loc.kind == srcdest_partial_reg)
1130     *loc.reg = pv_unknown ();
1131   else
1132     *loc.reg = value;
1133 
1134   return 0;
1135 }
1136 
1137 
1138 static int
m32c_sign_ext(int v,int bits)1139 m32c_sign_ext (int v, int bits)
1140 {
1141   int mask = 1 << (bits - 1);
1142   return (v ^ mask) - mask;
1143 }
1144 
1145 static unsigned int
m32c_next_byte(struct m32c_pv_state * st)1146 m32c_next_byte (struct m32c_pv_state *st)
1147 {
1148   gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1149   return st->insn[st->next_addr++ - st->scan_pc];
1150 }
1151 
1152 static int
m32c_udisp8(struct m32c_pv_state * st)1153 m32c_udisp8 (struct m32c_pv_state *st)
1154 {
1155   return m32c_next_byte (st);
1156 }
1157 
1158 
1159 static int
m32c_sdisp8(struct m32c_pv_state * st)1160 m32c_sdisp8 (struct m32c_pv_state *st)
1161 {
1162   return m32c_sign_ext (m32c_next_byte (st), 8);
1163 }
1164 
1165 
1166 static int
m32c_udisp16(struct m32c_pv_state * st)1167 m32c_udisp16 (struct m32c_pv_state *st)
1168 {
1169   int low  = m32c_next_byte (st);
1170   int high = m32c_next_byte (st);
1171 
1172   return low + (high << 8);
1173 }
1174 
1175 
1176 static int
m32c_sdisp16(struct m32c_pv_state * st)1177 m32c_sdisp16 (struct m32c_pv_state *st)
1178 {
1179   int low  = m32c_next_byte (st);
1180   int high = m32c_next_byte (st);
1181 
1182   return m32c_sign_ext (low + (high << 8), 16);
1183 }
1184 
1185 
1186 static int
m32c_udisp24(struct m32c_pv_state * st)1187 m32c_udisp24 (struct m32c_pv_state *st)
1188 {
1189   int low  = m32c_next_byte (st);
1190   int mid  = m32c_next_byte (st);
1191   int high = m32c_next_byte (st);
1192 
1193   return low + (mid << 8) + (high << 16);
1194 }
1195 
1196 
1197 /* Extract the 'source' field from an m32c MOV.size:G-format instruction.  */
1198 static int
m32c_get_src23(unsigned char * i)1199 m32c_get_src23 (unsigned char *i)
1200 {
1201   return (((i[0] & 0x70) >> 2)
1202 	  | ((i[1] & 0x30) >> 4));
1203 }
1204 
1205 
1206 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction.  */
1207 static int
m32c_get_dest23(unsigned char * i)1208 m32c_get_dest23 (unsigned char *i)
1209 {
1210   return (((i[0] & 0x0e) << 1)
1211 	  | ((i[1] & 0xc0) >> 6));
1212 }
1213 
1214 
1215 static struct srcdest
m32c_decode_srcdest4(struct m32c_pv_state * st,int code,int size)1216 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1217 		      int code, int size)
1218 {
1219   struct srcdest sd;
1220 
1221   if (code < 6)
1222     sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1223   else
1224     sd.kind = srcdest_mem;
1225 
1226   sd.addr = pv_unknown ();
1227   sd.reg = 0;
1228 
1229   switch (code)
1230     {
1231     case 0x0: sd.reg = &st->r0; break;
1232     case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1233     case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1234     case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1235 
1236     case 0x4: sd.reg = &st->a0; break;
1237     case 0x5: sd.reg = &st->a1; break;
1238 
1239     case 0x6: sd.addr = st->a0; break;
1240     case 0x7: sd.addr = st->a1; break;
1241 
1242     case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1243     case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1244     case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1245     case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1246 
1247     case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1248     case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1249     case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1250     case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1251 
1252     default:
1253       gdb_assert_not_reached ("unexpected srcdest4");
1254     }
1255 
1256   return sd;
1257 }
1258 
1259 
1260 static struct srcdest
m32c_decode_sd23(struct m32c_pv_state * st,int code,int size,int ind)1261 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1262 {
1263   struct srcdest sd;
1264 
1265   sd.addr = pv_unknown ();
1266   sd.reg = 0;
1267 
1268   switch (code)
1269     {
1270     case 0x12:
1271     case 0x13:
1272     case 0x10:
1273     case 0x11:
1274       sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1275       break;
1276 
1277     case 0x02:
1278     case 0x03:
1279       sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1280       break;
1281 
1282     default:
1283       sd.kind = srcdest_mem;
1284       break;
1285 
1286     }
1287 
1288   switch (code)
1289     {
1290     case 0x12: sd.reg = &st->r0; break;
1291     case 0x13: sd.reg = &st->r1; break;
1292     case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1293     case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1294     case 0x02: sd.reg = &st->a0; break;
1295     case 0x03: sd.reg = &st->a1; break;
1296 
1297     case 0x00: sd.addr = st->a0; break;
1298     case 0x01: sd.addr = st->a1; break;
1299     case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1300     case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1301     case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1302     case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1303     case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1304     case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1305     case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1306     case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1307     case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1308     case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1309     case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1310     case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1311     default:
1312       gdb_assert_not_reached ("unexpected sd23");
1313     }
1314 
1315   if (ind)
1316     {
1317       sd.addr = m32c_srcdest_fetch (st, sd, 4);
1318       sd.kind = srcdest_mem;
1319     }
1320 
1321   return sd;
1322 }
1323 
1324 
1325 /* The r16c and r32c machines have instructions with similar
1326    semantics, but completely different machine language encodings.  So
1327    we break out the semantics into their own functions, and leave
1328    machine-specific decoding in m32c_analyze_prologue.
1329 
1330    The following functions all expect their arguments already decoded,
1331    and they all return zero if analysis should continue past this
1332    instruction, or non-zero if analysis should stop.  */
1333 
1334 
1335 /* Simulate an 'enter SIZE' instruction in STATE.  */
1336 static int
m32c_pv_enter(struct m32c_pv_state * state,int size)1337 m32c_pv_enter (struct m32c_pv_state *state, int size)
1338 {
1339   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1340 
1341   /* If simulating this store would require us to forget
1342      everything we know about the stack frame in the name of
1343      accuracy, it would be better to just quit now.  */
1344   if (state->stack->store_would_trash (state->sp))
1345     return 1;
1346 
1347   if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1348     return 1;
1349   state->fb = state->sp;
1350   state->sp = pv_add_constant (state->sp, -size);
1351 
1352   return 0;
1353 }
1354 
1355 
1356 static int
m32c_pv_pushm_one(struct m32c_pv_state * state,pv_t reg,int bit,int src,int size)1357 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1358 		   int bit, int src, int size)
1359 {
1360   if (bit & src)
1361     {
1362       if (m32c_pv_push (state, reg, size))
1363 	return 1;
1364     }
1365 
1366   return 0;
1367 }
1368 
1369 
1370 /* Simulate a 'pushm SRC' instruction in STATE.  */
1371 static int
m32c_pv_pushm(struct m32c_pv_state * state,int src)1372 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1373 {
1374   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1375 
1376   /* The bits in SRC indicating which registers to save are:
1377      r0 r1 r2 r3 a0 a1 sb fb */
1378   return
1379     (   m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1380      || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1381      || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1382      || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1383      || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1384      || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1385      || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1386      || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1387 }
1388 
1389 /* Return non-zero if VALUE is the first incoming argument register.  */
1390 
1391 static int
m32c_is_1st_arg_reg(struct m32c_pv_state * state,pv_t value)1392 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1393 {
1394   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1395   return (value.kind == pvk_register
1396 	  && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1397 	      ? (value.reg == tdep->r1->num)
1398 	      : (value.reg == tdep->r0->num))
1399 	  && value.k == 0);
1400 }
1401 
1402 /* Return non-zero if VALUE is an incoming argument register.  */
1403 
1404 static int
m32c_is_arg_reg(struct m32c_pv_state * state,pv_t value)1405 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1406 {
1407   struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1408   return (value.kind == pvk_register
1409 	  && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1410 	      ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1411 	      : (value.reg == tdep->r0->num))
1412 	  && value.k == 0);
1413 }
1414 
1415 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1416    argument register to its stack slot in STATE.  Such instructions
1417    should be included in the prologue, if possible.
1418 
1419    The store is a spill if:
1420    - the value being stored is the original value of an argument register;
1421    - the value has not already been stored somewhere in STACK; and
1422    - LOC is a stack slot (e.g., a memory location whose address is
1423      relative to the original value of the SP).  */
1424 
1425 static int
m32c_is_arg_spill(struct m32c_pv_state * st,struct srcdest loc,pv_t value)1426 m32c_is_arg_spill (struct m32c_pv_state *st,
1427 		   struct srcdest loc,
1428 		   pv_t value)
1429 {
1430   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1431 
1432   return (m32c_is_arg_reg (st, value)
1433 	  && loc.kind == srcdest_mem
1434 	  && pv_is_register (loc.addr, tdep->sp->num)
1435 	  && ! st->stack->find_reg (st->arch, value.reg, 0));
1436 }
1437 
1438 /* Return non-zero if a store of VALUE to LOC is probably
1439    copying the struct return address into an address register
1440    for immediate use.  This is basically a "spill" into the
1441    address register, instead of onto the stack.
1442 
1443    The prerequisites are:
1444    - value being stored is original value of the FIRST arg register;
1445    - value has not already been stored on stack; and
1446    - LOC is an address register (a0 or a1).  */
1447 
1448 static int
m32c_is_struct_return(struct m32c_pv_state * st,struct srcdest loc,pv_t value)1449 m32c_is_struct_return (struct m32c_pv_state *st,
1450 		       struct srcdest loc,
1451 		       pv_t value)
1452 {
1453   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1454 
1455   return (m32c_is_1st_arg_reg (st, value)
1456 	  && !st->stack->find_reg (st->arch, value.reg, 0)
1457 	  && loc.kind == srcdest_reg
1458 	  && (pv_is_register (*loc.reg, tdep->a0->num)
1459 	      || pv_is_register (*loc.reg, tdep->a1->num)));
1460 }
1461 
1462 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1463    was a register save:
1464    - all the named registers should have their original values, and
1465    - the stack pointer should be at a constant offset from the
1466      original stack pointer.  */
1467 static int
m32c_pushm_is_reg_save(struct m32c_pv_state * st,int src)1468 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1469 {
1470   struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1471   /* The bits in SRC indicating which registers to save are:
1472      r0 r1 r2 r3 a0 a1 sb fb */
1473   return
1474     (pv_is_register (st->sp, tdep->sp->num)
1475      && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1476      && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1477      && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1478      && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1479      && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1480      && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1481      && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1482      && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1483 }
1484 
1485 
1486 /* Function for finding saved registers in a 'struct pv_area'; we pass
1487    this to pv_area::scan.
1488 
1489    If VALUE is a saved register, ADDR says it was saved at a constant
1490    offset from the frame base, and SIZE indicates that the whole
1491    register was saved, record its offset in RESULT_UNTYPED.  */
1492 static void
check_for_saved(void * prologue_untyped,pv_t addr,CORE_ADDR size,pv_t value)1493 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1494 {
1495   struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1496   struct gdbarch *arch = prologue->arch;
1497   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1498 
1499   /* Is this the unchanged value of some register being saved on the
1500      stack?  */
1501   if (value.kind == pvk_register
1502       && value.k == 0
1503       && pv_is_register (addr, tdep->sp->num))
1504     {
1505       /* Some registers require special handling: they're saved as a
1506 	 larger value than the register itself.  */
1507       CORE_ADDR saved_size = register_size (arch, value.reg);
1508 
1509       if (value.reg == tdep->pc->num)
1510 	saved_size = tdep->ret_addr_bytes;
1511       else if (register_type (arch, value.reg)
1512 	       == tdep->data_addr_reg_type)
1513 	saved_size = tdep->push_addr_bytes;
1514 
1515       if (size == saved_size)
1516 	{
1517 	  /* Find which end of the saved value corresponds to our
1518 	     register.  */
1519 	  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1520 	    prologue->reg_offset[value.reg]
1521 	      = (addr.k + saved_size - register_size (arch, value.reg));
1522 	  else
1523 	    prologue->reg_offset[value.reg] = addr.k;
1524 	}
1525     }
1526 }
1527 
1528 
1529 /* Analyze the function prologue for ARCH at START, going no further
1530    than LIMIT, and place a description of what we found in
1531    PROLOGUE.  */
1532 static void
m32c_analyze_prologue(struct gdbarch * arch,CORE_ADDR start,CORE_ADDR limit,struct m32c_prologue * prologue)1533 m32c_analyze_prologue (struct gdbarch *arch,
1534 		       CORE_ADDR start, CORE_ADDR limit,
1535 		       struct m32c_prologue *prologue)
1536 {
1537   struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1538   unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1539   CORE_ADDR after_last_frame_related_insn;
1540   struct m32c_pv_state st;
1541 
1542   st.arch = arch;
1543   st.r0 = pv_register (tdep->r0->num, 0);
1544   st.r1 = pv_register (tdep->r1->num, 0);
1545   st.r2 = pv_register (tdep->r2->num, 0);
1546   st.r3 = pv_register (tdep->r3->num, 0);
1547   st.a0 = pv_register (tdep->a0->num, 0);
1548   st.a1 = pv_register (tdep->a1->num, 0);
1549   st.sb = pv_register (tdep->sb->num, 0);
1550   st.fb = pv_register (tdep->fb->num, 0);
1551   st.sp = pv_register (tdep->sp->num, 0);
1552   st.pc = pv_register (tdep->pc->num, 0);
1553   pv_area stack (tdep->sp->num, gdbarch_addr_bit (arch));
1554   st.stack = &stack;
1555 
1556   /* Record that the call instruction has saved the return address on
1557      the stack.  */
1558   m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1559 
1560   memset (prologue, 0, sizeof (*prologue));
1561   prologue->arch = arch;
1562   {
1563     int i;
1564     for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1565       prologue->reg_offset[i] = 1;
1566   }
1567 
1568   st.scan_pc = after_last_frame_related_insn = start;
1569 
1570   while (st.scan_pc < limit)
1571     {
1572       pv_t pre_insn_fb = st.fb;
1573       pv_t pre_insn_sp = st.sp;
1574 
1575       /* In theory we could get in trouble by trying to read ahead
1576 	 here, when we only know we're expecting one byte.  In
1577 	 practice I doubt anyone will care, and it makes the rest of
1578 	 the code easier.  */
1579       if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1580 	/* If we can't fetch the instruction from memory, stop here
1581 	   and hope for the best.  */
1582 	break;
1583       st.next_addr = st.scan_pc;
1584 
1585       /* The assembly instructions are written as they appear in the
1586 	 section of the processor manuals that describe the
1587 	 instruction encodings.
1588 
1589 	 When a single assembly language instruction has several
1590 	 different machine-language encodings, the manual
1591 	 distinguishes them by a number in parens, before the
1592 	 mnemonic.  Those numbers are included, as well.
1593 
1594 	 The srcdest decoding instructions have the same names as the
1595 	 analogous functions in the simulator.  */
1596       if (mach == bfd_mach_m16c)
1597 	{
1598 	  /* (1) ENTER #imm8 */
1599 	  if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1600 	    {
1601 	      if (m32c_pv_enter (&st, st.insn[2]))
1602 		break;
1603 	      st.next_addr += 3;
1604 	    }
1605 	  /* (1) PUSHM src */
1606 	  else if (st.insn[0] == 0xec)
1607 	    {
1608 	      int src = st.insn[1];
1609 	      if (m32c_pv_pushm (&st, src))
1610 		break;
1611 	      st.next_addr += 2;
1612 
1613 	      if (m32c_pushm_is_reg_save (&st, src))
1614 		after_last_frame_related_insn = st.next_addr;
1615 	    }
1616 
1617 	  /* (6) MOV.size:G src, dest */
1618 	  else if ((st.insn[0] & 0xfe) == 0x72)
1619 	    {
1620 	      int size = (st.insn[0] & 0x01) ? 2 : 1;
1621 	      struct srcdest src;
1622 	      struct srcdest dest;
1623 	      pv_t src_value;
1624 	      st.next_addr += 2;
1625 
1626 	      src
1627 		= m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1628 	      dest
1629 		= m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1630 	      src_value = m32c_srcdest_fetch (&st, src, size);
1631 
1632 	      if (m32c_is_arg_spill (&st, dest, src_value))
1633 		after_last_frame_related_insn = st.next_addr;
1634 	      else if (m32c_is_struct_return (&st, dest, src_value))
1635 		after_last_frame_related_insn = st.next_addr;
1636 
1637 	      if (m32c_srcdest_store (&st, dest, src_value, size))
1638 		break;
1639 	    }
1640 
1641 	  /* (1) LDC #IMM16, sp */
1642 	  else if (st.insn[0] == 0xeb
1643 		   && st.insn[1] == 0x50)
1644 	    {
1645 	      st.next_addr += 2;
1646 	      st.sp = pv_constant (m32c_udisp16 (&st));
1647 	    }
1648 
1649 	  else
1650 	    /* We've hit some instruction we don't know how to simulate.
1651 	       Strictly speaking, we should set every value we're
1652 	       tracking to "unknown".  But we'll be optimistic, assume
1653 	       that we have enough information already, and stop
1654 	       analysis here.  */
1655 	    break;
1656 	}
1657       else
1658 	{
1659 	  int src_indirect = 0;
1660 	  int dest_indirect = 0;
1661 	  int i = 0;
1662 
1663 	  gdb_assert (mach == bfd_mach_m32c);
1664 
1665 	  /* Check for prefix bytes indicating indirect addressing.  */
1666 	  if (st.insn[0] == 0x41)
1667 	    {
1668 	      src_indirect = 1;
1669 	      i++;
1670 	    }
1671 	  else if (st.insn[0] == 0x09)
1672 	    {
1673 	      dest_indirect = 1;
1674 	      i++;
1675 	    }
1676 	  else if (st.insn[0] == 0x49)
1677 	    {
1678 	      src_indirect = dest_indirect = 1;
1679 	      i++;
1680 	    }
1681 
1682 	  /* (1) ENTER #imm8 */
1683 	  if (st.insn[i] == 0xec)
1684 	    {
1685 	      if (m32c_pv_enter (&st, st.insn[i + 1]))
1686 		break;
1687 	      st.next_addr += 2;
1688 	    }
1689 
1690 	  /* (1) PUSHM src */
1691 	  else if (st.insn[i] == 0x8f)
1692 	    {
1693 	      int src = st.insn[i + 1];
1694 	      if (m32c_pv_pushm (&st, src))
1695 		break;
1696 	      st.next_addr += 2;
1697 
1698 	      if (m32c_pushm_is_reg_save (&st, src))
1699 		after_last_frame_related_insn = st.next_addr;
1700 	    }
1701 
1702 	  /* (7) MOV.size:G src, dest */
1703 	  else if ((st.insn[i] & 0x80) == 0x80
1704 		   && (st.insn[i + 1] & 0x0f) == 0x0b
1705 		   && m32c_get_src23 (&st.insn[i]) < 20
1706 		   && m32c_get_dest23 (&st.insn[i]) < 20)
1707 	    {
1708 	      struct srcdest src;
1709 	      struct srcdest dest;
1710 	      pv_t src_value;
1711 	      int bw = st.insn[i] & 0x01;
1712 	      int size = bw ? 2 : 1;
1713 	      st.next_addr += 2;
1714 
1715 	      src
1716 		= m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1717 				    size, src_indirect);
1718 	      dest
1719 		= m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1720 				    size, dest_indirect);
1721 	      src_value = m32c_srcdest_fetch (&st, src, size);
1722 
1723 	      if (m32c_is_arg_spill (&st, dest, src_value))
1724 		after_last_frame_related_insn = st.next_addr;
1725 
1726 	      if (m32c_srcdest_store (&st, dest, src_value, size))
1727 		break;
1728 	    }
1729 	  /* (2) LDC #IMM24, sp */
1730 	  else if (st.insn[i] == 0xd5
1731 		   && st.insn[i + 1] == 0x29)
1732 	    {
1733 	      st.next_addr += 2;
1734 	      st.sp = pv_constant (m32c_udisp24 (&st));
1735 	    }
1736 	  else
1737 	    /* We've hit some instruction we don't know how to simulate.
1738 	       Strictly speaking, we should set every value we're
1739 	       tracking to "unknown".  But we'll be optimistic, assume
1740 	       that we have enough information already, and stop
1741 	       analysis here.  */
1742 	    break;
1743 	}
1744 
1745       /* If this instruction changed the FB or decreased the SP (i.e.,
1746 	 allocated more stack space), then this may be a good place to
1747 	 declare the prologue finished.  However, there are some
1748 	 exceptions:
1749 
1750 	 - If the instruction just changed the FB back to its original
1751 	   value, then that's probably a restore instruction.  The
1752 	   prologue should definitely end before that.
1753 
1754 	 - If the instruction increased the value of the SP (that is,
1755 	   shrunk the frame), then it's probably part of a frame
1756 	   teardown sequence, and the prologue should end before
1757 	   that.  */
1758 
1759       if (! pv_is_identical (st.fb, pre_insn_fb))
1760 	{
1761 	  if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1762 	    after_last_frame_related_insn = st.next_addr;
1763 	}
1764       else if (! pv_is_identical (st.sp, pre_insn_sp))
1765 	{
1766 	  /* The comparison of the constants looks odd, there, because
1767 	     .k is unsigned.  All it really means is that the SP is
1768 	     lower than it was before the instruction.  */
1769 	  if (   pv_is_register (pre_insn_sp, tdep->sp->num)
1770 	      && pv_is_register (st.sp,       tdep->sp->num)
1771 	      && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1772 	    after_last_frame_related_insn = st.next_addr;
1773 	}
1774 
1775       st.scan_pc = st.next_addr;
1776     }
1777 
1778   /* Did we load a constant value into the stack pointer?  */
1779   if (pv_is_constant (st.sp))
1780     prologue->kind = prologue_first_frame;
1781 
1782   /* Alternatively, did we initialize the frame pointer?  Remember
1783      that the CFA is the address after the return address.  */
1784   if (pv_is_register (st.fb, tdep->sp->num))
1785     {
1786       prologue->kind = prologue_with_frame_ptr;
1787       prologue->frame_ptr_offset = st.fb.k;
1788     }
1789 
1790   /* Is the frame size a known constant?  Remember that frame_size is
1791      actually the offset from the CFA to the SP (i.e., a negative
1792      value).  */
1793   else if (pv_is_register (st.sp, tdep->sp->num))
1794     {
1795       prologue->kind = prologue_sans_frame_ptr;
1796       prologue->frame_size = st.sp.k;
1797     }
1798 
1799   /* We haven't been able to make sense of this function's frame.  Treat
1800      it as the first frame.  */
1801   else
1802     prologue->kind = prologue_first_frame;
1803 
1804   /* Record where all the registers were saved.  */
1805   st.stack->scan (check_for_saved, (void *) prologue);
1806 
1807   prologue->prologue_end = after_last_frame_related_insn;
1808 }
1809 
1810 
1811 static CORE_ADDR
m32c_skip_prologue(struct gdbarch * gdbarch,CORE_ADDR ip)1812 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1813 {
1814   const char *name;
1815   CORE_ADDR func_addr, func_end, sal_end;
1816   struct m32c_prologue p;
1817 
1818   /* Try to find the extent of the function that contains IP.  */
1819   if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1820     return ip;
1821 
1822   /* Find end by prologue analysis.  */
1823   m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1824   /* Find end by line info.  */
1825   sal_end = skip_prologue_using_sal (gdbarch, ip);
1826   /* Return whichever is lower.  */
1827   if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1828     return sal_end;
1829   else
1830     return p.prologue_end;
1831 }
1832 
1833 
1834 
1835 /* Stack unwinding.  */
1836 
1837 static struct m32c_prologue *
m32c_analyze_frame_prologue(struct frame_info * this_frame,void ** this_prologue_cache)1838 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1839 			     void **this_prologue_cache)
1840 {
1841   if (! *this_prologue_cache)
1842     {
1843       CORE_ADDR func_start = get_frame_func (this_frame);
1844       CORE_ADDR stop_addr = get_frame_pc (this_frame);
1845 
1846       /* If we couldn't find any function containing the PC, then
1847 	 just initialize the prologue cache, but don't do anything.  */
1848       if (! func_start)
1849 	stop_addr = func_start;
1850 
1851       *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1852       m32c_analyze_prologue (get_frame_arch (this_frame),
1853 			     func_start, stop_addr,
1854 			     (struct m32c_prologue *) *this_prologue_cache);
1855     }
1856 
1857   return (struct m32c_prologue *) *this_prologue_cache;
1858 }
1859 
1860 
1861 static CORE_ADDR
m32c_frame_base(struct frame_info * this_frame,void ** this_prologue_cache)1862 m32c_frame_base (struct frame_info *this_frame,
1863 		void **this_prologue_cache)
1864 {
1865   struct m32c_prologue *p
1866     = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1867   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1868 
1869   /* In functions that use alloca, the distance between the stack
1870      pointer and the frame base varies dynamically, so we can't use
1871      the SP plus static information like prologue analysis to find the
1872      frame base.  However, such functions must have a frame pointer,
1873      to be able to restore the SP on exit.  So whenever we do have a
1874      frame pointer, use that to find the base.  */
1875   switch (p->kind)
1876     {
1877     case prologue_with_frame_ptr:
1878       {
1879 	CORE_ADDR fb
1880 	  = get_frame_register_unsigned (this_frame, tdep->fb->num);
1881 	return fb - p->frame_ptr_offset;
1882       }
1883 
1884     case prologue_sans_frame_ptr:
1885       {
1886 	CORE_ADDR sp
1887 	  = get_frame_register_unsigned (this_frame, tdep->sp->num);
1888 	return sp - p->frame_size;
1889       }
1890 
1891     case prologue_first_frame:
1892       return 0;
1893 
1894     default:
1895       gdb_assert_not_reached ("unexpected prologue kind");
1896     }
1897 }
1898 
1899 
1900 static void
m32c_this_id(struct frame_info * this_frame,void ** this_prologue_cache,struct frame_id * this_id)1901 m32c_this_id (struct frame_info *this_frame,
1902 	      void **this_prologue_cache,
1903 	      struct frame_id *this_id)
1904 {
1905   CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1906 
1907   if (base)
1908     *this_id = frame_id_build (base, get_frame_func (this_frame));
1909   /* Otherwise, leave it unset, and that will terminate the backtrace.  */
1910 }
1911 
1912 
1913 static struct value *
m32c_prev_register(struct frame_info * this_frame,void ** this_prologue_cache,int regnum)1914 m32c_prev_register (struct frame_info *this_frame,
1915 		    void **this_prologue_cache, int regnum)
1916 {
1917   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1918   struct m32c_prologue *p
1919     = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1920   CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1921 
1922   if (regnum == tdep->sp->num)
1923     return frame_unwind_got_constant (this_frame, regnum, frame_base);
1924 
1925   /* If prologue analysis says we saved this register somewhere,
1926      return a description of the stack slot holding it.  */
1927   if (p->reg_offset[regnum] != 1)
1928     return frame_unwind_got_memory (this_frame, regnum,
1929 				    frame_base + p->reg_offset[regnum]);
1930 
1931   /* Otherwise, presume we haven't changed the value of this
1932      register, and get it from the next frame.  */
1933   return frame_unwind_got_register (this_frame, regnum, regnum);
1934 }
1935 
1936 
1937 static const struct frame_unwind m32c_unwind = {
1938   "m32c prologue",
1939   NORMAL_FRAME,
1940   default_frame_unwind_stop_reason,
1941   m32c_this_id,
1942   m32c_prev_register,
1943   NULL,
1944   default_frame_sniffer
1945 };
1946 
1947 
1948 /* Inferior calls.  */
1949 
1950 /* The calling conventions, according to GCC:
1951 
1952    r8c, m16c
1953    ---------
1954    First arg may be passed in r1l or r1 if it (1) fits (QImode or
1955    HImode), (2) is named, and (3) is an integer or pointer type (no
1956    structs, floats, etc).  Otherwise, it's passed on the stack.
1957 
1958    Second arg may be passed in r2, same restrictions (but not QImode),
1959    even if the first arg is passed on the stack.
1960 
1961    Third and further args are passed on the stack.  No padding is
1962    used, stack "alignment" is 8 bits.
1963 
1964    m32cm, m32c
1965    -----------
1966 
1967    First arg may be passed in r0l or r0, same restrictions as above.
1968 
1969    Second and further args are passed on the stack.  Padding is used
1970    after QImode parameters (i.e. lower-addressed byte is the value,
1971    higher-addressed byte is the padding), stack "alignment" is 16
1972    bits.  */
1973 
1974 
1975 /* Return true if TYPE is a type that can be passed in registers.  (We
1976    ignore the size, and pay attention only to the type code;
1977    acceptable sizes depends on which register is being considered to
1978    hold it.)  */
1979 static int
m32c_reg_arg_type(struct type * type)1980 m32c_reg_arg_type (struct type *type)
1981 {
1982   enum type_code code = type->code ();
1983 
1984   return (code == TYPE_CODE_INT
1985 	  || code == TYPE_CODE_ENUM
1986 	  || code == TYPE_CODE_PTR
1987 	  || TYPE_IS_REFERENCE (type)
1988 	  || code == TYPE_CODE_BOOL
1989 	  || code == TYPE_CODE_CHAR);
1990 }
1991 
1992 
1993 static CORE_ADDR
m32c_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,function_call_return_method return_method,CORE_ADDR struct_addr)1994 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1995 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1996 		      struct value **args, CORE_ADDR sp,
1997 		      function_call_return_method return_method,
1998 		      CORE_ADDR struct_addr)
1999 {
2000   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2001   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2002   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2003   CORE_ADDR cfa;
2004   int i;
2005 
2006   /* The number of arguments given in this function's prototype, or
2007      zero if it has a non-prototyped function type.  The m32c ABI
2008      passes arguments mentioned in the prototype differently from
2009      those in the ellipsis of a varargs function, or from those passed
2010      to a non-prototyped function.  */
2011   int num_prototyped_args = 0;
2012 
2013   {
2014     struct type *func_type = value_type (function);
2015 
2016     /* Dereference function pointer types.  */
2017     if (func_type->code () == TYPE_CODE_PTR)
2018       func_type = TYPE_TARGET_TYPE (func_type);
2019 
2020     gdb_assert (func_type->code () == TYPE_CODE_FUNC ||
2021 		func_type->code () == TYPE_CODE_METHOD);
2022 
2023 #if 0
2024     /* The ABI description in gcc/config/m32c/m32c.abi says that
2025        we need to handle prototyped and non-prototyped functions
2026        separately, but the code in GCC doesn't actually do so.  */
2027     if (TYPE_PROTOTYPED (func_type))
2028 #endif
2029       num_prototyped_args = func_type->num_fields ();
2030   }
2031 
2032   /* First, if the function returns an aggregate by value, push a
2033      pointer to a buffer for it.  This doesn't affect the way
2034      subsequent arguments are allocated to registers.  */
2035   if (return_method == return_method_struct)
2036     {
2037       int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2038       sp -= ptr_len;
2039       write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2040     }
2041 
2042   /* Push the arguments.  */
2043   for (i = nargs - 1; i >= 0; i--)
2044     {
2045       struct value *arg = args[i];
2046       const gdb_byte *arg_bits = value_contents (arg);
2047       struct type *arg_type = value_type (arg);
2048       ULONGEST arg_size = TYPE_LENGTH (arg_type);
2049 
2050       /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)?  */
2051       if (i == 0
2052 	  && arg_size <= 2
2053 	  && i < num_prototyped_args
2054 	  && m32c_reg_arg_type (arg_type))
2055 	{
2056 	  /* Extract and re-store as an integer as a terse way to make
2057 	     sure it ends up in the least significant end of r1.  (GDB
2058 	     should avoid assuming endianness, even on uni-endian
2059 	     processors.)  */
2060 	  ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2061 						 byte_order);
2062 	  struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2063 	  regcache_cooked_write_unsigned (regcache, reg->num, u);
2064 	}
2065 
2066       /* Can it go in r2?  */
2067       else if (mach == bfd_mach_m16c
2068 	       && i == 1
2069 	       && arg_size == 2
2070 	       && i < num_prototyped_args
2071 	       && m32c_reg_arg_type (arg_type))
2072 	regcache->cooked_write (tdep->r2->num, arg_bits);
2073 
2074       /* Everything else goes on the stack.  */
2075       else
2076 	{
2077 	  sp -= arg_size;
2078 
2079 	  /* Align the stack.  */
2080 	  if (mach == bfd_mach_m32c)
2081 	    sp &= ~1;
2082 
2083 	  write_memory (sp, arg_bits, arg_size);
2084 	}
2085     }
2086 
2087   /* This is the CFA we use to identify the dummy frame.  */
2088   cfa = sp;
2089 
2090   /* Push the return address.  */
2091   sp -= tdep->ret_addr_bytes;
2092   write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2093 				 bp_addr);
2094 
2095   /* Update the stack pointer.  */
2096   regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2097 
2098   /* We need to borrow an odd trick from the i386 target here.
2099 
2100      The value we return from this function gets used as the stack
2101      address (the CFA) for the dummy frame's ID.  The obvious thing is
2102      to return the new TOS.  However, that points at the return
2103      address, saved on the stack, which is inconsistent with the CFA's
2104      described by GCC's DWARF 2 .debug_frame information: DWARF 2
2105      .debug_frame info uses the address immediately after the saved
2106      return address.  So you end up with a dummy frame whose CFA
2107      points at the return address, but the frame for the function
2108      being called has a CFA pointing after the return address: the
2109      younger CFA is *greater than* the older CFA.  The sanity checks
2110      in frame.c don't like that.
2111 
2112      So we try to be consistent with the CFA's used by DWARF 2.
2113      Having a dummy frame and a real frame with the *same* CFA is
2114      tolerable.  */
2115   return cfa;
2116 }
2117 
2118 
2119 
2120 /* Return values.  */
2121 
2122 /* Return value conventions, according to GCC:
2123 
2124    r8c, m16c
2125    ---------
2126 
2127    QImode in r0l
2128    HImode in r0
2129    SImode in r2r0
2130    near pointer in r0
2131    far pointer in r2r0
2132 
2133    Aggregate values (regardless of size) are returned by pushing a
2134    pointer to a temporary area on the stack after the args are pushed.
2135    The function fills in this area with the value.  Note that this
2136    pointer on the stack does not affect how register arguments, if any,
2137    are configured.
2138 
2139    m32cm, m32c
2140    -----------
2141    Same.  */
2142 
2143 /* Return non-zero if values of type TYPE are returned by storing them
2144    in a buffer whose address is passed on the stack, ahead of the
2145    other arguments.  */
2146 static int
m32c_return_by_passed_buf(struct type * type)2147 m32c_return_by_passed_buf (struct type *type)
2148 {
2149   enum type_code code = type->code ();
2150 
2151   return (code == TYPE_CODE_STRUCT
2152 	  || code == TYPE_CODE_UNION);
2153 }
2154 
2155 static enum return_value_convention
m32c_return_value(struct gdbarch * gdbarch,struct value * function,struct type * valtype,struct regcache * regcache,gdb_byte * readbuf,const gdb_byte * writebuf)2156 m32c_return_value (struct gdbarch *gdbarch,
2157 		   struct value *function,
2158 		   struct type *valtype,
2159 		   struct regcache *regcache,
2160 		   gdb_byte *readbuf,
2161 		   const gdb_byte *writebuf)
2162 {
2163   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2164   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2165   enum return_value_convention conv;
2166   ULONGEST valtype_len = TYPE_LENGTH (valtype);
2167 
2168   if (m32c_return_by_passed_buf (valtype))
2169     conv = RETURN_VALUE_STRUCT_CONVENTION;
2170   else
2171     conv = RETURN_VALUE_REGISTER_CONVENTION;
2172 
2173   if (readbuf)
2174     {
2175       /* We should never be called to find values being returned by
2176 	 RETURN_VALUE_STRUCT_CONVENTION.  Those can't be located,
2177 	 unless we made the call ourselves.  */
2178       gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2179 
2180       gdb_assert (valtype_len <= 8);
2181 
2182       /* Anything that fits in r0 is returned there.  */
2183       if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2184 	{
2185 	  ULONGEST u;
2186 	  regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2187 	  store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2188 	}
2189       else
2190 	{
2191 	  /* Everything else is passed in mem0, using as many bytes as
2192 	     needed.  This is not what the Renesas tools do, but it's
2193 	     what GCC does at the moment.  */
2194 	  struct bound_minimal_symbol mem0
2195 	    = lookup_minimal_symbol ("mem0", NULL, NULL);
2196 
2197 	  if (! mem0.minsym)
2198 	    error (_("The return value is stored in memory at 'mem0', "
2199 		     "but GDB cannot find\n"
2200 		     "its address."));
2201 	  read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2202 	}
2203     }
2204 
2205   if (writebuf)
2206     {
2207       /* We should never be called to store values to be returned
2208 	 using RETURN_VALUE_STRUCT_CONVENTION.  We have no way of
2209 	 finding the buffer, unless we made the call ourselves.  */
2210       gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2211 
2212       gdb_assert (valtype_len <= 8);
2213 
2214       /* Anything that fits in r0 is returned there.  */
2215       if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2216 	{
2217 	  ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2218 						 byte_order);
2219 	  regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2220 	}
2221       else
2222 	{
2223 	  /* Everything else is passed in mem0, using as many bytes as
2224 	     needed.  This is not what the Renesas tools do, but it's
2225 	     what GCC does at the moment.  */
2226 	  struct bound_minimal_symbol mem0
2227 	    = lookup_minimal_symbol ("mem0", NULL, NULL);
2228 
2229 	  if (! mem0.minsym)
2230 	    error (_("The return value is stored in memory at 'mem0', "
2231 		     "but GDB cannot find\n"
2232 		     " its address."));
2233 	  write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2234 	}
2235     }
2236 
2237   return conv;
2238 }
2239 
2240 
2241 
2242 /* Trampolines.  */
2243 
2244 /* The m16c and m32c use a trampoline function for indirect function
2245    calls.  An indirect call looks like this:
2246 
2247 	     ... push arguments ...
2248 	     ... push target function address ...
2249 	     jsr.a m32c_jsri16
2250 
2251    The code for m32c_jsri16 looks like this:
2252 
2253      m32c_jsri16:
2254 
2255 	     # Save return address.
2256 	     pop.w	m32c_jsri_ret
2257 	     pop.b	m32c_jsri_ret+2
2258 
2259 	     # Store target function address.
2260 	     pop.w	m32c_jsri_addr
2261 
2262 	     # Re-push return address.
2263 	     push.b	m32c_jsri_ret+2
2264 	     push.w	m32c_jsri_ret
2265 
2266 	     # Call the target function.
2267 	     jmpi.a	m32c_jsri_addr
2268 
2269    Without further information, GDB will treat calls to m32c_jsri16
2270    like calls to any other function.  Since m32c_jsri16 doesn't have
2271    debugging information, that normally means that GDB sets a step-
2272    resume breakpoint and lets the program continue --- which is not
2273    what the user wanted.  (Giving the trampoline debugging info
2274    doesn't help: the user expects the program to stop in the function
2275    their program is calling, not in some trampoline code they've never
2276    seen before.)
2277 
2278    The gdbarch_skip_trampoline_code method tells GDB how to step
2279    through such trampoline functions transparently to the user.  When
2280    given the address of a trampoline function's first instruction,
2281    gdbarch_skip_trampoline_code should return the address of the first
2282    instruction of the function really being called.  If GDB decides it
2283    wants to step into that function, it will set a breakpoint there
2284    and silently continue to it.
2285 
2286    We recognize the trampoline by name, and extract the target address
2287    directly from the stack.  This isn't great, but recognizing by its
2288    code sequence seems more fragile.  */
2289 
2290 static CORE_ADDR
m32c_skip_trampoline_code(struct frame_info * frame,CORE_ADDR stop_pc)2291 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2292 {
2293   struct gdbarch *gdbarch = get_frame_arch (frame);
2294   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2295   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2296 
2297   /* It would be nicer to simply look up the addresses of known
2298      trampolines once, and then compare stop_pc with them.  However,
2299      we'd need to ensure that that cached address got invalidated when
2300      someone loaded a new executable, and I'm not quite sure of the
2301      best way to do that.  find_pc_partial_function does do some
2302      caching, so we'll see how this goes.  */
2303   const char *name;
2304   CORE_ADDR start, end;
2305 
2306   if (find_pc_partial_function (stop_pc, &name, &start, &end))
2307     {
2308       /* Are we stopped at the beginning of the trampoline function?  */
2309       if (strcmp (name, "m32c_jsri16") == 0
2310 	  && stop_pc == start)
2311 	{
2312 	  /* Get the stack pointer.  The return address is at the top,
2313 	     and the target function's address is just below that.  We
2314 	     know it's a two-byte address, since the trampoline is
2315 	     m32c_jsri*16*.  */
2316 	  CORE_ADDR sp = get_frame_sp (get_current_frame ());
2317 	  CORE_ADDR target
2318 	    = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2319 					    2, byte_order);
2320 
2321 	  /* What we have now is the address of a jump instruction.
2322 	     What we need is the destination of that jump.
2323 	     The opcode is 1 byte, and the destination is the next 3 bytes.  */
2324 
2325 	  target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2326 	  return target;
2327 	}
2328     }
2329 
2330   return 0;
2331 }
2332 
2333 
2334 /* Address/pointer conversions.  */
2335 
2336 /* On the m16c, there is a 24-bit address space, but only a very few
2337    instructions can generate addresses larger than 0xffff: jumps,
2338    jumps to subroutines, and the lde/std (load/store extended)
2339    instructions.
2340 
2341    Since GCC can only support one size of pointer, we can't have
2342    distinct 'near' and 'far' pointer types; we have to pick one size
2343    for everything.  If we wanted to use 24-bit pointers, then GCC
2344    would have to use lde and ste for all memory references, which
2345    would be terrible for performance and code size.  So the GNU
2346    toolchain uses 16-bit pointers for everything, and gives up the
2347    ability to have pointers point outside the first 64k of memory.
2348 
2349    However, as a special hack, we let the linker place functions at
2350    addresses above 0xffff, as long as it also places a trampoline in
2351    the low 64k for every function whose address is taken.  Each
2352    trampoline consists of a single jmp.a instruction that jumps to the
2353    function's real entry point.  Pointers to functions can be 16 bits
2354    long, even though the functions themselves are at higher addresses:
2355    the pointers refer to the trampolines, not the functions.
2356 
2357    This complicates things for GDB, however: given the address of a
2358    function (from debug info or linker symbols, say) which could be
2359    anywhere in the 24-bit address space, how can we find an
2360    appropriate 16-bit value to use as a pointer to it?
2361 
2362    If the linker has not generated a trampoline for the function,
2363    we're out of luck.  Well, I guess we could malloc some space and
2364    write a jmp.a instruction to it, but I'm not going to get into that
2365    at the moment.
2366 
2367    If the linker has generated a trampoline for the function, then it
2368    also emitted a symbol for the trampoline: if the function's linker
2369    symbol is named NAME, then the function's trampoline's linker
2370    symbol is named NAME.plt.
2371 
2372    So, given a code address:
2373    - We try to find a linker symbol at that address.
2374    - If we find such a symbol named NAME, we look for a linker symbol
2375      named NAME.plt.
2376    - If we find such a symbol, we assume it is a trampoline, and use
2377      its address as the pointer value.
2378 
2379    And, given a function pointer:
2380    - We try to find a linker symbol at that address named NAME.plt.
2381    - If we find such a symbol, we look for a linker symbol named NAME.
2382    - If we find that, we provide that as the function's address.
2383    - If any of the above steps fail, we return the original address
2384      unchanged; it might really be a function in the low 64k.
2385 
2386    See?  You *knew* there was a reason you wanted to be a computer
2387    programmer!  :)  */
2388 
2389 static void
m32c_m16c_address_to_pointer(struct gdbarch * gdbarch,struct type * type,gdb_byte * buf,CORE_ADDR addr)2390 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2391 			      struct type *type, gdb_byte *buf, CORE_ADDR addr)
2392 {
2393   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2394   enum type_code target_code;
2395   gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2396 
2397   target_code = TYPE_TARGET_TYPE (type)->code ();
2398 
2399   if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2400     {
2401       const char *func_name;
2402       char *tramp_name;
2403       struct bound_minimal_symbol tramp_msym;
2404 
2405       /* Try to find a linker symbol at this address.  */
2406       struct bound_minimal_symbol func_msym
2407 	= lookup_minimal_symbol_by_pc (addr);
2408 
2409       if (! func_msym.minsym)
2410 	error (_("Cannot convert code address %s to function pointer:\n"
2411 	       "couldn't find a symbol at that address, to find trampoline."),
2412 	       paddress (gdbarch, addr));
2413 
2414       func_name = func_msym.minsym->linkage_name ();
2415       tramp_name = (char *) xmalloc (strlen (func_name) + 5);
2416       strcpy (tramp_name, func_name);
2417       strcat (tramp_name, ".plt");
2418 
2419       /* Try to find a linker symbol for the trampoline.  */
2420       tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2421 
2422       /* We've either got another copy of the name now, or don't need
2423 	 the name any more.  */
2424       xfree (tramp_name);
2425 
2426       if (! tramp_msym.minsym)
2427 	{
2428 	  CORE_ADDR ptrval;
2429 
2430 	  /* No PLT entry found.  Mask off the upper bits of the address
2431 	     to make a pointer.  As noted in the warning to the user
2432 	     below, this value might be useful if converted back into
2433 	     an address by GDB, but will otherwise, almost certainly,
2434 	     be garbage.
2435 
2436 	     Using this masked result does seem to be useful
2437 	     in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2438 	     PASSes.  These results appear to be correct as well.
2439 
2440 	     We print a warning here so that the user can make a
2441 	     determination about whether the result is useful or not.  */
2442 	  ptrval = addr & 0xffff;
2443 
2444 	  warning (_("Cannot convert code address %s to function pointer:\n"
2445 		   "couldn't find trampoline named '%s.plt'.\n"
2446 		   "Returning pointer value %s instead; this may produce\n"
2447 		   "a useful result if converted back into an address by GDB,\n"
2448 		   "but will most likely not be useful otherwise."),
2449 		   paddress (gdbarch, addr), func_name,
2450 		   paddress (gdbarch, ptrval));
2451 
2452 	  addr = ptrval;
2453 
2454 	}
2455       else
2456 	{
2457 	  /* The trampoline's address is our pointer.  */
2458 	  addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2459 	}
2460     }
2461 
2462   store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2463 }
2464 
2465 
2466 static CORE_ADDR
m32c_m16c_pointer_to_address(struct gdbarch * gdbarch,struct type * type,const gdb_byte * buf)2467 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2468 			      struct type *type, const gdb_byte *buf)
2469 {
2470   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2471   CORE_ADDR ptr;
2472   enum type_code target_code;
2473 
2474   gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2475 
2476   ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2477 
2478   target_code = TYPE_TARGET_TYPE (type)->code ();
2479 
2480   if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2481     {
2482       /* See if there is a minimal symbol at that address whose name is
2483 	 "NAME.plt".  */
2484       struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2485 
2486       if (ptr_msym.minsym)
2487 	{
2488 	  const char *ptr_msym_name = ptr_msym.minsym->linkage_name ();
2489 	  int len = strlen (ptr_msym_name);
2490 
2491 	  if (len > 4
2492 	      && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2493 	    {
2494 	      struct bound_minimal_symbol func_msym;
2495 	      /* We have a .plt symbol; try to find the symbol for the
2496 		 corresponding function.
2497 
2498 		 Since the trampoline contains a jump instruction, we
2499 		 could also just extract the jump's target address.  I
2500 		 don't see much advantage one way or the other.  */
2501 	      char *func_name = (char *) xmalloc (len - 4 + 1);
2502 	      memcpy (func_name, ptr_msym_name, len - 4);
2503 	      func_name[len - 4] = '\0';
2504 	      func_msym
2505 		= lookup_minimal_symbol (func_name, NULL, NULL);
2506 
2507 	      /* If we do have such a symbol, return its value as the
2508 		 function's true address.  */
2509 	      if (func_msym.minsym)
2510 		ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2511 	    }
2512 	}
2513       else
2514 	{
2515 	  int aspace;
2516 
2517 	  for (aspace = 1; aspace <= 15; aspace++)
2518 	    {
2519 	      ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2520 
2521 	      if (ptr_msym.minsym)
2522 		ptr |= aspace << 16;
2523 	    }
2524 	}
2525     }
2526 
2527   return ptr;
2528 }
2529 
2530 static void
m32c_virtual_frame_pointer(struct gdbarch * gdbarch,CORE_ADDR pc,int * frame_regnum,LONGEST * frame_offset)2531 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2532 			    int *frame_regnum,
2533 			    LONGEST *frame_offset)
2534 {
2535   const char *name;
2536   CORE_ADDR func_addr, func_end;
2537   struct m32c_prologue p;
2538 
2539   struct regcache *regcache = get_current_regcache ();
2540   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2541 
2542   if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2543     internal_error (__FILE__, __LINE__,
2544 		    _("No virtual frame pointer available"));
2545 
2546   m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2547   switch (p.kind)
2548     {
2549     case prologue_with_frame_ptr:
2550       *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2551       *frame_offset = p.frame_ptr_offset;
2552       break;
2553     case prologue_sans_frame_ptr:
2554       *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2555       *frame_offset = p.frame_size;
2556       break;
2557     default:
2558       *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2559       *frame_offset = 0;
2560       break;
2561     }
2562   /* Sanity check */
2563   if (*frame_regnum > gdbarch_num_regs (gdbarch))
2564     internal_error (__FILE__, __LINE__,
2565 		    _("No virtual frame pointer available"));
2566 }
2567 
2568 
2569 /* Initialization.  */
2570 
2571 static struct gdbarch *
m32c_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)2572 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2573 {
2574   struct gdbarch *gdbarch;
2575   struct gdbarch_tdep *tdep;
2576   unsigned long mach = info.bfd_arch_info->mach;
2577 
2578   /* Find a candidate among the list of architectures we've created
2579      already.  */
2580   for (arches = gdbarch_list_lookup_by_info (arches, &info);
2581        arches != NULL;
2582        arches = gdbarch_list_lookup_by_info (arches->next, &info))
2583     return arches->gdbarch;
2584 
2585   tdep = XCNEW (struct gdbarch_tdep);
2586   gdbarch = gdbarch_alloc (&info, tdep);
2587 
2588   /* Essential types.  */
2589   make_types (gdbarch);
2590 
2591   /* Address/pointer conversions.  */
2592   if (mach == bfd_mach_m16c)
2593     {
2594       set_gdbarch_address_to_pointer (gdbarch, m32c_m16c_address_to_pointer);
2595       set_gdbarch_pointer_to_address (gdbarch, m32c_m16c_pointer_to_address);
2596     }
2597 
2598   /* Register set.  */
2599   make_regs (gdbarch);
2600 
2601   /* Breakpoints.  */
2602   set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32c_breakpoint::kind_from_pc);
2603   set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32c_breakpoint::bp_from_kind);
2604 
2605   /* Prologue analysis and unwinding.  */
2606   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2607   set_gdbarch_skip_prologue (gdbarch, m32c_skip_prologue);
2608 #if 0
2609   /* I'm dropping the dwarf2 sniffer because it has a few problems.
2610      They may be in the dwarf2 cfi code in GDB, or they may be in
2611      the debug info emitted by the upstream toolchain.  I don't
2612      know which, but I do know that the prologue analyzer works better.
2613      MVS 04/13/06  */
2614   dwarf2_append_sniffers (gdbarch);
2615 #endif
2616   frame_unwind_append_unwinder (gdbarch, &m32c_unwind);
2617 
2618   /* Inferior calls.  */
2619   set_gdbarch_push_dummy_call (gdbarch, m32c_push_dummy_call);
2620   set_gdbarch_return_value (gdbarch, m32c_return_value);
2621 
2622   /* Trampolines.  */
2623   set_gdbarch_skip_trampoline_code (gdbarch, m32c_skip_trampoline_code);
2624 
2625   set_gdbarch_virtual_frame_pointer (gdbarch, m32c_virtual_frame_pointer);
2626 
2627   /* m32c function boundary addresses are not necessarily even.
2628      Therefore, the `vbit', which indicates a pointer to a virtual
2629      member function, is stored in the delta field, rather than as
2630      the low bit of a function pointer address.
2631 
2632      In order to verify this, see the definition of
2633      TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2634      definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h.  */
2635   set_gdbarch_vbit_in_delta (gdbarch, 1);
2636 
2637   return gdbarch;
2638 }
2639 
2640 void _initialize_m32c_tdep ();
2641 void
_initialize_m32c_tdep()2642 _initialize_m32c_tdep ()
2643 {
2644   register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2645 
2646   m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2647 }
2648