1 /* Utilities to execute a program in a subprocess (possibly linked by pipes
2    with other subprocesses), and wait for it.  Generic Unix version
3    (also used for UWIN and VMS).
4    Copyright (C) 1996-2021 Free Software Foundation, Inc.
5 
6 This file is part of the libiberty library.
7 Libiberty is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
11 
12 Libiberty is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 Library General Public License for more details.
16 
17 You should have received a copy of the GNU Library General Public
18 License along with libiberty; see the file COPYING.LIB.  If not,
19 write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA.  */
21 
22 #include "config.h"
23 #include "libiberty.h"
24 #include "pex-common.h"
25 #include "environ.h"
26 
27 #include <stdio.h>
28 #include <signal.h>
29 #include <errno.h>
30 #ifdef NEED_DECLARATION_ERRNO
31 extern int errno;
32 #endif
33 #ifdef HAVE_STDLIB_H
34 #include <stdlib.h>
35 #endif
36 #ifdef HAVE_STRING_H
37 #include <string.h>
38 #endif
39 #ifdef HAVE_UNISTD_H
40 #include <unistd.h>
41 #endif
42 
43 #include <sys/types.h>
44 
45 #ifdef HAVE_FCNTL_H
46 #include <fcntl.h>
47 #endif
48 #ifdef HAVE_SYS_WAIT_H
49 #include <sys/wait.h>
50 #endif
51 #ifdef HAVE_GETRUSAGE
52 #include <sys/time.h>
53 #include <sys/resource.h>
54 #endif
55 #ifdef HAVE_SYS_STAT_H
56 #include <sys/stat.h>
57 #endif
58 #ifdef HAVE_PROCESS_H
59 #include <process.h>
60 #endif
61 
62 #ifdef vfork /* Autoconf may define this to fork for us. */
63 # define VFORK_STRING "fork"
64 #else
65 # define VFORK_STRING "vfork"
66 #endif
67 #ifdef HAVE_VFORK_H
68 #include <vfork.h>
69 #endif
70 #if defined(VMS) && defined (__LONG_POINTERS)
71 #ifndef __CHAR_PTR32
72 typedef char * __char_ptr32
73 __attribute__ ((mode (SI)));
74 #endif
75 
76 typedef __char_ptr32 *__char_ptr_char_ptr32
77 __attribute__ ((mode (SI)));
78 
79 /* Return a 32 bit pointer to an array of 32 bit pointers
80    given a 64 bit pointer to an array of 64 bit pointers.  */
81 
82 static __char_ptr_char_ptr32
to_ptr32(char ** ptr64)83 to_ptr32 (char **ptr64)
84 {
85   int argc;
86   __char_ptr_char_ptr32 short_argv;
87 
88   /* Count number of arguments.  */
89   for (argc = 0; ptr64[argc] != NULL; argc++)
90     ;
91 
92   /* Reallocate argv with 32 bit pointers.  */
93   short_argv = (__char_ptr_char_ptr32) decc$malloc
94     (sizeof (__char_ptr32) * (argc + 1));
95 
96   for (argc = 0; ptr64[argc] != NULL; argc++)
97     short_argv[argc] = (__char_ptr32) decc$strdup (ptr64[argc]);
98 
99   short_argv[argc] = (__char_ptr32) 0;
100   return short_argv;
101 
102 }
103 #else
104 #define to_ptr32(argv) argv
105 #endif
106 
107 /* File mode to use for private and world-readable files.  */
108 
109 #if defined (S_IRUSR) && defined (S_IWUSR) && defined (S_IRGRP) && defined (S_IWGRP) && defined (S_IROTH) && defined (S_IWOTH)
110 #define PUBLIC_MODE  \
111     (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)
112 #else
113 #define PUBLIC_MODE 0666
114 #endif
115 
116 /* Get the exit status of a particular process, and optionally get the
117    time that it took.  This is simple if we have wait4, slightly
118    harder if we have waitpid, and is a pain if we only have wait.  */
119 
120 static pid_t pex_wait (struct pex_obj *, pid_t, int *, struct pex_time *);
121 
122 #ifdef HAVE_WAIT4
123 
124 static pid_t
pex_wait(struct pex_obj * obj ATTRIBUTE_UNUSED,pid_t pid,int * status,struct pex_time * time)125 pex_wait (struct pex_obj *obj ATTRIBUTE_UNUSED, pid_t pid, int *status,
126 	  struct pex_time *time)
127 {
128   pid_t ret;
129   struct rusage r;
130 
131 #ifdef HAVE_WAITPID
132   if (time == NULL)
133     return waitpid (pid, status, 0);
134 #endif
135 
136   ret = wait4 (pid, status, 0, &r);
137 
138   if (time != NULL)
139     {
140       time->user_seconds = r.ru_utime.tv_sec;
141       time->user_microseconds= r.ru_utime.tv_usec;
142       time->system_seconds = r.ru_stime.tv_sec;
143       time->system_microseconds= r.ru_stime.tv_usec;
144     }
145 
146   return ret;
147 }
148 
149 #else /* ! defined (HAVE_WAIT4) */
150 
151 #ifdef HAVE_WAITPID
152 
153 #ifndef HAVE_GETRUSAGE
154 
155 static pid_t
pex_wait(struct pex_obj * obj ATTRIBUTE_UNUSED,pid_t pid,int * status,struct pex_time * time)156 pex_wait (struct pex_obj *obj ATTRIBUTE_UNUSED, pid_t pid, int *status,
157 	  struct pex_time *time)
158 {
159   if (time != NULL)
160     memset (time, 0, sizeof (struct pex_time));
161   return waitpid (pid, status, 0);
162 }
163 
164 #else /* defined (HAVE_GETRUSAGE) */
165 
166 static pid_t
pex_wait(struct pex_obj * obj ATTRIBUTE_UNUSED,pid_t pid,int * status,struct pex_time * time)167 pex_wait (struct pex_obj *obj ATTRIBUTE_UNUSED, pid_t pid, int *status,
168 	  struct pex_time *time)
169 {
170   struct rusage r1, r2;
171   pid_t ret;
172 
173   if (time == NULL)
174     return waitpid (pid, status, 0);
175 
176   getrusage (RUSAGE_CHILDREN, &r1);
177 
178   ret = waitpid (pid, status, 0);
179   if (ret < 0)
180     return ret;
181 
182   getrusage (RUSAGE_CHILDREN, &r2);
183 
184   time->user_seconds = r2.ru_utime.tv_sec - r1.ru_utime.tv_sec;
185   time->user_microseconds = r2.ru_utime.tv_usec - r1.ru_utime.tv_usec;
186   if (r2.ru_utime.tv_usec < r1.ru_utime.tv_usec)
187     {
188       --time->user_seconds;
189       time->user_microseconds += 1000000;
190     }
191 
192   time->system_seconds = r2.ru_stime.tv_sec - r1.ru_stime.tv_sec;
193   time->system_microseconds = r2.ru_stime.tv_usec - r1.ru_stime.tv_usec;
194   if (r2.ru_stime.tv_usec < r1.ru_stime.tv_usec)
195     {
196       --time->system_seconds;
197       time->system_microseconds += 1000000;
198     }
199 
200   return ret;
201 }
202 
203 #endif /* defined (HAVE_GETRUSAGE) */
204 
205 #else /* ! defined (HAVE_WAITPID) */
206 
207 struct status_list
208 {
209   struct status_list *next;
210   pid_t pid;
211   int status;
212   struct pex_time time;
213 };
214 
215 static pid_t
pex_wait(struct pex_obj * obj,pid_t pid,int * status,struct pex_time * time)216 pex_wait (struct pex_obj *obj, pid_t pid, int *status, struct pex_time *time)
217 {
218   struct status_list **pp;
219 
220   for (pp = (struct status_list **) &obj->sysdep;
221        *pp != NULL;
222        pp = &(*pp)->next)
223     {
224       if ((*pp)->pid == pid)
225 	{
226 	  struct status_list *p;
227 
228 	  p = *pp;
229 	  *status = p->status;
230 	  if (time != NULL)
231 	    *time = p->time;
232 	  *pp = p->next;
233 	  free (p);
234 	  return pid;
235 	}
236     }
237 
238   while (1)
239     {
240       pid_t cpid;
241       struct status_list *psl;
242       struct pex_time pt;
243 #ifdef HAVE_GETRUSAGE
244       struct rusage r1, r2;
245 #endif
246 
247       if (time != NULL)
248 	{
249 #ifdef HAVE_GETRUSAGE
250 	  getrusage (RUSAGE_CHILDREN, &r1);
251 #else
252 	  memset (&pt, 0, sizeof (struct pex_time));
253 #endif
254 	}
255 
256       cpid = wait (status);
257 
258 #ifdef HAVE_GETRUSAGE
259       if (time != NULL && cpid >= 0)
260 	{
261 	  getrusage (RUSAGE_CHILDREN, &r2);
262 
263 	  pt.user_seconds = r2.ru_utime.tv_sec - r1.ru_utime.tv_sec;
264 	  pt.user_microseconds = r2.ru_utime.tv_usec - r1.ru_utime.tv_usec;
265 	  if (pt.user_microseconds < 0)
266 	    {
267 	      --pt.user_seconds;
268 	      pt.user_microseconds += 1000000;
269 	    }
270 
271 	  pt.system_seconds = r2.ru_stime.tv_sec - r1.ru_stime.tv_sec;
272 	  pt.system_microseconds = r2.ru_stime.tv_usec - r1.ru_stime.tv_usec;
273 	  if (pt.system_microseconds < 0)
274 	    {
275 	      --pt.system_seconds;
276 	      pt.system_microseconds += 1000000;
277 	    }
278 	}
279 #endif
280 
281       if (cpid < 0 || cpid == pid)
282 	{
283 	  if (time != NULL)
284 	    *time = pt;
285 	  return cpid;
286 	}
287 
288       psl = XNEW (struct status_list);
289       psl->pid = cpid;
290       psl->status = *status;
291       if (time != NULL)
292 	psl->time = pt;
293       psl->next = (struct status_list *) obj->sysdep;
294       obj->sysdep = (void *) psl;
295     }
296 }
297 
298 #endif /* ! defined (HAVE_WAITPID) */
299 #endif /* ! defined (HAVE_WAIT4) */
300 
301 static int pex_unix_open_read (struct pex_obj *, const char *, int);
302 static int pex_unix_open_write (struct pex_obj *, const char *, int, int);
303 static pid_t pex_unix_exec_child (struct pex_obj *, int, const char *,
304 				 char * const *, char * const *,
305 				 int, int, int, int,
306 				 const char **, int *);
307 static int pex_unix_close (struct pex_obj *, int);
308 static int pex_unix_wait (struct pex_obj *, pid_t, int *, struct pex_time *,
309 			  int, const char **, int *);
310 static int pex_unix_pipe (struct pex_obj *, int *, int);
311 static FILE *pex_unix_fdopenr (struct pex_obj *, int, int);
312 static FILE *pex_unix_fdopenw (struct pex_obj *, int, int);
313 static void pex_unix_cleanup (struct pex_obj *);
314 
315 /* The list of functions we pass to the common routines.  */
316 
317 const struct pex_funcs funcs =
318 {
319   pex_unix_open_read,
320   pex_unix_open_write,
321   pex_unix_exec_child,
322   pex_unix_close,
323   pex_unix_wait,
324   pex_unix_pipe,
325   pex_unix_fdopenr,
326   pex_unix_fdopenw,
327   pex_unix_cleanup
328 };
329 
330 /* Return a newly initialized pex_obj structure.  */
331 
332 struct pex_obj *
pex_init(int flags,const char * pname,const char * tempbase)333 pex_init (int flags, const char *pname, const char *tempbase)
334 {
335   return pex_init_common (flags, pname, tempbase, &funcs);
336 }
337 
338 /* Open a file for reading.  */
339 
340 static int
pex_unix_open_read(struct pex_obj * obj ATTRIBUTE_UNUSED,const char * name,int binary ATTRIBUTE_UNUSED)341 pex_unix_open_read (struct pex_obj *obj ATTRIBUTE_UNUSED, const char *name,
342 		    int binary ATTRIBUTE_UNUSED)
343 {
344   return open (name, O_RDONLY);
345 }
346 
347 /* Open a file for writing.  */
348 
349 static int
pex_unix_open_write(struct pex_obj * obj ATTRIBUTE_UNUSED,const char * name,int binary ATTRIBUTE_UNUSED,int append)350 pex_unix_open_write (struct pex_obj *obj ATTRIBUTE_UNUSED, const char *name,
351 		     int binary ATTRIBUTE_UNUSED, int append)
352 {
353   /* Note that we can't use O_EXCL here because gcc may have already
354      created the temporary file via make_temp_file.  */
355   return open (name, O_WRONLY | O_CREAT
356 		     | (append ? O_APPEND : O_TRUNC), PUBLIC_MODE);
357 }
358 
359 /* Close a file.  */
360 
361 static int
pex_unix_close(struct pex_obj * obj ATTRIBUTE_UNUSED,int fd)362 pex_unix_close (struct pex_obj *obj ATTRIBUTE_UNUSED, int fd)
363 {
364   return close (fd);
365 }
366 
367 /* Execute a child.  */
368 
369 #if defined(HAVE_SPAWNVE) && defined(HAVE_SPAWNVPE)
370 /* Implementation of pex->exec_child using the Cygwin spawn operation.  */
371 
372 /* Subroutine of pex_unix_exec_child.  Move OLD_FD to a new file descriptor
373    to be stored in *PNEW_FD, save the flags in *PFLAGS, and arrange for the
374    saved copy to be close-on-exec.  Move CHILD_FD into OLD_FD.  If CHILD_FD
375    is -1, OLD_FD is to be closed.  Return -1 on error.  */
376 
377 static int
save_and_install_fd(int * pnew_fd,int * pflags,int old_fd,int child_fd)378 save_and_install_fd(int *pnew_fd, int *pflags, int old_fd, int child_fd)
379 {
380   int new_fd, flags;
381 
382   flags = fcntl (old_fd, F_GETFD);
383 
384   /* If we could not retrieve the flags, then OLD_FD was not open.  */
385   if (flags < 0)
386     {
387       new_fd = -1, flags = 0;
388       if (child_fd >= 0 && dup2 (child_fd, old_fd) < 0)
389 	return -1;
390     }
391   /* If we wish to close OLD_FD, just mark it CLOEXEC.  */
392   else if (child_fd == -1)
393     {
394       new_fd = old_fd;
395       if ((flags & FD_CLOEXEC) == 0 && fcntl (old_fd, F_SETFD, FD_CLOEXEC) < 0)
396 	return -1;
397     }
398   /* Otherwise we need to save a copy of OLD_FD before installing CHILD_FD.  */
399   else
400     {
401 #ifdef F_DUPFD_CLOEXEC
402       new_fd = fcntl (old_fd, F_DUPFD_CLOEXEC, 3);
403       if (new_fd < 0)
404 	return -1;
405 #else
406       /* Prefer F_DUPFD over dup in order to avoid getting a new fd
407 	 in the range 0-2, right where a new stderr fd might get put.  */
408       new_fd = fcntl (old_fd, F_DUPFD, 3);
409       if (new_fd < 0)
410 	return -1;
411       if (fcntl (new_fd, F_SETFD, FD_CLOEXEC) < 0)
412 	return -1;
413 #endif
414       if (dup2 (child_fd, old_fd) < 0)
415 	return -1;
416     }
417 
418   *pflags = flags;
419   if (pnew_fd)
420     *pnew_fd = new_fd;
421   else if (new_fd != old_fd)
422     abort ();
423 
424   return 0;
425 }
426 
427 /* Subroutine of pex_unix_exec_child.  Move SAVE_FD back to OLD_FD
428    restoring FLAGS.  If SAVE_FD < 0, OLD_FD is to be closed.  */
429 
430 static int
restore_fd(int old_fd,int save_fd,int flags)431 restore_fd(int old_fd, int save_fd, int flags)
432 {
433   /* For SAVE_FD < 0, all we have to do is restore the
434      "closed-ness" of the original.  */
435   if (save_fd < 0)
436     return close (old_fd);
437 
438   /* For SAVE_FD == OLD_FD, all we have to do is restore the
439      original setting of the CLOEXEC flag.  */
440   if (save_fd == old_fd)
441     {
442       if (flags & FD_CLOEXEC)
443 	return 0;
444       return fcntl (old_fd, F_SETFD, flags);
445     }
446 
447   /* Otherwise we have to move the descriptor back, restore the flags,
448      and close the saved copy.  */
449 #ifdef HAVE_DUP3
450   if (flags == FD_CLOEXEC)
451     {
452       if (dup3 (save_fd, old_fd, O_CLOEXEC) < 0)
453 	return -1;
454     }
455   else
456 #endif
457     {
458       if (dup2 (save_fd, old_fd) < 0)
459 	return -1;
460       if (flags != 0 && fcntl (old_fd, F_SETFD, flags) < 0)
461 	return -1;
462     }
463   return close (save_fd);
464 }
465 
466 static pid_t
pex_unix_exec_child(struct pex_obj * obj ATTRIBUTE_UNUSED,int flags,const char * executable,char * const * argv,char * const * env,int in,int out,int errdes,int toclose,const char ** errmsg,int * err)467 pex_unix_exec_child (struct pex_obj *obj ATTRIBUTE_UNUSED,
468 		     int flags, const char *executable,
469 		     char * const * argv, char * const * env,
470                      int in, int out, int errdes, int toclose,
471 		     const char **errmsg, int *err)
472 {
473   int fl_in = 0, fl_out = 0, fl_err = 0, fl_tc = 0;
474   int save_in = -1, save_out = -1, save_err = -1;
475   int max, retries;
476   pid_t pid;
477 
478   if (flags & PEX_STDERR_TO_STDOUT)
479     errdes = out;
480 
481   /* We need the three standard file descriptors to be set up as for
482      the child before we perform the spawn.  The file descriptors for
483      the parent need to be moved and marked for close-on-exec.  */
484   if (in != STDIN_FILE_NO
485       && save_and_install_fd (&save_in, &fl_in, STDIN_FILE_NO, in) < 0)
486     goto error_dup2;
487   if (out != STDOUT_FILE_NO
488       && save_and_install_fd (&save_out, &fl_out, STDOUT_FILE_NO, out) < 0)
489     goto error_dup2;
490   if (errdes != STDERR_FILE_NO
491       && save_and_install_fd (&save_err, &fl_err, STDERR_FILE_NO, errdes) < 0)
492     goto error_dup2;
493   if (toclose >= 0
494       && save_and_install_fd (NULL, &fl_tc, toclose, -1) < 0)
495     goto error_dup2;
496 
497   /* Now that we've moved the file descriptors for the child into place,
498      close the originals.  Be careful not to close any of the standard
499      file descriptors that we just set up.  */
500   max = -1;
501   if (errdes >= 0)
502     max = STDERR_FILE_NO;
503   else if (out >= 0)
504     max = STDOUT_FILE_NO;
505   else if (in >= 0)
506     max = STDIN_FILE_NO;
507   if (in > max)
508     close (in);
509   if (out > max)
510     close (out);
511   if (errdes > max && errdes != out)
512     close (errdes);
513 
514   /* If we were not given an environment, use the global environment.  */
515   if (env == NULL)
516     env = environ;
517 
518   /* Launch the program.  If we get EAGAIN (normally out of pid's), try
519      again a few times with increasing backoff times.  */
520   retries = 0;
521   while (1)
522     {
523       typedef const char * const *cc_cp;
524 
525       if (flags & PEX_SEARCH)
526 	pid = spawnvpe (_P_NOWAITO, executable, (cc_cp)argv, (cc_cp)env);
527       else
528 	pid = spawnve (_P_NOWAITO, executable, (cc_cp)argv, (cc_cp)env);
529 
530       if (pid > 0)
531 	break;
532 
533       *err = errno;
534       *errmsg = "spawn";
535       if (errno != EAGAIN || ++retries == 4)
536 	return (pid_t) -1;
537       sleep (1 << retries);
538     }
539 
540   /* Success.  Restore the parent's file descriptors that we saved above.  */
541   if (toclose >= 0
542       && restore_fd (toclose, toclose, fl_tc) < 0)
543     goto error_dup2;
544   if (in != STDIN_FILE_NO
545       && restore_fd (STDIN_FILE_NO, save_in, fl_in) < 0)
546     goto error_dup2;
547   if (out != STDOUT_FILE_NO
548       && restore_fd (STDOUT_FILE_NO, save_out, fl_out) < 0)
549     goto error_dup2;
550   if (errdes != STDERR_FILE_NO
551       && restore_fd (STDERR_FILE_NO, save_err, fl_err) < 0)
552     goto error_dup2;
553 
554   return pid;
555 
556  error_dup2:
557   *err = errno;
558   *errmsg = "dup2";
559   return (pid_t) -1;
560 }
561 
562 #else
563 /* Implementation of pex->exec_child using standard vfork + exec.  */
564 
565 static pid_t
pex_unix_exec_child(struct pex_obj * obj,int flags,const char * executable,char * const * argv,char * const * env,int in,int out,int errdes,int toclose,const char ** errmsg,int * err)566 pex_unix_exec_child (struct pex_obj *obj, int flags, const char *executable,
567 		     char * const * argv, char * const * env,
568                      int in, int out, int errdes,
569 		     int toclose, const char **errmsg, int *err)
570 {
571   pid_t pid = -1;
572   /* Tuple to communicate error from child to parent.  We can safely
573      transfer string literal pointers as both run with identical
574      address mappings.  */
575   struct fn_err
576   {
577     const char *fn;
578     int err;
579   };
580   volatile int do_pipe = 0;
581   volatile int pipes[2]; /* [0]:reader,[1]:writer.  */
582 #ifdef O_CLOEXEC
583   do_pipe = 1;
584 #endif
585   if (do_pipe)
586     {
587 #ifdef HAVE_PIPE2
588       if (pipe2 ((int *)pipes, O_CLOEXEC))
589 	do_pipe = 0;
590 #else
591       if (pipe ((int *)pipes))
592 	do_pipe = 0;
593       else
594 	{
595 	  if (fcntl (pipes[1], F_SETFD, FD_CLOEXEC) == -1)
596 	    {
597 	      close (pipes[0]);
598 	      close (pipes[1]);
599 	      do_pipe = 0;
600 	    }
601 	}
602 #endif
603     }
604 
605   /* We declare these to be volatile to avoid warnings from gcc about
606      them being clobbered by vfork.  */
607   volatile int sleep_interval = 1;
608   volatile int retries;
609 
610   /* We vfork and then set environ in the child before calling execvp.
611      This clobbers the parent's environ so we need to restore it.
612      It would be nice to use one of the exec* functions that takes an
613      environment as a parameter, but that may have portability
614      issues.  It is marked volatile so the child doesn't consider it a
615      dead variable and therefore clobber where ever it is stored.  */
616   char **volatile save_environ = environ;
617 
618   for (retries = 0; retries < 4; ++retries)
619     {
620       pid = vfork ();
621       if (pid >= 0)
622 	break;
623       sleep (sleep_interval);
624       sleep_interval *= 2;
625     }
626 
627   switch (pid)
628     {
629     case -1:
630       if (do_pipe)
631 	{
632 	  close (pipes[0]);
633 	  close (pipes[1]);
634 	}
635       *err = errno;
636       *errmsg = VFORK_STRING;
637       return (pid_t) -1;
638 
639     case 0:
640       /* Child process.  */
641       {
642 	struct fn_err failed;
643 	failed.fn = NULL;
644 
645 	if (do_pipe)
646 	  close (pipes[0]);
647 	if (!failed.fn && in != STDIN_FILE_NO)
648 	  {
649 	    if (dup2 (in, STDIN_FILE_NO) < 0)
650 	      failed.fn = "dup2", failed.err = errno;
651 	    else if (close (in) < 0)
652 	      failed.fn = "close", failed.err = errno;
653 	  }
654 	if (!failed.fn && out != STDOUT_FILE_NO)
655 	  {
656 	    if (dup2 (out, STDOUT_FILE_NO) < 0)
657 	      failed.fn = "dup2", failed.err = errno;
658 	    else if (close (out) < 0)
659 	      failed.fn = "close", failed.err = errno;
660 	  }
661 	if (!failed.fn && errdes != STDERR_FILE_NO)
662 	  {
663 	    if (dup2 (errdes, STDERR_FILE_NO) < 0)
664 	      failed.fn = "dup2", failed.err = errno;
665 	    else if (close (errdes) < 0)
666 	      failed.fn = "close", failed.err = errno;
667 	  }
668 	if (!failed.fn && toclose >= 0)
669 	  {
670 	    if (close (toclose) < 0)
671 	      failed.fn = "close", failed.err = errno;
672 	  }
673 	if (!failed.fn && (flags & PEX_STDERR_TO_STDOUT) != 0)
674 	  {
675 	    if (dup2 (STDOUT_FILE_NO, STDERR_FILE_NO) < 0)
676 	      failed.fn = "dup2", failed.err = errno;
677 	  }
678 	if (!failed.fn)
679 	  {
680 	    if (env)
681 	      /* NOTE: In a standard vfork implementation this clobbers
682 		 the parent's copy of environ "too" (in reality there's
683 		 only one copy).  This is ok as we restore it below.  */
684 	      environ = (char**) env;
685 	    if ((flags & PEX_SEARCH) != 0)
686 	      {
687 		execvp (executable, to_ptr32 (argv));
688 		failed.fn = "execvp", failed.err = errno;
689 	      }
690 	    else
691 	      {
692 		execv (executable, to_ptr32 (argv));
693 		failed.fn = "execv", failed.err = errno;
694 	      }
695 	  }
696 
697 	/* Something failed, report an error.  We don't use stdio
698 	   routines, because we might be here due to a vfork call.  */
699 	ssize_t retval = 0;
700 
701 	if (!do_pipe
702 	    || write (pipes[1], &failed, sizeof (failed)) != sizeof (failed))
703 	  {
704 	    /* The parent will not see our scream above, so write to
705 	       stdout.  */
706 #define writeerr(s) (retval |= write (STDERR_FILE_NO, s, strlen (s)))
707 	    writeerr (obj->pname);
708 	    writeerr (": error trying to exec '");
709 	    writeerr (executable);
710 	    writeerr ("': ");
711 	    writeerr (failed.fn);
712 	    writeerr (": ");
713 	    writeerr (xstrerror (failed.err));
714 	    writeerr ("\n");
715 #undef writeerr
716 	  }
717 
718 	/* Exit with -2 if the error output failed, too.  */
719 	_exit (retval < 0 ? -2 : -1);
720       }
721       /* NOTREACHED */
722       return (pid_t) -1;
723 
724     default:
725       /* Parent process.  */
726       {
727 	/* Restore environ.  Note that the parent either doesn't run
728 	   until the child execs/exits (standard vfork behaviour), or
729 	   if it does run then vfork is behaving more like fork.  In
730 	   either case we needn't worry about clobbering the child's
731 	   copy of environ.  */
732 	environ = save_environ;
733 
734 	struct fn_err failed;
735 	failed.fn = NULL;
736 	if (do_pipe)
737 	  {
738 	    close (pipes[1]);
739 	    ssize_t len = read (pipes[0], &failed, sizeof (failed));
740 	    if (len < 0)
741 	      failed.fn = NULL;
742 	    close (pipes[0]);
743 	  }
744 
745 	if (!failed.fn && in != STDIN_FILE_NO)
746 	  if (close (in) < 0)
747 	    failed.fn = "close", failed.err = errno;
748 	if (!failed.fn && out != STDOUT_FILE_NO)
749 	  if (close (out) < 0)
750 	    failed.fn = "close", failed.err = errno;
751 	if (!failed.fn && errdes != STDERR_FILE_NO)
752 	  if (close (errdes) < 0)
753 	    failed.fn = "close", failed.err = errno;
754 
755 	if (failed.fn)
756 	  {
757 	    *err = failed.err;
758 	    *errmsg = failed.fn;
759 	    return (pid_t) -1;
760 	  }
761       }
762       return pid;
763     }
764 }
765 #endif /* SPAWN */
766 
767 /* Wait for a child process to complete.  */
768 
769 static int
pex_unix_wait(struct pex_obj * obj,pid_t pid,int * status,struct pex_time * time,int done,const char ** errmsg,int * err)770 pex_unix_wait (struct pex_obj *obj, pid_t pid, int *status,
771 	       struct pex_time *time, int done, const char **errmsg,
772 	       int *err)
773 {
774   /* If we are cleaning up when the caller didn't retrieve process
775      status for some reason, encourage the process to go away.  */
776   if (done)
777     kill (pid, SIGTERM);
778 
779   if (pex_wait (obj, pid, status, time) < 0)
780     {
781       *err = errno;
782       *errmsg = "wait";
783       return -1;
784     }
785 
786   return 0;
787 }
788 
789 /* Create a pipe.  */
790 
791 static int
pex_unix_pipe(struct pex_obj * obj ATTRIBUTE_UNUSED,int * p,int binary ATTRIBUTE_UNUSED)792 pex_unix_pipe (struct pex_obj *obj ATTRIBUTE_UNUSED, int *p,
793 	       int binary ATTRIBUTE_UNUSED)
794 {
795   return pipe (p);
796 }
797 
798 /* Get a FILE pointer to read from a file descriptor.  */
799 
800 static FILE *
pex_unix_fdopenr(struct pex_obj * obj ATTRIBUTE_UNUSED,int fd,int binary ATTRIBUTE_UNUSED)801 pex_unix_fdopenr (struct pex_obj *obj ATTRIBUTE_UNUSED, int fd,
802 		  int binary ATTRIBUTE_UNUSED)
803 {
804   return fdopen (fd, "r");
805 }
806 
807 static FILE *
pex_unix_fdopenw(struct pex_obj * obj ATTRIBUTE_UNUSED,int fd,int binary ATTRIBUTE_UNUSED)808 pex_unix_fdopenw (struct pex_obj *obj ATTRIBUTE_UNUSED, int fd,
809 		  int binary ATTRIBUTE_UNUSED)
810 {
811   if (fcntl (fd, F_SETFD, FD_CLOEXEC) < 0)
812     return NULL;
813   return fdopen (fd, "w");
814 }
815 
816 static void
pex_unix_cleanup(struct pex_obj * obj ATTRIBUTE_UNUSED)817 pex_unix_cleanup (struct pex_obj *obj ATTRIBUTE_UNUSED)
818 {
819 #if !defined (HAVE_WAIT4) && !defined (HAVE_WAITPID)
820   while (obj->sysdep != NULL)
821     {
822       struct status_list *this;
823       struct status_list *next;
824 
825       this = (struct status_list *) obj->sysdep;
826       next = this->next;
827       free (this);
828       obj->sysdep = (void *) next;
829     }
830 #endif
831 }
832