1 /* BFD back-end for ALPHA Extended-Coff files.
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011, 2012
4    Free Software Foundation, Inc.
5    Modified from coff-mips.c by Steve Chamberlain <sac@cygnus.com> and
6    Ian Lance Taylor <ian@cygnus.com>.
7 
8    This file is part of BFD, the Binary File Descriptor library.
9 
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation; either version 3 of the License, or
13    (at your option) any later version.
14 
15    This program is distributed in the hope that it will be useful,
16    but WITHOUT ANY WARRANTY; without even the implied warranty of
17    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18    GNU General Public License for more details.
19 
20    You should have received a copy of the GNU General Public License
21    along with this program; if not, write to the Free Software
22    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23    MA 02110-1301, USA.  */
24 
25 #include "sysdep.h"
26 #include "bfd.h"
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "coff/internal.h"
30 #include "coff/sym.h"
31 #include "coff/symconst.h"
32 #include "coff/ecoff.h"
33 #include "coff/alpha.h"
34 #include "aout/ar.h"
35 #include "libcoff.h"
36 #include "libecoff.h"
37 
38 /* Prototypes for static functions.  */
39 
40 
41 
42 /* ECOFF has COFF sections, but the debugging information is stored in
43    a completely different format.  ECOFF targets use some of the
44    swapping routines from coffswap.h, and some of the generic COFF
45    routines in coffgen.c, but, unlike the real COFF targets, do not
46    use coffcode.h itself.
47 
48    Get the generic COFF swapping routines, except for the reloc,
49    symbol, and lineno ones.  Give them ecoff names.  Define some
50    accessor macros for the large sizes used for Alpha ECOFF.  */
51 
52 #define GET_FILEHDR_SYMPTR H_GET_64
53 #define PUT_FILEHDR_SYMPTR H_PUT_64
54 #define GET_AOUTHDR_TSIZE H_GET_64
55 #define PUT_AOUTHDR_TSIZE H_PUT_64
56 #define GET_AOUTHDR_DSIZE H_GET_64
57 #define PUT_AOUTHDR_DSIZE H_PUT_64
58 #define GET_AOUTHDR_BSIZE H_GET_64
59 #define PUT_AOUTHDR_BSIZE H_PUT_64
60 #define GET_AOUTHDR_ENTRY H_GET_64
61 #define PUT_AOUTHDR_ENTRY H_PUT_64
62 #define GET_AOUTHDR_TEXT_START H_GET_64
63 #define PUT_AOUTHDR_TEXT_START H_PUT_64
64 #define GET_AOUTHDR_DATA_START H_GET_64
65 #define PUT_AOUTHDR_DATA_START H_PUT_64
66 #define GET_SCNHDR_PADDR H_GET_64
67 #define PUT_SCNHDR_PADDR H_PUT_64
68 #define GET_SCNHDR_VADDR H_GET_64
69 #define PUT_SCNHDR_VADDR H_PUT_64
70 #define GET_SCNHDR_SIZE H_GET_64
71 #define PUT_SCNHDR_SIZE H_PUT_64
72 #define GET_SCNHDR_SCNPTR H_GET_64
73 #define PUT_SCNHDR_SCNPTR H_PUT_64
74 #define GET_SCNHDR_RELPTR H_GET_64
75 #define PUT_SCNHDR_RELPTR H_PUT_64
76 #define GET_SCNHDR_LNNOPTR H_GET_64
77 #define PUT_SCNHDR_LNNOPTR H_PUT_64
78 
79 #define ALPHAECOFF
80 
81 #define NO_COFF_RELOCS
82 #define NO_COFF_SYMBOLS
83 #define NO_COFF_LINENOS
84 #define coff_swap_filehdr_in alpha_ecoff_swap_filehdr_in
85 #define coff_swap_filehdr_out alpha_ecoff_swap_filehdr_out
86 #define coff_swap_aouthdr_in alpha_ecoff_swap_aouthdr_in
87 #define coff_swap_aouthdr_out alpha_ecoff_swap_aouthdr_out
88 #define coff_swap_scnhdr_in alpha_ecoff_swap_scnhdr_in
89 #define coff_swap_scnhdr_out alpha_ecoff_swap_scnhdr_out
90 #include "coffswap.h"
91 
92 /* Get the ECOFF swapping routines.  */
93 #define ECOFF_64
94 #include "ecoffswap.h"
95 
96 /* How to process the various reloc types.  */
97 
98 static bfd_reloc_status_type
reloc_nil(bfd * abfd ATTRIBUTE_UNUSED,arelent * reloc ATTRIBUTE_UNUSED,asymbol * sym ATTRIBUTE_UNUSED,void * data ATTRIBUTE_UNUSED,asection * sec ATTRIBUTE_UNUSED,bfd * output_bfd ATTRIBUTE_UNUSED,char ** error_message ATTRIBUTE_UNUSED)99 reloc_nil (bfd *abfd ATTRIBUTE_UNUSED,
100 	   arelent *reloc ATTRIBUTE_UNUSED,
101 	   asymbol *sym ATTRIBUTE_UNUSED,
102 	   void * data ATTRIBUTE_UNUSED,
103 	   asection *sec ATTRIBUTE_UNUSED,
104 	   bfd *output_bfd ATTRIBUTE_UNUSED,
105 	   char **error_message ATTRIBUTE_UNUSED)
106 {
107   return bfd_reloc_ok;
108 }
109 
110 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
111    from smaller values.  Start with zero, widen, *then* decrement.  */
112 #define MINUS_ONE	(((bfd_vma)0) - 1)
113 
114 static reloc_howto_type alpha_howto_table[] =
115 {
116   /* Reloc type 0 is ignored by itself.  However, it appears after a
117      GPDISP reloc to identify the location where the low order 16 bits
118      of the gp register are loaded.  */
119   HOWTO (ALPHA_R_IGNORE,	/* type */
120 	 0,			/* rightshift */
121 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
122 	 8,			/* bitsize */
123 	 TRUE,			/* pc_relative */
124 	 0,			/* bitpos */
125 	 complain_overflow_dont, /* complain_on_overflow */
126 	 reloc_nil,		/* special_function */
127 	 "IGNORE",		/* name */
128 	 TRUE,			/* partial_inplace */
129 	 0,			/* src_mask */
130 	 0,			/* dst_mask */
131 	 TRUE),			/* pcrel_offset */
132 
133   /* A 32 bit reference to a symbol.  */
134   HOWTO (ALPHA_R_REFLONG,	/* type */
135 	 0,			/* rightshift */
136 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
137 	 32,			/* bitsize */
138 	 FALSE,			/* pc_relative */
139 	 0,			/* bitpos */
140 	 complain_overflow_bitfield, /* complain_on_overflow */
141 	 0,			/* special_function */
142 	 "REFLONG",		/* name */
143 	 TRUE,			/* partial_inplace */
144 	 0xffffffff,		/* src_mask */
145 	 0xffffffff,		/* dst_mask */
146 	 FALSE),		/* pcrel_offset */
147 
148   /* A 64 bit reference to a symbol.  */
149   HOWTO (ALPHA_R_REFQUAD,	/* type */
150 	 0,			/* rightshift */
151 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
152 	 64,			/* bitsize */
153 	 FALSE,			/* pc_relative */
154 	 0,			/* bitpos */
155 	 complain_overflow_bitfield, /* complain_on_overflow */
156 	 0,			/* special_function */
157 	 "REFQUAD",		/* name */
158 	 TRUE,			/* partial_inplace */
159 	 MINUS_ONE,		/* src_mask */
160 	 MINUS_ONE,		/* dst_mask */
161 	 FALSE),		/* pcrel_offset */
162 
163   /* A 32 bit GP relative offset.  This is just like REFLONG except
164      that when the value is used the value of the gp register will be
165      added in.  */
166   HOWTO (ALPHA_R_GPREL32,	/* type */
167 	 0,			/* rightshift */
168 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
169 	 32,			/* bitsize */
170 	 FALSE,			/* pc_relative */
171 	 0,			/* bitpos */
172 	 complain_overflow_bitfield, /* complain_on_overflow */
173 	 0,			/* special_function */
174 	 "GPREL32",		/* name */
175 	 TRUE,			/* partial_inplace */
176 	 0xffffffff,		/* src_mask */
177 	 0xffffffff,		/* dst_mask */
178 	 FALSE),		/* pcrel_offset */
179 
180   /* Used for an instruction that refers to memory off the GP
181      register.  The offset is 16 bits of the 32 bit instruction.  This
182      reloc always seems to be against the .lita section.  */
183   HOWTO (ALPHA_R_LITERAL,	/* type */
184 	 0,			/* rightshift */
185 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
186 	 16,			/* bitsize */
187 	 FALSE,			/* pc_relative */
188 	 0,			/* bitpos */
189 	 complain_overflow_signed, /* complain_on_overflow */
190 	 0,			/* special_function */
191 	 "LITERAL",		/* name */
192 	 TRUE,			/* partial_inplace */
193 	 0xffff,		/* src_mask */
194 	 0xffff,		/* dst_mask */
195 	 FALSE),		/* pcrel_offset */
196 
197   /* This reloc only appears immediately following a LITERAL reloc.
198      It identifies a use of the literal.  It seems that the linker can
199      use this to eliminate a portion of the .lita section.  The symbol
200      index is special: 1 means the literal address is in the base
201      register of a memory format instruction; 2 means the literal
202      address is in the byte offset register of a byte-manipulation
203      instruction; 3 means the literal address is in the target
204      register of a jsr instruction.  This does not actually do any
205      relocation.  */
206   HOWTO (ALPHA_R_LITUSE,	/* type */
207 	 0,			/* rightshift */
208 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
209 	 32,			/* bitsize */
210 	 FALSE,			/* pc_relative */
211 	 0,			/* bitpos */
212 	 complain_overflow_dont, /* complain_on_overflow */
213 	 reloc_nil,		/* special_function */
214 	 "LITUSE",		/* name */
215 	 FALSE,			/* partial_inplace */
216 	 0,			/* src_mask */
217 	 0,			/* dst_mask */
218 	 FALSE),		/* pcrel_offset */
219 
220   /* Load the gp register.  This is always used for a ldah instruction
221      which loads the upper 16 bits of the gp register.  The next reloc
222      will be an IGNORE reloc which identifies the location of the lda
223      instruction which loads the lower 16 bits.  The symbol index of
224      the GPDISP instruction appears to actually be the number of bytes
225      between the ldah and lda instructions.  This gives two different
226      ways to determine where the lda instruction is; I don't know why
227      both are used.  The value to use for the relocation is the
228      difference between the GP value and the current location; the
229      load will always be done against a register holding the current
230      address.  */
231   HOWTO (ALPHA_R_GPDISP,	/* type */
232 	 16,			/* rightshift */
233 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
234 	 16,			/* bitsize */
235 	 TRUE,			/* pc_relative */
236 	 0,			/* bitpos */
237 	 complain_overflow_dont, /* complain_on_overflow */
238 	 reloc_nil,		/* special_function */
239 	 "GPDISP",		/* name */
240 	 TRUE,			/* partial_inplace */
241 	 0xffff,		/* src_mask */
242 	 0xffff,		/* dst_mask */
243 	 TRUE),			/* pcrel_offset */
244 
245   /* A 21 bit branch.  The native assembler generates these for
246      branches within the text segment, and also fills in the PC
247      relative offset in the instruction.  */
248   HOWTO (ALPHA_R_BRADDR,	/* type */
249 	 2,			/* rightshift */
250 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
251 	 21,			/* bitsize */
252 	 TRUE,			/* pc_relative */
253 	 0,			/* bitpos */
254 	 complain_overflow_signed, /* complain_on_overflow */
255 	 0,			/* special_function */
256 	 "BRADDR",		/* name */
257 	 TRUE,			/* partial_inplace */
258 	 0x1fffff,		/* src_mask */
259 	 0x1fffff,		/* dst_mask */
260 	 FALSE),		/* pcrel_offset */
261 
262   /* A hint for a jump to a register.  */
263   HOWTO (ALPHA_R_HINT,		/* type */
264 	 2,			/* rightshift */
265 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
266 	 14,			/* bitsize */
267 	 TRUE,			/* pc_relative */
268 	 0,			/* bitpos */
269 	 complain_overflow_dont, /* complain_on_overflow */
270 	 0,			/* special_function */
271 	 "HINT",		/* name */
272 	 TRUE,			/* partial_inplace */
273 	 0x3fff,		/* src_mask */
274 	 0x3fff,		/* dst_mask */
275 	 FALSE),		/* pcrel_offset */
276 
277   /* 16 bit PC relative offset.  */
278   HOWTO (ALPHA_R_SREL16,	/* type */
279 	 0,			/* rightshift */
280 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
281 	 16,			/* bitsize */
282 	 TRUE,			/* pc_relative */
283 	 0,			/* bitpos */
284 	 complain_overflow_signed, /* complain_on_overflow */
285 	 0,			/* special_function */
286 	 "SREL16",		/* name */
287 	 TRUE,			/* partial_inplace */
288 	 0xffff,		/* src_mask */
289 	 0xffff,		/* dst_mask */
290 	 FALSE),		/* pcrel_offset */
291 
292   /* 32 bit PC relative offset.  */
293   HOWTO (ALPHA_R_SREL32,	/* type */
294 	 0,			/* rightshift */
295 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
296 	 32,			/* bitsize */
297 	 TRUE,			/* pc_relative */
298 	 0,			/* bitpos */
299 	 complain_overflow_signed, /* complain_on_overflow */
300 	 0,			/* special_function */
301 	 "SREL32",		/* name */
302 	 TRUE,			/* partial_inplace */
303 	 0xffffffff,		/* src_mask */
304 	 0xffffffff,		/* dst_mask */
305 	 FALSE),		/* pcrel_offset */
306 
307   /* A 64 bit PC relative offset.  */
308   HOWTO (ALPHA_R_SREL64,	/* type */
309 	 0,			/* rightshift */
310 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
311 	 64,			/* bitsize */
312 	 TRUE,			/* pc_relative */
313 	 0,			/* bitpos */
314 	 complain_overflow_signed, /* complain_on_overflow */
315 	 0,			/* special_function */
316 	 "SREL64",		/* name */
317 	 TRUE,			/* partial_inplace */
318 	 MINUS_ONE,		/* src_mask */
319 	 MINUS_ONE,		/* dst_mask */
320 	 FALSE),		/* pcrel_offset */
321 
322   /* Push a value on the reloc evaluation stack.  */
323   HOWTO (ALPHA_R_OP_PUSH,	/* type */
324 	 0,			/* rightshift */
325 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
326 	 0,			/* bitsize */
327 	 FALSE,			/* pc_relative */
328 	 0,			/* bitpos */
329 	 complain_overflow_dont, /* complain_on_overflow */
330 	 0,			/* special_function */
331 	 "OP_PUSH",		/* name */
332 	 FALSE,			/* partial_inplace */
333 	 0,			/* src_mask */
334 	 0,			/* dst_mask */
335 	 FALSE),		/* pcrel_offset */
336 
337   /* Store the value from the stack at the given address.  Store it in
338      a bitfield of size r_size starting at bit position r_offset.  */
339   HOWTO (ALPHA_R_OP_STORE,	/* type */
340 	 0,			/* rightshift */
341 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
342 	 64,			/* bitsize */
343 	 FALSE,			/* pc_relative */
344 	 0,			/* bitpos */
345 	 complain_overflow_dont, /* complain_on_overflow */
346 	 0,			/* special_function */
347 	 "OP_STORE",		/* name */
348 	 FALSE,			/* partial_inplace */
349 	 0,			/* src_mask */
350 	 MINUS_ONE,		/* dst_mask */
351 	 FALSE),		/* pcrel_offset */
352 
353   /* Subtract the reloc address from the value on the top of the
354      relocation stack.  */
355   HOWTO (ALPHA_R_OP_PSUB,	/* type */
356 	 0,			/* rightshift */
357 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
358 	 0,			/* bitsize */
359 	 FALSE,			/* pc_relative */
360 	 0,			/* bitpos */
361 	 complain_overflow_dont, /* complain_on_overflow */
362 	 0,			/* special_function */
363 	 "OP_PSUB",		/* name */
364 	 FALSE,			/* partial_inplace */
365 	 0,			/* src_mask */
366 	 0,			/* dst_mask */
367 	 FALSE),		/* pcrel_offset */
368 
369   /* Shift the value on the top of the relocation stack right by the
370      given value.  */
371   HOWTO (ALPHA_R_OP_PRSHIFT,	/* type */
372 	 0,			/* rightshift */
373 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
374 	 0,			/* bitsize */
375 	 FALSE,			/* pc_relative */
376 	 0,			/* bitpos */
377 	 complain_overflow_dont, /* complain_on_overflow */
378 	 0,			/* special_function */
379 	 "OP_PRSHIFT",		/* name */
380 	 FALSE,			/* partial_inplace */
381 	 0,			/* src_mask */
382 	 0,			/* dst_mask */
383 	 FALSE),		/* pcrel_offset */
384 
385   /* Adjust the GP value for a new range in the object file.  */
386   HOWTO (ALPHA_R_GPVALUE,	/* type */
387 	 0,			/* rightshift */
388 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
389 	 0,			/* bitsize */
390 	 FALSE,			/* pc_relative */
391 	 0,			/* bitpos */
392 	 complain_overflow_dont, /* complain_on_overflow */
393 	 0,			/* special_function */
394 	 "GPVALUE",		/* name */
395 	 FALSE,			/* partial_inplace */
396 	 0,			/* src_mask */
397 	 0,			/* dst_mask */
398 	 FALSE)			/* pcrel_offset */
399 };
400 
401 /* Recognize an Alpha ECOFF file.  */
402 
403 static const bfd_target *
alpha_ecoff_object_p(bfd * abfd)404 alpha_ecoff_object_p (bfd *abfd)
405 {
406   static const bfd_target *ret;
407 
408   ret = coff_object_p (abfd);
409 
410   if (ret != NULL)
411     {
412       asection *sec;
413 
414       /* Alpha ECOFF has a .pdata section.  The lnnoptr field of the
415 	 .pdata section is the number of entries it contains.  Each
416 	 entry takes up 8 bytes.  The number of entries is required
417 	 since the section is aligned to a 16 byte boundary.  When we
418 	 link .pdata sections together, we do not want to include the
419 	 alignment bytes.  We handle this on input by faking the size
420 	 of the .pdata section to remove the unwanted alignment bytes.
421 	 On output we will set the lnnoptr field and force the
422 	 alignment.  */
423       sec = bfd_get_section_by_name (abfd, _PDATA);
424       if (sec != (asection *) NULL)
425 	{
426 	  bfd_size_type size;
427 
428 	  size = sec->line_filepos * 8;
429 	  BFD_ASSERT (size == sec->size
430 		      || size + 8 == sec->size);
431 	  if (! bfd_set_section_size (abfd, sec, size))
432 	    return NULL;
433 	}
434     }
435 
436   return ret;
437 }
438 
439 /* See whether the magic number matches.  */
440 
441 static bfd_boolean
alpha_ecoff_bad_format_hook(bfd * abfd ATTRIBUTE_UNUSED,void * filehdr)442 alpha_ecoff_bad_format_hook (bfd *abfd ATTRIBUTE_UNUSED,
443 			     void * filehdr)
444 {
445   struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
446 
447   if (! ALPHA_ECOFF_BADMAG (*internal_f))
448     return TRUE;
449 
450   if (ALPHA_ECOFF_COMPRESSEDMAG (*internal_f))
451     (*_bfd_error_handler)
452       (_("%B: Cannot handle compressed Alpha binaries.\n"
453 	 "   Use compiler flags, or objZ, to generate uncompressed binaries."),
454        abfd);
455 
456   return FALSE;
457 }
458 
459 /* This is a hook called by coff_real_object_p to create any backend
460    specific information.  */
461 
462 static void *
alpha_ecoff_mkobject_hook(bfd * abfd,void * filehdr,void * aouthdr)463 alpha_ecoff_mkobject_hook (bfd *abfd, void * filehdr, void * aouthdr)
464 {
465   void * ecoff;
466 
467   ecoff = _bfd_ecoff_mkobject_hook (abfd, filehdr, aouthdr);
468 
469   if (ecoff != NULL)
470     {
471       struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
472 
473       /* Set additional BFD flags according to the object type from the
474 	 machine specific file header flags.  */
475       switch (internal_f->f_flags & F_ALPHA_OBJECT_TYPE_MASK)
476 	{
477 	case F_ALPHA_SHARABLE:
478 	  abfd->flags |= DYNAMIC;
479 	  break;
480 	case F_ALPHA_CALL_SHARED:
481 	  /* Always executable if using shared libraries as the run time
482 	     loader might resolve undefined references.  */
483 	  abfd->flags |= (DYNAMIC | EXEC_P);
484 	  break;
485 	}
486     }
487   return ecoff;
488 }
489 
490 /* Reloc handling.  */
491 
492 /* Swap a reloc in.  */
493 
494 static void
alpha_ecoff_swap_reloc_in(bfd * abfd,void * ext_ptr,struct internal_reloc * intern)495 alpha_ecoff_swap_reloc_in (bfd *abfd,
496 			   void * ext_ptr,
497 			   struct internal_reloc *intern)
498 {
499   const RELOC *ext = (RELOC *) ext_ptr;
500 
501   intern->r_vaddr = H_GET_64 (abfd, ext->r_vaddr);
502   intern->r_symndx = H_GET_32 (abfd, ext->r_symndx);
503 
504   BFD_ASSERT (bfd_header_little_endian (abfd));
505 
506   intern->r_type = ((ext->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
507 		    >> RELOC_BITS0_TYPE_SH_LITTLE);
508   intern->r_extern = (ext->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
509   intern->r_offset = ((ext->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
510 		      >> RELOC_BITS1_OFFSET_SH_LITTLE);
511   /* Ignored the reserved bits.  */
512   intern->r_size = ((ext->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
513 		    >> RELOC_BITS3_SIZE_SH_LITTLE);
514 
515   if (intern->r_type == ALPHA_R_LITUSE
516       || intern->r_type == ALPHA_R_GPDISP)
517     {
518       /* Handle the LITUSE and GPDISP relocs specially.  Its symndx
519 	 value is not actually a symbol index, but is instead a
520 	 special code.  We put the code in the r_size field, and
521 	 clobber the symndx.  */
522       if (intern->r_size != 0)
523 	abort ();
524       intern->r_size = intern->r_symndx;
525       intern->r_symndx = RELOC_SECTION_NONE;
526     }
527   else if (intern->r_type == ALPHA_R_IGNORE)
528     {
529       /* The IGNORE reloc generally follows a GPDISP reloc, and is
530 	 against the .lita section.  The section is irrelevant.  */
531       if (! intern->r_extern &&
532 	  intern->r_symndx == RELOC_SECTION_ABS)
533 	abort ();
534       if (! intern->r_extern && intern->r_symndx == RELOC_SECTION_LITA)
535 	intern->r_symndx = RELOC_SECTION_ABS;
536     }
537 }
538 
539 /* Swap a reloc out.  */
540 
541 static void
alpha_ecoff_swap_reloc_out(bfd * abfd,const struct internal_reloc * intern,void * dst)542 alpha_ecoff_swap_reloc_out (bfd *abfd,
543 			    const struct internal_reloc *intern,
544 			    void * dst)
545 {
546   RELOC *ext = (RELOC *) dst;
547   long symndx;
548   unsigned char size;
549 
550   /* Undo the hackery done in swap_reloc_in.  */
551   if (intern->r_type == ALPHA_R_LITUSE
552       || intern->r_type == ALPHA_R_GPDISP)
553     {
554       symndx = intern->r_size;
555       size = 0;
556     }
557   else if (intern->r_type == ALPHA_R_IGNORE
558 	   && ! intern->r_extern
559 	   && intern->r_symndx == RELOC_SECTION_ABS)
560     {
561       symndx = RELOC_SECTION_LITA;
562       size = intern->r_size;
563     }
564   else
565     {
566       symndx = intern->r_symndx;
567       size = intern->r_size;
568     }
569 
570   /* XXX FIXME:  The maximum symndx value used to be 14 but this
571      fails with object files produced by DEC's C++ compiler.
572      Where does the value 14 (or 15) come from anyway ?  */
573   BFD_ASSERT (intern->r_extern
574 	      || (intern->r_symndx >= 0 && intern->r_symndx <= 15));
575 
576   H_PUT_64 (abfd, intern->r_vaddr, ext->r_vaddr);
577   H_PUT_32 (abfd, symndx, ext->r_symndx);
578 
579   BFD_ASSERT (bfd_header_little_endian (abfd));
580 
581   ext->r_bits[0] = ((intern->r_type << RELOC_BITS0_TYPE_SH_LITTLE)
582 		    & RELOC_BITS0_TYPE_LITTLE);
583   ext->r_bits[1] = ((intern->r_extern ? RELOC_BITS1_EXTERN_LITTLE : 0)
584 		    | ((intern->r_offset << RELOC_BITS1_OFFSET_SH_LITTLE)
585 		       & RELOC_BITS1_OFFSET_LITTLE));
586   ext->r_bits[2] = 0;
587   ext->r_bits[3] = ((size << RELOC_BITS3_SIZE_SH_LITTLE)
588 		    & RELOC_BITS3_SIZE_LITTLE);
589 }
590 
591 /* Finish canonicalizing a reloc.  Part of this is generic to all
592    ECOFF targets, and that part is in ecoff.c.  The rest is done in
593    this backend routine.  It must fill in the howto field.  */
594 
595 static void
alpha_adjust_reloc_in(bfd * abfd,const struct internal_reloc * intern,arelent * rptr)596 alpha_adjust_reloc_in (bfd *abfd,
597 		       const struct internal_reloc *intern,
598 		       arelent *rptr)
599 {
600   if (intern->r_type > ALPHA_R_GPVALUE)
601     {
602       (*_bfd_error_handler)
603 	(_("%B: unknown/unsupported relocation type %d"),
604 	 abfd, intern->r_type);
605       bfd_set_error (bfd_error_bad_value);
606       rptr->addend = 0;
607       rptr->howto  = NULL;
608       return;
609     }
610 
611   switch (intern->r_type)
612     {
613     case ALPHA_R_BRADDR:
614     case ALPHA_R_SREL16:
615     case ALPHA_R_SREL32:
616     case ALPHA_R_SREL64:
617       /* This relocs appear to be fully resolved when they are against
618          internal symbols.  Against external symbols, BRADDR at least
619          appears to be resolved against the next instruction.  */
620       if (! intern->r_extern)
621 	rptr->addend = 0;
622       else
623 	rptr->addend = - (intern->r_vaddr + 4);
624       break;
625 
626     case ALPHA_R_GPREL32:
627     case ALPHA_R_LITERAL:
628       /* Copy the gp value for this object file into the addend, to
629 	 ensure that we are not confused by the linker.  */
630       if (! intern->r_extern)
631 	rptr->addend += ecoff_data (abfd)->gp;
632       break;
633 
634     case ALPHA_R_LITUSE:
635     case ALPHA_R_GPDISP:
636       /* The LITUSE and GPDISP relocs do not use a symbol, or an
637 	 addend, but they do use a special code.  Put this code in the
638 	 addend field.  */
639       rptr->addend = intern->r_size;
640       break;
641 
642     case ALPHA_R_OP_STORE:
643       /* The STORE reloc needs the size and offset fields.  We store
644 	 them in the addend.  */
645       BFD_ASSERT (intern->r_offset <= 256);
646       rptr->addend = (intern->r_offset << 8) + intern->r_size;
647       break;
648 
649     case ALPHA_R_OP_PUSH:
650     case ALPHA_R_OP_PSUB:
651     case ALPHA_R_OP_PRSHIFT:
652       /* The PUSH, PSUB and PRSHIFT relocs do not actually use an
653 	 address.  I believe that the address supplied is really an
654 	 addend.  */
655       rptr->addend = intern->r_vaddr;
656       break;
657 
658     case ALPHA_R_GPVALUE:
659       /* Set the addend field to the new GP value.  */
660       rptr->addend = intern->r_symndx + ecoff_data (abfd)->gp;
661       break;
662 
663     case ALPHA_R_IGNORE:
664       /* If the type is ALPHA_R_IGNORE, make sure this is a reference
665 	 to the absolute section so that the reloc is ignored.  For
666 	 some reason the address of this reloc type is not adjusted by
667 	 the section vma.  We record the gp value for this object file
668 	 here, for convenience when doing the GPDISP relocation.  */
669       rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
670       rptr->address = intern->r_vaddr;
671       rptr->addend = ecoff_data (abfd)->gp;
672       break;
673 
674     default:
675       break;
676     }
677 
678   rptr->howto = &alpha_howto_table[intern->r_type];
679 }
680 
681 /* When writing out a reloc we need to pull some values back out of
682    the addend field into the reloc.  This is roughly the reverse of
683    alpha_adjust_reloc_in, except that there are several changes we do
684    not need to undo.  */
685 
686 static void
alpha_adjust_reloc_out(bfd * abfd ATTRIBUTE_UNUSED,const arelent * rel,struct internal_reloc * intern)687 alpha_adjust_reloc_out (bfd *abfd ATTRIBUTE_UNUSED,
688 			const arelent *rel,
689 			struct internal_reloc *intern)
690 {
691   switch (intern->r_type)
692     {
693     case ALPHA_R_LITUSE:
694     case ALPHA_R_GPDISP:
695       intern->r_size = rel->addend;
696       break;
697 
698     case ALPHA_R_OP_STORE:
699       intern->r_size = rel->addend & 0xff;
700       intern->r_offset = (rel->addend >> 8) & 0xff;
701       break;
702 
703     case ALPHA_R_OP_PUSH:
704     case ALPHA_R_OP_PSUB:
705     case ALPHA_R_OP_PRSHIFT:
706       intern->r_vaddr = rel->addend;
707       break;
708 
709     case ALPHA_R_IGNORE:
710       intern->r_vaddr = rel->address;
711       break;
712 
713     default:
714       break;
715     }
716 }
717 
718 /* The size of the stack for the relocation evaluator.  */
719 #define RELOC_STACKSIZE (10)
720 
721 /* Alpha ECOFF relocs have a built in expression evaluator as well as
722    other interdependencies.  Rather than use a bunch of special
723    functions and global variables, we use a single routine to do all
724    the relocation for a section.  I haven't yet worked out how the
725    assembler is going to handle this.  */
726 
727 static bfd_byte *
alpha_ecoff_get_relocated_section_contents(bfd * abfd,struct bfd_link_info * link_info,struct bfd_link_order * link_order,bfd_byte * data,bfd_boolean relocatable,asymbol ** symbols)728 alpha_ecoff_get_relocated_section_contents (bfd *abfd,
729 					    struct bfd_link_info *link_info,
730 					    struct bfd_link_order *link_order,
731 					    bfd_byte *data,
732 					    bfd_boolean relocatable,
733 					    asymbol **symbols)
734 {
735   bfd *input_bfd = link_order->u.indirect.section->owner;
736   asection *input_section = link_order->u.indirect.section;
737   long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
738   arelent **reloc_vector = NULL;
739   long reloc_count;
740   bfd *output_bfd = relocatable ? abfd : (bfd *) NULL;
741   bfd_vma gp;
742   bfd_size_type sz;
743   bfd_boolean gp_undefined;
744   bfd_vma stack[RELOC_STACKSIZE];
745   int tos = 0;
746 
747   if (reloc_size < 0)
748     goto error_return;
749   reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
750   if (reloc_vector == NULL && reloc_size != 0)
751     goto error_return;
752 
753   sz = input_section->rawsize ? input_section->rawsize : input_section->size;
754   if (! bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
755     goto error_return;
756 
757   reloc_count = bfd_canonicalize_reloc (input_bfd, input_section,
758 					reloc_vector, symbols);
759   if (reloc_count < 0)
760     goto error_return;
761   if (reloc_count == 0)
762     goto successful_return;
763 
764   /* Get the GP value for the output BFD.  */
765   gp_undefined = FALSE;
766   gp = _bfd_get_gp_value (abfd);
767   if (gp == 0)
768     {
769       if (relocatable)
770 	{
771 	  asection *sec;
772 	  bfd_vma lo;
773 
774 	  /* Make up a value.  */
775 	  lo = (bfd_vma) -1;
776 	  for (sec = abfd->sections; sec != NULL; sec = sec->next)
777 	    {
778 	      if (sec->vma < lo
779 		  && (strcmp (sec->name, ".sbss") == 0
780 		      || strcmp (sec->name, ".sdata") == 0
781 		      || strcmp (sec->name, ".lit4") == 0
782 		      || strcmp (sec->name, ".lit8") == 0
783 		      || strcmp (sec->name, ".lita") == 0))
784 		lo = sec->vma;
785 	    }
786 	  gp = lo + 0x8000;
787 	  _bfd_set_gp_value (abfd, gp);
788 	}
789       else
790 	{
791 	  struct bfd_link_hash_entry *h;
792 
793 	  h = bfd_link_hash_lookup (link_info->hash, "_gp", FALSE, FALSE,
794 				    TRUE);
795 	  if (h == (struct bfd_link_hash_entry *) NULL
796 	      || h->type != bfd_link_hash_defined)
797 	    gp_undefined = TRUE;
798 	  else
799 	    {
800 	      gp = (h->u.def.value
801 		    + h->u.def.section->output_section->vma
802 		    + h->u.def.section->output_offset);
803 	      _bfd_set_gp_value (abfd, gp);
804 	    }
805 	}
806     }
807 
808   for (; *reloc_vector != (arelent *) NULL; reloc_vector++)
809     {
810       arelent *rel;
811       bfd_reloc_status_type r;
812       char *err;
813 
814       rel = *reloc_vector;
815       r = bfd_reloc_ok;
816       switch (rel->howto->type)
817 	{
818 	case ALPHA_R_IGNORE:
819 	  rel->address += input_section->output_offset;
820 	  break;
821 
822 	case ALPHA_R_REFLONG:
823 	case ALPHA_R_REFQUAD:
824 	case ALPHA_R_BRADDR:
825 	case ALPHA_R_HINT:
826 	case ALPHA_R_SREL16:
827 	case ALPHA_R_SREL32:
828 	case ALPHA_R_SREL64:
829 	  if (relocatable
830 	      && ((*rel->sym_ptr_ptr)->flags & BSF_SECTION_SYM) == 0)
831 	    {
832 	      rel->address += input_section->output_offset;
833 	      break;
834 	    }
835 	  r = bfd_perform_relocation (input_bfd, rel, data, input_section,
836 				      output_bfd, &err);
837 	  break;
838 
839 	case ALPHA_R_GPREL32:
840 	  /* This relocation is used in a switch table.  It is a 32
841 	     bit offset from the current GP value.  We must adjust it
842 	     by the different between the original GP value and the
843 	     current GP value.  The original GP value is stored in the
844 	     addend.  We adjust the addend and let
845 	     bfd_perform_relocation finish the job.  */
846 	  rel->addend -= gp;
847 	  r = bfd_perform_relocation (input_bfd, rel, data, input_section,
848 				      output_bfd, &err);
849 	  if (r == bfd_reloc_ok && gp_undefined)
850 	    {
851 	      r = bfd_reloc_dangerous;
852 	      err = (char *) _("GP relative relocation used when GP not defined");
853 	    }
854 	  break;
855 
856 	case ALPHA_R_LITERAL:
857 	  /* This is a reference to a literal value, generally
858 	     (always?) in the .lita section.  This is a 16 bit GP
859 	     relative relocation.  Sometimes the subsequent reloc is a
860 	     LITUSE reloc, which indicates how this reloc is used.
861 	     This sometimes permits rewriting the two instructions
862 	     referred to by the LITERAL and the LITUSE into different
863 	     instructions which do not refer to .lita.  This can save
864 	     a memory reference, and permits removing a value from
865 	     .lita thus saving GP relative space.
866 
867 	     We do not these optimizations.  To do them we would need
868 	     to arrange to link the .lita section first, so that by
869 	     the time we got here we would know the final values to
870 	     use.  This would not be particularly difficult, but it is
871 	     not currently implemented.  */
872 
873 	  {
874 	    unsigned long insn;
875 
876 	    /* I believe that the LITERAL reloc will only apply to a
877 	       ldq or ldl instruction, so check my assumption.  */
878 	    insn = bfd_get_32 (input_bfd, data + rel->address);
879 	    BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
880 			|| ((insn >> 26) & 0x3f) == 0x28);
881 
882 	    rel->addend -= gp;
883 	    r = bfd_perform_relocation (input_bfd, rel, data, input_section,
884 					output_bfd, &err);
885 	    if (r == bfd_reloc_ok && gp_undefined)
886 	      {
887 		r = bfd_reloc_dangerous;
888 		err =
889 		  (char *) _("GP relative relocation used when GP not defined");
890 	      }
891 	  }
892 	  break;
893 
894 	case ALPHA_R_LITUSE:
895 	  /* See ALPHA_R_LITERAL above for the uses of this reloc.  It
896 	     does not cause anything to happen, itself.  */
897 	  rel->address += input_section->output_offset;
898 	  break;
899 
900 	case ALPHA_R_GPDISP:
901 	  /* This marks the ldah of an ldah/lda pair which loads the
902 	     gp register with the difference of the gp value and the
903 	     current location.  The second of the pair is r_size bytes
904 	     ahead; it used to be marked with an ALPHA_R_IGNORE reloc,
905 	     but that no longer happens in OSF/1 3.2.  */
906 	  {
907 	    unsigned long insn1, insn2;
908 	    bfd_vma addend;
909 
910 	    /* Get the two instructions.  */
911 	    insn1 = bfd_get_32 (input_bfd, data + rel->address);
912 	    insn2 = bfd_get_32 (input_bfd, data + rel->address + rel->addend);
913 
914 	    BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
915 	    BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
916 
917 	    /* Get the existing addend.  We must account for the sign
918 	       extension done by lda and ldah.  */
919 	    addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
920 	    if (insn1 & 0x8000)
921 	      {
922 		addend -= 0x80000000;
923 		addend -= 0x80000000;
924 	      }
925 	    if (insn2 & 0x8000)
926 	      addend -= 0x10000;
927 
928 	    /* The existing addend includes the different between the
929 	       gp of the input BFD and the address in the input BFD.
930 	       Subtract this out.  */
931 	    addend -= (ecoff_data (input_bfd)->gp
932 		       - (input_section->vma + rel->address));
933 
934 	    /* Now add in the final gp value, and subtract out the
935 	       final address.  */
936 	    addend += (gp
937 		       - (input_section->output_section->vma
938 			  + input_section->output_offset
939 			  + rel->address));
940 
941 	    /* Change the instructions, accounting for the sign
942 	       extension, and write them out.  */
943 	    if (addend & 0x8000)
944 	      addend += 0x10000;
945 	    insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
946 	    insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
947 
948 	    bfd_put_32 (input_bfd, (bfd_vma) insn1, data + rel->address);
949 	    bfd_put_32 (input_bfd, (bfd_vma) insn2,
950 			data + rel->address + rel->addend);
951 
952 	    rel->address += input_section->output_offset;
953 	  }
954 	  break;
955 
956 	case ALPHA_R_OP_PUSH:
957 	  /* Push a value on the reloc evaluation stack.  */
958 	  {
959 	    asymbol *symbol;
960 	    bfd_vma relocation;
961 
962 	    if (relocatable)
963 	      {
964 		rel->address += input_section->output_offset;
965 		break;
966 	      }
967 
968 	    /* Figure out the relocation of this symbol.  */
969 	    symbol = *rel->sym_ptr_ptr;
970 
971 	    if (bfd_is_und_section (symbol->section))
972 	      r = bfd_reloc_undefined;
973 
974 	    if (bfd_is_com_section (symbol->section))
975 	      relocation = 0;
976 	    else
977 	      relocation = symbol->value;
978 	    relocation += symbol->section->output_section->vma;
979 	    relocation += symbol->section->output_offset;
980 	    relocation += rel->addend;
981 
982 	    if (tos >= RELOC_STACKSIZE)
983 	      abort ();
984 
985 	    stack[tos++] = relocation;
986 	  }
987 	  break;
988 
989 	case ALPHA_R_OP_STORE:
990 	  /* Store a value from the reloc stack into a bitfield.  */
991 	  {
992 	    bfd_vma val;
993 	    int offset, size;
994 
995 	    if (relocatable)
996 	      {
997 		rel->address += input_section->output_offset;
998 		break;
999 	      }
1000 
1001 	    if (tos == 0)
1002 	      abort ();
1003 
1004 	    /* The offset and size for this reloc are encoded into the
1005 	       addend field by alpha_adjust_reloc_in.  */
1006 	    offset = (rel->addend >> 8) & 0xff;
1007 	    size = rel->addend & 0xff;
1008 
1009 	    val = bfd_get_64 (abfd, data + rel->address);
1010 	    val &=~ (((1 << size) - 1) << offset);
1011 	    val |= (stack[--tos] & ((1 << size) - 1)) << offset;
1012 	    bfd_put_64 (abfd, val, data + rel->address);
1013 	  }
1014 	  break;
1015 
1016 	case ALPHA_R_OP_PSUB:
1017 	  /* Subtract a value from the top of the stack.  */
1018 	  {
1019 	    asymbol *symbol;
1020 	    bfd_vma relocation;
1021 
1022 	    if (relocatable)
1023 	      {
1024 		rel->address += input_section->output_offset;
1025 		break;
1026 	      }
1027 
1028 	    /* Figure out the relocation of this symbol.  */
1029 	    symbol = *rel->sym_ptr_ptr;
1030 
1031 	    if (bfd_is_und_section (symbol->section))
1032 	      r = bfd_reloc_undefined;
1033 
1034 	    if (bfd_is_com_section (symbol->section))
1035 	      relocation = 0;
1036 	    else
1037 	      relocation = symbol->value;
1038 	    relocation += symbol->section->output_section->vma;
1039 	    relocation += symbol->section->output_offset;
1040 	    relocation += rel->addend;
1041 
1042 	    if (tos == 0)
1043 	      abort ();
1044 
1045 	    stack[tos - 1] -= relocation;
1046 	  }
1047 	  break;
1048 
1049 	case ALPHA_R_OP_PRSHIFT:
1050 	  /* Shift the value on the top of the stack.  */
1051 	  {
1052 	    asymbol *symbol;
1053 	    bfd_vma relocation;
1054 
1055 	    if (relocatable)
1056 	      {
1057 		rel->address += input_section->output_offset;
1058 		break;
1059 	      }
1060 
1061 	    /* Figure out the relocation of this symbol.  */
1062 	    symbol = *rel->sym_ptr_ptr;
1063 
1064 	    if (bfd_is_und_section (symbol->section))
1065 	      r = bfd_reloc_undefined;
1066 
1067 	    if (bfd_is_com_section (symbol->section))
1068 	      relocation = 0;
1069 	    else
1070 	      relocation = symbol->value;
1071 	    relocation += symbol->section->output_section->vma;
1072 	    relocation += symbol->section->output_offset;
1073 	    relocation += rel->addend;
1074 
1075 	    if (tos == 0)
1076 	      abort ();
1077 
1078 	    stack[tos - 1] >>= relocation;
1079 	  }
1080 	  break;
1081 
1082 	case ALPHA_R_GPVALUE:
1083 	  /* I really don't know if this does the right thing.  */
1084 	  gp = rel->addend;
1085 	  gp_undefined = FALSE;
1086 	  break;
1087 
1088 	default:
1089 	  abort ();
1090 	}
1091 
1092       if (relocatable)
1093 	{
1094 	  asection *os = input_section->output_section;
1095 
1096 	  /* A partial link, so keep the relocs.  */
1097 	  os->orelocation[os->reloc_count] = rel;
1098 	  os->reloc_count++;
1099 	}
1100 
1101       if (r != bfd_reloc_ok)
1102 	{
1103 	  switch (r)
1104 	    {
1105 	    case bfd_reloc_undefined:
1106 	      if (! ((*link_info->callbacks->undefined_symbol)
1107 		     (link_info, bfd_asymbol_name (*rel->sym_ptr_ptr),
1108 		      input_bfd, input_section, rel->address, TRUE)))
1109 		goto error_return;
1110 	      break;
1111 	    case bfd_reloc_dangerous:
1112 	      if (! ((*link_info->callbacks->reloc_dangerous)
1113 		     (link_info, err, input_bfd, input_section,
1114 		      rel->address)))
1115 		goto error_return;
1116 	      break;
1117 	    case bfd_reloc_overflow:
1118 	      if (! ((*link_info->callbacks->reloc_overflow)
1119 		     (link_info, NULL,
1120 		      bfd_asymbol_name (*rel->sym_ptr_ptr),
1121 		      rel->howto->name, rel->addend, input_bfd,
1122 		      input_section, rel->address)))
1123 		goto error_return;
1124 	      break;
1125 	    case bfd_reloc_outofrange:
1126 	    default:
1127 	      abort ();
1128 	      break;
1129 	    }
1130 	}
1131     }
1132 
1133   if (tos != 0)
1134     abort ();
1135 
1136  successful_return:
1137   if (reloc_vector != NULL)
1138     free (reloc_vector);
1139   return data;
1140 
1141  error_return:
1142   if (reloc_vector != NULL)
1143     free (reloc_vector);
1144   return NULL;
1145 }
1146 
1147 /* Get the howto structure for a generic reloc type.  */
1148 
1149 static reloc_howto_type *
alpha_bfd_reloc_type_lookup(bfd * abfd ATTRIBUTE_UNUSED,bfd_reloc_code_real_type code)1150 alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1151 			     bfd_reloc_code_real_type code)
1152 {
1153   int alpha_type;
1154 
1155   switch (code)
1156     {
1157     case BFD_RELOC_32:
1158       alpha_type = ALPHA_R_REFLONG;
1159       break;
1160     case BFD_RELOC_64:
1161     case BFD_RELOC_CTOR:
1162       alpha_type = ALPHA_R_REFQUAD;
1163       break;
1164     case BFD_RELOC_GPREL32:
1165       alpha_type = ALPHA_R_GPREL32;
1166       break;
1167     case BFD_RELOC_ALPHA_LITERAL:
1168       alpha_type = ALPHA_R_LITERAL;
1169       break;
1170     case BFD_RELOC_ALPHA_LITUSE:
1171       alpha_type = ALPHA_R_LITUSE;
1172       break;
1173     case BFD_RELOC_ALPHA_GPDISP_HI16:
1174       alpha_type = ALPHA_R_GPDISP;
1175       break;
1176     case BFD_RELOC_ALPHA_GPDISP_LO16:
1177       alpha_type = ALPHA_R_IGNORE;
1178       break;
1179     case BFD_RELOC_23_PCREL_S2:
1180       alpha_type = ALPHA_R_BRADDR;
1181       break;
1182     case BFD_RELOC_ALPHA_HINT:
1183       alpha_type = ALPHA_R_HINT;
1184       break;
1185     case BFD_RELOC_16_PCREL:
1186       alpha_type = ALPHA_R_SREL16;
1187       break;
1188     case BFD_RELOC_32_PCREL:
1189       alpha_type = ALPHA_R_SREL32;
1190       break;
1191     case BFD_RELOC_64_PCREL:
1192       alpha_type = ALPHA_R_SREL64;
1193       break;
1194     default:
1195       return (reloc_howto_type *) NULL;
1196     }
1197 
1198   return &alpha_howto_table[alpha_type];
1199 }
1200 
1201 static reloc_howto_type *
alpha_bfd_reloc_name_lookup(bfd * abfd ATTRIBUTE_UNUSED,const char * r_name)1202 alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1203 			     const char *r_name)
1204 {
1205   unsigned int i;
1206 
1207   for (i = 0;
1208        i < sizeof (alpha_howto_table) / sizeof (alpha_howto_table[0]);
1209        i++)
1210     if (alpha_howto_table[i].name != NULL
1211 	&& strcasecmp (alpha_howto_table[i].name, r_name) == 0)
1212       return &alpha_howto_table[i];
1213 
1214   return NULL;
1215 }
1216 
1217 /* A helper routine for alpha_relocate_section which converts an
1218    external reloc when generating relocatable output.  Returns the
1219    relocation amount.  */
1220 
1221 static bfd_vma
alpha_convert_external_reloc(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info,bfd * input_bfd,struct external_reloc * ext_rel,struct ecoff_link_hash_entry * h)1222 alpha_convert_external_reloc (bfd *output_bfd ATTRIBUTE_UNUSED,
1223 			      struct bfd_link_info *info,
1224 			      bfd *input_bfd,
1225 			      struct external_reloc *ext_rel,
1226 			      struct ecoff_link_hash_entry *h)
1227 {
1228   unsigned long r_symndx;
1229   bfd_vma relocation;
1230 
1231   BFD_ASSERT (info->relocatable);
1232 
1233   if (h->root.type == bfd_link_hash_defined
1234       || h->root.type == bfd_link_hash_defweak)
1235     {
1236       asection *hsec;
1237       const char *name;
1238 
1239       /* This symbol is defined in the output.  Convert the reloc from
1240 	 being against the symbol to being against the section.  */
1241 
1242       /* Clear the r_extern bit.  */
1243       ext_rel->r_bits[1] &=~ RELOC_BITS1_EXTERN_LITTLE;
1244 
1245       /* Compute a new r_symndx value.  */
1246       hsec = h->root.u.def.section;
1247       name = bfd_get_section_name (output_bfd, hsec->output_section);
1248 
1249       r_symndx = (unsigned long) -1;
1250       switch (name[1])
1251 	{
1252 	case 'A':
1253 	  if (strcmp (name, "*ABS*") == 0)
1254 	    r_symndx = RELOC_SECTION_ABS;
1255 	  break;
1256 	case 'b':
1257 	  if (strcmp (name, ".bss") == 0)
1258 	    r_symndx = RELOC_SECTION_BSS;
1259 	  break;
1260 	case 'd':
1261 	  if (strcmp (name, ".data") == 0)
1262 	    r_symndx = RELOC_SECTION_DATA;
1263 	  break;
1264 	case 'f':
1265 	  if (strcmp (name, ".fini") == 0)
1266 	    r_symndx = RELOC_SECTION_FINI;
1267 	  break;
1268 	case 'i':
1269 	  if (strcmp (name, ".init") == 0)
1270 	    r_symndx = RELOC_SECTION_INIT;
1271 	  break;
1272 	case 'l':
1273 	  if (strcmp (name, ".lita") == 0)
1274 	    r_symndx = RELOC_SECTION_LITA;
1275 	  else if (strcmp (name, ".lit8") == 0)
1276 	    r_symndx = RELOC_SECTION_LIT8;
1277 	  else if (strcmp (name, ".lit4") == 0)
1278 	    r_symndx = RELOC_SECTION_LIT4;
1279 	  break;
1280 	case 'p':
1281 	  if (strcmp (name, ".pdata") == 0)
1282 	    r_symndx = RELOC_SECTION_PDATA;
1283 	  break;
1284 	case 'r':
1285 	  if (strcmp (name, ".rdata") == 0)
1286 	    r_symndx = RELOC_SECTION_RDATA;
1287 	  else if (strcmp (name, ".rconst") == 0)
1288 	    r_symndx = RELOC_SECTION_RCONST;
1289 	  break;
1290 	case 's':
1291 	  if (strcmp (name, ".sdata") == 0)
1292 	    r_symndx = RELOC_SECTION_SDATA;
1293 	  else if (strcmp (name, ".sbss") == 0)
1294 	    r_symndx = RELOC_SECTION_SBSS;
1295 	  break;
1296 	case 't':
1297 	  if (strcmp (name, ".text") == 0)
1298 	    r_symndx = RELOC_SECTION_TEXT;
1299 	  break;
1300 	case 'x':
1301 	  if (strcmp (name, ".xdata") == 0)
1302 	    r_symndx = RELOC_SECTION_XDATA;
1303 	  break;
1304 	}
1305 
1306       if (r_symndx == (unsigned long) -1)
1307 	abort ();
1308 
1309       /* Add the section VMA and the symbol value.  */
1310       relocation = (h->root.u.def.value
1311 		    + hsec->output_section->vma
1312 		    + hsec->output_offset);
1313     }
1314   else
1315     {
1316       /* Change the symndx value to the right one for
1317 	 the output BFD.  */
1318       r_symndx = h->indx;
1319       if (r_symndx == (unsigned long) -1)
1320 	{
1321 	  /* Caller must give an error.  */
1322 	  r_symndx = 0;
1323 	}
1324       relocation = 0;
1325     }
1326 
1327   /* Write out the new r_symndx value.  */
1328   H_PUT_32 (input_bfd, r_symndx, ext_rel->r_symndx);
1329 
1330   return relocation;
1331 }
1332 
1333 /* Relocate a section while linking an Alpha ECOFF file.  This is
1334    quite similar to get_relocated_section_contents.  Perhaps they
1335    could be combined somehow.  */
1336 
1337 static bfd_boolean
alpha_relocate_section(bfd * output_bfd,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,void * external_relocs)1338 alpha_relocate_section (bfd *output_bfd,
1339 			struct bfd_link_info *info,
1340 			bfd *input_bfd,
1341 			asection *input_section,
1342 			bfd_byte *contents,
1343 			void * external_relocs)
1344 {
1345   asection **symndx_to_section, *lita_sec;
1346   struct ecoff_link_hash_entry **sym_hashes;
1347   bfd_vma gp;
1348   bfd_boolean gp_undefined;
1349   bfd_vma stack[RELOC_STACKSIZE];
1350   int tos = 0;
1351   struct external_reloc *ext_rel;
1352   struct external_reloc *ext_rel_end;
1353   bfd_size_type amt;
1354 
1355   /* We keep a table mapping the symndx found in an internal reloc to
1356      the appropriate section.  This is faster than looking up the
1357      section by name each time.  */
1358   symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1359   if (symndx_to_section == (asection **) NULL)
1360     {
1361       amt = NUM_RELOC_SECTIONS * sizeof (asection *);
1362       symndx_to_section = (asection **) bfd_alloc (input_bfd, amt);
1363       if (!symndx_to_section)
1364 	return FALSE;
1365 
1366       symndx_to_section[RELOC_SECTION_NONE] = NULL;
1367       symndx_to_section[RELOC_SECTION_TEXT] =
1368 	bfd_get_section_by_name (input_bfd, ".text");
1369       symndx_to_section[RELOC_SECTION_RDATA] =
1370 	bfd_get_section_by_name (input_bfd, ".rdata");
1371       symndx_to_section[RELOC_SECTION_DATA] =
1372 	bfd_get_section_by_name (input_bfd, ".data");
1373       symndx_to_section[RELOC_SECTION_SDATA] =
1374 	bfd_get_section_by_name (input_bfd, ".sdata");
1375       symndx_to_section[RELOC_SECTION_SBSS] =
1376 	bfd_get_section_by_name (input_bfd, ".sbss");
1377       symndx_to_section[RELOC_SECTION_BSS] =
1378 	bfd_get_section_by_name (input_bfd, ".bss");
1379       symndx_to_section[RELOC_SECTION_INIT] =
1380 	bfd_get_section_by_name (input_bfd, ".init");
1381       symndx_to_section[RELOC_SECTION_LIT8] =
1382 	bfd_get_section_by_name (input_bfd, ".lit8");
1383       symndx_to_section[RELOC_SECTION_LIT4] =
1384 	bfd_get_section_by_name (input_bfd, ".lit4");
1385       symndx_to_section[RELOC_SECTION_XDATA] =
1386 	bfd_get_section_by_name (input_bfd, ".xdata");
1387       symndx_to_section[RELOC_SECTION_PDATA] =
1388 	bfd_get_section_by_name (input_bfd, ".pdata");
1389       symndx_to_section[RELOC_SECTION_FINI] =
1390 	bfd_get_section_by_name (input_bfd, ".fini");
1391       symndx_to_section[RELOC_SECTION_LITA] =
1392 	bfd_get_section_by_name (input_bfd, ".lita");
1393       symndx_to_section[RELOC_SECTION_ABS] = bfd_abs_section_ptr;
1394       symndx_to_section[RELOC_SECTION_RCONST] =
1395 	bfd_get_section_by_name (input_bfd, ".rconst");
1396 
1397       ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1398     }
1399 
1400   sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1401 
1402   /* On the Alpha, the .lita section must be addressable by the global
1403      pointer.  To support large programs, we need to allow multiple
1404      global pointers.  This works as long as each input .lita section
1405      is <64KB big.  This implies that when producing relocatable
1406      output, the .lita section is limited to 64KB. .  */
1407 
1408   lita_sec = symndx_to_section[RELOC_SECTION_LITA];
1409   gp = _bfd_get_gp_value (output_bfd);
1410   if (! info->relocatable && lita_sec != NULL)
1411     {
1412       struct ecoff_section_tdata *lita_sec_data;
1413 
1414       /* Make sure we have a section data structure to which we can
1415 	 hang on to the gp value we pick for the section.  */
1416       lita_sec_data = ecoff_section_data (input_bfd, lita_sec);
1417       if (lita_sec_data == NULL)
1418 	{
1419 	  amt = sizeof (struct ecoff_section_tdata);
1420 	  lita_sec_data = ((struct ecoff_section_tdata *)
1421 			   bfd_zalloc (input_bfd, amt));
1422 	  lita_sec->used_by_bfd = lita_sec_data;
1423 	}
1424 
1425       if (lita_sec_data->gp != 0)
1426 	{
1427 	  /* If we already assigned a gp to this section, we better
1428 	     stick with that value.  */
1429 	  gp = lita_sec_data->gp;
1430 	}
1431       else
1432 	{
1433 	  bfd_vma lita_vma;
1434 	  bfd_size_type lita_size;
1435 
1436 	  lita_vma = lita_sec->output_offset + lita_sec->output_section->vma;
1437 	  lita_size = lita_sec->size;
1438 
1439 	  if (gp == 0
1440 	      || lita_vma <  gp - 0x8000
1441 	      || lita_vma + lita_size >= gp + 0x8000)
1442 	    {
1443 	      /* Either gp hasn't been set at all or the current gp
1444 		 cannot address this .lita section.  In both cases we
1445 		 reset the gp to point into the "middle" of the
1446 		 current input .lita section.  */
1447 	      if (gp && !ecoff_data (output_bfd)->issued_multiple_gp_warning)
1448 		{
1449 		  (*info->callbacks->warning) (info,
1450 					       _("using multiple gp values"),
1451 					       (char *) NULL, output_bfd,
1452 					       (asection *) NULL, (bfd_vma) 0);
1453 		  ecoff_data (output_bfd)->issued_multiple_gp_warning = TRUE;
1454 		}
1455 	      if (lita_vma < gp - 0x8000)
1456 		gp = lita_vma + lita_size - 0x8000;
1457 	      else
1458 		gp = lita_vma + 0x8000;
1459 
1460 	    }
1461 
1462 	  lita_sec_data->gp = gp;
1463 	}
1464 
1465       _bfd_set_gp_value (output_bfd, gp);
1466     }
1467 
1468   gp_undefined = (gp == 0);
1469 
1470   BFD_ASSERT (bfd_header_little_endian (output_bfd));
1471   BFD_ASSERT (bfd_header_little_endian (input_bfd));
1472 
1473   ext_rel = (struct external_reloc *) external_relocs;
1474   ext_rel_end = ext_rel + input_section->reloc_count;
1475   for (; ext_rel < ext_rel_end; ext_rel++)
1476     {
1477       bfd_vma r_vaddr;
1478       unsigned long r_symndx;
1479       int r_type;
1480       int r_extern;
1481       int r_offset;
1482       int r_size;
1483       bfd_boolean relocatep;
1484       bfd_boolean adjust_addrp;
1485       bfd_boolean gp_usedp;
1486       bfd_vma addend;
1487 
1488       r_vaddr = H_GET_64 (input_bfd, ext_rel->r_vaddr);
1489       r_symndx = H_GET_32 (input_bfd, ext_rel->r_symndx);
1490 
1491       r_type = ((ext_rel->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
1492 		>> RELOC_BITS0_TYPE_SH_LITTLE);
1493       r_extern = (ext_rel->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
1494       r_offset = ((ext_rel->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
1495 		  >> RELOC_BITS1_OFFSET_SH_LITTLE);
1496       /* Ignored the reserved bits.  */
1497       r_size = ((ext_rel->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
1498 		>> RELOC_BITS3_SIZE_SH_LITTLE);
1499 
1500       relocatep = FALSE;
1501       adjust_addrp = TRUE;
1502       gp_usedp = FALSE;
1503       addend = 0;
1504 
1505       switch (r_type)
1506 	{
1507 	case ALPHA_R_GPRELHIGH:
1508 	  (*_bfd_error_handler)
1509 	    (_("%B: unsupported relocation: ALPHA_R_GPRELHIGH"),
1510 	     input_bfd);
1511 	  bfd_set_error (bfd_error_bad_value);
1512 	  continue;
1513 
1514 	case ALPHA_R_GPRELLOW:
1515 	  (*_bfd_error_handler)
1516 	    (_("%B: unsupported relocation: ALPHA_R_GPRELLOW"),
1517 	     input_bfd);
1518 	  bfd_set_error (bfd_error_bad_value);
1519 	  continue;
1520 
1521 	default:
1522 	  (*_bfd_error_handler)
1523 	    (_("%B: unknown relocation type %d"),
1524 	     input_bfd, (int) r_type);
1525 	  bfd_set_error (bfd_error_bad_value);
1526 	  continue;
1527 
1528 	case ALPHA_R_IGNORE:
1529 	  /* This reloc appears after a GPDISP reloc.  On earlier
1530 	     versions of OSF/1, It marked the position of the second
1531 	     instruction to be altered by the GPDISP reloc, but it is
1532 	     not otherwise used for anything.  For some reason, the
1533 	     address of the relocation does not appear to include the
1534 	     section VMA, unlike the other relocation types.  */
1535 	  if (info->relocatable)
1536 	    H_PUT_64 (input_bfd, input_section->output_offset + r_vaddr,
1537 		      ext_rel->r_vaddr);
1538 	  adjust_addrp = FALSE;
1539 	  break;
1540 
1541 	case ALPHA_R_REFLONG:
1542 	case ALPHA_R_REFQUAD:
1543 	case ALPHA_R_HINT:
1544 	  relocatep = TRUE;
1545 	  break;
1546 
1547 	case ALPHA_R_BRADDR:
1548 	case ALPHA_R_SREL16:
1549 	case ALPHA_R_SREL32:
1550 	case ALPHA_R_SREL64:
1551 	  if (r_extern)
1552 	    addend += - (r_vaddr + 4);
1553 	  relocatep = TRUE;
1554 	  break;
1555 
1556 	case ALPHA_R_GPREL32:
1557 	  /* This relocation is used in a switch table.  It is a 32
1558 	     bit offset from the current GP value.  We must adjust it
1559 	     by the different between the original GP value and the
1560 	     current GP value.  */
1561 	  relocatep = TRUE;
1562 	  addend = ecoff_data (input_bfd)->gp - gp;
1563 	  gp_usedp = TRUE;
1564 	  break;
1565 
1566 	case ALPHA_R_LITERAL:
1567 	  /* This is a reference to a literal value, generally
1568 	     (always?) in the .lita section.  This is a 16 bit GP
1569 	     relative relocation.  Sometimes the subsequent reloc is a
1570 	     LITUSE reloc, which indicates how this reloc is used.
1571 	     This sometimes permits rewriting the two instructions
1572 	     referred to by the LITERAL and the LITUSE into different
1573 	     instructions which do not refer to .lita.  This can save
1574 	     a memory reference, and permits removing a value from
1575 	     .lita thus saving GP relative space.
1576 
1577 	     We do not these optimizations.  To do them we would need
1578 	     to arrange to link the .lita section first, so that by
1579 	     the time we got here we would know the final values to
1580 	     use.  This would not be particularly difficult, but it is
1581 	     not currently implemented.  */
1582 
1583 	  /* I believe that the LITERAL reloc will only apply to a ldq
1584 	     or ldl instruction, so check my assumption.  */
1585 	  {
1586 	    unsigned long insn;
1587 
1588 	    insn = bfd_get_32 (input_bfd,
1589 			       contents + r_vaddr - input_section->vma);
1590 	    BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
1591 			|| ((insn >> 26) & 0x3f) == 0x28);
1592 	  }
1593 
1594 	  relocatep = TRUE;
1595 	  addend = ecoff_data (input_bfd)->gp - gp;
1596 	  gp_usedp = TRUE;
1597 	  break;
1598 
1599 	case ALPHA_R_LITUSE:
1600 	  /* See ALPHA_R_LITERAL above for the uses of this reloc.  It
1601 	     does not cause anything to happen, itself.  */
1602 	  break;
1603 
1604 	case ALPHA_R_GPDISP:
1605 	  /* This marks the ldah of an ldah/lda pair which loads the
1606 	     gp register with the difference of the gp value and the
1607 	     current location.  The second of the pair is r_symndx
1608 	     bytes ahead.  It used to be marked with an ALPHA_R_IGNORE
1609 	     reloc, but OSF/1 3.2 no longer does that.  */
1610 	  {
1611 	    unsigned long insn1, insn2;
1612 
1613 	    /* Get the two instructions.  */
1614 	    insn1 = bfd_get_32 (input_bfd,
1615 				contents + r_vaddr - input_section->vma);
1616 	    insn2 = bfd_get_32 (input_bfd,
1617 				(contents
1618 				 + r_vaddr
1619 				 - input_section->vma
1620 				 + r_symndx));
1621 
1622 	    BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
1623 	    BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
1624 
1625 	    /* Get the existing addend.  We must account for the sign
1626 	       extension done by lda and ldah.  */
1627 	    addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
1628 	    if (insn1 & 0x8000)
1629 	      {
1630 		/* This is addend -= 0x100000000 without causing an
1631 		   integer overflow on a 32 bit host.  */
1632 		addend -= 0x80000000;
1633 		addend -= 0x80000000;
1634 	      }
1635 	    if (insn2 & 0x8000)
1636 	      addend -= 0x10000;
1637 
1638 	    /* The existing addend includes the difference between the
1639 	       gp of the input BFD and the address in the input BFD.
1640 	       We want to change this to the difference between the
1641 	       final GP and the final address.  */
1642 	    addend += (gp
1643 		       - ecoff_data (input_bfd)->gp
1644 		       + input_section->vma
1645 		       - (input_section->output_section->vma
1646 			  + input_section->output_offset));
1647 
1648 	    /* Change the instructions, accounting for the sign
1649 	       extension, and write them out.  */
1650 	    if (addend & 0x8000)
1651 	      addend += 0x10000;
1652 	    insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
1653 	    insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
1654 
1655 	    bfd_put_32 (input_bfd, (bfd_vma) insn1,
1656 			contents + r_vaddr - input_section->vma);
1657 	    bfd_put_32 (input_bfd, (bfd_vma) insn2,
1658 			contents + r_vaddr - input_section->vma + r_symndx);
1659 
1660 	    gp_usedp = TRUE;
1661 	  }
1662 	  break;
1663 
1664 	case ALPHA_R_OP_PUSH:
1665 	case ALPHA_R_OP_PSUB:
1666 	case ALPHA_R_OP_PRSHIFT:
1667 	  /* Manipulate values on the reloc evaluation stack.  The
1668 	     r_vaddr field is not an address in input_section, it is
1669 	     the current value (including any addend) of the object
1670 	     being used.  */
1671 	  if (! r_extern)
1672 	    {
1673 	      asection *s;
1674 
1675 	      s = symndx_to_section[r_symndx];
1676 	      if (s == (asection *) NULL)
1677 		abort ();
1678 	      addend = s->output_section->vma + s->output_offset - s->vma;
1679 	    }
1680 	  else
1681 	    {
1682 	      struct ecoff_link_hash_entry *h;
1683 
1684 	      h = sym_hashes[r_symndx];
1685 	      if (h == (struct ecoff_link_hash_entry *) NULL)
1686 		abort ();
1687 
1688 	      if (! info->relocatable)
1689 		{
1690 		  if (h->root.type == bfd_link_hash_defined
1691 		      || h->root.type == bfd_link_hash_defweak)
1692 		    addend = (h->root.u.def.value
1693 			      + h->root.u.def.section->output_section->vma
1694 			      + h->root.u.def.section->output_offset);
1695 		  else
1696 		    {
1697 		      /* Note that we pass the address as 0, since we
1698 			 do not have a meaningful number for the
1699 			 location within the section that is being
1700 			 relocated.  */
1701 		      if (! ((*info->callbacks->undefined_symbol)
1702 			     (info, h->root.root.string, input_bfd,
1703 			      input_section, (bfd_vma) 0, TRUE)))
1704 			return FALSE;
1705 		      addend = 0;
1706 		    }
1707 		}
1708 	      else
1709 		{
1710 		  if (h->root.type != bfd_link_hash_defined
1711 		      && h->root.type != bfd_link_hash_defweak
1712 		      && h->indx == -1)
1713 		    {
1714 		      /* This symbol is not being written out.  Pass
1715 			 the address as 0, as with undefined_symbol,
1716 			 above.  */
1717 		      if (! ((*info->callbacks->unattached_reloc)
1718 			     (info, h->root.root.string, input_bfd,
1719 			      input_section, (bfd_vma) 0)))
1720 			return FALSE;
1721 		    }
1722 
1723 		  addend = alpha_convert_external_reloc (output_bfd, info,
1724 							 input_bfd,
1725 							 ext_rel, h);
1726 		}
1727 	    }
1728 
1729 	  addend += r_vaddr;
1730 
1731 	  if (info->relocatable)
1732 	    {
1733 	      /* Adjust r_vaddr by the addend.  */
1734 	      H_PUT_64 (input_bfd, addend, ext_rel->r_vaddr);
1735 	    }
1736 	  else
1737 	    {
1738 	      switch (r_type)
1739 		{
1740 		case ALPHA_R_OP_PUSH:
1741 		  if (tos >= RELOC_STACKSIZE)
1742 		    abort ();
1743 		  stack[tos++] = addend;
1744 		  break;
1745 
1746 		case ALPHA_R_OP_PSUB:
1747 		  if (tos == 0)
1748 		    abort ();
1749 		  stack[tos - 1] -= addend;
1750 		  break;
1751 
1752 		case ALPHA_R_OP_PRSHIFT:
1753 		  if (tos == 0)
1754 		    abort ();
1755 		  stack[tos - 1] >>= addend;
1756 		  break;
1757 		}
1758 	    }
1759 
1760 	  adjust_addrp = FALSE;
1761 	  break;
1762 
1763 	case ALPHA_R_OP_STORE:
1764 	  /* Store a value from the reloc stack into a bitfield.  If
1765 	     we are generating relocatable output, all we do is
1766 	     adjust the address of the reloc.  */
1767 	  if (! info->relocatable)
1768 	    {
1769 	      bfd_vma mask;
1770 	      bfd_vma val;
1771 
1772 	      if (tos == 0)
1773 		abort ();
1774 
1775 	      /* Get the relocation mask.  The separate steps and the
1776 		 casts to bfd_vma are attempts to avoid a bug in the
1777 		 Alpha OSF 1.3 C compiler.  See reloc.c for more
1778 		 details.  */
1779 	      mask = 1;
1780 	      mask <<= (bfd_vma) r_size;
1781 	      mask -= 1;
1782 
1783 	      /* FIXME: I don't know what kind of overflow checking,
1784 		 if any, should be done here.  */
1785 	      val = bfd_get_64 (input_bfd,
1786 				contents + r_vaddr - input_section->vma);
1787 	      val &=~ mask << (bfd_vma) r_offset;
1788 	      val |= (stack[--tos] & mask) << (bfd_vma) r_offset;
1789 	      bfd_put_64 (input_bfd, val,
1790 			  contents + r_vaddr - input_section->vma);
1791 	    }
1792 	  break;
1793 
1794 	case ALPHA_R_GPVALUE:
1795 	  /* I really don't know if this does the right thing.  */
1796 	  gp = ecoff_data (input_bfd)->gp + r_symndx;
1797 	  gp_undefined = FALSE;
1798 	  break;
1799 	}
1800 
1801       if (relocatep)
1802 	{
1803 	  reloc_howto_type *howto;
1804 	  struct ecoff_link_hash_entry *h = NULL;
1805 	  asection *s = NULL;
1806 	  bfd_vma relocation;
1807 	  bfd_reloc_status_type r;
1808 
1809 	  /* Perform a relocation.  */
1810 
1811 	  howto = &alpha_howto_table[r_type];
1812 
1813 	  if (r_extern)
1814 	    {
1815 	      h = sym_hashes[r_symndx];
1816 	      /* If h is NULL, that means that there is a reloc
1817 		 against an external symbol which we thought was just
1818 		 a debugging symbol.  This should not happen.  */
1819 	      if (h == (struct ecoff_link_hash_entry *) NULL)
1820 		abort ();
1821 	    }
1822 	  else
1823 	    {
1824 	      if (r_symndx >= NUM_RELOC_SECTIONS)
1825 		s = NULL;
1826 	      else
1827 		s = symndx_to_section[r_symndx];
1828 
1829 	      if (s == (asection *) NULL)
1830 		abort ();
1831 	    }
1832 
1833 	  if (info->relocatable)
1834 	    {
1835 	      /* We are generating relocatable output, and must
1836 		 convert the existing reloc.  */
1837 	      if (r_extern)
1838 		{
1839 		  if (h->root.type != bfd_link_hash_defined
1840 		      && h->root.type != bfd_link_hash_defweak
1841 		      && h->indx == -1)
1842 		    {
1843 		      /* This symbol is not being written out.  */
1844 		      if (! ((*info->callbacks->unattached_reloc)
1845 			     (info, h->root.root.string, input_bfd,
1846 			      input_section, r_vaddr - input_section->vma)))
1847 			return FALSE;
1848 		    }
1849 
1850 		  relocation = alpha_convert_external_reloc (output_bfd,
1851 							     info,
1852 							     input_bfd,
1853 							     ext_rel,
1854 							     h);
1855 		}
1856 	      else
1857 		{
1858 		  /* This is a relocation against a section.  Adjust
1859 		     the value by the amount the section moved.  */
1860 		  relocation = (s->output_section->vma
1861 				+ s->output_offset
1862 				- s->vma);
1863 		}
1864 
1865 	      /* If this is PC relative, the existing object file
1866 		 appears to already have the reloc worked out.  We
1867 		 must subtract out the old value and add in the new
1868 		 one.  */
1869 	      if (howto->pc_relative)
1870 		relocation -= (input_section->output_section->vma
1871 			       + input_section->output_offset
1872 			       - input_section->vma);
1873 
1874 	      /* Put in any addend.  */
1875 	      relocation += addend;
1876 
1877 	      /* Adjust the contents.  */
1878 	      r = _bfd_relocate_contents (howto, input_bfd, relocation,
1879 					  (contents
1880 					   + r_vaddr
1881 					   - input_section->vma));
1882 	    }
1883 	  else
1884 	    {
1885 	      /* We are producing a final executable.  */
1886 	      if (r_extern)
1887 		{
1888 		  /* This is a reloc against a symbol.  */
1889 		  if (h->root.type == bfd_link_hash_defined
1890 		      || h->root.type == bfd_link_hash_defweak)
1891 		    {
1892 		      asection *hsec;
1893 
1894 		      hsec = h->root.u.def.section;
1895 		      relocation = (h->root.u.def.value
1896 				    + hsec->output_section->vma
1897 				    + hsec->output_offset);
1898 		    }
1899 		  else
1900 		    {
1901 		      if (! ((*info->callbacks->undefined_symbol)
1902 			     (info, h->root.root.string, input_bfd,
1903 			      input_section,
1904 			      r_vaddr - input_section->vma, TRUE)))
1905 			return FALSE;
1906 		      relocation = 0;
1907 		    }
1908 		}
1909 	      else
1910 		{
1911 		  /* This is a reloc against a section.  */
1912 		  relocation = (s->output_section->vma
1913 				+ s->output_offset
1914 				- s->vma);
1915 
1916 		  /* Adjust a PC relative relocation by removing the
1917 		     reference to the original source section.  */
1918 		  if (howto->pc_relative)
1919 		    relocation += input_section->vma;
1920 		}
1921 
1922 	      r = _bfd_final_link_relocate (howto,
1923 					    input_bfd,
1924 					    input_section,
1925 					    contents,
1926 					    r_vaddr - input_section->vma,
1927 					    relocation,
1928 					    addend);
1929 	    }
1930 
1931 	  if (r != bfd_reloc_ok)
1932 	    {
1933 	      switch (r)
1934 		{
1935 		default:
1936 		case bfd_reloc_outofrange:
1937 		  abort ();
1938 		case bfd_reloc_overflow:
1939 		  {
1940 		    const char *name;
1941 
1942 		    if (r_extern)
1943 		      name = sym_hashes[r_symndx]->root.root.string;
1944 		    else
1945 		      name = bfd_section_name (input_bfd,
1946 					       symndx_to_section[r_symndx]);
1947 		    if (! ((*info->callbacks->reloc_overflow)
1948 			   (info, NULL, name,
1949 			    alpha_howto_table[r_type].name,
1950 			    (bfd_vma) 0, input_bfd, input_section,
1951 			    r_vaddr - input_section->vma)))
1952 		      return FALSE;
1953 		  }
1954 		  break;
1955 		}
1956 	    }
1957 	}
1958 
1959       if (info->relocatable && adjust_addrp)
1960 	{
1961 	  /* Change the address of the relocation.  */
1962 	  H_PUT_64 (input_bfd,
1963 		    (input_section->output_section->vma
1964 		     + input_section->output_offset
1965 		     - input_section->vma
1966 		     + r_vaddr),
1967 		    ext_rel->r_vaddr);
1968 	}
1969 
1970       if (gp_usedp && gp_undefined)
1971 	{
1972 	  if (! ((*info->callbacks->reloc_dangerous)
1973 		 (info, _("GP relative relocation used when GP not defined"),
1974 		  input_bfd, input_section, r_vaddr - input_section->vma)))
1975 	    return FALSE;
1976 	  /* Only give the error once per link.  */
1977 	  gp = 4;
1978 	  _bfd_set_gp_value (output_bfd, gp);
1979 	  gp_undefined = FALSE;
1980 	}
1981     }
1982 
1983   if (tos != 0)
1984     abort ();
1985 
1986   return TRUE;
1987 }
1988 
1989 /* Do final adjustments to the filehdr and the aouthdr.  This routine
1990    sets the dynamic bits in the file header.  */
1991 
1992 static bfd_boolean
alpha_adjust_headers(bfd * abfd,struct internal_filehdr * fhdr,struct internal_aouthdr * ahdr ATTRIBUTE_UNUSED)1993 alpha_adjust_headers (bfd *abfd,
1994 		      struct internal_filehdr *fhdr,
1995 		      struct internal_aouthdr *ahdr ATTRIBUTE_UNUSED)
1996 {
1997   if ((abfd->flags & (DYNAMIC | EXEC_P)) == (DYNAMIC | EXEC_P))
1998     fhdr->f_flags |= F_ALPHA_CALL_SHARED;
1999   else if ((abfd->flags & DYNAMIC) != 0)
2000     fhdr->f_flags |= F_ALPHA_SHARABLE;
2001   return TRUE;
2002 }
2003 
2004 /* Archive handling.  In OSF/1 (or Digital Unix) v3.2, Digital
2005    introduced archive packing, in which the elements in an archive are
2006    optionally compressed using a simple dictionary scheme.  We know
2007    how to read such archives, but we don't write them.  */
2008 
2009 #define alpha_ecoff_slurp_armap _bfd_ecoff_slurp_armap
2010 #define alpha_ecoff_slurp_extended_name_table \
2011   _bfd_ecoff_slurp_extended_name_table
2012 #define alpha_ecoff_construct_extended_name_table \
2013   _bfd_ecoff_construct_extended_name_table
2014 #define alpha_ecoff_truncate_arname _bfd_ecoff_truncate_arname
2015 #define alpha_ecoff_write_armap _bfd_ecoff_write_armap
2016 #define alpha_ecoff_write_ar_hdr _bfd_generic_write_ar_hdr
2017 #define alpha_ecoff_generic_stat_arch_elt _bfd_ecoff_generic_stat_arch_elt
2018 #define alpha_ecoff_update_armap_timestamp _bfd_ecoff_update_armap_timestamp
2019 
2020 /* A compressed file uses this instead of ARFMAG.  */
2021 
2022 #define ARFZMAG "Z\012"
2023 
2024 /* Read an archive header.  This is like the standard routine, but it
2025    also accepts ARFZMAG.  */
2026 
2027 static void *
alpha_ecoff_read_ar_hdr(bfd * abfd)2028 alpha_ecoff_read_ar_hdr (bfd *abfd)
2029 {
2030   struct areltdata *ret;
2031   struct ar_hdr *h;
2032 
2033   ret = (struct areltdata *) _bfd_generic_read_ar_hdr_mag (abfd, ARFZMAG);
2034   if (ret == NULL)
2035     return NULL;
2036 
2037   h = (struct ar_hdr *) ret->arch_header;
2038   if (strncmp (h->ar_fmag, ARFZMAG, 2) == 0)
2039     {
2040       bfd_byte ab[8];
2041 
2042       /* This is a compressed file.  We must set the size correctly.
2043          The size is the eight bytes after the dummy file header.  */
2044       if (bfd_seek (abfd, (file_ptr) FILHSZ, SEEK_CUR) != 0
2045 	  || bfd_bread (ab, (bfd_size_type) 8, abfd) != 8
2046 	  || bfd_seek (abfd, (file_ptr) (- (FILHSZ + 8)), SEEK_CUR) != 0)
2047 	return NULL;
2048 
2049       ret->parsed_size = H_GET_64 (abfd, ab);
2050     }
2051 
2052   return ret;
2053 }
2054 
2055 /* Get an archive element at a specified file position.  This is where
2056    we uncompress the archive element if necessary.  */
2057 
2058 static bfd *
alpha_ecoff_get_elt_at_filepos(bfd * archive,file_ptr filepos)2059 alpha_ecoff_get_elt_at_filepos (bfd *archive, file_ptr filepos)
2060 {
2061   bfd *nbfd = NULL;
2062   struct areltdata *tdata;
2063   struct ar_hdr *hdr;
2064   bfd_byte ab[8];
2065   bfd_size_type size;
2066   bfd_byte *buf, *p;
2067   struct bfd_in_memory *bim;
2068 
2069   buf = NULL;
2070   nbfd = _bfd_get_elt_at_filepos (archive, filepos);
2071   if (nbfd == NULL)
2072     goto error_return;
2073 
2074   if ((nbfd->flags & BFD_IN_MEMORY) != 0)
2075     {
2076       /* We have already expanded this BFD.  */
2077       return nbfd;
2078     }
2079 
2080   tdata = (struct areltdata *) nbfd->arelt_data;
2081   hdr = (struct ar_hdr *) tdata->arch_header;
2082   if (strncmp (hdr->ar_fmag, ARFZMAG, 2) != 0)
2083     return nbfd;
2084 
2085   /* We must uncompress this element.  We do this by copying it into a
2086      memory buffer, and making bfd_bread and bfd_seek use that buffer.
2087      This can use a lot of memory, but it's simpler than getting a
2088      temporary file, making that work with the file descriptor caching
2089      code, and making sure that it is deleted at all appropriate
2090      times.  It can be changed if it ever becomes important.  */
2091 
2092   /* The compressed file starts with a dummy ECOFF file header.  */
2093   if (bfd_seek (nbfd, (file_ptr) FILHSZ, SEEK_SET) != 0)
2094     goto error_return;
2095 
2096   /* The next eight bytes are the real file size.  */
2097   if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2098     goto error_return;
2099   size = H_GET_64 (nbfd, ab);
2100 
2101   if (size != 0)
2102     {
2103       bfd_size_type left;
2104       bfd_byte dict[4096];
2105       unsigned int h;
2106       bfd_byte b;
2107 
2108       buf = (bfd_byte *) bfd_malloc (size);
2109       if (buf == NULL)
2110 	goto error_return;
2111       p = buf;
2112 
2113       left = size;
2114 
2115       /* I don't know what the next eight bytes are for.  */
2116       if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2117 	goto error_return;
2118 
2119       /* This is the uncompression algorithm.  It's a simple
2120 	 dictionary based scheme in which each character is predicted
2121 	 by a hash of the previous three characters.  A control byte
2122 	 indicates whether the character is predicted or whether it
2123 	 appears in the input stream; each control byte manages the
2124 	 next eight bytes in the output stream.  */
2125       memset (dict, 0, sizeof dict);
2126       h = 0;
2127       while (bfd_bread (&b, (bfd_size_type) 1, nbfd) == 1)
2128 	{
2129 	  unsigned int i;
2130 
2131 	  for (i = 0; i < 8; i++, b >>= 1)
2132 	    {
2133 	      bfd_byte n;
2134 
2135 	      if ((b & 1) == 0)
2136 		n = dict[h];
2137 	      else
2138 		{
2139 		  if (! bfd_bread (&n, (bfd_size_type) 1, nbfd))
2140 		    goto error_return;
2141 		  dict[h] = n;
2142 		}
2143 
2144 	      *p++ = n;
2145 
2146 	      --left;
2147 	      if (left == 0)
2148 		break;
2149 
2150 	      h <<= 4;
2151 	      h ^= n;
2152 	      h &= sizeof dict - 1;
2153 	    }
2154 
2155 	  if (left == 0)
2156 	    break;
2157 	}
2158     }
2159 
2160   /* Now the uncompressed file contents are in buf.  */
2161   bim = ((struct bfd_in_memory *)
2162 	 bfd_malloc ((bfd_size_type) sizeof (struct bfd_in_memory)));
2163   if (bim == NULL)
2164     goto error_return;
2165   bim->size = size;
2166   bim->buffer = buf;
2167 
2168   nbfd->mtime_set = TRUE;
2169   nbfd->mtime = strtol (hdr->ar_date, (char **) NULL, 10);
2170 
2171   nbfd->flags |= BFD_IN_MEMORY;
2172   nbfd->iostream = bim;
2173   nbfd->iovec = &_bfd_memory_iovec;
2174   nbfd->origin = 0;
2175   BFD_ASSERT (! nbfd->cacheable);
2176 
2177   return nbfd;
2178 
2179  error_return:
2180   if (buf != NULL)
2181     free (buf);
2182   if (nbfd != NULL)
2183     bfd_close (nbfd);
2184   return NULL;
2185 }
2186 
2187 /* Open the next archived file.  */
2188 
2189 static bfd *
alpha_ecoff_openr_next_archived_file(bfd * archive,bfd * last_file)2190 alpha_ecoff_openr_next_archived_file (bfd *archive, bfd *last_file)
2191 {
2192   file_ptr filestart;
2193 
2194   if (last_file == NULL)
2195     filestart = bfd_ardata (archive)->first_file_filepos;
2196   else
2197     {
2198       struct areltdata *t;
2199       struct ar_hdr *h;
2200       bfd_size_type size;
2201 
2202       /* We can't use arelt_size here, because that uses parsed_size,
2203          which is the uncompressed size.  We need the compressed size.  */
2204       t = (struct areltdata *) last_file->arelt_data;
2205       h = (struct ar_hdr *) t->arch_header;
2206       size = strtol (h->ar_size, (char **) NULL, 10);
2207 
2208       /* Pad to an even boundary...
2209 	 Note that last_file->origin can be odd in the case of
2210 	 BSD-4.4-style element with a long odd size.  */
2211       filestart = last_file->proxy_origin + size;
2212       filestart += filestart % 2;
2213     }
2214 
2215   return alpha_ecoff_get_elt_at_filepos (archive, filestart);
2216 }
2217 
2218 /* Open the archive file given an index into the armap.  */
2219 
2220 static bfd *
alpha_ecoff_get_elt_at_index(bfd * abfd,symindex sym_index)2221 alpha_ecoff_get_elt_at_index (bfd *abfd, symindex sym_index)
2222 {
2223   carsym *entry;
2224 
2225   entry = bfd_ardata (abfd)->symdefs + sym_index;
2226   return alpha_ecoff_get_elt_at_filepos (abfd, entry->file_offset);
2227 }
2228 
2229 /* This is the ECOFF backend structure.  The backend field of the
2230    target vector points to this.  */
2231 
2232 static const struct ecoff_backend_data alpha_ecoff_backend_data =
2233 {
2234   /* COFF backend structure.  */
2235   {
2236     (void (*) (bfd *,void *,int,int,int,int,void *)) bfd_void, /* aux_in */
2237     (void (*) (bfd *,void *,void *)) bfd_void, /* sym_in */
2238     (void (*) (bfd *,void *,void *)) bfd_void, /* lineno_in */
2239     (unsigned (*) (bfd *,void *,int,int,int,int,void *)) bfd_void,/*aux_out*/
2240     (unsigned (*) (bfd *,void *,void *)) bfd_void, /* sym_out */
2241     (unsigned (*) (bfd *,void *,void *)) bfd_void, /* lineno_out */
2242     (unsigned (*) (bfd *,void *,void *)) bfd_void, /* reloc_out */
2243     alpha_ecoff_swap_filehdr_out, alpha_ecoff_swap_aouthdr_out,
2244     alpha_ecoff_swap_scnhdr_out,
2245     FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, TRUE,
2246     ECOFF_NO_LONG_SECTION_NAMES, 4, FALSE, 2,
2247     alpha_ecoff_swap_filehdr_in, alpha_ecoff_swap_aouthdr_in,
2248     alpha_ecoff_swap_scnhdr_in, NULL,
2249     alpha_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2250     alpha_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2251     _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2252     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2253     NULL, NULL, NULL, NULL
2254   },
2255   /* Supported architecture.  */
2256   bfd_arch_alpha,
2257   /* Initial portion of armap string.  */
2258   "________64",
2259   /* The page boundary used to align sections in a demand-paged
2260      executable file.  E.g., 0x1000.  */
2261   0x2000,
2262   /* TRUE if the .rdata section is part of the text segment, as on the
2263      Alpha.  FALSE if .rdata is part of the data segment, as on the
2264      MIPS.  */
2265   TRUE,
2266   /* Bitsize of constructor entries.  */
2267   64,
2268   /* Reloc to use for constructor entries.  */
2269   &alpha_howto_table[ALPHA_R_REFQUAD],
2270   {
2271     /* Symbol table magic number.  */
2272     magicSym2,
2273     /* Alignment of debugging information.  E.g., 4.  */
2274     8,
2275     /* Sizes of external symbolic information.  */
2276     sizeof (struct hdr_ext),
2277     sizeof (struct dnr_ext),
2278     sizeof (struct pdr_ext),
2279     sizeof (struct sym_ext),
2280     sizeof (struct opt_ext),
2281     sizeof (struct fdr_ext),
2282     sizeof (struct rfd_ext),
2283     sizeof (struct ext_ext),
2284     /* Functions to swap in external symbolic data.  */
2285     ecoff_swap_hdr_in,
2286     ecoff_swap_dnr_in,
2287     ecoff_swap_pdr_in,
2288     ecoff_swap_sym_in,
2289     ecoff_swap_opt_in,
2290     ecoff_swap_fdr_in,
2291     ecoff_swap_rfd_in,
2292     ecoff_swap_ext_in,
2293     _bfd_ecoff_swap_tir_in,
2294     _bfd_ecoff_swap_rndx_in,
2295     /* Functions to swap out external symbolic data.  */
2296     ecoff_swap_hdr_out,
2297     ecoff_swap_dnr_out,
2298     ecoff_swap_pdr_out,
2299     ecoff_swap_sym_out,
2300     ecoff_swap_opt_out,
2301     ecoff_swap_fdr_out,
2302     ecoff_swap_rfd_out,
2303     ecoff_swap_ext_out,
2304     _bfd_ecoff_swap_tir_out,
2305     _bfd_ecoff_swap_rndx_out,
2306     /* Function to read in symbolic data.  */
2307     _bfd_ecoff_slurp_symbolic_info
2308   },
2309   /* External reloc size.  */
2310   RELSZ,
2311   /* Reloc swapping functions.  */
2312   alpha_ecoff_swap_reloc_in,
2313   alpha_ecoff_swap_reloc_out,
2314   /* Backend reloc tweaking.  */
2315   alpha_adjust_reloc_in,
2316   alpha_adjust_reloc_out,
2317   /* Relocate section contents while linking.  */
2318   alpha_relocate_section,
2319   /* Do final adjustments to filehdr and aouthdr.  */
2320   alpha_adjust_headers,
2321   /* Read an element from an archive at a given file position.  */
2322   alpha_ecoff_get_elt_at_filepos
2323 };
2324 
2325 /* Looking up a reloc type is Alpha specific.  */
2326 #define _bfd_ecoff_bfd_reloc_type_lookup alpha_bfd_reloc_type_lookup
2327 #define _bfd_ecoff_bfd_reloc_name_lookup \
2328   alpha_bfd_reloc_name_lookup
2329 
2330 /* So is getting relocated section contents.  */
2331 #define _bfd_ecoff_bfd_get_relocated_section_contents \
2332   alpha_ecoff_get_relocated_section_contents
2333 
2334 /* Handling file windows is generic.  */
2335 #define _bfd_ecoff_get_section_contents_in_window \
2336   _bfd_generic_get_section_contents_in_window
2337 
2338 /* Input section flag lookup is generic.  */
2339 #define _bfd_ecoff_bfd_lookup_section_flags bfd_generic_lookup_section_flags
2340 
2341 /* Relaxing sections is generic.  */
2342 #define _bfd_ecoff_bfd_relax_section bfd_generic_relax_section
2343 #define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections
2344 #define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections
2345 #define _bfd_ecoff_bfd_is_group_section bfd_generic_is_group_section
2346 #define _bfd_ecoff_bfd_discard_group bfd_generic_discard_group
2347 #define _bfd_ecoff_section_already_linked \
2348   _bfd_coff_section_already_linked
2349 #define _bfd_ecoff_bfd_define_common_symbol bfd_generic_define_common_symbol
2350 
2351 const bfd_target ecoffalpha_little_vec =
2352 {
2353   "ecoff-littlealpha",		/* name */
2354   bfd_target_ecoff_flavour,
2355   BFD_ENDIAN_LITTLE,		/* data byte order is little */
2356   BFD_ENDIAN_LITTLE,		/* header byte order is little */
2357 
2358   (HAS_RELOC | EXEC_P |		/* object flags */
2359    HAS_LINENO | HAS_DEBUG |
2360    HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED),
2361 
2362   (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2363   0,				/* leading underscore */
2364   ' ',				/* ar_pad_char */
2365   15,				/* ar_max_namelen */
2366   0,				/* match priority.  */
2367   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2368      bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2369      bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2370   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2371      bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2372      bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2373 
2374   {_bfd_dummy_target, alpha_ecoff_object_p, /* bfd_check_format */
2375      bfd_generic_archive_p, _bfd_dummy_target},
2376   {bfd_false, _bfd_ecoff_mkobject,  /* bfd_set_format */
2377      _bfd_generic_mkarchive, bfd_false},
2378   {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2379      _bfd_write_archive_contents, bfd_false},
2380 
2381      BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2382      BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2383      BFD_JUMP_TABLE_CORE (_bfd_nocore),
2384      BFD_JUMP_TABLE_ARCHIVE (alpha_ecoff),
2385      BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2386      BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2387      BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2388      BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2389      BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2390 
2391   NULL,
2392 
2393   & alpha_ecoff_backend_data
2394 };
2395