1 /* BFD back-end for Renesas Super-H COFF binaries.
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011, 2012
4    Free Software Foundation, Inc.
5    Contributed by Cygnus Support.
6    Written by Steve Chamberlain, <sac@cygnus.com>.
7    Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
8 
9    This file is part of BFD, the Binary File Descriptor library.
10 
11    This program is free software; you can redistribute it and/or modify
12    it under the terms of the GNU General Public License as published by
13    the Free Software Foundation; either version 3 of the License, or
14    (at your option) any later version.
15 
16    This program is distributed in the hope that it will be useful,
17    but WITHOUT ANY WARRANTY; without even the implied warranty of
18    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19    GNU General Public License for more details.
20 
21    You should have received a copy of the GNU General Public License
22    along with this program; if not, write to the Free Software
23    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
24    MA 02110-1301, USA.  */
25 
26 #include "sysdep.h"
27 #include "bfd.h"
28 #include "libiberty.h"
29 #include "libbfd.h"
30 #include "bfdlink.h"
31 #include "coff/sh.h"
32 #include "coff/internal.h"
33 
34 #undef  bfd_pe_print_pdata
35 
36 #ifdef COFF_WITH_PE
37 #include "coff/pe.h"
38 
39 #ifndef COFF_IMAGE_WITH_PE
40 static bfd_boolean sh_align_load_span
41   (bfd *, asection *, bfd_byte *,
42    bfd_boolean (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
43    void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *);
44 
45 #define _bfd_sh_align_load_span sh_align_load_span
46 #endif
47 
48 #define	bfd_pe_print_pdata   _bfd_pe_print_ce_compressed_pdata
49 
50 #else
51 
52 #define	bfd_pe_print_pdata   NULL
53 
54 #endif /* COFF_WITH_PE.  */
55 
56 #include "libcoff.h"
57 
58 /* Internal functions.  */
59 
60 #ifdef COFF_WITH_PE
61 /* Can't build import tables with 2**4 alignment.  */
62 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER	2
63 #else
64 /* Default section alignment to 2**4.  */
65 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER	4
66 #endif
67 
68 #ifdef COFF_IMAGE_WITH_PE
69 /* Align PE executables.  */
70 #define COFF_PAGE_SIZE 0x1000
71 #endif
72 
73 /* Generate long file names.  */
74 #define COFF_LONG_FILENAMES
75 
76 #ifdef COFF_WITH_PE
77 /* Return TRUE if this relocation should
78    appear in the output .reloc section.  */
79 
80 static bfd_boolean
in_reloc_p(bfd * abfd ATTRIBUTE_UNUSED,reloc_howto_type * howto)81 in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED,
82 	    reloc_howto_type * howto)
83 {
84   return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
85 }
86 #endif
87 
88 static bfd_reloc_status_type
89 sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
90 static bfd_boolean
91 sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *,
92 		     bfd_byte *, struct internal_reloc *,
93 		     struct internal_syment *, asection **);
94 static bfd_boolean
95 sh_align_loads (bfd *, asection *, struct internal_reloc *,
96 		bfd_byte *, bfd_boolean *);
97 
98 /* The supported relocations.  There are a lot of relocations defined
99    in coff/internal.h which we do not expect to ever see.  */
100 static reloc_howto_type sh_coff_howtos[] =
101 {
102   EMPTY_HOWTO (0),
103   EMPTY_HOWTO (1),
104 #ifdef COFF_WITH_PE
105   /* Windows CE */
106   HOWTO (R_SH_IMM32CE,		/* type */
107 	 0,			/* rightshift */
108 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
109 	 32,			/* bitsize */
110 	 FALSE,			/* pc_relative */
111 	 0,			/* bitpos */
112 	 complain_overflow_bitfield, /* complain_on_overflow */
113 	 sh_reloc,		/* special_function */
114 	 "r_imm32ce",		/* name */
115 	 TRUE,			/* partial_inplace */
116 	 0xffffffff,		/* src_mask */
117 	 0xffffffff,		/* dst_mask */
118 	 FALSE),		/* pcrel_offset */
119 #else
120   EMPTY_HOWTO (2),
121 #endif
122   EMPTY_HOWTO (3), /* R_SH_PCREL8 */
123   EMPTY_HOWTO (4), /* R_SH_PCREL16 */
124   EMPTY_HOWTO (5), /* R_SH_HIGH8 */
125   EMPTY_HOWTO (6), /* R_SH_IMM24 */
126   EMPTY_HOWTO (7), /* R_SH_LOW16 */
127   EMPTY_HOWTO (8),
128   EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
129 
130   HOWTO (R_SH_PCDISP8BY2,	/* type */
131 	 1,			/* rightshift */
132 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
133 	 8,			/* bitsize */
134 	 TRUE,			/* pc_relative */
135 	 0,			/* bitpos */
136 	 complain_overflow_signed, /* complain_on_overflow */
137 	 sh_reloc,		/* special_function */
138 	 "r_pcdisp8by2",	/* name */
139 	 TRUE,			/* partial_inplace */
140 	 0xff,			/* src_mask */
141 	 0xff,			/* dst_mask */
142 	 TRUE),			/* pcrel_offset */
143 
144   EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
145 
146   HOWTO (R_SH_PCDISP,		/* type */
147 	 1,			/* rightshift */
148 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
149 	 12,			/* bitsize */
150 	 TRUE,			/* pc_relative */
151 	 0,			/* bitpos */
152 	 complain_overflow_signed, /* complain_on_overflow */
153 	 sh_reloc,		/* special_function */
154 	 "r_pcdisp12by2",	/* name */
155 	 TRUE,			/* partial_inplace */
156 	 0xfff,			/* src_mask */
157 	 0xfff,			/* dst_mask */
158 	 TRUE),			/* pcrel_offset */
159 
160   EMPTY_HOWTO (13),
161 
162   HOWTO (R_SH_IMM32,		/* type */
163 	 0,			/* rightshift */
164 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
165 	 32,			/* bitsize */
166 	 FALSE,			/* pc_relative */
167 	 0,			/* bitpos */
168 	 complain_overflow_bitfield, /* complain_on_overflow */
169 	 sh_reloc,		/* special_function */
170 	 "r_imm32",		/* name */
171 	 TRUE,			/* partial_inplace */
172 	 0xffffffff,		/* src_mask */
173 	 0xffffffff,		/* dst_mask */
174 	 FALSE),		/* pcrel_offset */
175 
176   EMPTY_HOWTO (15),
177 #ifdef COFF_WITH_PE
178   HOWTO (R_SH_IMAGEBASE,        /* type */
179 	 0,	                /* rightshift */
180 	 2,	                /* size (0 = byte, 1 = short, 2 = long) */
181 	 32,	                /* bitsize */
182 	 FALSE,	                /* pc_relative */
183 	 0,	                /* bitpos */
184 	 complain_overflow_bitfield, /* complain_on_overflow */
185 	 sh_reloc,       	/* special_function */
186 	 "rva32",	        /* name */
187 	 TRUE,	                /* partial_inplace */
188 	 0xffffffff,            /* src_mask */
189 	 0xffffffff,            /* dst_mask */
190 	 FALSE),                /* pcrel_offset */
191 #else
192   EMPTY_HOWTO (16), /* R_SH_IMM8 */
193 #endif
194   EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
195   EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
196   EMPTY_HOWTO (19), /* R_SH_IMM4 */
197   EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
198   EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
199 
200   HOWTO (R_SH_PCRELIMM8BY2,	/* type */
201 	 1,			/* rightshift */
202 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
203 	 8,			/* bitsize */
204 	 TRUE,			/* pc_relative */
205 	 0,			/* bitpos */
206 	 complain_overflow_unsigned, /* complain_on_overflow */
207 	 sh_reloc,		/* special_function */
208 	 "r_pcrelimm8by2",	/* name */
209 	 TRUE,			/* partial_inplace */
210 	 0xff,			/* src_mask */
211 	 0xff,			/* dst_mask */
212 	 TRUE),			/* pcrel_offset */
213 
214   HOWTO (R_SH_PCRELIMM8BY4,	/* type */
215 	 2,			/* rightshift */
216 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
217 	 8,			/* bitsize */
218 	 TRUE,			/* pc_relative */
219 	 0,			/* bitpos */
220 	 complain_overflow_unsigned, /* complain_on_overflow */
221 	 sh_reloc,		/* special_function */
222 	 "r_pcrelimm8by4",	/* name */
223 	 TRUE,			/* partial_inplace */
224 	 0xff,			/* src_mask */
225 	 0xff,			/* dst_mask */
226 	 TRUE),			/* pcrel_offset */
227 
228   HOWTO (R_SH_IMM16,		/* type */
229 	 0,			/* rightshift */
230 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
231 	 16,			/* bitsize */
232 	 FALSE,			/* pc_relative */
233 	 0,			/* bitpos */
234 	 complain_overflow_bitfield, /* complain_on_overflow */
235 	 sh_reloc,		/* special_function */
236 	 "r_imm16",		/* name */
237 	 TRUE,			/* partial_inplace */
238 	 0xffff,		/* src_mask */
239 	 0xffff,		/* dst_mask */
240 	 FALSE),		/* pcrel_offset */
241 
242   HOWTO (R_SH_SWITCH16,		/* type */
243 	 0,			/* rightshift */
244 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
245 	 16,			/* bitsize */
246 	 FALSE,			/* pc_relative */
247 	 0,			/* bitpos */
248 	 complain_overflow_bitfield, /* complain_on_overflow */
249 	 sh_reloc,		/* special_function */
250 	 "r_switch16",		/* name */
251 	 TRUE,			/* partial_inplace */
252 	 0xffff,		/* src_mask */
253 	 0xffff,		/* dst_mask */
254 	 FALSE),		/* pcrel_offset */
255 
256   HOWTO (R_SH_SWITCH32,		/* type */
257 	 0,			/* rightshift */
258 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
259 	 32,			/* bitsize */
260 	 FALSE,			/* pc_relative */
261 	 0,			/* bitpos */
262 	 complain_overflow_bitfield, /* complain_on_overflow */
263 	 sh_reloc,		/* special_function */
264 	 "r_switch32",		/* name */
265 	 TRUE,			/* partial_inplace */
266 	 0xffffffff,		/* src_mask */
267 	 0xffffffff,		/* dst_mask */
268 	 FALSE),		/* pcrel_offset */
269 
270   HOWTO (R_SH_USES,		/* type */
271 	 0,			/* rightshift */
272 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
273 	 16,			/* bitsize */
274 	 FALSE,			/* pc_relative */
275 	 0,			/* bitpos */
276 	 complain_overflow_bitfield, /* complain_on_overflow */
277 	 sh_reloc,		/* special_function */
278 	 "r_uses",		/* name */
279 	 TRUE,			/* partial_inplace */
280 	 0xffff,		/* src_mask */
281 	 0xffff,		/* dst_mask */
282 	 FALSE),		/* pcrel_offset */
283 
284   HOWTO (R_SH_COUNT,		/* type */
285 	 0,			/* rightshift */
286 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
287 	 32,			/* bitsize */
288 	 FALSE,			/* pc_relative */
289 	 0,			/* bitpos */
290 	 complain_overflow_bitfield, /* complain_on_overflow */
291 	 sh_reloc,		/* special_function */
292 	 "r_count",		/* name */
293 	 TRUE,			/* partial_inplace */
294 	 0xffffffff,		/* src_mask */
295 	 0xffffffff,		/* dst_mask */
296 	 FALSE),		/* pcrel_offset */
297 
298   HOWTO (R_SH_ALIGN,		/* type */
299 	 0,			/* rightshift */
300 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
301 	 32,			/* bitsize */
302 	 FALSE,			/* pc_relative */
303 	 0,			/* bitpos */
304 	 complain_overflow_bitfield, /* complain_on_overflow */
305 	 sh_reloc,		/* special_function */
306 	 "r_align",		/* name */
307 	 TRUE,			/* partial_inplace */
308 	 0xffffffff,		/* src_mask */
309 	 0xffffffff,		/* dst_mask */
310 	 FALSE),		/* pcrel_offset */
311 
312   HOWTO (R_SH_CODE,		/* type */
313 	 0,			/* rightshift */
314 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
315 	 32,			/* bitsize */
316 	 FALSE,			/* pc_relative */
317 	 0,			/* bitpos */
318 	 complain_overflow_bitfield, /* complain_on_overflow */
319 	 sh_reloc,		/* special_function */
320 	 "r_code",		/* name */
321 	 TRUE,			/* partial_inplace */
322 	 0xffffffff,		/* src_mask */
323 	 0xffffffff,		/* dst_mask */
324 	 FALSE),		/* pcrel_offset */
325 
326   HOWTO (R_SH_DATA,		/* type */
327 	 0,			/* rightshift */
328 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
329 	 32,			/* bitsize */
330 	 FALSE,			/* pc_relative */
331 	 0,			/* bitpos */
332 	 complain_overflow_bitfield, /* complain_on_overflow */
333 	 sh_reloc,		/* special_function */
334 	 "r_data",		/* name */
335 	 TRUE,			/* partial_inplace */
336 	 0xffffffff,		/* src_mask */
337 	 0xffffffff,		/* dst_mask */
338 	 FALSE),		/* pcrel_offset */
339 
340   HOWTO (R_SH_LABEL,		/* type */
341 	 0,			/* rightshift */
342 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
343 	 32,			/* bitsize */
344 	 FALSE,			/* pc_relative */
345 	 0,			/* bitpos */
346 	 complain_overflow_bitfield, /* complain_on_overflow */
347 	 sh_reloc,		/* special_function */
348 	 "r_label",		/* name */
349 	 TRUE,			/* partial_inplace */
350 	 0xffffffff,		/* src_mask */
351 	 0xffffffff,		/* dst_mask */
352 	 FALSE),		/* pcrel_offset */
353 
354   HOWTO (R_SH_SWITCH8,		/* type */
355 	 0,			/* rightshift */
356 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
357 	 8,			/* bitsize */
358 	 FALSE,			/* pc_relative */
359 	 0,			/* bitpos */
360 	 complain_overflow_bitfield, /* complain_on_overflow */
361 	 sh_reloc,		/* special_function */
362 	 "r_switch8",		/* name */
363 	 TRUE,			/* partial_inplace */
364 	 0xff,			/* src_mask */
365 	 0xff,			/* dst_mask */
366 	 FALSE)			/* pcrel_offset */
367 };
368 
369 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
370 
371 /* Check for a bad magic number.  */
372 #define BADMAG(x) SHBADMAG(x)
373 
374 /* Customize coffcode.h (this is not currently used).  */
375 #define SH 1
376 
377 /* FIXME: This should not be set here.  */
378 #define __A_MAGIC_SET__
379 
380 #ifndef COFF_WITH_PE
381 /* Swap the r_offset field in and out.  */
382 #define SWAP_IN_RELOC_OFFSET  H_GET_32
383 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
384 
385 /* Swap out extra information in the reloc structure.  */
386 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst)	\
387   do						\
388     {						\
389       dst->r_stuff[0] = 'S';			\
390       dst->r_stuff[1] = 'C';			\
391     }						\
392   while (0)
393 #endif
394 
395 /* Get the value of a symbol, when performing a relocation.  */
396 
397 static long
get_symbol_value(asymbol * symbol)398 get_symbol_value (asymbol *symbol)
399 {
400   bfd_vma relocation;
401 
402   if (bfd_is_com_section (symbol->section))
403     relocation = 0;
404   else
405     relocation = (symbol->value +
406 		  symbol->section->output_section->vma +
407 		  symbol->section->output_offset);
408 
409   return relocation;
410 }
411 
412 #ifdef COFF_WITH_PE
413 /* Convert an rtype to howto for the COFF backend linker.
414    Copied from coff-i386.  */
415 #define coff_rtype_to_howto coff_sh_rtype_to_howto
416 
417 
418 static reloc_howto_type *
coff_sh_rtype_to_howto(bfd * abfd ATTRIBUTE_UNUSED,asection * sec,struct internal_reloc * rel,struct coff_link_hash_entry * h,struct internal_syment * sym,bfd_vma * addendp)419 coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED,
420 			asection * sec,
421 			struct internal_reloc * rel,
422 			struct coff_link_hash_entry * h,
423 			struct internal_syment * sym,
424 			bfd_vma * addendp)
425 {
426   reloc_howto_type * howto;
427 
428   howto = sh_coff_howtos + rel->r_type;
429 
430   *addendp = 0;
431 
432   if (howto->pc_relative)
433     *addendp += sec->vma;
434 
435   if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
436     {
437       /* This is a common symbol.  The section contents include the
438 	 size (sym->n_value) as an addend.  The relocate_section
439 	 function will be adding in the final value of the symbol.  We
440 	 need to subtract out the current size in order to get the
441 	 correct result.  */
442       BFD_ASSERT (h != NULL);
443     }
444 
445   if (howto->pc_relative)
446     {
447       *addendp -= 4;
448 
449       /* If the symbol is defined, then the generic code is going to
450          add back the symbol value in order to cancel out an
451          adjustment it made to the addend.  However, we set the addend
452          to 0 at the start of this function.  We need to adjust here,
453          to avoid the adjustment the generic code will make.  FIXME:
454          This is getting a bit hackish.  */
455       if (sym != NULL && sym->n_scnum != 0)
456 	*addendp -= sym->n_value;
457     }
458 
459   if (rel->r_type == R_SH_IMAGEBASE)
460     *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
461 
462   return howto;
463 }
464 
465 #endif /* COFF_WITH_PE */
466 
467 /* This structure is used to map BFD reloc codes to SH PE relocs.  */
468 struct shcoff_reloc_map
469 {
470   bfd_reloc_code_real_type bfd_reloc_val;
471   unsigned char shcoff_reloc_val;
472 };
473 
474 #ifdef COFF_WITH_PE
475 /* An array mapping BFD reloc codes to SH PE relocs.  */
476 static const struct shcoff_reloc_map sh_reloc_map[] =
477 {
478   { BFD_RELOC_32, R_SH_IMM32CE },
479   { BFD_RELOC_RVA, R_SH_IMAGEBASE },
480   { BFD_RELOC_CTOR, R_SH_IMM32CE },
481 };
482 #else
483 /* An array mapping BFD reloc codes to SH PE relocs.  */
484 static const struct shcoff_reloc_map sh_reloc_map[] =
485 {
486   { BFD_RELOC_32, R_SH_IMM32 },
487   { BFD_RELOC_CTOR, R_SH_IMM32 },
488 };
489 #endif
490 
491 /* Given a BFD reloc code, return the howto structure for the
492    corresponding SH PE reloc.  */
493 #define coff_bfd_reloc_type_lookup	sh_coff_reloc_type_lookup
494 #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
495 
496 static reloc_howto_type *
sh_coff_reloc_type_lookup(bfd * abfd ATTRIBUTE_UNUSED,bfd_reloc_code_real_type code)497 sh_coff_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
498 			   bfd_reloc_code_real_type code)
499 {
500   unsigned int i;
501 
502   for (i = ARRAY_SIZE (sh_reloc_map); i--;)
503     if (sh_reloc_map[i].bfd_reloc_val == code)
504       return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
505 
506   (*_bfd_error_handler) (_("SH Error: unknown reloc type %d"), code);
507   return NULL;
508 }
509 
510 static reloc_howto_type *
sh_coff_reloc_name_lookup(bfd * abfd ATTRIBUTE_UNUSED,const char * r_name)511 sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
512 			   const char *r_name)
513 {
514   unsigned int i;
515 
516   for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
517     if (sh_coff_howtos[i].name != NULL
518 	&& strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
519       return &sh_coff_howtos[i];
520 
521   return NULL;
522 }
523 
524 /* This macro is used in coffcode.h to get the howto corresponding to
525    an internal reloc.  */
526 
527 #define RTYPE2HOWTO(relent, internal)		\
528   ((relent)->howto =				\
529    ((internal)->r_type < SH_COFF_HOWTO_COUNT	\
530     ? &sh_coff_howtos[(internal)->r_type]	\
531     : (reloc_howto_type *) NULL))
532 
533 /* This is the same as the macro in coffcode.h, except that it copies
534    r_offset into reloc_entry->addend for some relocs.  */
535 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr)                \
536   {                                                             \
537     coff_symbol_type *coffsym = (coff_symbol_type *) NULL;      \
538     if (ptr && bfd_asymbol_bfd (ptr) != abfd)                   \
539       coffsym = (obj_symbols (abfd)                             \
540                  + (cache_ptr->sym_ptr_ptr - symbols));         \
541     else if (ptr)                                               \
542       coffsym = coff_symbol_from (abfd, ptr);                   \
543     if (coffsym != (coff_symbol_type *) NULL                    \
544         && coffsym->native->u.syment.n_scnum == 0)              \
545       cache_ptr->addend = 0;                                    \
546     else if (ptr && bfd_asymbol_bfd (ptr) == abfd               \
547              && ptr->section != (asection *) NULL)              \
548       cache_ptr->addend = - (ptr->section->vma + ptr->value);   \
549     else                                                        \
550       cache_ptr->addend = 0;                                    \
551     if ((reloc).r_type == R_SH_SWITCH8				\
552 	|| (reloc).r_type == R_SH_SWITCH16			\
553 	|| (reloc).r_type == R_SH_SWITCH32			\
554 	|| (reloc).r_type == R_SH_USES				\
555 	|| (reloc).r_type == R_SH_COUNT				\
556 	|| (reloc).r_type == R_SH_ALIGN)			\
557       cache_ptr->addend = (reloc).r_offset;			\
558   }
559 
560 /* This is the howto function for the SH relocations.  */
561 
562 static bfd_reloc_status_type
sh_reloc(bfd * abfd,arelent * reloc_entry,asymbol * symbol_in,void * data,asection * input_section,bfd * output_bfd,char ** error_message ATTRIBUTE_UNUSED)563 sh_reloc (bfd *      abfd,
564 	  arelent *  reloc_entry,
565 	  asymbol *  symbol_in,
566 	  void *     data,
567 	  asection * input_section,
568 	  bfd *      output_bfd,
569 	  char **    error_message ATTRIBUTE_UNUSED)
570 {
571   unsigned long insn;
572   bfd_vma sym_value;
573   unsigned short r_type;
574   bfd_vma addr = reloc_entry->address;
575   bfd_byte *hit_data = addr + (bfd_byte *) data;
576 
577   r_type = reloc_entry->howto->type;
578 
579   if (output_bfd != NULL)
580     {
581       /* Partial linking--do nothing.  */
582       reloc_entry->address += input_section->output_offset;
583       return bfd_reloc_ok;
584     }
585 
586   /* Almost all relocs have to do with relaxing.  If any work must be
587      done for them, it has been done in sh_relax_section.  */
588   if (r_type != R_SH_IMM32
589 #ifdef COFF_WITH_PE
590       && r_type != R_SH_IMM32CE
591       && r_type != R_SH_IMAGEBASE
592 #endif
593       && (r_type != R_SH_PCDISP
594 	  || (symbol_in->flags & BSF_LOCAL) != 0))
595     return bfd_reloc_ok;
596 
597   if (symbol_in != NULL
598       && bfd_is_und_section (symbol_in->section))
599     return bfd_reloc_undefined;
600 
601   sym_value = get_symbol_value (symbol_in);
602 
603   switch (r_type)
604     {
605     case R_SH_IMM32:
606 #ifdef COFF_WITH_PE
607     case R_SH_IMM32CE:
608 #endif
609       insn = bfd_get_32 (abfd, hit_data);
610       insn += sym_value + reloc_entry->addend;
611       bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
612       break;
613 #ifdef COFF_WITH_PE
614     case R_SH_IMAGEBASE:
615       insn = bfd_get_32 (abfd, hit_data);
616       insn += sym_value + reloc_entry->addend;
617       insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
618       bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
619       break;
620 #endif
621     case R_SH_PCDISP:
622       insn = bfd_get_16 (abfd, hit_data);
623       sym_value += reloc_entry->addend;
624       sym_value -= (input_section->output_section->vma
625 		    + input_section->output_offset
626 		    + addr
627 		    + 4);
628       sym_value += (insn & 0xfff) << 1;
629       if (insn & 0x800)
630 	sym_value -= 0x1000;
631       insn = (insn & 0xf000) | (sym_value & 0xfff);
632       bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
633       if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
634 	return bfd_reloc_overflow;
635       break;
636     default:
637       abort ();
638       break;
639     }
640 
641   return bfd_reloc_ok;
642 }
643 
644 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
645 
646 /* We can do relaxing.  */
647 #define coff_bfd_relax_section sh_relax_section
648 
649 /* We use the special COFF backend linker.  */
650 #define coff_relocate_section sh_relocate_section
651 
652 /* When relaxing, we need to use special code to get the relocated
653    section contents.  */
654 #define coff_bfd_get_relocated_section_contents \
655   sh_coff_get_relocated_section_contents
656 
657 #include "coffcode.h"
658 
659 static bfd_boolean
660 sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int);
661 
662 /* This function handles relaxing on the SH.
663 
664    Function calls on the SH look like this:
665 
666        movl  L1,r0
667        ...
668        jsr   @r0
669        ...
670      L1:
671        .long function
672 
673    The compiler and assembler will cooperate to create R_SH_USES
674    relocs on the jsr instructions.  The r_offset field of the
675    R_SH_USES reloc is the PC relative offset to the instruction which
676    loads the register (the r_offset field is computed as though it
677    were a jump instruction, so the offset value is actually from four
678    bytes past the instruction).  The linker can use this reloc to
679    determine just which function is being called, and thus decide
680    whether it is possible to replace the jsr with a bsr.
681 
682    If multiple function calls are all based on a single register load
683    (i.e., the same function is called multiple times), the compiler
684    guarantees that each function call will have an R_SH_USES reloc.
685    Therefore, if the linker is able to convert each R_SH_USES reloc
686    which refers to that address, it can safely eliminate the register
687    load.
688 
689    When the assembler creates an R_SH_USES reloc, it examines it to
690    determine which address is being loaded (L1 in the above example).
691    It then counts the number of references to that address, and
692    creates an R_SH_COUNT reloc at that address.  The r_offset field of
693    the R_SH_COUNT reloc will be the number of references.  If the
694    linker is able to eliminate a register load, it can use the
695    R_SH_COUNT reloc to see whether it can also eliminate the function
696    address.
697 
698    SH relaxing also handles another, unrelated, matter.  On the SH, if
699    a load or store instruction is not aligned on a four byte boundary,
700    the memory cycle interferes with the 32 bit instruction fetch,
701    causing a one cycle bubble in the pipeline.  Therefore, we try to
702    align load and store instructions on four byte boundaries if we
703    can, by swapping them with one of the adjacent instructions.  */
704 
705 static bfd_boolean
sh_relax_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info,bfd_boolean * again)706 sh_relax_section (bfd *abfd,
707 		  asection *sec,
708 		  struct bfd_link_info *link_info,
709 		  bfd_boolean *again)
710 {
711   struct internal_reloc *internal_relocs;
712   bfd_boolean have_code;
713   struct internal_reloc *irel, *irelend;
714   bfd_byte *contents = NULL;
715 
716   *again = FALSE;
717 
718   if (link_info->relocatable
719       || (sec->flags & SEC_RELOC) == 0
720       || sec->reloc_count == 0)
721     return TRUE;
722 
723   if (coff_section_data (abfd, sec) == NULL)
724     {
725       bfd_size_type amt = sizeof (struct coff_section_tdata);
726       sec->used_by_bfd = bfd_zalloc (abfd, amt);
727       if (sec->used_by_bfd == NULL)
728 	return FALSE;
729     }
730 
731   internal_relocs = (_bfd_coff_read_internal_relocs
732 		     (abfd, sec, link_info->keep_memory,
733 		      (bfd_byte *) NULL, FALSE,
734 		      (struct internal_reloc *) NULL));
735   if (internal_relocs == NULL)
736     goto error_return;
737 
738   have_code = FALSE;
739 
740   irelend = internal_relocs + sec->reloc_count;
741   for (irel = internal_relocs; irel < irelend; irel++)
742     {
743       bfd_vma laddr, paddr, symval;
744       unsigned short insn;
745       struct internal_reloc *irelfn, *irelscan, *irelcount;
746       struct internal_syment sym;
747       bfd_signed_vma foff;
748 
749       if (irel->r_type == R_SH_CODE)
750 	have_code = TRUE;
751 
752       if (irel->r_type != R_SH_USES)
753 	continue;
754 
755       /* Get the section contents.  */
756       if (contents == NULL)
757 	{
758 	  if (coff_section_data (abfd, sec)->contents != NULL)
759 	    contents = coff_section_data (abfd, sec)->contents;
760 	  else
761 	    {
762 	      if (!bfd_malloc_and_get_section (abfd, sec, &contents))
763 		goto error_return;
764 	    }
765 	}
766 
767       /* The r_offset field of the R_SH_USES reloc will point us to
768          the register load.  The 4 is because the r_offset field is
769          computed as though it were a jump offset, which are based
770          from 4 bytes after the jump instruction.  */
771       laddr = irel->r_vaddr - sec->vma + 4;
772       /* Careful to sign extend the 32-bit offset.  */
773       laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
774       if (laddr >= sec->size)
775 	{
776 	  (*_bfd_error_handler) ("%B: 0x%lx: warning: bad R_SH_USES offset",
777 				 abfd, (unsigned long) irel->r_vaddr);
778 	  continue;
779 	}
780       insn = bfd_get_16 (abfd, contents + laddr);
781 
782       /* If the instruction is not mov.l NN,rN, we don't know what to do.  */
783       if ((insn & 0xf000) != 0xd000)
784 	{
785 	  ((*_bfd_error_handler)
786 	   ("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
787 	    abfd, (unsigned long) irel->r_vaddr, insn));
788 	  continue;
789 	}
790 
791       /* Get the address from which the register is being loaded.  The
792       	 displacement in the mov.l instruction is quadrupled.  It is a
793       	 displacement from four bytes after the movl instruction, but,
794       	 before adding in the PC address, two least significant bits
795       	 of the PC are cleared.  We assume that the section is aligned
796       	 on a four byte boundary.  */
797       paddr = insn & 0xff;
798       paddr *= 4;
799       paddr += (laddr + 4) &~ (bfd_vma) 3;
800       if (paddr >= sec->size)
801 	{
802 	  ((*_bfd_error_handler)
803 	   ("%B: 0x%lx: warning: bad R_SH_USES load offset",
804 	    abfd, (unsigned long) irel->r_vaddr));
805 	  continue;
806 	}
807 
808       /* Get the reloc for the address from which the register is
809          being loaded.  This reloc will tell us which function is
810          actually being called.  */
811       paddr += sec->vma;
812       for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
813 	if (irelfn->r_vaddr == paddr
814 #ifdef COFF_WITH_PE
815 	    && (irelfn->r_type == R_SH_IMM32
816 		|| irelfn->r_type == R_SH_IMM32CE
817 		|| irelfn->r_type == R_SH_IMAGEBASE)
818 
819 #else
820 	    && irelfn->r_type == R_SH_IMM32
821 #endif
822 	    )
823 	  break;
824       if (irelfn >= irelend)
825 	{
826 	  ((*_bfd_error_handler)
827 	   ("%B: 0x%lx: warning: could not find expected reloc",
828 	    abfd, (unsigned long) paddr));
829 	  continue;
830 	}
831 
832       /* Get the value of the symbol referred to by the reloc.  */
833       if (! _bfd_coff_get_external_symbols (abfd))
834 	goto error_return;
835       bfd_coff_swap_sym_in (abfd,
836 			    ((bfd_byte *) obj_coff_external_syms (abfd)
837 			     + (irelfn->r_symndx
838 				* bfd_coff_symesz (abfd))),
839 			    &sym);
840       if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
841 	{
842 	  ((*_bfd_error_handler)
843 	   ("%B: 0x%lx: warning: symbol in unexpected section",
844 	    abfd, (unsigned long) paddr));
845 	  continue;
846 	}
847 
848       if (sym.n_sclass != C_EXT)
849 	{
850 	  symval = (sym.n_value
851 		    - sec->vma
852 		    + sec->output_section->vma
853 		    + sec->output_offset);
854 	}
855       else
856 	{
857 	  struct coff_link_hash_entry *h;
858 
859 	  h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
860 	  BFD_ASSERT (h != NULL);
861 	  if (h->root.type != bfd_link_hash_defined
862 	      && h->root.type != bfd_link_hash_defweak)
863 	    {
864 	      /* This appears to be a reference to an undefined
865                  symbol.  Just ignore it--it will be caught by the
866                  regular reloc processing.  */
867 	      continue;
868 	    }
869 
870 	  symval = (h->root.u.def.value
871 		    + h->root.u.def.section->output_section->vma
872 		    + h->root.u.def.section->output_offset);
873 	}
874 
875       symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
876 
877       /* See if this function call can be shortened.  */
878       foff = (symval
879 	      - (irel->r_vaddr
880 		 - sec->vma
881 		 + sec->output_section->vma
882 		 + sec->output_offset
883 		 + 4));
884       if (foff < -0x1000 || foff >= 0x1000)
885 	{
886 	  /* After all that work, we can't shorten this function call.  */
887 	  continue;
888 	}
889 
890       /* Shorten the function call.  */
891 
892       /* For simplicity of coding, we are going to modify the section
893 	 contents, the section relocs, and the BFD symbol table.  We
894 	 must tell the rest of the code not to free up this
895 	 information.  It would be possible to instead create a table
896 	 of changes which have to be made, as is done in coff-mips.c;
897 	 that would be more work, but would require less memory when
898 	 the linker is run.  */
899 
900       coff_section_data (abfd, sec)->relocs = internal_relocs;
901       coff_section_data (abfd, sec)->keep_relocs = TRUE;
902 
903       coff_section_data (abfd, sec)->contents = contents;
904       coff_section_data (abfd, sec)->keep_contents = TRUE;
905 
906       obj_coff_keep_syms (abfd) = TRUE;
907 
908       /* Replace the jsr with a bsr.  */
909 
910       /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
911          replace the jsr with a bsr.  */
912       irel->r_type = R_SH_PCDISP;
913       irel->r_symndx = irelfn->r_symndx;
914       if (sym.n_sclass != C_EXT)
915 	{
916 	  /* If this needs to be changed because of future relaxing,
917              it will be handled here like other internal PCDISP
918              relocs.  */
919 	  bfd_put_16 (abfd,
920 		      (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
921 		      contents + irel->r_vaddr - sec->vma);
922 	}
923       else
924 	{
925 	  /* We can't fully resolve this yet, because the external
926              symbol value may be changed by future relaxing.  We let
927              the final link phase handle it.  */
928 	  bfd_put_16 (abfd, (bfd_vma) 0xb000,
929 		      contents + irel->r_vaddr - sec->vma);
930 	}
931 
932       /* See if there is another R_SH_USES reloc referring to the same
933          register load.  */
934       for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
935 	if (irelscan->r_type == R_SH_USES
936 	    && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
937 	  break;
938       if (irelscan < irelend)
939 	{
940 	  /* Some other function call depends upon this register load,
941 	     and we have not yet converted that function call.
942 	     Indeed, we may never be able to convert it.  There is
943 	     nothing else we can do at this point.  */
944 	  continue;
945 	}
946 
947       /* Look for a R_SH_COUNT reloc on the location where the
948          function address is stored.  Do this before deleting any
949          bytes, to avoid confusion about the address.  */
950       for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
951 	if (irelcount->r_vaddr == paddr
952 	    && irelcount->r_type == R_SH_COUNT)
953 	  break;
954 
955       /* Delete the register load.  */
956       if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
957 	goto error_return;
958 
959       /* That will change things, so, just in case it permits some
960          other function call to come within range, we should relax
961          again.  Note that this is not required, and it may be slow.  */
962       *again = TRUE;
963 
964       /* Now check whether we got a COUNT reloc.  */
965       if (irelcount >= irelend)
966 	{
967 	  ((*_bfd_error_handler)
968 	   ("%B: 0x%lx: warning: could not find expected COUNT reloc",
969 	    abfd, (unsigned long) paddr));
970 	  continue;
971 	}
972 
973       /* The number of uses is stored in the r_offset field.  We've
974          just deleted one.  */
975       if (irelcount->r_offset == 0)
976 	{
977 	  ((*_bfd_error_handler) ("%B: 0x%lx: warning: bad count",
978 				  abfd, (unsigned long) paddr));
979 	  continue;
980 	}
981 
982       --irelcount->r_offset;
983 
984       /* If there are no more uses, we can delete the address.  Reload
985          the address from irelfn, in case it was changed by the
986          previous call to sh_relax_delete_bytes.  */
987       if (irelcount->r_offset == 0)
988 	{
989 	  if (! sh_relax_delete_bytes (abfd, sec,
990 				       irelfn->r_vaddr - sec->vma, 4))
991 	    goto error_return;
992 	}
993 
994       /* We've done all we can with that function call.  */
995     }
996 
997   /* Look for load and store instructions that we can align on four
998      byte boundaries.  */
999   if (have_code)
1000     {
1001       bfd_boolean swapped;
1002 
1003       /* Get the section contents.  */
1004       if (contents == NULL)
1005 	{
1006 	  if (coff_section_data (abfd, sec)->contents != NULL)
1007 	    contents = coff_section_data (abfd, sec)->contents;
1008 	  else
1009 	    {
1010 	      if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1011 		goto error_return;
1012 	    }
1013 	}
1014 
1015       if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1016 	goto error_return;
1017 
1018       if (swapped)
1019 	{
1020 	  coff_section_data (abfd, sec)->relocs = internal_relocs;
1021 	  coff_section_data (abfd, sec)->keep_relocs = TRUE;
1022 
1023 	  coff_section_data (abfd, sec)->contents = contents;
1024 	  coff_section_data (abfd, sec)->keep_contents = TRUE;
1025 
1026 	  obj_coff_keep_syms (abfd) = TRUE;
1027 	}
1028     }
1029 
1030   if (internal_relocs != NULL
1031       && internal_relocs != coff_section_data (abfd, sec)->relocs)
1032     {
1033       if (! link_info->keep_memory)
1034 	free (internal_relocs);
1035       else
1036 	coff_section_data (abfd, sec)->relocs = internal_relocs;
1037     }
1038 
1039   if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1040     {
1041       if (! link_info->keep_memory)
1042 	free (contents);
1043       else
1044 	/* Cache the section contents for coff_link_input_bfd.  */
1045 	coff_section_data (abfd, sec)->contents = contents;
1046     }
1047 
1048   return TRUE;
1049 
1050  error_return:
1051   if (internal_relocs != NULL
1052       && internal_relocs != coff_section_data (abfd, sec)->relocs)
1053     free (internal_relocs);
1054   if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1055     free (contents);
1056   return FALSE;
1057 }
1058 
1059 /* Delete some bytes from a section while relaxing.  */
1060 
1061 static bfd_boolean
sh_relax_delete_bytes(bfd * abfd,asection * sec,bfd_vma addr,int count)1062 sh_relax_delete_bytes (bfd *abfd,
1063 		       asection *sec,
1064 		       bfd_vma addr,
1065 		       int count)
1066 {
1067   bfd_byte *contents;
1068   struct internal_reloc *irel, *irelend;
1069   struct internal_reloc *irelalign;
1070   bfd_vma toaddr;
1071   bfd_byte *esym, *esymend;
1072   bfd_size_type symesz;
1073   struct coff_link_hash_entry **sym_hash;
1074   asection *o;
1075 
1076   contents = coff_section_data (abfd, sec)->contents;
1077 
1078   /* The deletion must stop at the next ALIGN reloc for an aligment
1079      power larger than the number of bytes we are deleting.  */
1080 
1081   irelalign = NULL;
1082   toaddr = sec->size;
1083 
1084   irel = coff_section_data (abfd, sec)->relocs;
1085   irelend = irel + sec->reloc_count;
1086   for (; irel < irelend; irel++)
1087     {
1088       if (irel->r_type == R_SH_ALIGN
1089 	  && irel->r_vaddr - sec->vma > addr
1090 	  && count < (1 << irel->r_offset))
1091 	{
1092 	  irelalign = irel;
1093 	  toaddr = irel->r_vaddr - sec->vma;
1094 	  break;
1095 	}
1096     }
1097 
1098   /* Actually delete the bytes.  */
1099   memmove (contents + addr, contents + addr + count,
1100 	   (size_t) (toaddr - addr - count));
1101   if (irelalign == NULL)
1102     sec->size -= count;
1103   else
1104     {
1105       int i;
1106 
1107 #define NOP_OPCODE (0x0009)
1108 
1109       BFD_ASSERT ((count & 1) == 0);
1110       for (i = 0; i < count; i += 2)
1111 	bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
1112     }
1113 
1114   /* Adjust all the relocs.  */
1115   for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1116     {
1117       bfd_vma nraddr, stop;
1118       bfd_vma start = 0;
1119       int insn = 0;
1120       struct internal_syment sym;
1121       int off, adjust, oinsn;
1122       bfd_signed_vma voff = 0;
1123       bfd_boolean overflow;
1124 
1125       /* Get the new reloc address.  */
1126       nraddr = irel->r_vaddr - sec->vma;
1127       if ((irel->r_vaddr - sec->vma > addr
1128 	   && irel->r_vaddr - sec->vma < toaddr)
1129 	  || (irel->r_type == R_SH_ALIGN
1130 	      && irel->r_vaddr - sec->vma == toaddr))
1131 	nraddr -= count;
1132 
1133       /* See if this reloc was for the bytes we have deleted, in which
1134 	 case we no longer care about it.  Don't delete relocs which
1135 	 represent addresses, though.  */
1136       if (irel->r_vaddr - sec->vma >= addr
1137 	  && irel->r_vaddr - sec->vma < addr + count
1138 	  && irel->r_type != R_SH_ALIGN
1139 	  && irel->r_type != R_SH_CODE
1140 	  && irel->r_type != R_SH_DATA
1141 	  && irel->r_type != R_SH_LABEL)
1142 	irel->r_type = R_SH_UNUSED;
1143 
1144       /* If this is a PC relative reloc, see if the range it covers
1145          includes the bytes we have deleted.  */
1146       switch (irel->r_type)
1147 	{
1148 	default:
1149 	  break;
1150 
1151 	case R_SH_PCDISP8BY2:
1152 	case R_SH_PCDISP:
1153 	case R_SH_PCRELIMM8BY2:
1154 	case R_SH_PCRELIMM8BY4:
1155 	  start = irel->r_vaddr - sec->vma;
1156 	  insn = bfd_get_16 (abfd, contents + nraddr);
1157 	  break;
1158 	}
1159 
1160       switch (irel->r_type)
1161 	{
1162 	default:
1163 	  start = stop = addr;
1164 	  break;
1165 
1166 	case R_SH_IMM32:
1167 #ifdef COFF_WITH_PE
1168 	case R_SH_IMM32CE:
1169 	case R_SH_IMAGEBASE:
1170 #endif
1171 	  /* If this reloc is against a symbol defined in this
1172              section, and the symbol will not be adjusted below, we
1173              must check the addend to see it will put the value in
1174              range to be adjusted, and hence must be changed.  */
1175 	  bfd_coff_swap_sym_in (abfd,
1176 				((bfd_byte *) obj_coff_external_syms (abfd)
1177 				 + (irel->r_symndx
1178 				    * bfd_coff_symesz (abfd))),
1179 				&sym);
1180 	  if (sym.n_sclass != C_EXT
1181 	      && sym.n_scnum == sec->target_index
1182 	      && ((bfd_vma) sym.n_value <= addr
1183 		  || (bfd_vma) sym.n_value >= toaddr))
1184 	    {
1185 	      bfd_vma val;
1186 
1187 	      val = bfd_get_32 (abfd, contents + nraddr);
1188 	      val += sym.n_value;
1189 	      if (val > addr && val < toaddr)
1190 		bfd_put_32 (abfd, val - count, contents + nraddr);
1191 	    }
1192 	  start = stop = addr;
1193 	  break;
1194 
1195 	case R_SH_PCDISP8BY2:
1196 	  off = insn & 0xff;
1197 	  if (off & 0x80)
1198 	    off -= 0x100;
1199 	  stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1200 	  break;
1201 
1202 	case R_SH_PCDISP:
1203 	  bfd_coff_swap_sym_in (abfd,
1204 				((bfd_byte *) obj_coff_external_syms (abfd)
1205 				 + (irel->r_symndx
1206 				    * bfd_coff_symesz (abfd))),
1207 				&sym);
1208 	  if (sym.n_sclass == C_EXT)
1209 	    start = stop = addr;
1210 	  else
1211 	    {
1212 	      off = insn & 0xfff;
1213 	      if (off & 0x800)
1214 		off -= 0x1000;
1215 	      stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1216 	    }
1217 	  break;
1218 
1219 	case R_SH_PCRELIMM8BY2:
1220 	  off = insn & 0xff;
1221 	  stop = start + 4 + off * 2;
1222 	  break;
1223 
1224 	case R_SH_PCRELIMM8BY4:
1225 	  off = insn & 0xff;
1226 	  stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1227 	  break;
1228 
1229 	case R_SH_SWITCH8:
1230 	case R_SH_SWITCH16:
1231 	case R_SH_SWITCH32:
1232 	  /* These relocs types represent
1233 	       .word L2-L1
1234 	     The r_offset field holds the difference between the reloc
1235 	     address and L1.  That is the start of the reloc, and
1236 	     adding in the contents gives us the top.  We must adjust
1237 	     both the r_offset field and the section contents.  */
1238 
1239 	  start = irel->r_vaddr - sec->vma;
1240 	  stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1241 
1242 	  if (start > addr
1243 	      && start < toaddr
1244 	      && (stop <= addr || stop >= toaddr))
1245 	    irel->r_offset += count;
1246 	  else if (stop > addr
1247 		   && stop < toaddr
1248 		   && (start <= addr || start >= toaddr))
1249 	    irel->r_offset -= count;
1250 
1251 	  start = stop;
1252 
1253 	  if (irel->r_type == R_SH_SWITCH16)
1254 	    voff = bfd_get_signed_16 (abfd, contents + nraddr);
1255 	  else if (irel->r_type == R_SH_SWITCH8)
1256 	    voff = bfd_get_8 (abfd, contents + nraddr);
1257 	  else
1258 	    voff = bfd_get_signed_32 (abfd, contents + nraddr);
1259 	  stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1260 
1261 	  break;
1262 
1263 	case R_SH_USES:
1264 	  start = irel->r_vaddr - sec->vma;
1265 	  stop = (bfd_vma) ((bfd_signed_vma) start
1266 			    + (long) irel->r_offset
1267 			    + 4);
1268 	  break;
1269 	}
1270 
1271       if (start > addr
1272 	  && start < toaddr
1273 	  && (stop <= addr || stop >= toaddr))
1274 	adjust = count;
1275       else if (stop > addr
1276 	       && stop < toaddr
1277 	       && (start <= addr || start >= toaddr))
1278 	adjust = - count;
1279       else
1280 	adjust = 0;
1281 
1282       if (adjust != 0)
1283 	{
1284 	  oinsn = insn;
1285 	  overflow = FALSE;
1286 	  switch (irel->r_type)
1287 	    {
1288 	    default:
1289 	      abort ();
1290 	      break;
1291 
1292 	    case R_SH_PCDISP8BY2:
1293 	    case R_SH_PCRELIMM8BY2:
1294 	      insn += adjust / 2;
1295 	      if ((oinsn & 0xff00) != (insn & 0xff00))
1296 		overflow = TRUE;
1297 	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1298 	      break;
1299 
1300 	    case R_SH_PCDISP:
1301 	      insn += adjust / 2;
1302 	      if ((oinsn & 0xf000) != (insn & 0xf000))
1303 		overflow = TRUE;
1304 	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1305 	      break;
1306 
1307 	    case R_SH_PCRELIMM8BY4:
1308 	      BFD_ASSERT (adjust == count || count >= 4);
1309 	      if (count >= 4)
1310 		insn += adjust / 4;
1311 	      else
1312 		{
1313 		  if ((irel->r_vaddr & 3) == 0)
1314 		    ++insn;
1315 		}
1316 	      if ((oinsn & 0xff00) != (insn & 0xff00))
1317 		overflow = TRUE;
1318 	      bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1319 	      break;
1320 
1321 	    case R_SH_SWITCH8:
1322 	      voff += adjust;
1323 	      if (voff < 0 || voff >= 0xff)
1324 		overflow = TRUE;
1325 	      bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
1326 	      break;
1327 
1328 	    case R_SH_SWITCH16:
1329 	      voff += adjust;
1330 	      if (voff < - 0x8000 || voff >= 0x8000)
1331 		overflow = TRUE;
1332 	      bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1333 	      break;
1334 
1335 	    case R_SH_SWITCH32:
1336 	      voff += adjust;
1337 	      bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1338 	      break;
1339 
1340 	    case R_SH_USES:
1341 	      irel->r_offset += adjust;
1342 	      break;
1343 	    }
1344 
1345 	  if (overflow)
1346 	    {
1347 	      ((*_bfd_error_handler)
1348 	       ("%B: 0x%lx: fatal: reloc overflow while relaxing",
1349 		abfd, (unsigned long) irel->r_vaddr));
1350 	      bfd_set_error (bfd_error_bad_value);
1351 	      return FALSE;
1352 	    }
1353 	}
1354 
1355       irel->r_vaddr = nraddr + sec->vma;
1356     }
1357 
1358   /* Look through all the other sections.  If there contain any IMM32
1359      relocs against internal symbols which we are not going to adjust
1360      below, we may need to adjust the addends.  */
1361   for (o = abfd->sections; o != NULL; o = o->next)
1362     {
1363       struct internal_reloc *internal_relocs;
1364       struct internal_reloc *irelscan, *irelscanend;
1365       bfd_byte *ocontents;
1366 
1367       if (o == sec
1368 	  || (o->flags & SEC_RELOC) == 0
1369 	  || o->reloc_count == 0)
1370 	continue;
1371 
1372       /* We always cache the relocs.  Perhaps, if info->keep_memory is
1373          FALSE, we should free them, if we are permitted to, when we
1374          leave sh_coff_relax_section.  */
1375       internal_relocs = (_bfd_coff_read_internal_relocs
1376 			 (abfd, o, TRUE, (bfd_byte *) NULL, FALSE,
1377 			  (struct internal_reloc *) NULL));
1378       if (internal_relocs == NULL)
1379 	return FALSE;
1380 
1381       ocontents = NULL;
1382       irelscanend = internal_relocs + o->reloc_count;
1383       for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1384 	{
1385 	  struct internal_syment sym;
1386 
1387 #ifdef COFF_WITH_PE
1388 	  if (irelscan->r_type != R_SH_IMM32
1389 	      && irelscan->r_type != R_SH_IMAGEBASE
1390 	      && irelscan->r_type != R_SH_IMM32CE)
1391 #else
1392 	  if (irelscan->r_type != R_SH_IMM32)
1393 #endif
1394 	    continue;
1395 
1396 	  bfd_coff_swap_sym_in (abfd,
1397 				((bfd_byte *) obj_coff_external_syms (abfd)
1398 				 + (irelscan->r_symndx
1399 				    * bfd_coff_symesz (abfd))),
1400 				&sym);
1401 	  if (sym.n_sclass != C_EXT
1402 	      && sym.n_scnum == sec->target_index
1403 	      && ((bfd_vma) sym.n_value <= addr
1404 		  || (bfd_vma) sym.n_value >= toaddr))
1405 	    {
1406 	      bfd_vma val;
1407 
1408 	      if (ocontents == NULL)
1409 		{
1410 		  if (coff_section_data (abfd, o)->contents != NULL)
1411 		    ocontents = coff_section_data (abfd, o)->contents;
1412 		  else
1413 		    {
1414 		      if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1415 			return FALSE;
1416 		      /* We always cache the section contents.
1417                          Perhaps, if info->keep_memory is FALSE, we
1418                          should free them, if we are permitted to,
1419                          when we leave sh_coff_relax_section.  */
1420 		      coff_section_data (abfd, o)->contents = ocontents;
1421 		    }
1422 		}
1423 
1424 	      val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1425 	      val += sym.n_value;
1426 	      if (val > addr && val < toaddr)
1427 		bfd_put_32 (abfd, val - count,
1428 			    ocontents + irelscan->r_vaddr - o->vma);
1429 
1430 	      coff_section_data (abfd, o)->keep_contents = TRUE;
1431 	    }
1432 	}
1433     }
1434 
1435   /* Adjusting the internal symbols will not work if something has
1436      already retrieved the generic symbols.  It would be possible to
1437      make this work by adjusting the generic symbols at the same time.
1438      However, this case should not arise in normal usage.  */
1439   if (obj_symbols (abfd) != NULL
1440       || obj_raw_syments (abfd) != NULL)
1441     {
1442       ((*_bfd_error_handler)
1443        ("%B: fatal: generic symbols retrieved before relaxing", abfd));
1444       bfd_set_error (bfd_error_invalid_operation);
1445       return FALSE;
1446     }
1447 
1448   /* Adjust all the symbols.  */
1449   sym_hash = obj_coff_sym_hashes (abfd);
1450   symesz = bfd_coff_symesz (abfd);
1451   esym = (bfd_byte *) obj_coff_external_syms (abfd);
1452   esymend = esym + obj_raw_syment_count (abfd) * symesz;
1453   while (esym < esymend)
1454     {
1455       struct internal_syment isym;
1456 
1457       bfd_coff_swap_sym_in (abfd, esym, &isym);
1458 
1459       if (isym.n_scnum == sec->target_index
1460 	  && (bfd_vma) isym.n_value > addr
1461 	  && (bfd_vma) isym.n_value < toaddr)
1462 	{
1463 	  isym.n_value -= count;
1464 
1465 	  bfd_coff_swap_sym_out (abfd, &isym, esym);
1466 
1467 	  if (*sym_hash != NULL)
1468 	    {
1469 	      BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1470 			  || (*sym_hash)->root.type == bfd_link_hash_defweak);
1471 	      BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1472 			  && (*sym_hash)->root.u.def.value < toaddr);
1473 	      (*sym_hash)->root.u.def.value -= count;
1474 	    }
1475 	}
1476 
1477       esym += (isym.n_numaux + 1) * symesz;
1478       sym_hash += isym.n_numaux + 1;
1479     }
1480 
1481   /* See if we can move the ALIGN reloc forward.  We have adjusted
1482      r_vaddr for it already.  */
1483   if (irelalign != NULL)
1484     {
1485       bfd_vma alignto, alignaddr;
1486 
1487       alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1488       alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1489 			     1 << irelalign->r_offset);
1490       if (alignto != alignaddr)
1491 	{
1492 	  /* Tail recursion.  */
1493 	  return sh_relax_delete_bytes (abfd, sec, alignaddr,
1494 					(int) (alignto - alignaddr));
1495 	}
1496     }
1497 
1498   return TRUE;
1499 }
1500 
1501 /* This is yet another version of the SH opcode table, used to rapidly
1502    get information about a particular instruction.  */
1503 
1504 /* The opcode map is represented by an array of these structures.  The
1505    array is indexed by the high order four bits in the instruction.  */
1506 
1507 struct sh_major_opcode
1508 {
1509   /* A pointer to the instruction list.  This is an array which
1510      contains all the instructions with this major opcode.  */
1511   const struct sh_minor_opcode *minor_opcodes;
1512   /* The number of elements in minor_opcodes.  */
1513   unsigned short count;
1514 };
1515 
1516 /* This structure holds information for a set of SH opcodes.  The
1517    instruction code is anded with the mask value, and the resulting
1518    value is used to search the order opcode list.  */
1519 
1520 struct sh_minor_opcode
1521 {
1522   /* The sorted opcode list.  */
1523   const struct sh_opcode *opcodes;
1524   /* The number of elements in opcodes.  */
1525   unsigned short count;
1526   /* The mask value to use when searching the opcode list.  */
1527   unsigned short mask;
1528 };
1529 
1530 /* This structure holds information for an SH instruction.  An array
1531    of these structures is sorted in order by opcode.  */
1532 
1533 struct sh_opcode
1534 {
1535   /* The code for this instruction, after it has been anded with the
1536      mask value in the sh_major_opcode structure.  */
1537   unsigned short opcode;
1538   /* Flags for this instruction.  */
1539   unsigned long flags;
1540 };
1541 
1542 /* Flag which appear in the sh_opcode structure.  */
1543 
1544 /* This instruction loads a value from memory.  */
1545 #define LOAD (0x1)
1546 
1547 /* This instruction stores a value to memory.  */
1548 #define STORE (0x2)
1549 
1550 /* This instruction is a branch.  */
1551 #define BRANCH (0x4)
1552 
1553 /* This instruction has a delay slot.  */
1554 #define DELAY (0x8)
1555 
1556 /* This instruction uses the value in the register in the field at
1557    mask 0x0f00 of the instruction.  */
1558 #define USES1 (0x10)
1559 #define USES1_REG(x) ((x & 0x0f00) >> 8)
1560 
1561 /* This instruction uses the value in the register in the field at
1562    mask 0x00f0 of the instruction.  */
1563 #define USES2 (0x20)
1564 #define USES2_REG(x) ((x & 0x00f0) >> 4)
1565 
1566 /* This instruction uses the value in register 0.  */
1567 #define USESR0 (0x40)
1568 
1569 /* This instruction sets the value in the register in the field at
1570    mask 0x0f00 of the instruction.  */
1571 #define SETS1 (0x80)
1572 #define SETS1_REG(x) ((x & 0x0f00) >> 8)
1573 
1574 /* This instruction sets the value in the register in the field at
1575    mask 0x00f0 of the instruction.  */
1576 #define SETS2 (0x100)
1577 #define SETS2_REG(x) ((x & 0x00f0) >> 4)
1578 
1579 /* This instruction sets register 0.  */
1580 #define SETSR0 (0x200)
1581 
1582 /* This instruction sets a special register.  */
1583 #define SETSSP (0x400)
1584 
1585 /* This instruction uses a special register.  */
1586 #define USESSP (0x800)
1587 
1588 /* This instruction uses the floating point register in the field at
1589    mask 0x0f00 of the instruction.  */
1590 #define USESF1 (0x1000)
1591 #define USESF1_REG(x) ((x & 0x0f00) >> 8)
1592 
1593 /* This instruction uses the floating point register in the field at
1594    mask 0x00f0 of the instruction.  */
1595 #define USESF2 (0x2000)
1596 #define USESF2_REG(x) ((x & 0x00f0) >> 4)
1597 
1598 /* This instruction uses floating point register 0.  */
1599 #define USESF0 (0x4000)
1600 
1601 /* This instruction sets the floating point register in the field at
1602    mask 0x0f00 of the instruction.  */
1603 #define SETSF1 (0x8000)
1604 #define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1605 
1606 #define USESAS (0x10000)
1607 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1608 #define USESR8 (0x20000)
1609 #define SETSAS (0x40000)
1610 #define SETSAS_REG(x) USESAS_REG (x)
1611 
1612 #define MAP(a) a, sizeof a / sizeof a[0]
1613 
1614 #ifndef COFF_IMAGE_WITH_PE
1615 
1616 /* The opcode maps.  */
1617 
1618 static const struct sh_opcode sh_opcode00[] =
1619 {
1620   { 0x0008, SETSSP },			/* clrt */
1621   { 0x0009, 0 },			/* nop */
1622   { 0x000b, BRANCH | DELAY | USESSP },	/* rts */
1623   { 0x0018, SETSSP },			/* sett */
1624   { 0x0019, SETSSP },			/* div0u */
1625   { 0x001b, 0 },			/* sleep */
1626   { 0x0028, SETSSP },			/* clrmac */
1627   { 0x002b, BRANCH | DELAY | SETSSP },	/* rte */
1628   { 0x0038, USESSP | SETSSP },		/* ldtlb */
1629   { 0x0048, SETSSP },			/* clrs */
1630   { 0x0058, SETSSP }			/* sets */
1631 };
1632 
1633 static const struct sh_opcode sh_opcode01[] =
1634 {
1635   { 0x0003, BRANCH | DELAY | USES1 | SETSSP },	/* bsrf rn */
1636   { 0x000a, SETS1 | USESSP },			/* sts mach,rn */
1637   { 0x001a, SETS1 | USESSP },			/* sts macl,rn */
1638   { 0x0023, BRANCH | DELAY | USES1 },		/* braf rn */
1639   { 0x0029, SETS1 | USESSP },			/* movt rn */
1640   { 0x002a, SETS1 | USESSP },			/* sts pr,rn */
1641   { 0x005a, SETS1 | USESSP },			/* sts fpul,rn */
1642   { 0x006a, SETS1 | USESSP },			/* sts fpscr,rn / sts dsr,rn */
1643   { 0x0083, LOAD | USES1 },			/* pref @rn */
1644   { 0x007a, SETS1 | USESSP },			/* sts a0,rn */
1645   { 0x008a, SETS1 | USESSP },			/* sts x0,rn */
1646   { 0x009a, SETS1 | USESSP },			/* sts x1,rn */
1647   { 0x00aa, SETS1 | USESSP },			/* sts y0,rn */
1648   { 0x00ba, SETS1 | USESSP }			/* sts y1,rn */
1649 };
1650 
1651 static const struct sh_opcode sh_opcode02[] =
1652 {
1653   { 0x0002, SETS1 | USESSP },			/* stc <special_reg>,rn */
1654   { 0x0004, STORE | USES1 | USES2 | USESR0 },	/* mov.b rm,@(r0,rn) */
1655   { 0x0005, STORE | USES1 | USES2 | USESR0 },	/* mov.w rm,@(r0,rn) */
1656   { 0x0006, STORE | USES1 | USES2 | USESR0 },	/* mov.l rm,@(r0,rn) */
1657   { 0x0007, SETSSP | USES1 | USES2 },		/* mul.l rm,rn */
1658   { 0x000c, LOAD | SETS1 | USES2 | USESR0 },	/* mov.b @(r0,rm),rn */
1659   { 0x000d, LOAD | SETS1 | USES2 | USESR0 },	/* mov.w @(r0,rm),rn */
1660   { 0x000e, LOAD | SETS1 | USES2 | USESR0 },	/* mov.l @(r0,rm),rn */
1661   { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1662 };
1663 
1664 static const struct sh_minor_opcode sh_opcode0[] =
1665 {
1666   { MAP (sh_opcode00), 0xffff },
1667   { MAP (sh_opcode01), 0xf0ff },
1668   { MAP (sh_opcode02), 0xf00f }
1669 };
1670 
1671 static const struct sh_opcode sh_opcode10[] =
1672 {
1673   { 0x1000, STORE | USES1 | USES2 }	/* mov.l rm,@(disp,rn) */
1674 };
1675 
1676 static const struct sh_minor_opcode sh_opcode1[] =
1677 {
1678   { MAP (sh_opcode10), 0xf000 }
1679 };
1680 
1681 static const struct sh_opcode sh_opcode20[] =
1682 {
1683   { 0x2000, STORE | USES1 | USES2 },		/* mov.b rm,@rn */
1684   { 0x2001, STORE | USES1 | USES2 },		/* mov.w rm,@rn */
1685   { 0x2002, STORE | USES1 | USES2 },		/* mov.l rm,@rn */
1686   { 0x2004, STORE | SETS1 | USES1 | USES2 },	/* mov.b rm,@-rn */
1687   { 0x2005, STORE | SETS1 | USES1 | USES2 },	/* mov.w rm,@-rn */
1688   { 0x2006, STORE | SETS1 | USES1 | USES2 },	/* mov.l rm,@-rn */
1689   { 0x2007, SETSSP | USES1 | USES2 | USESSP },	/* div0s */
1690   { 0x2008, SETSSP | USES1 | USES2 },		/* tst rm,rn */
1691   { 0x2009, SETS1 | USES1 | USES2 },		/* and rm,rn */
1692   { 0x200a, SETS1 | USES1 | USES2 },		/* xor rm,rn */
1693   { 0x200b, SETS1 | USES1 | USES2 },		/* or rm,rn */
1694   { 0x200c, SETSSP | USES1 | USES2 },		/* cmp/str rm,rn */
1695   { 0x200d, SETS1 | USES1 | USES2 },		/* xtrct rm,rn */
1696   { 0x200e, SETSSP | USES1 | USES2 },		/* mulu.w rm,rn */
1697   { 0x200f, SETSSP | USES1 | USES2 }		/* muls.w rm,rn */
1698 };
1699 
1700 static const struct sh_minor_opcode sh_opcode2[] =
1701 {
1702   { MAP (sh_opcode20), 0xf00f }
1703 };
1704 
1705 static const struct sh_opcode sh_opcode30[] =
1706 {
1707   { 0x3000, SETSSP | USES1 | USES2 },		/* cmp/eq rm,rn */
1708   { 0x3002, SETSSP | USES1 | USES2 },		/* cmp/hs rm,rn */
1709   { 0x3003, SETSSP | USES1 | USES2 },		/* cmp/ge rm,rn */
1710   { 0x3004, SETSSP | USESSP | USES1 | USES2 },	/* div1 rm,rn */
1711   { 0x3005, SETSSP | USES1 | USES2 },		/* dmulu.l rm,rn */
1712   { 0x3006, SETSSP | USES1 | USES2 },		/* cmp/hi rm,rn */
1713   { 0x3007, SETSSP | USES1 | USES2 },		/* cmp/gt rm,rn */
1714   { 0x3008, SETS1 | USES1 | USES2 },		/* sub rm,rn */
1715   { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1716   { 0x300b, SETS1 | SETSSP | USES1 | USES2 },	/* subv rm,rn */
1717   { 0x300c, SETS1 | USES1 | USES2 },		/* add rm,rn */
1718   { 0x300d, SETSSP | USES1 | USES2 },		/* dmuls.l rm,rn */
1719   { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1720   { 0x300f, SETS1 | SETSSP | USES1 | USES2 }	/* addv rm,rn */
1721 };
1722 
1723 static const struct sh_minor_opcode sh_opcode3[] =
1724 {
1725   { MAP (sh_opcode30), 0xf00f }
1726 };
1727 
1728 static const struct sh_opcode sh_opcode40[] =
1729 {
1730   { 0x4000, SETS1 | SETSSP | USES1 },		/* shll rn */
1731   { 0x4001, SETS1 | SETSSP | USES1 },		/* shlr rn */
1732   { 0x4002, STORE | SETS1 | USES1 | USESSP },	/* sts.l mach,@-rn */
1733   { 0x4004, SETS1 | SETSSP | USES1 },		/* rotl rn */
1734   { 0x4005, SETS1 | SETSSP | USES1 },		/* rotr rn */
1735   { 0x4006, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,mach */
1736   { 0x4008, SETS1 | USES1 },			/* shll2 rn */
1737   { 0x4009, SETS1 | USES1 },			/* shlr2 rn */
1738   { 0x400a, SETSSP | USES1 },			/* lds rm,mach */
1739   { 0x400b, BRANCH | DELAY | USES1 },		/* jsr @rn */
1740   { 0x4010, SETS1 | SETSSP | USES1 },		/* dt rn */
1741   { 0x4011, SETSSP | USES1 },			/* cmp/pz rn */
1742   { 0x4012, STORE | SETS1 | USES1 | USESSP },	/* sts.l macl,@-rn */
1743   { 0x4014, SETSSP | USES1 },			/* setrc rm */
1744   { 0x4015, SETSSP | USES1 },			/* cmp/pl rn */
1745   { 0x4016, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,macl */
1746   { 0x4018, SETS1 | USES1 },			/* shll8 rn */
1747   { 0x4019, SETS1 | USES1 },			/* shlr8 rn */
1748   { 0x401a, SETSSP | USES1 },			/* lds rm,macl */
1749   { 0x401b, LOAD | SETSSP | USES1 },		/* tas.b @rn */
1750   { 0x4020, SETS1 | SETSSP | USES1 },		/* shal rn */
1751   { 0x4021, SETS1 | SETSSP | USES1 },		/* shar rn */
1752   { 0x4022, STORE | SETS1 | USES1 | USESSP },	/* sts.l pr,@-rn */
1753   { 0x4024, SETS1 | SETSSP | USES1 | USESSP },	/* rotcl rn */
1754   { 0x4025, SETS1 | SETSSP | USES1 | USESSP },	/* rotcr rn */
1755   { 0x4026, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,pr */
1756   { 0x4028, SETS1 | USES1 },			/* shll16 rn */
1757   { 0x4029, SETS1 | USES1 },			/* shlr16 rn */
1758   { 0x402a, SETSSP | USES1 },			/* lds rm,pr */
1759   { 0x402b, BRANCH | DELAY | USES1 },		/* jmp @rn */
1760   { 0x4052, STORE | SETS1 | USES1 | USESSP },	/* sts.l fpul,@-rn */
1761   { 0x4056, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,fpul */
1762   { 0x405a, SETSSP | USES1 },			/* lds.l rm,fpul */
1763   { 0x4062, STORE | SETS1 | USES1 | USESSP },	/* sts.l fpscr / dsr,@-rn */
1764   { 0x4066, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,fpscr / dsr */
1765   { 0x406a, SETSSP | USES1 },			/* lds rm,fpscr / lds rm,dsr */
1766   { 0x4072, STORE | SETS1 | USES1 | USESSP },	/* sts.l a0,@-rn */
1767   { 0x4076, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,a0 */
1768   { 0x407a, SETSSP | USES1 },			/* lds.l rm,a0 */
1769   { 0x4082, STORE | SETS1 | USES1 | USESSP },	/* sts.l x0,@-rn */
1770   { 0x4086, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,x0 */
1771   { 0x408a, SETSSP | USES1 },			/* lds.l rm,x0 */
1772   { 0x4092, STORE | SETS1 | USES1 | USESSP },	/* sts.l x1,@-rn */
1773   { 0x4096, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,x1 */
1774   { 0x409a, SETSSP | USES1 },			/* lds.l rm,x1 */
1775   { 0x40a2, STORE | SETS1 | USES1 | USESSP },	/* sts.l y0,@-rn */
1776   { 0x40a6, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,y0 */
1777   { 0x40aa, SETSSP | USES1 },			/* lds.l rm,y0 */
1778   { 0x40b2, STORE | SETS1 | USES1 | USESSP },	/* sts.l y1,@-rn */
1779   { 0x40b6, LOAD | SETS1 | SETSSP | USES1 },	/* lds.l @rm+,y1 */
1780   { 0x40ba, SETSSP | USES1 }			/* lds.l rm,y1 */
1781 };
1782 
1783 static const struct sh_opcode sh_opcode41[] =
1784 {
1785   { 0x4003, STORE | SETS1 | USES1 | USESSP },	/* stc.l <special_reg>,@-rn */
1786   { 0x4007, LOAD | SETS1 | SETSSP | USES1 },	/* ldc.l @rm+,<special_reg> */
1787   { 0x400c, SETS1 | USES1 | USES2 },		/* shad rm,rn */
1788   { 0x400d, SETS1 | USES1 | USES2 },		/* shld rm,rn */
1789   { 0x400e, SETSSP | USES1 },			/* ldc rm,<special_reg> */
1790   { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1791 };
1792 
1793 static const struct sh_minor_opcode sh_opcode4[] =
1794 {
1795   { MAP (sh_opcode40), 0xf0ff },
1796   { MAP (sh_opcode41), 0xf00f }
1797 };
1798 
1799 static const struct sh_opcode sh_opcode50[] =
1800 {
1801   { 0x5000, LOAD | SETS1 | USES2 }	/* mov.l @(disp,rm),rn */
1802 };
1803 
1804 static const struct sh_minor_opcode sh_opcode5[] =
1805 {
1806   { MAP (sh_opcode50), 0xf000 }
1807 };
1808 
1809 static const struct sh_opcode sh_opcode60[] =
1810 {
1811   { 0x6000, LOAD | SETS1 | USES2 },		/* mov.b @rm,rn */
1812   { 0x6001, LOAD | SETS1 | USES2 },		/* mov.w @rm,rn */
1813   { 0x6002, LOAD | SETS1 | USES2 },		/* mov.l @rm,rn */
1814   { 0x6003, SETS1 | USES2 },			/* mov rm,rn */
1815   { 0x6004, LOAD | SETS1 | SETS2 | USES2 },	/* mov.b @rm+,rn */
1816   { 0x6005, LOAD | SETS1 | SETS2 | USES2 },	/* mov.w @rm+,rn */
1817   { 0x6006, LOAD | SETS1 | SETS2 | USES2 },	/* mov.l @rm+,rn */
1818   { 0x6007, SETS1 | USES2 },			/* not rm,rn */
1819   { 0x6008, SETS1 | USES2 },			/* swap.b rm,rn */
1820   { 0x6009, SETS1 | USES2 },			/* swap.w rm,rn */
1821   { 0x600a, SETS1 | SETSSP | USES2 | USESSP },	/* negc rm,rn */
1822   { 0x600b, SETS1 | USES2 },			/* neg rm,rn */
1823   { 0x600c, SETS1 | USES2 },			/* extu.b rm,rn */
1824   { 0x600d, SETS1 | USES2 },			/* extu.w rm,rn */
1825   { 0x600e, SETS1 | USES2 },			/* exts.b rm,rn */
1826   { 0x600f, SETS1 | USES2 }			/* exts.w rm,rn */
1827 };
1828 
1829 static const struct sh_minor_opcode sh_opcode6[] =
1830 {
1831   { MAP (sh_opcode60), 0xf00f }
1832 };
1833 
1834 static const struct sh_opcode sh_opcode70[] =
1835 {
1836   { 0x7000, SETS1 | USES1 }		/* add #imm,rn */
1837 };
1838 
1839 static const struct sh_minor_opcode sh_opcode7[] =
1840 {
1841   { MAP (sh_opcode70), 0xf000 }
1842 };
1843 
1844 static const struct sh_opcode sh_opcode80[] =
1845 {
1846   { 0x8000, STORE | USES2 | USESR0 },	/* mov.b r0,@(disp,rn) */
1847   { 0x8100, STORE | USES2 | USESR0 },	/* mov.w r0,@(disp,rn) */
1848   { 0x8200, SETSSP },			/* setrc #imm */
1849   { 0x8400, LOAD | SETSR0 | USES2 },	/* mov.b @(disp,rm),r0 */
1850   { 0x8500, LOAD | SETSR0 | USES2 },	/* mov.w @(disp,rn),r0 */
1851   { 0x8800, SETSSP | USESR0 },		/* cmp/eq #imm,r0 */
1852   { 0x8900, BRANCH | USESSP },		/* bt label */
1853   { 0x8b00, BRANCH | USESSP },		/* bf label */
1854   { 0x8c00, SETSSP },			/* ldrs @(disp,pc) */
1855   { 0x8d00, BRANCH | DELAY | USESSP },	/* bt/s label */
1856   { 0x8e00, SETSSP },			/* ldre @(disp,pc) */
1857   { 0x8f00, BRANCH | DELAY | USESSP }	/* bf/s label */
1858 };
1859 
1860 static const struct sh_minor_opcode sh_opcode8[] =
1861 {
1862   { MAP (sh_opcode80), 0xff00 }
1863 };
1864 
1865 static const struct sh_opcode sh_opcode90[] =
1866 {
1867   { 0x9000, LOAD | SETS1 }	/* mov.w @(disp,pc),rn */
1868 };
1869 
1870 static const struct sh_minor_opcode sh_opcode9[] =
1871 {
1872   { MAP (sh_opcode90), 0xf000 }
1873 };
1874 
1875 static const struct sh_opcode sh_opcodea0[] =
1876 {
1877   { 0xa000, BRANCH | DELAY }	/* bra label */
1878 };
1879 
1880 static const struct sh_minor_opcode sh_opcodea[] =
1881 {
1882   { MAP (sh_opcodea0), 0xf000 }
1883 };
1884 
1885 static const struct sh_opcode sh_opcodeb0[] =
1886 {
1887   { 0xb000, BRANCH | DELAY }	/* bsr label */
1888 };
1889 
1890 static const struct sh_minor_opcode sh_opcodeb[] =
1891 {
1892   { MAP (sh_opcodeb0), 0xf000 }
1893 };
1894 
1895 static const struct sh_opcode sh_opcodec0[] =
1896 {
1897   { 0xc000, STORE | USESR0 | USESSP },		/* mov.b r0,@(disp,gbr) */
1898   { 0xc100, STORE | USESR0 | USESSP },		/* mov.w r0,@(disp,gbr) */
1899   { 0xc200, STORE | USESR0 | USESSP },		/* mov.l r0,@(disp,gbr) */
1900   { 0xc300, BRANCH | USESSP },			/* trapa #imm */
1901   { 0xc400, LOAD | SETSR0 | USESSP },		/* mov.b @(disp,gbr),r0 */
1902   { 0xc500, LOAD | SETSR0 | USESSP },		/* mov.w @(disp,gbr),r0 */
1903   { 0xc600, LOAD | SETSR0 | USESSP },		/* mov.l @(disp,gbr),r0 */
1904   { 0xc700, SETSR0 },				/* mova @(disp,pc),r0 */
1905   { 0xc800, SETSSP | USESR0 },			/* tst #imm,r0 */
1906   { 0xc900, SETSR0 | USESR0 },			/* and #imm,r0 */
1907   { 0xca00, SETSR0 | USESR0 },			/* xor #imm,r0 */
1908   { 0xcb00, SETSR0 | USESR0 },			/* or #imm,r0 */
1909   { 0xcc00, LOAD | SETSSP | USESR0 | USESSP },	/* tst.b #imm,@(r0,gbr) */
1910   { 0xcd00, LOAD | STORE | USESR0 | USESSP },	/* and.b #imm,@(r0,gbr) */
1911   { 0xce00, LOAD | STORE | USESR0 | USESSP },	/* xor.b #imm,@(r0,gbr) */
1912   { 0xcf00, LOAD | STORE | USESR0 | USESSP }	/* or.b #imm,@(r0,gbr) */
1913 };
1914 
1915 static const struct sh_minor_opcode sh_opcodec[] =
1916 {
1917   { MAP (sh_opcodec0), 0xff00 }
1918 };
1919 
1920 static const struct sh_opcode sh_opcoded0[] =
1921 {
1922   { 0xd000, LOAD | SETS1 }		/* mov.l @(disp,pc),rn */
1923 };
1924 
1925 static const struct sh_minor_opcode sh_opcoded[] =
1926 {
1927   { MAP (sh_opcoded0), 0xf000 }
1928 };
1929 
1930 static const struct sh_opcode sh_opcodee0[] =
1931 {
1932   { 0xe000, SETS1 }		/* mov #imm,rn */
1933 };
1934 
1935 static const struct sh_minor_opcode sh_opcodee[] =
1936 {
1937   { MAP (sh_opcodee0), 0xf000 }
1938 };
1939 
1940 static const struct sh_opcode sh_opcodef0[] =
1941 {
1942   { 0xf000, SETSF1 | USESF1 | USESF2 },		/* fadd fm,fn */
1943   { 0xf001, SETSF1 | USESF1 | USESF2 },		/* fsub fm,fn */
1944   { 0xf002, SETSF1 | USESF1 | USESF2 },		/* fmul fm,fn */
1945   { 0xf003, SETSF1 | USESF1 | USESF2 },		/* fdiv fm,fn */
1946   { 0xf004, SETSSP | USESF1 | USESF2 },		/* fcmp/eq fm,fn */
1947   { 0xf005, SETSSP | USESF1 | USESF2 },		/* fcmp/gt fm,fn */
1948   { 0xf006, LOAD | SETSF1 | USES2 | USESR0 },	/* fmov.s @(r0,rm),fn */
1949   { 0xf007, STORE | USES1 | USESF2 | USESR0 },	/* fmov.s fm,@(r0,rn) */
1950   { 0xf008, LOAD | SETSF1 | USES2 },		/* fmov.s @rm,fn */
1951   { 0xf009, LOAD | SETS2 | SETSF1 | USES2 },	/* fmov.s @rm+,fn */
1952   { 0xf00a, STORE | USES1 | USESF2 },		/* fmov.s fm,@rn */
1953   { 0xf00b, STORE | SETS1 | USES1 | USESF2 },	/* fmov.s fm,@-rn */
1954   { 0xf00c, SETSF1 | USESF2 },			/* fmov fm,fn */
1955   { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 }	/* fmac f0,fm,fn */
1956 };
1957 
1958 static const struct sh_opcode sh_opcodef1[] =
1959 {
1960   { 0xf00d, SETSF1 | USESSP },	/* fsts fpul,fn */
1961   { 0xf01d, SETSSP | USESF1 },	/* flds fn,fpul */
1962   { 0xf02d, SETSF1 | USESSP },	/* float fpul,fn */
1963   { 0xf03d, SETSSP | USESF1 },	/* ftrc fn,fpul */
1964   { 0xf04d, SETSF1 | USESF1 },	/* fneg fn */
1965   { 0xf05d, SETSF1 | USESF1 },	/* fabs fn */
1966   { 0xf06d, SETSF1 | USESF1 },	/* fsqrt fn */
1967   { 0xf07d, SETSSP | USESF1 },	/* ftst/nan fn */
1968   { 0xf08d, SETSF1 },		/* fldi0 fn */
1969   { 0xf09d, SETSF1 }		/* fldi1 fn */
1970 };
1971 
1972 static const struct sh_minor_opcode sh_opcodef[] =
1973 {
1974   { MAP (sh_opcodef0), 0xf00f },
1975   { MAP (sh_opcodef1), 0xf0ff }
1976 };
1977 
1978 static struct sh_major_opcode sh_opcodes[] =
1979 {
1980   { MAP (sh_opcode0) },
1981   { MAP (sh_opcode1) },
1982   { MAP (sh_opcode2) },
1983   { MAP (sh_opcode3) },
1984   { MAP (sh_opcode4) },
1985   { MAP (sh_opcode5) },
1986   { MAP (sh_opcode6) },
1987   { MAP (sh_opcode7) },
1988   { MAP (sh_opcode8) },
1989   { MAP (sh_opcode9) },
1990   { MAP (sh_opcodea) },
1991   { MAP (sh_opcodeb) },
1992   { MAP (sh_opcodec) },
1993   { MAP (sh_opcoded) },
1994   { MAP (sh_opcodee) },
1995   { MAP (sh_opcodef) }
1996 };
1997 
1998 /* The double data transfer / parallel processing insns are not
1999    described here.  This will cause sh_align_load_span to leave them alone.  */
2000 
2001 static const struct sh_opcode sh_dsp_opcodef0[] =
2002 {
2003   { 0xf400, USESAS | SETSAS | LOAD | SETSSP },	/* movs.x @-as,ds */
2004   { 0xf401, USESAS | SETSAS | STORE | USESSP },	/* movs.x ds,@-as */
2005   { 0xf404, USESAS | LOAD | SETSSP },		/* movs.x @as,ds */
2006   { 0xf405, USESAS | STORE | USESSP },		/* movs.x ds,@as */
2007   { 0xf408, USESAS | SETSAS | LOAD | SETSSP },	/* movs.x @as+,ds */
2008   { 0xf409, USESAS | SETSAS | STORE | USESSP },	/* movs.x ds,@as+ */
2009   { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 },	/* movs.x @as+r8,ds */
2010   { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 }	/* movs.x ds,@as+r8 */
2011 };
2012 
2013 static const struct sh_minor_opcode sh_dsp_opcodef[] =
2014 {
2015   { MAP (sh_dsp_opcodef0), 0xfc0d }
2016 };
2017 
2018 /* Given an instruction, return a pointer to the corresponding
2019    sh_opcode structure.  Return NULL if the instruction is not
2020    recognized.  */
2021 
2022 static const struct sh_opcode *
sh_insn_info(unsigned int insn)2023 sh_insn_info (unsigned int insn)
2024 {
2025   const struct sh_major_opcode *maj;
2026   const struct sh_minor_opcode *min, *minend;
2027 
2028   maj = &sh_opcodes[(insn & 0xf000) >> 12];
2029   min = maj->minor_opcodes;
2030   minend = min + maj->count;
2031   for (; min < minend; min++)
2032     {
2033       unsigned int l;
2034       const struct sh_opcode *op, *opend;
2035 
2036       l = insn & min->mask;
2037       op = min->opcodes;
2038       opend = op + min->count;
2039 
2040       /* Since the opcodes tables are sorted, we could use a binary
2041          search here if the count were above some cutoff value.  */
2042       for (; op < opend; op++)
2043 	if (op->opcode == l)
2044 	  return op;
2045     }
2046 
2047   return NULL;
2048 }
2049 
2050 /* See whether an instruction uses a general purpose register.  */
2051 
2052 static bfd_boolean
sh_insn_uses_reg(unsigned int insn,const struct sh_opcode * op,unsigned int reg)2053 sh_insn_uses_reg (unsigned int insn,
2054 		  const struct sh_opcode *op,
2055 		  unsigned int reg)
2056 {
2057   unsigned int f;
2058 
2059   f = op->flags;
2060 
2061   if ((f & USES1) != 0
2062       && USES1_REG (insn) == reg)
2063     return TRUE;
2064   if ((f & USES2) != 0
2065       && USES2_REG (insn) == reg)
2066     return TRUE;
2067   if ((f & USESR0) != 0
2068       && reg == 0)
2069     return TRUE;
2070   if ((f & USESAS) && reg == USESAS_REG (insn))
2071     return TRUE;
2072   if ((f & USESR8) && reg == 8)
2073     return TRUE;
2074 
2075   return FALSE;
2076 }
2077 
2078 /* See whether an instruction sets a general purpose register.  */
2079 
2080 static bfd_boolean
sh_insn_sets_reg(unsigned int insn,const struct sh_opcode * op,unsigned int reg)2081 sh_insn_sets_reg (unsigned int insn,
2082 		  const struct sh_opcode *op,
2083 		  unsigned int reg)
2084 {
2085   unsigned int f;
2086 
2087   f = op->flags;
2088 
2089   if ((f & SETS1) != 0
2090       && SETS1_REG (insn) == reg)
2091     return TRUE;
2092   if ((f & SETS2) != 0
2093       && SETS2_REG (insn) == reg)
2094     return TRUE;
2095   if ((f & SETSR0) != 0
2096       && reg == 0)
2097     return TRUE;
2098   if ((f & SETSAS) && reg == SETSAS_REG (insn))
2099     return TRUE;
2100 
2101   return FALSE;
2102 }
2103 
2104 /* See whether an instruction uses or sets a general purpose register */
2105 
2106 static bfd_boolean
sh_insn_uses_or_sets_reg(unsigned int insn,const struct sh_opcode * op,unsigned int reg)2107 sh_insn_uses_or_sets_reg (unsigned int insn,
2108 			  const struct sh_opcode *op,
2109 			  unsigned int reg)
2110 {
2111   if (sh_insn_uses_reg (insn, op, reg))
2112     return TRUE;
2113 
2114   return sh_insn_sets_reg (insn, op, reg);
2115 }
2116 
2117 /* See whether an instruction uses a floating point register.  */
2118 
2119 static bfd_boolean
sh_insn_uses_freg(unsigned int insn,const struct sh_opcode * op,unsigned int freg)2120 sh_insn_uses_freg (unsigned int insn,
2121 		   const struct sh_opcode *op,
2122 		   unsigned int freg)
2123 {
2124   unsigned int f;
2125 
2126   f = op->flags;
2127 
2128   /* We can't tell if this is a double-precision insn, so just play safe
2129      and assume that it might be.  So not only have we test FREG against
2130      itself, but also even FREG against FREG+1 - if the using insn uses
2131      just the low part of a double precision value - but also an odd
2132      FREG against FREG-1 -  if the setting insn sets just the low part
2133      of a double precision value.
2134      So what this all boils down to is that we have to ignore the lowest
2135      bit of the register number.  */
2136 
2137   if ((f & USESF1) != 0
2138       && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
2139     return TRUE;
2140   if ((f & USESF2) != 0
2141       && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
2142     return TRUE;
2143   if ((f & USESF0) != 0
2144       && freg == 0)
2145     return TRUE;
2146 
2147   return FALSE;
2148 }
2149 
2150 /* See whether an instruction sets a floating point register.  */
2151 
2152 static bfd_boolean
sh_insn_sets_freg(unsigned int insn,const struct sh_opcode * op,unsigned int freg)2153 sh_insn_sets_freg (unsigned int insn,
2154 		   const struct sh_opcode *op,
2155 		   unsigned int freg)
2156 {
2157   unsigned int f;
2158 
2159   f = op->flags;
2160 
2161   /* We can't tell if this is a double-precision insn, so just play safe
2162      and assume that it might be.  So not only have we test FREG against
2163      itself, but also even FREG against FREG+1 - if the using insn uses
2164      just the low part of a double precision value - but also an odd
2165      FREG against FREG-1 -  if the setting insn sets just the low part
2166      of a double precision value.
2167      So what this all boils down to is that we have to ignore the lowest
2168      bit of the register number.  */
2169 
2170   if ((f & SETSF1) != 0
2171       && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
2172     return TRUE;
2173 
2174   return FALSE;
2175 }
2176 
2177 /* See whether an instruction uses or sets a floating point register */
2178 
2179 static bfd_boolean
sh_insn_uses_or_sets_freg(unsigned int insn,const struct sh_opcode * op,unsigned int reg)2180 sh_insn_uses_or_sets_freg (unsigned int insn,
2181 			   const struct sh_opcode *op,
2182 			   unsigned int reg)
2183 {
2184   if (sh_insn_uses_freg (insn, op, reg))
2185     return TRUE;
2186 
2187   return sh_insn_sets_freg (insn, op, reg);
2188 }
2189 
2190 /* See whether instructions I1 and I2 conflict, assuming I1 comes
2191    before I2.  OP1 and OP2 are the corresponding sh_opcode structures.
2192    This should return TRUE if there is a conflict, or FALSE if the
2193    instructions can be swapped safely.  */
2194 
2195 static bfd_boolean
sh_insns_conflict(unsigned int i1,const struct sh_opcode * op1,unsigned int i2,const struct sh_opcode * op2)2196 sh_insns_conflict (unsigned int i1,
2197 		   const struct sh_opcode *op1,
2198 		   unsigned int i2,
2199 		   const struct sh_opcode *op2)
2200 {
2201   unsigned int f1, f2;
2202 
2203   f1 = op1->flags;
2204   f2 = op2->flags;
2205 
2206   /* Load of fpscr conflicts with floating point operations.
2207      FIXME: shouldn't test raw opcodes here.  */
2208   if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2209       || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
2210     return TRUE;
2211 
2212   if ((f1 & (BRANCH | DELAY)) != 0
2213       || (f2 & (BRANCH | DELAY)) != 0)
2214     return TRUE;
2215 
2216   if (((f1 | f2) & SETSSP)
2217       && (f1 & (SETSSP | USESSP))
2218       && (f2 & (SETSSP | USESSP)))
2219     return TRUE;
2220 
2221   if ((f1 & SETS1) != 0
2222       && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
2223     return TRUE;
2224   if ((f1 & SETS2) != 0
2225       && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
2226     return TRUE;
2227   if ((f1 & SETSR0) != 0
2228       && sh_insn_uses_or_sets_reg (i2, op2, 0))
2229     return TRUE;
2230   if ((f1 & SETSAS)
2231       && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
2232     return TRUE;
2233   if ((f1 & SETSF1) != 0
2234       && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
2235     return TRUE;
2236 
2237   if ((f2 & SETS1) != 0
2238       && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
2239     return TRUE;
2240   if ((f2 & SETS2) != 0
2241       && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
2242     return TRUE;
2243   if ((f2 & SETSR0) != 0
2244       && sh_insn_uses_or_sets_reg (i1, op1, 0))
2245     return TRUE;
2246   if ((f2 & SETSAS)
2247       && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
2248     return TRUE;
2249   if ((f2 & SETSF1) != 0
2250       && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
2251     return TRUE;
2252 
2253   /* The instructions do not conflict.  */
2254   return FALSE;
2255 }
2256 
2257 /* I1 is a load instruction, and I2 is some other instruction.  Return
2258    TRUE if I1 loads a register which I2 uses.  */
2259 
2260 static bfd_boolean
sh_load_use(unsigned int i1,const struct sh_opcode * op1,unsigned int i2,const struct sh_opcode * op2)2261 sh_load_use (unsigned int i1,
2262 	     const struct sh_opcode *op1,
2263 	     unsigned int i2,
2264 	     const struct sh_opcode *op2)
2265 {
2266   unsigned int f1;
2267 
2268   f1 = op1->flags;
2269 
2270   if ((f1 & LOAD) == 0)
2271     return FALSE;
2272 
2273   /* If both SETS1 and SETSSP are set, that means a load to a special
2274      register using postincrement addressing mode, which we don't care
2275      about here.  */
2276   if ((f1 & SETS1) != 0
2277       && (f1 & SETSSP) == 0
2278       && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
2279     return TRUE;
2280 
2281   if ((f1 & SETSR0) != 0
2282       && sh_insn_uses_reg (i2, op2, 0))
2283     return TRUE;
2284 
2285   if ((f1 & SETSF1) != 0
2286       && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
2287     return TRUE;
2288 
2289   return FALSE;
2290 }
2291 
2292 /* Try to align loads and stores within a span of memory.  This is
2293    called by both the ELF and the COFF sh targets.  ABFD and SEC are
2294    the BFD and section we are examining.  CONTENTS is the contents of
2295    the section.  SWAP is the routine to call to swap two instructions.
2296    RELOCS is a pointer to the internal relocation information, to be
2297    passed to SWAP.  PLABEL is a pointer to the current label in a
2298    sorted list of labels; LABEL_END is the end of the list.  START and
2299    STOP are the range of memory to examine.  If a swap is made,
2300    *PSWAPPED is set to TRUE.  */
2301 
2302 #ifdef COFF_WITH_PE
2303 static
2304 #endif
2305 bfd_boolean
_bfd_sh_align_load_span(bfd * abfd,asection * sec,bfd_byte * contents,bfd_boolean (* swap)(bfd *,asection *,void *,bfd_byte *,bfd_vma),void * relocs,bfd_vma ** plabel,bfd_vma * label_end,bfd_vma start,bfd_vma stop,bfd_boolean * pswapped)2306 _bfd_sh_align_load_span (bfd *abfd,
2307 			 asection *sec,
2308 			 bfd_byte *contents,
2309 			 bfd_boolean (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
2310 			 void * relocs,
2311 			 bfd_vma **plabel,
2312 			 bfd_vma *label_end,
2313 			 bfd_vma start,
2314 			 bfd_vma stop,
2315 			 bfd_boolean *pswapped)
2316 {
2317   int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2318 	     || abfd->arch_info->mach == bfd_mach_sh3_dsp);
2319   bfd_vma i;
2320 
2321   /* The SH4 has a Harvard architecture, hence aligning loads is not
2322      desirable.  In fact, it is counter-productive, since it interferes
2323      with the schedules generated by the compiler.  */
2324   if (abfd->arch_info->mach == bfd_mach_sh4)
2325     return TRUE;
2326 
2327   /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2328      instructions.  */
2329   if (dsp)
2330     {
2331       sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
2332       sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef;
2333     }
2334 
2335   /* Instructions should be aligned on 2 byte boundaries.  */
2336   if ((start & 1) == 1)
2337     ++start;
2338 
2339   /* Now look through the unaligned addresses.  */
2340   i = start;
2341   if ((i & 2) == 0)
2342     i += 2;
2343   for (; i < stop; i += 4)
2344     {
2345       unsigned int insn;
2346       const struct sh_opcode *op;
2347       unsigned int prev_insn = 0;
2348       const struct sh_opcode *prev_op = NULL;
2349 
2350       insn = bfd_get_16 (abfd, contents + i);
2351       op = sh_insn_info (insn);
2352       if (op == NULL
2353 	  || (op->flags & (LOAD | STORE)) == 0)
2354 	continue;
2355 
2356       /* This is a load or store which is not on a four byte boundary.  */
2357 
2358       while (*plabel < label_end && **plabel < i)
2359 	++*plabel;
2360 
2361       if (i > start)
2362 	{
2363 	  prev_insn = bfd_get_16 (abfd, contents + i - 2);
2364 	  /* If INSN is the field b of a parallel processing insn, it is not
2365 	     a load / store after all.  Note that the test here might mistake
2366 	     the field_b of a pcopy insn for the starting code of a parallel
2367 	     processing insn; this might miss a swapping opportunity, but at
2368 	     least we're on the safe side.  */
2369 	  if (dsp && (prev_insn & 0xfc00) == 0xf800)
2370 	    continue;
2371 
2372 	  /* Check if prev_insn is actually the field b of a parallel
2373 	     processing insn.  Again, this can give a spurious match
2374 	     after a pcopy.  */
2375 	  if (dsp && i - 2 > start)
2376 	    {
2377 	      unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
2378 
2379 	      if ((pprev_insn & 0xfc00) == 0xf800)
2380 		prev_op = NULL;
2381 	      else
2382 		prev_op = sh_insn_info (prev_insn);
2383 	    }
2384 	  else
2385 	    prev_op = sh_insn_info (prev_insn);
2386 
2387 	  /* If the load/store instruction is in a delay slot, we
2388 	     can't swap.  */
2389 	  if (prev_op == NULL
2390 	      || (prev_op->flags & DELAY) != 0)
2391 	    continue;
2392 	}
2393       if (i > start
2394 	  && (*plabel >= label_end || **plabel != i)
2395 	  && prev_op != NULL
2396 	  && (prev_op->flags & (LOAD | STORE)) == 0
2397 	  && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2398 	{
2399 	  bfd_boolean ok;
2400 
2401 	  /* The load/store instruction does not have a label, and
2402 	     there is a previous instruction; PREV_INSN is not
2403 	     itself a load/store instruction, and PREV_INSN and
2404 	     INSN do not conflict.  */
2405 
2406 	  ok = TRUE;
2407 
2408 	  if (i >= start + 4)
2409 	    {
2410 	      unsigned int prev2_insn;
2411 	      const struct sh_opcode *prev2_op;
2412 
2413 	      prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2414 	      prev2_op = sh_insn_info (prev2_insn);
2415 
2416 	      /* If the instruction before PREV_INSN has a delay
2417 		 slot--that is, PREV_INSN is in a delay slot--we
2418 		 can not swap.  */
2419 	      if (prev2_op == NULL
2420 		  || (prev2_op->flags & DELAY) != 0)
2421 		ok = FALSE;
2422 
2423 	      /* If the instruction before PREV_INSN is a load,
2424 		 and it sets a register which INSN uses, then
2425 		 putting INSN immediately after PREV_INSN will
2426 		 cause a pipeline bubble, so there is no point to
2427 		 making the swap.  */
2428 	      if (ok
2429 		  && (prev2_op->flags & LOAD) != 0
2430 		  && sh_load_use (prev2_insn, prev2_op, insn, op))
2431 		ok = FALSE;
2432 	    }
2433 
2434 	  if (ok)
2435 	    {
2436 	      if (! (*swap) (abfd, sec, relocs, contents, i - 2))
2437 		return FALSE;
2438 	      *pswapped = TRUE;
2439 	      continue;
2440 	    }
2441 	}
2442 
2443       while (*plabel < label_end && **plabel < i + 2)
2444 	++*plabel;
2445 
2446       if (i + 2 < stop
2447 	  && (*plabel >= label_end || **plabel != i + 2))
2448 	{
2449 	  unsigned int next_insn;
2450 	  const struct sh_opcode *next_op;
2451 
2452 	  /* There is an instruction after the load/store
2453 	     instruction, and it does not have a label.  */
2454 	  next_insn = bfd_get_16 (abfd, contents + i + 2);
2455 	  next_op = sh_insn_info (next_insn);
2456 	  if (next_op != NULL
2457 	      && (next_op->flags & (LOAD | STORE)) == 0
2458 	      && ! sh_insns_conflict (insn, op, next_insn, next_op))
2459 	    {
2460 	      bfd_boolean ok;
2461 
2462 	      /* NEXT_INSN is not itself a load/store instruction,
2463 		 and it does not conflict with INSN.  */
2464 
2465 	      ok = TRUE;
2466 
2467 	      /* If PREV_INSN is a load, and it sets a register
2468 		 which NEXT_INSN uses, then putting NEXT_INSN
2469 		 immediately after PREV_INSN will cause a pipeline
2470 		 bubble, so there is no reason to make this swap.  */
2471 	      if (prev_op != NULL
2472 		  && (prev_op->flags & LOAD) != 0
2473 		  && sh_load_use (prev_insn, prev_op, next_insn, next_op))
2474 		ok = FALSE;
2475 
2476 	      /* If INSN is a load, and it sets a register which
2477 		 the insn after NEXT_INSN uses, then doing the
2478 		 swap will cause a pipeline bubble, so there is no
2479 		 reason to make the swap.  However, if the insn
2480 		 after NEXT_INSN is itself a load or store
2481 		 instruction, then it is misaligned, so
2482 		 optimistically hope that it will be swapped
2483 		 itself, and just live with the pipeline bubble if
2484 		 it isn't.  */
2485 	      if (ok
2486 		  && i + 4 < stop
2487 		  && (op->flags & LOAD) != 0)
2488 		{
2489 		  unsigned int next2_insn;
2490 		  const struct sh_opcode *next2_op;
2491 
2492 		  next2_insn = bfd_get_16 (abfd, contents + i + 4);
2493 		  next2_op = sh_insn_info (next2_insn);
2494 		  if (next2_op == NULL
2495 		      || ((next2_op->flags & (LOAD | STORE)) == 0
2496 			  && sh_load_use (insn, op, next2_insn, next2_op)))
2497 		    ok = FALSE;
2498 		}
2499 
2500 	      if (ok)
2501 		{
2502 		  if (! (*swap) (abfd, sec, relocs, contents, i))
2503 		    return FALSE;
2504 		  *pswapped = TRUE;
2505 		  continue;
2506 		}
2507 	    }
2508 	}
2509     }
2510 
2511   return TRUE;
2512 }
2513 #endif /* not COFF_IMAGE_WITH_PE */
2514 
2515 /* Swap two SH instructions.  */
2516 
2517 static bfd_boolean
sh_swap_insns(bfd * abfd,asection * sec,void * relocs,bfd_byte * contents,bfd_vma addr)2518 sh_swap_insns (bfd *      abfd,
2519 	       asection * sec,
2520 	       void *     relocs,
2521 	       bfd_byte * contents,
2522 	       bfd_vma    addr)
2523 {
2524   struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2525   unsigned short i1, i2;
2526   struct internal_reloc *irel, *irelend;
2527 
2528   /* Swap the instructions themselves.  */
2529   i1 = bfd_get_16 (abfd, contents + addr);
2530   i2 = bfd_get_16 (abfd, contents + addr + 2);
2531   bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2532   bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
2533 
2534   /* Adjust all reloc addresses.  */
2535   irelend = internal_relocs + sec->reloc_count;
2536   for (irel = internal_relocs; irel < irelend; irel++)
2537     {
2538       int type, add;
2539 
2540       /* There are a few special types of relocs that we don't want to
2541          adjust.  These relocs do not apply to the instruction itself,
2542          but are only associated with the address.  */
2543       type = irel->r_type;
2544       if (type == R_SH_ALIGN
2545 	  || type == R_SH_CODE
2546 	  || type == R_SH_DATA
2547 	  || type == R_SH_LABEL)
2548 	continue;
2549 
2550       /* If an R_SH_USES reloc points to one of the addresses being
2551          swapped, we must adjust it.  It would be incorrect to do this
2552          for a jump, though, since we want to execute both
2553          instructions after the jump.  (We have avoided swapping
2554          around a label, so the jump will not wind up executing an
2555          instruction it shouldn't).  */
2556       if (type == R_SH_USES)
2557 	{
2558 	  bfd_vma off;
2559 
2560 	  off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2561 	  if (off == addr)
2562 	    irel->r_offset += 2;
2563 	  else if (off == addr + 2)
2564 	    irel->r_offset -= 2;
2565 	}
2566 
2567       if (irel->r_vaddr - sec->vma == addr)
2568 	{
2569 	  irel->r_vaddr += 2;
2570 	  add = -2;
2571 	}
2572       else if (irel->r_vaddr - sec->vma == addr + 2)
2573 	{
2574 	  irel->r_vaddr -= 2;
2575 	  add = 2;
2576 	}
2577       else
2578 	add = 0;
2579 
2580       if (add != 0)
2581 	{
2582 	  bfd_byte *loc;
2583 	  unsigned short insn, oinsn;
2584 	  bfd_boolean overflow;
2585 
2586 	  loc = contents + irel->r_vaddr - sec->vma;
2587 	  overflow = FALSE;
2588 	  switch (type)
2589 	    {
2590 	    default:
2591 	      break;
2592 
2593 	    case R_SH_PCDISP8BY2:
2594 	    case R_SH_PCRELIMM8BY2:
2595 	      insn = bfd_get_16 (abfd, loc);
2596 	      oinsn = insn;
2597 	      insn += add / 2;
2598 	      if ((oinsn & 0xff00) != (insn & 0xff00))
2599 		overflow = TRUE;
2600 	      bfd_put_16 (abfd, (bfd_vma) insn, loc);
2601 	      break;
2602 
2603 	    case R_SH_PCDISP:
2604 	      insn = bfd_get_16 (abfd, loc);
2605 	      oinsn = insn;
2606 	      insn += add / 2;
2607 	      if ((oinsn & 0xf000) != (insn & 0xf000))
2608 		overflow = TRUE;
2609 	      bfd_put_16 (abfd, (bfd_vma) insn, loc);
2610 	      break;
2611 
2612 	    case R_SH_PCRELIMM8BY4:
2613 	      /* This reloc ignores the least significant 3 bits of
2614                  the program counter before adding in the offset.
2615                  This means that if ADDR is at an even address, the
2616                  swap will not affect the offset.  If ADDR is an at an
2617                  odd address, then the instruction will be crossing a
2618                  four byte boundary, and must be adjusted.  */
2619 	      if ((addr & 3) != 0)
2620 		{
2621 		  insn = bfd_get_16 (abfd, loc);
2622 		  oinsn = insn;
2623 		  insn += add / 2;
2624 		  if ((oinsn & 0xff00) != (insn & 0xff00))
2625 		    overflow = TRUE;
2626 		  bfd_put_16 (abfd, (bfd_vma) insn, loc);
2627 		}
2628 
2629 	      break;
2630 	    }
2631 
2632 	  if (overflow)
2633 	    {
2634 	      ((*_bfd_error_handler)
2635 	       ("%B: 0x%lx: fatal: reloc overflow while relaxing",
2636 		abfd, (unsigned long) irel->r_vaddr));
2637 	      bfd_set_error (bfd_error_bad_value);
2638 	      return FALSE;
2639 	    }
2640 	}
2641     }
2642 
2643   return TRUE;
2644 }
2645 
2646 /* Look for loads and stores which we can align to four byte
2647    boundaries.  See the longer comment above sh_relax_section for why
2648    this is desirable.  This sets *PSWAPPED if some instruction was
2649    swapped.  */
2650 
2651 static bfd_boolean
sh_align_loads(bfd * abfd,asection * sec,struct internal_reloc * internal_relocs,bfd_byte * contents,bfd_boolean * pswapped)2652 sh_align_loads (bfd *abfd,
2653 		asection *sec,
2654 		struct internal_reloc *internal_relocs,
2655 		bfd_byte *contents,
2656 		bfd_boolean *pswapped)
2657 {
2658   struct internal_reloc *irel, *irelend;
2659   bfd_vma *labels = NULL;
2660   bfd_vma *label, *label_end;
2661   bfd_size_type amt;
2662 
2663   *pswapped = FALSE;
2664 
2665   irelend = internal_relocs + sec->reloc_count;
2666 
2667   /* Get all the addresses with labels on them.  */
2668   amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2669   labels = (bfd_vma *) bfd_malloc (amt);
2670   if (labels == NULL)
2671     goto error_return;
2672   label_end = labels;
2673   for (irel = internal_relocs; irel < irelend; irel++)
2674     {
2675       if (irel->r_type == R_SH_LABEL)
2676 	{
2677 	  *label_end = irel->r_vaddr - sec->vma;
2678 	  ++label_end;
2679 	}
2680     }
2681 
2682   /* Note that the assembler currently always outputs relocs in
2683      address order.  If that ever changes, this code will need to sort
2684      the label values and the relocs.  */
2685 
2686   label = labels;
2687 
2688   for (irel = internal_relocs; irel < irelend; irel++)
2689     {
2690       bfd_vma start, stop;
2691 
2692       if (irel->r_type != R_SH_CODE)
2693 	continue;
2694 
2695       start = irel->r_vaddr - sec->vma;
2696 
2697       for (irel++; irel < irelend; irel++)
2698 	if (irel->r_type == R_SH_DATA)
2699 	  break;
2700       if (irel < irelend)
2701 	stop = irel->r_vaddr - sec->vma;
2702       else
2703 	stop = sec->size;
2704 
2705       if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2706 				     internal_relocs, &label,
2707 				     label_end, start, stop, pswapped))
2708 	goto error_return;
2709     }
2710 
2711   free (labels);
2712 
2713   return TRUE;
2714 
2715  error_return:
2716   if (labels != NULL)
2717     free (labels);
2718   return FALSE;
2719 }
2720 
2721 /* This is a modification of _bfd_coff_generic_relocate_section, which
2722    will handle SH relaxing.  */
2723 
2724 static bfd_boolean
sh_relocate_section(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,struct internal_reloc * relocs,struct internal_syment * syms,asection ** sections)2725 sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
2726 		     struct bfd_link_info *info,
2727 		     bfd *input_bfd,
2728 		     asection *input_section,
2729 		     bfd_byte *contents,
2730 		     struct internal_reloc *relocs,
2731 		     struct internal_syment *syms,
2732 		     asection **sections)
2733 {
2734   struct internal_reloc *rel;
2735   struct internal_reloc *relend;
2736 
2737   rel = relocs;
2738   relend = rel + input_section->reloc_count;
2739   for (; rel < relend; rel++)
2740     {
2741       long symndx;
2742       struct coff_link_hash_entry *h;
2743       struct internal_syment *sym;
2744       bfd_vma addend;
2745       bfd_vma val;
2746       reloc_howto_type *howto;
2747       bfd_reloc_status_type rstat;
2748 
2749       /* Almost all relocs have to do with relaxing.  If any work must
2750          be done for them, it has been done in sh_relax_section.  */
2751       if (rel->r_type != R_SH_IMM32
2752 #ifdef COFF_WITH_PE
2753 	  && rel->r_type != R_SH_IMM32CE
2754 	  && rel->r_type != R_SH_IMAGEBASE
2755 #endif
2756 	  && rel->r_type != R_SH_PCDISP)
2757 	continue;
2758 
2759       symndx = rel->r_symndx;
2760 
2761       if (symndx == -1)
2762 	{
2763 	  h = NULL;
2764 	  sym = NULL;
2765 	}
2766       else
2767 	{
2768 	  if (symndx < 0
2769 	      || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2770 	    {
2771 	      (*_bfd_error_handler)
2772 		("%B: illegal symbol index %ld in relocs",
2773 		 input_bfd, symndx);
2774 	      bfd_set_error (bfd_error_bad_value);
2775 	      return FALSE;
2776 	    }
2777 	  h = obj_coff_sym_hashes (input_bfd)[symndx];
2778 	  sym = syms + symndx;
2779 	}
2780 
2781       if (sym != NULL && sym->n_scnum != 0)
2782 	addend = - sym->n_value;
2783       else
2784 	addend = 0;
2785 
2786       if (rel->r_type == R_SH_PCDISP)
2787 	addend -= 4;
2788 
2789       if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2790 	howto = NULL;
2791       else
2792 	howto = &sh_coff_howtos[rel->r_type];
2793 
2794       if (howto == NULL)
2795 	{
2796 	  bfd_set_error (bfd_error_bad_value);
2797 	  return FALSE;
2798 	}
2799 
2800 #ifdef COFF_WITH_PE
2801       if (rel->r_type == R_SH_IMAGEBASE)
2802 	addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2803 #endif
2804 
2805       val = 0;
2806 
2807       if (h == NULL)
2808 	{
2809 	  asection *sec;
2810 
2811 	  /* There is nothing to do for an internal PCDISP reloc.  */
2812 	  if (rel->r_type == R_SH_PCDISP)
2813 	    continue;
2814 
2815 	  if (symndx == -1)
2816 	    {
2817 	      sec = bfd_abs_section_ptr;
2818 	      val = 0;
2819 	    }
2820 	  else
2821 	    {
2822 	      sec = sections[symndx];
2823               val = (sec->output_section->vma
2824 		     + sec->output_offset
2825 		     + sym->n_value
2826 		     - sec->vma);
2827 	    }
2828 	}
2829       else
2830 	{
2831 	  if (h->root.type == bfd_link_hash_defined
2832 	      || h->root.type == bfd_link_hash_defweak)
2833 	    {
2834 	      asection *sec;
2835 
2836 	      sec = h->root.u.def.section;
2837 	      val = (h->root.u.def.value
2838 		     + sec->output_section->vma
2839 		     + sec->output_offset);
2840 	    }
2841 	  else if (! info->relocatable)
2842 	    {
2843 	      if (! ((*info->callbacks->undefined_symbol)
2844 		     (info, h->root.root.string, input_bfd, input_section,
2845 		      rel->r_vaddr - input_section->vma, TRUE)))
2846 		return FALSE;
2847 	    }
2848 	}
2849 
2850       rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2851 					contents,
2852 					rel->r_vaddr - input_section->vma,
2853 					val, addend);
2854 
2855       switch (rstat)
2856 	{
2857 	default:
2858 	  abort ();
2859 	case bfd_reloc_ok:
2860 	  break;
2861 	case bfd_reloc_overflow:
2862 	  {
2863 	    const char *name;
2864 	    char buf[SYMNMLEN + 1];
2865 
2866 	    if (symndx == -1)
2867 	      name = "*ABS*";
2868 	    else if (h != NULL)
2869 	      name = NULL;
2870 	    else if (sym->_n._n_n._n_zeroes == 0
2871 		     && sym->_n._n_n._n_offset != 0)
2872 	      name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
2873 	    else
2874 	      {
2875  		strncpy (buf, sym->_n._n_name, SYMNMLEN);
2876 		buf[SYMNMLEN] = '\0';
2877 		name = buf;
2878 	      }
2879 
2880 	    if (! ((*info->callbacks->reloc_overflow)
2881 		   (info, (h ? &h->root : NULL), name, howto->name,
2882 		    (bfd_vma) 0, input_bfd, input_section,
2883 		    rel->r_vaddr - input_section->vma)))
2884 	      return FALSE;
2885 	  }
2886 	}
2887     }
2888 
2889   return TRUE;
2890 }
2891 
2892 /* This is a version of bfd_generic_get_relocated_section_contents
2893    which uses sh_relocate_section.  */
2894 
2895 static bfd_byte *
sh_coff_get_relocated_section_contents(bfd * output_bfd,struct bfd_link_info * link_info,struct bfd_link_order * link_order,bfd_byte * data,bfd_boolean relocatable,asymbol ** symbols)2896 sh_coff_get_relocated_section_contents (bfd *output_bfd,
2897 					struct bfd_link_info *link_info,
2898 					struct bfd_link_order *link_order,
2899 					bfd_byte *data,
2900 					bfd_boolean relocatable,
2901 					asymbol **symbols)
2902 {
2903   asection *input_section = link_order->u.indirect.section;
2904   bfd *input_bfd = input_section->owner;
2905   asection **sections = NULL;
2906   struct internal_reloc *internal_relocs = NULL;
2907   struct internal_syment *internal_syms = NULL;
2908 
2909   /* We only need to handle the case of relaxing, or of having a
2910      particular set of section contents, specially.  */
2911   if (relocatable
2912       || coff_section_data (input_bfd, input_section) == NULL
2913       || coff_section_data (input_bfd, input_section)->contents == NULL)
2914     return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2915 						       link_order, data,
2916 						       relocatable,
2917 						       symbols);
2918 
2919   memcpy (data, coff_section_data (input_bfd, input_section)->contents,
2920 	  (size_t) input_section->size);
2921 
2922   if ((input_section->flags & SEC_RELOC) != 0
2923       && input_section->reloc_count > 0)
2924     {
2925       bfd_size_type symesz = bfd_coff_symesz (input_bfd);
2926       bfd_byte *esym, *esymend;
2927       struct internal_syment *isymp;
2928       asection **secpp;
2929       bfd_size_type amt;
2930 
2931       if (! _bfd_coff_get_external_symbols (input_bfd))
2932 	goto error_return;
2933 
2934       internal_relocs = (_bfd_coff_read_internal_relocs
2935 			 (input_bfd, input_section, FALSE, (bfd_byte *) NULL,
2936 			  FALSE, (struct internal_reloc *) NULL));
2937       if (internal_relocs == NULL)
2938 	goto error_return;
2939 
2940       amt = obj_raw_syment_count (input_bfd);
2941       amt *= sizeof (struct internal_syment);
2942       internal_syms = (struct internal_syment *) bfd_malloc (amt);
2943       if (internal_syms == NULL)
2944 	goto error_return;
2945 
2946       amt = obj_raw_syment_count (input_bfd);
2947       amt *= sizeof (asection *);
2948       sections = (asection **) bfd_malloc (amt);
2949       if (sections == NULL)
2950 	goto error_return;
2951 
2952       isymp = internal_syms;
2953       secpp = sections;
2954       esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
2955       esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
2956       while (esym < esymend)
2957 	{
2958 	  bfd_coff_swap_sym_in (input_bfd, esym, isymp);
2959 
2960 	  if (isymp->n_scnum != 0)
2961 	    *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
2962 	  else
2963 	    {
2964 	      if (isymp->n_value == 0)
2965 		*secpp = bfd_und_section_ptr;
2966 	      else
2967 		*secpp = bfd_com_section_ptr;
2968 	    }
2969 
2970 	  esym += (isymp->n_numaux + 1) * symesz;
2971 	  secpp += isymp->n_numaux + 1;
2972 	  isymp += isymp->n_numaux + 1;
2973 	}
2974 
2975       if (! sh_relocate_section (output_bfd, link_info, input_bfd,
2976 				 input_section, data, internal_relocs,
2977 				 internal_syms, sections))
2978 	goto error_return;
2979 
2980       free (sections);
2981       sections = NULL;
2982       free (internal_syms);
2983       internal_syms = NULL;
2984       free (internal_relocs);
2985       internal_relocs = NULL;
2986     }
2987 
2988   return data;
2989 
2990  error_return:
2991   if (internal_relocs != NULL)
2992     free (internal_relocs);
2993   if (internal_syms != NULL)
2994     free (internal_syms);
2995   if (sections != NULL)
2996     free (sections);
2997   return NULL;
2998 }
2999 
3000 /* The target vectors.  */
3001 
3002 #ifndef TARGET_SHL_SYM
3003 CREATE_BIG_COFF_TARGET_VEC (shcoff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
3004 #endif
3005 
3006 #ifdef TARGET_SHL_SYM
3007 #define TARGET_SYM TARGET_SHL_SYM
3008 #else
3009 #define TARGET_SYM shlcoff_vec
3010 #endif
3011 
3012 #ifndef TARGET_SHL_NAME
3013 #define TARGET_SHL_NAME "coff-shl"
3014 #endif
3015 
3016 #ifdef COFF_WITH_PE
3017 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3018 			       SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
3019 #else
3020 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3021 			       0, '_', NULL, COFF_SWAP_TABLE)
3022 #endif
3023 
3024 #ifndef TARGET_SHL_SYM
3025 
3026 /* Some people want versions of the SH COFF target which do not align
3027    to 16 byte boundaries.  We implement that by adding a couple of new
3028    target vectors.  These are just like the ones above, but they
3029    change the default section alignment.  To generate them in the
3030    assembler, use -small.  To use them in the linker, use -b
3031    coff-sh{l}-small and -oformat coff-sh{l}-small.
3032 
3033    Yes, this is a horrible hack.  A general solution for setting
3034    section alignment in COFF is rather complex.  ELF handles this
3035    correctly.  */
3036 
3037 /* Only recognize the small versions if the target was not defaulted.
3038    Otherwise we won't recognize the non default endianness.  */
3039 
3040 static const bfd_target *
coff_small_object_p(bfd * abfd)3041 coff_small_object_p (bfd *abfd)
3042 {
3043   if (abfd->target_defaulted)
3044     {
3045       bfd_set_error (bfd_error_wrong_format);
3046       return NULL;
3047     }
3048   return coff_object_p (abfd);
3049 }
3050 
3051 /* Set the section alignment for the small versions.  */
3052 
3053 static bfd_boolean
coff_small_new_section_hook(bfd * abfd,asection * section)3054 coff_small_new_section_hook (bfd *abfd, asection *section)
3055 {
3056   if (! coff_new_section_hook (abfd, section))
3057     return FALSE;
3058 
3059   /* We must align to at least a four byte boundary, because longword
3060      accesses must be on a four byte boundary.  */
3061   if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3062     section->alignment_power = 2;
3063 
3064   return TRUE;
3065 }
3066 
3067 /* This is copied from bfd_coff_std_swap_table so that we can change
3068    the default section alignment power.  */
3069 
3070 static bfd_coff_backend_data bfd_coff_small_swap_table =
3071 {
3072   coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3073   coff_swap_aux_out, coff_swap_sym_out,
3074   coff_swap_lineno_out, coff_swap_reloc_out,
3075   coff_swap_filehdr_out, coff_swap_aouthdr_out,
3076   coff_swap_scnhdr_out,
3077   FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
3078 #ifdef COFF_LONG_FILENAMES
3079   TRUE,
3080 #else
3081   FALSE,
3082 #endif
3083   COFF_DEFAULT_LONG_SECTION_NAMES,
3084   2,
3085 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3086   TRUE,
3087 #else
3088   FALSE,
3089 #endif
3090 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3091   4,
3092 #else
3093   2,
3094 #endif
3095   coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3096   coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3097   coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3098   coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3099   coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
3100   coff_classify_symbol, coff_compute_section_file_positions,
3101   coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3102   coff_adjust_symndx, coff_link_add_one_symbol,
3103   coff_link_output_has_begun, coff_final_link_postscript,
3104   bfd_pe_print_pdata
3105 };
3106 
3107 #define coff_small_close_and_cleanup \
3108   coff_close_and_cleanup
3109 #define coff_small_bfd_free_cached_info \
3110   coff_bfd_free_cached_info
3111 #define coff_small_get_section_contents \
3112   coff_get_section_contents
3113 #define coff_small_get_section_contents_in_window \
3114   coff_get_section_contents_in_window
3115 
3116 extern const bfd_target shlcoff_small_vec;
3117 
3118 const bfd_target shcoff_small_vec =
3119 {
3120   "coff-sh-small",		/* name */
3121   bfd_target_coff_flavour,
3122   BFD_ENDIAN_BIG,		/* data byte order is big */
3123   BFD_ENDIAN_BIG,		/* header byte order is big */
3124 
3125   (HAS_RELOC | EXEC_P |		/* object flags */
3126    HAS_LINENO | HAS_DEBUG |
3127    HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3128 
3129   (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3130   '_',				/* leading symbol underscore */
3131   '/',				/* ar_pad_char */
3132   15,				/* ar_max_namelen */
3133   0,				/* match priority.  */
3134   bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3135   bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3136   bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3137   bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3138   bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3139   bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3140 
3141   {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3142      bfd_generic_archive_p, _bfd_dummy_target},
3143   {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3144      bfd_false},
3145   {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3146      _bfd_write_archive_contents, bfd_false},
3147 
3148   BFD_JUMP_TABLE_GENERIC (coff_small),
3149   BFD_JUMP_TABLE_COPY (coff),
3150   BFD_JUMP_TABLE_CORE (_bfd_nocore),
3151   BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3152   BFD_JUMP_TABLE_SYMBOLS (coff),
3153   BFD_JUMP_TABLE_RELOCS (coff),
3154   BFD_JUMP_TABLE_WRITE (coff),
3155   BFD_JUMP_TABLE_LINK (coff),
3156   BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3157 
3158   & shlcoff_small_vec,
3159 
3160   & bfd_coff_small_swap_table
3161 };
3162 
3163 const bfd_target shlcoff_small_vec =
3164 {
3165   "coff-shl-small",		/* name */
3166   bfd_target_coff_flavour,
3167   BFD_ENDIAN_LITTLE,		/* data byte order is little */
3168   BFD_ENDIAN_LITTLE,		/* header byte order is little endian too*/
3169 
3170   (HAS_RELOC | EXEC_P |		/* object flags */
3171    HAS_LINENO | HAS_DEBUG |
3172    HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3173 
3174   (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3175   '_',				/* leading symbol underscore */
3176   '/',				/* ar_pad_char */
3177   15,				/* ar_max_namelen */
3178   0,				/* match priority.  */
3179   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3180   bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3181   bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3182   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3183   bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3184   bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3185 
3186   {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3187      bfd_generic_archive_p, _bfd_dummy_target},
3188   {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3189      bfd_false},
3190   {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3191      _bfd_write_archive_contents, bfd_false},
3192 
3193   BFD_JUMP_TABLE_GENERIC (coff_small),
3194   BFD_JUMP_TABLE_COPY (coff),
3195   BFD_JUMP_TABLE_CORE (_bfd_nocore),
3196   BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3197   BFD_JUMP_TABLE_SYMBOLS (coff),
3198   BFD_JUMP_TABLE_RELOCS (coff),
3199   BFD_JUMP_TABLE_WRITE (coff),
3200   BFD_JUMP_TABLE_LINK (coff),
3201   BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3202 
3203   & shcoff_small_vec,
3204 
3205   & bfd_coff_small_swap_table
3206 };
3207 #endif
3208