1 /* Handle SunOS shared libraries for GDB, the GNU Debugger.
2 
3    Copyright (C) 1990-2013 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 
22 #include <sys/types.h>
23 #include <signal.h>
24 #include "gdb_string.h"
25 #include <sys/param.h>
26 #include <fcntl.h>
27 
28 /* SunOS shared libs need the nlist structure.  */
29 #include <a.out.h>
30 #include <link.h>
31 
32 #include "symtab.h"
33 #include "bfd.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdbcore.h"
37 #include "inferior.h"
38 #include "gdbthread.h"
39 #include "solist.h"
40 #include "bcache.h"
41 #include "regcache.h"
42 
43 /* The shared library implementation found on BSD a.out systems is
44    very similar to the SunOS implementation.  However, the data
45    structures defined in <link.h> are named very differently.  Make up
46    for those differences here.  */
47 
48 #ifdef HAVE_STRUCT_SO_MAP_WITH_SOM_MEMBERS
49 
50 /* FIXME: Temporary until the equivalent defines have been removed
51    from all nm-*bsd*.h files.  */
52 #ifndef link_dynamic
53 
54 /* Map `struct link_map' and its members.  */
55 #define link_map	so_map
56 #define lm_addr		som_addr
57 #define lm_name		som_path
58 #define lm_next		som_next
59 
60 /* Map `struct link_dynamic_2' and its members.  */
61 #define link_dynamic_2	section_dispatch_table
62 #define ld_loaded	sdt_loaded
63 
64 /* Map `struct rtc_symb' and its members.  */
65 #define rtc_symb	rt_symbol
66 #define rtc_sp		rt_sp
67 #define rtc_next	rt_next
68 
69 /* Map `struct ld_debug' and its members.  */
70 #define ld_debug	so_debug
71 #define ldd_in_debugger	dd_in_debugger
72 #define ldd_bp_addr	dd_bpt_addr
73 #define ldd_bp_inst	dd_bpt_shadow
74 #define ldd_cp		dd_cc
75 
76 /* Map `struct link_dynamic' and its members.  */
77 #define link_dynamic	_dynamic
78 #define ld_version	d_version
79 #define ldd		d_debug
80 #define ld_un		d_un
81 #define ld_2		d_sdt
82 
83 #endif
84 
85 #endif
86 
87 /* Link map info to include in an allocated so_list entry.  */
88 
89 struct lm_info
90   {
91     /* Pointer to copy of link map from inferior.  The type is char *
92        rather than void *, so that we may use byte offsets to find the
93        various fields without the need for a cast.  */
94     char *lm;
95   };
96 
97 
98 /* Symbols which are used to locate the base of the link map structures.  */
99 
100 static char *debug_base_symbols[] =
101 {
102   "_DYNAMIC",
103   "_DYNAMIC__MGC",
104   NULL
105 };
106 
107 static char *main_name_list[] =
108 {
109   "main_$main",
110   NULL
111 };
112 
113 /* Macro to extract an address from a solib structure.  When GDB is
114    configured for some 32-bit targets (e.g. Solaris 2.7 sparc), BFD is
115    configured to handle 64-bit targets, so CORE_ADDR is 64 bits.  We
116    have to extract only the significant bits of addresses to get the
117    right address when accessing the core file BFD.
118 
119    Assume that the address is unsigned.  */
120 
121 #define SOLIB_EXTRACT_ADDRESS(MEMBER) \
122 	extract_unsigned_integer (&(MEMBER), sizeof (MEMBER), \
123 				  gdbarch_byte_order (target_gdbarch ()))
124 
125 /* local data declarations */
126 
127 static struct link_dynamic dynamic_copy;
128 static struct link_dynamic_2 ld_2_copy;
129 static struct ld_debug debug_copy;
130 static CORE_ADDR debug_addr;
131 static CORE_ADDR flag_addr;
132 
133 #ifndef offsetof
134 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
135 #endif
136 #define fieldsize(TYPE, MEMBER) (sizeof (((TYPE *)0)->MEMBER))
137 
138 /* link map access functions */
139 
140 static CORE_ADDR
lm_addr(struct so_list * so)141 lm_addr (struct so_list *so)
142 {
143   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
144   int lm_addr_offset = offsetof (struct link_map, lm_addr);
145   int lm_addr_size = fieldsize (struct link_map, lm_addr);
146 
147   return (CORE_ADDR) extract_signed_integer (so->lm_info->lm + lm_addr_offset,
148 					     lm_addr_size, byte_order);
149 }
150 
151 static CORE_ADDR
lm_next(struct so_list * so)152 lm_next (struct so_list *so)
153 {
154   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
155   int lm_next_offset = offsetof (struct link_map, lm_next);
156   int lm_next_size = fieldsize (struct link_map, lm_next);
157 
158   /* Assume that the address is unsigned.  */
159   return extract_unsigned_integer (so->lm_info->lm + lm_next_offset,
160 				   lm_next_size, byte_order);
161 }
162 
163 static CORE_ADDR
lm_name(struct so_list * so)164 lm_name (struct so_list *so)
165 {
166   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
167   int lm_name_offset = offsetof (struct link_map, lm_name);
168   int lm_name_size = fieldsize (struct link_map, lm_name);
169 
170   /* Assume that the address is unsigned.  */
171   return extract_unsigned_integer (so->lm_info->lm + lm_name_offset,
172 				   lm_name_size, byte_order);
173 }
174 
175 static CORE_ADDR debug_base;	/* Base of dynamic linker structures.  */
176 
177 /* Local function prototypes */
178 
179 static int match_main (char *);
180 
181 /* Allocate the runtime common object file.  */
182 
183 static void
allocate_rt_common_objfile(void)184 allocate_rt_common_objfile (void)
185 {
186   struct objfile *objfile;
187   struct objfile *last_one;
188 
189   objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
190   memset (objfile, 0, sizeof (struct objfile));
191   objfile->psymbol_cache = psymbol_bcache_init ();
192   objfile->macro_cache = bcache_xmalloc (NULL, NULL);
193   objfile->filename_cache = bcache_xmalloc (NULL, NULL);
194   obstack_init (&objfile->objfile_obstack);
195   objfile->name = xstrdup ("rt_common");
196 
197   /* Add this file onto the tail of the linked list of other such files.  */
198 
199   objfile->next = NULL;
200   if (object_files == NULL)
201     object_files = objfile;
202   else
203     {
204       for (last_one = object_files;
205 	   last_one->next;
206 	   last_one = last_one->next);
207       last_one->next = objfile;
208     }
209 
210   rt_common_objfile = objfile;
211 }
212 
213 /* Read all dynamically loaded common symbol definitions from the inferior
214    and put them into the minimal symbol table for the runtime common
215    objfile.  */
216 
217 static void
solib_add_common_symbols(CORE_ADDR rtc_symp)218 solib_add_common_symbols (CORE_ADDR rtc_symp)
219 {
220   struct rtc_symb inferior_rtc_symb;
221   struct nlist inferior_rtc_nlist;
222   int len;
223   char *name;
224 
225   /* Remove any runtime common symbols from previous runs.  */
226 
227   if (rt_common_objfile != NULL && rt_common_objfile->minimal_symbol_count)
228     {
229       obstack_free (&rt_common_objfile->objfile_obstack, 0);
230       obstack_init (&rt_common_objfile->objfile_obstack);
231       rt_common_objfile->minimal_symbol_count = 0;
232       rt_common_objfile->msymbols = NULL;
233       terminate_minimal_symbol_table (rt_common_objfile);
234     }
235 
236   init_minimal_symbol_collection ();
237   make_cleanup_discard_minimal_symbols ();
238 
239   while (rtc_symp)
240     {
241       read_memory (rtc_symp,
242 		   (char *) &inferior_rtc_symb,
243 		   sizeof (inferior_rtc_symb));
244       read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_sp),
245 		   (char *) &inferior_rtc_nlist,
246 		   sizeof (inferior_rtc_nlist));
247       if (inferior_rtc_nlist.n_type == N_COMM)
248 	{
249 	  /* FIXME: The length of the symbol name is not available, but in the
250 	     current implementation the common symbol is allocated immediately
251 	     behind the name of the symbol.  */
252 	  len = inferior_rtc_nlist.n_value - inferior_rtc_nlist.n_un.n_strx;
253 
254 	  name = xmalloc (len);
255 	  read_memory (SOLIB_EXTRACT_ADDRESS (inferior_rtc_nlist.n_un.n_name),
256 		       name, len);
257 
258 	  /* Allocate the runtime common objfile if necessary.  */
259 	  if (rt_common_objfile == NULL)
260 	    allocate_rt_common_objfile ();
261 
262 	  prim_record_minimal_symbol (name, inferior_rtc_nlist.n_value,
263 				      mst_bss, rt_common_objfile);
264 	  xfree (name);
265 	}
266       rtc_symp = SOLIB_EXTRACT_ADDRESS (inferior_rtc_symb.rtc_next);
267     }
268 
269   /* Install any minimal symbols that have been collected as the current
270      minimal symbols for the runtime common objfile.  */
271 
272   install_minimal_symbols (rt_common_objfile);
273 }
274 
275 
276 /* Locate the base address of dynamic linker structs.
277 
278    For both the SunOS and SVR4 shared library implementations, if the
279    inferior executable has been linked dynamically, there is a single
280    address somewhere in the inferior's data space which is the key to
281    locating all of the dynamic linker's runtime structures.  This
282    address is the value of the debug base symbol.  The job of this
283    function is to find and return that address, or to return 0 if there
284    is no such address (the executable is statically linked for example).
285 
286    For SunOS, the job is almost trivial, since the dynamic linker and
287    all of it's structures are statically linked to the executable at
288    link time.  Thus the symbol for the address we are looking for has
289    already been added to the minimal symbol table for the executable's
290    objfile at the time the symbol file's symbols were read, and all we
291    have to do is look it up there.  Note that we explicitly do NOT want
292    to find the copies in the shared library.
293 
294    The SVR4 version is a bit more complicated because the address
295    is contained somewhere in the dynamic info section.  We have to go
296    to a lot more work to discover the address of the debug base symbol.
297    Because of this complexity, we cache the value we find and return that
298    value on subsequent invocations.  Note there is no copy in the
299    executable symbol tables.  */
300 
301 static CORE_ADDR
locate_base(void)302 locate_base (void)
303 {
304   struct minimal_symbol *msymbol;
305   CORE_ADDR address = 0;
306   char **symbolp;
307 
308   /* For SunOS, we want to limit the search for the debug base symbol to the
309      executable being debugged, since there is a duplicate named symbol in the
310      shared library.  We don't want the shared library versions.  */
311 
312   for (symbolp = debug_base_symbols; *symbolp != NULL; symbolp++)
313     {
314       msymbol = lookup_minimal_symbol (*symbolp, NULL, symfile_objfile);
315       if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
316 	{
317 	  address = SYMBOL_VALUE_ADDRESS (msymbol);
318 	  return (address);
319 	}
320     }
321   return (0);
322 }
323 
324 /* Locate first member in dynamic linker's map.
325 
326    Find the first element in the inferior's dynamic link map, and
327    return its address in the inferior.  This function doesn't copy the
328    link map entry itself into our address space; current_sos actually
329    does the reading.  */
330 
331 static CORE_ADDR
first_link_map_member(void)332 first_link_map_member (void)
333 {
334   CORE_ADDR lm = 0;
335 
336   read_memory (debug_base, (char *) &dynamic_copy, sizeof (dynamic_copy));
337   if (dynamic_copy.ld_version >= 2)
338     {
339       /* It is a version that we can deal with, so read in the secondary
340          structure and find the address of the link map list from it.  */
341       read_memory (SOLIB_EXTRACT_ADDRESS (dynamic_copy.ld_un.ld_2),
342 		   (char *) &ld_2_copy, sizeof (struct link_dynamic_2));
343       lm = SOLIB_EXTRACT_ADDRESS (ld_2_copy.ld_loaded);
344     }
345   return (lm);
346 }
347 
348 static int
open_symbol_file_object(void * from_ttyp)349 open_symbol_file_object (void *from_ttyp)
350 {
351   return 1;
352 }
353 
354 
355 /* Implement the "current_sos" target_so_ops method.  */
356 
357 static struct so_list *
sunos_current_sos(void)358 sunos_current_sos (void)
359 {
360   CORE_ADDR lm;
361   struct so_list *head = 0;
362   struct so_list **link_ptr = &head;
363   int errcode;
364   char *buffer;
365 
366   /* Make sure we've looked up the inferior's dynamic linker's base
367      structure.  */
368   if (! debug_base)
369     {
370       debug_base = locate_base ();
371 
372       /* If we can't find the dynamic linker's base structure, this
373 	 must not be a dynamically linked executable.  Hmm.  */
374       if (! debug_base)
375 	return 0;
376     }
377 
378   /* Walk the inferior's link map list, and build our list of
379      `struct so_list' nodes.  */
380   lm = first_link_map_member ();
381   while (lm)
382     {
383       struct so_list *new
384 	= (struct so_list *) xmalloc (sizeof (struct so_list));
385       struct cleanup *old_chain = make_cleanup (xfree, new);
386 
387       memset (new, 0, sizeof (*new));
388 
389       new->lm_info = xmalloc (sizeof (struct lm_info));
390       make_cleanup (xfree, new->lm_info);
391 
392       new->lm_info->lm = xmalloc (sizeof (struct link_map));
393       make_cleanup (xfree, new->lm_info->lm);
394       memset (new->lm_info->lm, 0, sizeof (struct link_map));
395 
396       read_memory (lm, new->lm_info->lm, sizeof (struct link_map));
397 
398       lm = lm_next (new);
399 
400       /* Extract this shared object's name.  */
401       target_read_string (lm_name (new), &buffer,
402 			  SO_NAME_MAX_PATH_SIZE - 1, &errcode);
403       if (errcode != 0)
404 	warning (_("Can't read pathname for load map: %s."),
405 		 safe_strerror (errcode));
406       else
407 	{
408 	  strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
409 	  new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
410 	  xfree (buffer);
411 	  strcpy (new->so_original_name, new->so_name);
412 	}
413 
414       /* If this entry has no name, or its name matches the name
415 	 for the main executable, don't include it in the list.  */
416       if (! new->so_name[0]
417 	  || match_main (new->so_name))
418 	free_so (new);
419       else
420 	{
421 	  new->next = 0;
422 	  *link_ptr = new;
423 	  link_ptr = &new->next;
424 	}
425 
426       discard_cleanups (old_chain);
427     }
428 
429   return head;
430 }
431 
432 
433 /* On some systems, the only way to recognize the link map entry for
434    the main executable file is by looking at its name.  Return
435    non-zero iff SONAME matches one of the known main executable names.  */
436 
437 static int
match_main(char * soname)438 match_main (char *soname)
439 {
440   char **mainp;
441 
442   for (mainp = main_name_list; *mainp != NULL; mainp++)
443     {
444       if (strcmp (soname, *mainp) == 0)
445 	return (1);
446     }
447 
448   return (0);
449 }
450 
451 
452 static int
sunos_in_dynsym_resolve_code(CORE_ADDR pc)453 sunos_in_dynsym_resolve_code (CORE_ADDR pc)
454 {
455   return 0;
456 }
457 
458 /* Remove the "mapping changed" breakpoint.
459 
460    Removes the breakpoint that gets hit when the dynamic linker
461    completes a mapping change.  */
462 
463 static int
disable_break(void)464 disable_break (void)
465 {
466   CORE_ADDR breakpoint_addr;	/* Address where end bkpt is set.  */
467 
468   int in_debugger = 0;
469 
470   /* Read the debugger structure from the inferior to retrieve the
471      address of the breakpoint and the original contents of the
472      breakpoint address.  Remove the breakpoint by writing the original
473      contents back.  */
474 
475   read_memory (debug_addr, (char *) &debug_copy, sizeof (debug_copy));
476 
477   /* Set `in_debugger' to zero now.  */
478 
479   write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
480 
481   breakpoint_addr = SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_bp_addr);
482   write_memory (breakpoint_addr, (char *) &debug_copy.ldd_bp_inst,
483 		sizeof (debug_copy.ldd_bp_inst));
484 
485   /* For the SVR4 version, we always know the breakpoint address.  For the
486      SunOS version we don't know it until the above code is executed.
487      Grumble if we are stopped anywhere besides the breakpoint address.  */
488 
489   if (stop_pc != breakpoint_addr)
490     {
491       warning (_("stopped at unknown breakpoint "
492 		 "while handling shared libraries"));
493     }
494 
495   return 1;
496 }
497 
498 /* Arrange for dynamic linker to hit breakpoint.
499 
500    Both the SunOS and the SVR4 dynamic linkers have, as part of their
501    debugger interface, support for arranging for the inferior to hit
502    a breakpoint after mapping in the shared libraries.  This function
503    enables that breakpoint.
504 
505    For SunOS, there is a special flag location (in_debugger) which we
506    set to 1.  When the dynamic linker sees this flag set, it will set
507    a breakpoint at a location known only to itself, after saving the
508    original contents of that place and the breakpoint address itself,
509    in it's own internal structures.  When we resume the inferior, it
510    will eventually take a SIGTRAP when it runs into the breakpoint.
511    We handle this (in a different place) by restoring the contents of
512    the breakpointed location (which is only known after it stops),
513    chasing around to locate the shared libraries that have been
514    loaded, then resuming.
515 
516    For SVR4, the debugger interface structure contains a member (r_brk)
517    which is statically initialized at the time the shared library is
518    built, to the offset of a function (_r_debug_state) which is guaran-
519    teed to be called once before mapping in a library, and again when
520    the mapping is complete.  At the time we are examining this member,
521    it contains only the unrelocated offset of the function, so we have
522    to do our own relocation.  Later, when the dynamic linker actually
523    runs, it relocates r_brk to be the actual address of _r_debug_state().
524 
525    The debugger interface structure also contains an enumeration which
526    is set to either RT_ADD or RT_DELETE prior to changing the mapping,
527    depending upon whether or not the library is being mapped or
528    unmapped, and then set to RT_CONSISTENT after the library is
529    mapped/unmapped.  */
530 
531 static int
enable_break(void)532 enable_break (void)
533 {
534   int success = 0;
535   int j;
536   int in_debugger;
537 
538   /* Get link_dynamic structure.  */
539 
540   j = target_read_memory (debug_base, (char *) &dynamic_copy,
541 			  sizeof (dynamic_copy));
542   if (j)
543     {
544       /* unreadable */
545       return (0);
546     }
547 
548   /* Calc address of debugger interface structure.  */
549 
550   debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
551 
552   /* Calc address of `in_debugger' member of debugger interface structure.  */
553 
554   flag_addr = debug_addr + (CORE_ADDR) ((char *) &debug_copy.ldd_in_debugger -
555 					(char *) &debug_copy);
556 
557   /* Write a value of 1 to this member.  */
558 
559   in_debugger = 1;
560   write_memory (flag_addr, (char *) &in_debugger, sizeof (in_debugger));
561   success = 1;
562 
563   return (success);
564 }
565 
566 /* Implement the "special_symbol_handling" target_so_ops method.
567 
568    For SunOS4, this consists of grunging around in the dynamic
569    linkers structures to find symbol definitions for "common" symbols
570    and adding them to the minimal symbol table for the runtime common
571    objfile.  */
572 
573 static void
sunos_special_symbol_handling(void)574 sunos_special_symbol_handling (void)
575 {
576   int j;
577 
578   if (debug_addr == 0)
579     {
580       /* Get link_dynamic structure.  */
581 
582       j = target_read_memory (debug_base, (char *) &dynamic_copy,
583 			      sizeof (dynamic_copy));
584       if (j)
585 	{
586 	  /* unreadable */
587 	  return;
588 	}
589 
590       /* Calc address of debugger interface structure.  */
591       /* FIXME, this needs work for cross-debugging of core files
592          (byteorder, size, alignment, etc).  */
593 
594       debug_addr = SOLIB_EXTRACT_ADDRESS (dynamic_copy.ldd);
595     }
596 
597   /* Read the debugger structure from the inferior, just to make sure
598      we have a current copy.  */
599 
600   j = target_read_memory (debug_addr, (char *) &debug_copy,
601 			  sizeof (debug_copy));
602   if (j)
603     return;			/* unreadable */
604 
605   /* Get common symbol definitions for the loaded object.  */
606 
607   if (debug_copy.ldd_cp)
608     {
609       solib_add_common_symbols (SOLIB_EXTRACT_ADDRESS (debug_copy.ldd_cp));
610     }
611 }
612 
613 /* Implement the "create_inferior_hook" target_solib_ops method.
614 
615    For SunOS executables, this first instruction is typically the
616    one at "_start", or a similar text label, regardless of whether
617    the executable is statically or dynamically linked.  The runtime
618    startup code takes care of dynamically linking in any shared
619    libraries, once gdb allows the inferior to continue.
620 
621    We can arrange to cooperate with the dynamic linker to discover the
622    names of shared libraries that are dynamically linked, and the base
623    addresses to which they are linked.
624 
625    This function is responsible for discovering those names and
626    addresses, and saving sufficient information about them to allow
627    their symbols to be read at a later time.
628 
629    FIXME
630 
631    Between enable_break() and disable_break(), this code does not
632    properly handle hitting breakpoints which the user might have
633    set in the startup code or in the dynamic linker itself.  Proper
634    handling will probably have to wait until the implementation is
635    changed to use the "breakpoint handler function" method.
636 
637    Also, what if child has exit()ed?  Must exit loop somehow.  */
638 
639 static void
sunos_solib_create_inferior_hook(int from_tty)640 sunos_solib_create_inferior_hook (int from_tty)
641 {
642   struct thread_info *tp;
643   struct inferior *inf;
644 
645   if ((debug_base = locate_base ()) == 0)
646     {
647       /* Can't find the symbol or the executable is statically linked.  */
648       return;
649     }
650 
651   if (!enable_break ())
652     {
653       warning (_("shared library handler failed to enable breakpoint"));
654       return;
655     }
656 
657   /* SCO and SunOS need the loop below, other systems should be using the
658      special shared library breakpoints and the shared library breakpoint
659      service routine.
660 
661      Now run the target.  It will eventually hit the breakpoint, at
662      which point all of the libraries will have been mapped in and we
663      can go groveling around in the dynamic linker structures to find
664      out what we need to know about them.  */
665 
666   inf = current_inferior ();
667   tp = inferior_thread ();
668 
669   clear_proceed_status ();
670 
671   inf->control.stop_soon = STOP_QUIETLY;
672   tp->suspend.stop_signal = GDB_SIGNAL_0;
673   do
674     {
675       target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
676       wait_for_inferior ();
677     }
678   while (tp->suspend.stop_signal != GDB_SIGNAL_TRAP);
679   inf->control.stop_soon = NO_STOP_QUIETLY;
680 
681   /* We are now either at the "mapping complete" breakpoint (or somewhere
682      else, a condition we aren't prepared to deal with anyway), so adjust
683      the PC as necessary after a breakpoint, disable the breakpoint, and
684      add any shared libraries that were mapped in.
685 
686      Note that adjust_pc_after_break did not perform any PC adjustment,
687      as the breakpoint the inferior just hit was not inserted by GDB,
688      but by the dynamic loader itself, and is therefore not found on
689      the GDB software break point list.  Thus we have to adjust the
690      PC here.  */
691 
692   if (gdbarch_decr_pc_after_break (target_gdbarch ()))
693     {
694       stop_pc -= gdbarch_decr_pc_after_break (target_gdbarch ());
695       regcache_write_pc (get_current_regcache (), stop_pc);
696     }
697 
698   if (!disable_break ())
699     {
700       warning (_("shared library handler failed to disable breakpoint"));
701     }
702 
703   solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
704 }
705 
706 static void
sunos_clear_solib(void)707 sunos_clear_solib (void)
708 {
709   debug_base = 0;
710 }
711 
712 static void
sunos_free_so(struct so_list * so)713 sunos_free_so (struct so_list *so)
714 {
715   xfree (so->lm_info->lm);
716   xfree (so->lm_info);
717 }
718 
719 static void
sunos_relocate_section_addresses(struct so_list * so,struct target_section * sec)720 sunos_relocate_section_addresses (struct so_list *so,
721 				  struct target_section *sec)
722 {
723   sec->addr += lm_addr (so);
724   sec->endaddr += lm_addr (so);
725 }
726 
727 static struct target_so_ops sunos_so_ops;
728 
729 void
_initialize_sunos_solib(void)730 _initialize_sunos_solib (void)
731 {
732   sunos_so_ops.relocate_section_addresses = sunos_relocate_section_addresses;
733   sunos_so_ops.free_so = sunos_free_so;
734   sunos_so_ops.clear_solib = sunos_clear_solib;
735   sunos_so_ops.solib_create_inferior_hook = sunos_solib_create_inferior_hook;
736   sunos_so_ops.special_symbol_handling = sunos_special_symbol_handling;
737   sunos_so_ops.current_sos = sunos_current_sos;
738   sunos_so_ops.open_symbol_file_object = open_symbol_file_object;
739   sunos_so_ops.in_dynsym_resolve_code = sunos_in_dynsym_resolve_code;
740   sunos_so_ops.bfd_open = solib_bfd_open;
741 
742   /* FIXME: Don't do this here.  *_gdbarch_init() should set so_ops.  */
743   current_target_so_ops = &sunos_so_ops;
744 }
745