1 /*
2 * jdcoefct.c
3 *
4 * Copyright (C) 1994-1998, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This file contains the coefficient buffer controller for decompression.
9 * This controller is the top level of the lossy JPEG decompressor proper.
10 * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
11 *
12 * In buffered-image mode, this controller is the interface between
13 * input-oriented processing and output-oriented processing.
14 * Also, the input side (only) is used when reading a file for transcoding.
15 */
16
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 #include "jlossy.h"
21
22 /* Block smoothing is only applicable for progressive JPEG, so: */
23 #ifndef D_PROGRESSIVE_SUPPORTED
24 #undef BLOCK_SMOOTHING_SUPPORTED
25 #endif
26
27 /* Private buffer controller object */
28
29 typedef struct {
30 /* These variables keep track of the current location of the input side. */
31 /* cinfo->input_iMCU_row is also used for this. */
32 JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
33 int MCU_vert_offset; /* counts MCU rows within iMCU row */
34 int MCU_rows_per_iMCU_row; /* number of such rows needed */
35
36 /* The output side's location is represented by cinfo->output_iMCU_row. */
37
38 /* In single-pass modes, it's sufficient to buffer just one MCU.
39 * We allocate a workspace of D_MAX_DATA_UNITS_IN_MCU coefficient blocks,
40 * and let the entropy decoder write into that workspace each time.
41 * (On 80x86, the workspace is FAR even though it's not really very big;
42 * this is to keep the module interfaces unchanged when a large coefficient
43 * buffer is necessary.)
44 * In multi-pass modes, this array points to the current MCU's blocks
45 * within the virtual arrays; it is used only by the input side.
46 */
47 JBLOCKROW MCU_buffer[D_MAX_DATA_UNITS_IN_MCU];
48
49 #ifdef D_MULTISCAN_FILES_SUPPORTED
50 /* In multi-pass modes, we need a virtual block array for each component. */
51 jvirt_barray_ptr whole_image[MAX_COMPONENTS];
52 #endif
53
54 #ifdef BLOCK_SMOOTHING_SUPPORTED
55 /* When doing block smoothing, we latch coefficient Al values here */
56 int * coef_bits_latch;
57 #define SAVED_COEFS 6 /* we save coef_bits[0..5] */
58 #endif
59 } d_coef_controller;
60
61 typedef d_coef_controller * d_coef_ptr;
62
63 /* Forward declarations */
64 METHODDEF(int) decompress_onepass
65 JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
66 #ifdef D_MULTISCAN_FILES_SUPPORTED
67 METHODDEF(int) decompress_data
68 JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
69 #endif
70 #ifdef BLOCK_SMOOTHING_SUPPORTED
71 LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
72 METHODDEF(int) decompress_smooth_data
73 JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
74 #endif
75
76
77 LOCAL(void)
start_iMCU_row(j_decompress_ptr cinfo)78 start_iMCU_row (j_decompress_ptr cinfo)
79 /* Reset within-iMCU-row counters for a new row (input side) */
80 {
81 j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec;
82 d_coef_ptr coef = (d_coef_ptr) lossyd->coef_private;
83
84 /* In an interleaved scan, an MCU row is the same as an iMCU row.
85 * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
86 * But at the bottom of the image, process only what's left.
87 */
88 if (cinfo->comps_in_scan > 1) {
89 coef->MCU_rows_per_iMCU_row = 1;
90 } else {
91 if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
92 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
93 else
94 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
95 }
96
97 coef->MCU_ctr = 0;
98 coef->MCU_vert_offset = 0;
99 }
100
101
102 /*
103 * Initialize for an input processing pass.
104 */
105
106 METHODDEF(void)
start_input_pass(j_decompress_ptr cinfo)107 start_input_pass (j_decompress_ptr cinfo)
108 {
109 cinfo->input_iMCU_row = 0;
110 start_iMCU_row(cinfo);
111 }
112
113
114 /*
115 * Initialize for an output processing pass.
116 */
117
118 METHODDEF(void)
start_output_pass(j_decompress_ptr cinfo)119 start_output_pass (j_decompress_ptr cinfo)
120 {
121 #ifdef BLOCK_SMOOTHING_SUPPORTED
122 j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec;
123 /* d_coef_ptr coef = (d_coef_ptr) lossyd->coef_private; */
124
125 /* If multipass, check to see whether to use block smoothing on this pass */
126 if (lossyd->coef_arrays != NULL) {
127 if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
128 lossyd->pub.decompress_data = decompress_smooth_data;
129 else
130 lossyd->pub.decompress_data = decompress_data;
131 }
132 #endif
133 cinfo->output_iMCU_row = 0;
134 }
135
136
137 /*
138 * Decompress and return some data in the single-pass case.
139 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
140 * Input and output must run in lockstep since we have only a one-MCU buffer.
141 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
142 *
143 * NB: output_buf contains a plane for each component in image,
144 * which we index according to the component's SOF position.
145 */
146
147 METHODDEF(int)
decompress_onepass(j_decompress_ptr cinfo,JSAMPIMAGE output_buf)148 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
149 {
150 j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec;
151 d_coef_ptr coef = (d_coef_ptr) lossyd->coef_private;
152 JDIMENSION MCU_col_num; /* index of current MCU within row */
153 JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
154 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
155 int blkn, ci, xindex, yindex, yoffset, useful_width;
156 JSAMPARRAY output_ptr;
157 JDIMENSION start_col, output_col;
158 jpeg_component_info *compptr;
159 inverse_DCT_method_ptr inverse_DCT;
160
161 /* Loop to process as much as one whole iMCU row */
162 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
163 yoffset++) {
164 for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
165 MCU_col_num++) {
166 /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
167 jzero_far((void FAR *) coef->MCU_buffer[0],
168 (size_t) (cinfo->data_units_in_MCU * SIZEOF(JBLOCK)));
169 if (! (*lossyd->entropy_decode_mcu) (cinfo, coef->MCU_buffer)) {
170 /* Suspension forced; update state counters and exit */
171 coef->MCU_vert_offset = yoffset;
172 coef->MCU_ctr = MCU_col_num;
173 return JPEG_SUSPENDED;
174 }
175 /* Determine where data should go in output_buf and do the IDCT thing.
176 * We skip dummy blocks at the right and bottom edges (but blkn gets
177 * incremented past them!). Note the inner loop relies on having
178 * allocated the MCU_buffer[] blocks sequentially.
179 */
180 blkn = 0; /* index of current DCT block within MCU */
181 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
182 compptr = cinfo->cur_comp_info[ci];
183 /* Don't bother to IDCT an uninteresting component. */
184 if (! compptr->component_needed) {
185 blkn += compptr->MCU_data_units;
186 continue;
187 }
188 inverse_DCT = lossyd->inverse_DCT[compptr->component_index];
189 useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
190 : compptr->last_col_width;
191 output_ptr = output_buf[compptr->component_index] +
192 yoffset * compptr->codec_data_unit;
193 start_col = MCU_col_num * compptr->MCU_sample_width;
194 for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
195 if (cinfo->input_iMCU_row < last_iMCU_row ||
196 yoffset+yindex < compptr->last_row_height) {
197 output_col = start_col;
198 for (xindex = 0; xindex < useful_width; xindex++) {
199 (*inverse_DCT) (cinfo, compptr,
200 (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
201 output_ptr, output_col);
202 output_col += compptr->codec_data_unit;
203 }
204 }
205 blkn += compptr->MCU_width;
206 output_ptr += compptr->codec_data_unit;
207 }
208 }
209 }
210 /* Completed an MCU row, but perhaps not an iMCU row */
211 coef->MCU_ctr = 0;
212 }
213 /* Completed the iMCU row, advance counters for next one */
214 cinfo->output_iMCU_row++;
215 if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
216 start_iMCU_row(cinfo);
217 return JPEG_ROW_COMPLETED;
218 }
219 /* Completed the scan */
220 (*cinfo->inputctl->finish_input_pass) (cinfo);
221 return JPEG_SCAN_COMPLETED;
222 }
223
224
225 /*
226 * Dummy consume-input routine for single-pass operation.
227 */
228
229 METHODDEF(int)
dummy_consume_data(j_decompress_ptr cinfo)230 dummy_consume_data (j_decompress_ptr cinfo)
231 {
232 (void)cinfo;
233 return JPEG_SUSPENDED; /* Always indicate nothing was done */
234 }
235
236
237 #ifdef D_MULTISCAN_FILES_SUPPORTED
238
239 /*
240 * Consume input data and store it in the full-image coefficient buffer.
241 * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
242 * ie, v_samp_factor block rows for each component in the scan.
243 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
244 */
245
246 METHODDEF(int)
consume_data(j_decompress_ptr cinfo)247 consume_data (j_decompress_ptr cinfo)
248 {
249 j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec;
250 d_coef_ptr coef = (d_coef_ptr) lossyd->coef_private;
251 JDIMENSION MCU_col_num; /* index of current MCU within row */
252 int blkn, ci, xindex, yindex, yoffset;
253 JDIMENSION start_col;
254 JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
255 JBLOCKROW buffer_ptr;
256 jpeg_component_info *compptr;
257
258 /* Align the virtual buffers for the components used in this scan. */
259 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
260 compptr = cinfo->cur_comp_info[ci];
261 buffer[ci] = (*cinfo->mem->access_virt_barray)
262 ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
263 cinfo->input_iMCU_row * compptr->v_samp_factor,
264 (JDIMENSION) compptr->v_samp_factor, TRUE);
265 /* Note: entropy decoder expects buffer to be zeroed,
266 * but this is handled automatically by the memory manager
267 * because we requested a pre-zeroed array.
268 */
269 }
270
271 /* Loop to process one whole iMCU row */
272 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
273 yoffset++) {
274 for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
275 MCU_col_num++) {
276 /* Construct list of pointers to DCT blocks belonging to this MCU */
277 blkn = 0; /* index of current DCT block within MCU */
278 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
279 compptr = cinfo->cur_comp_info[ci];
280 start_col = MCU_col_num * compptr->MCU_width;
281 for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
282 buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
283 for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
284 coef->MCU_buffer[blkn++] = buffer_ptr++;
285 }
286 }
287 }
288 /* Try to fetch the MCU. */
289 if (! (*lossyd->entropy_decode_mcu) (cinfo, coef->MCU_buffer)) {
290 /* Suspension forced; update state counters and exit */
291 coef->MCU_vert_offset = yoffset;
292 coef->MCU_ctr = MCU_col_num;
293 return JPEG_SUSPENDED;
294 }
295 }
296 /* Completed an MCU row, but perhaps not an iMCU row */
297 coef->MCU_ctr = 0;
298 }
299 /* Completed the iMCU row, advance counters for next one */
300 if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
301 start_iMCU_row(cinfo);
302 return JPEG_ROW_COMPLETED;
303 }
304 /* Completed the scan */
305 (*cinfo->inputctl->finish_input_pass) (cinfo);
306 return JPEG_SCAN_COMPLETED;
307 }
308
309
310 /*
311 * Decompress and return some data in the multi-pass case.
312 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
313 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
314 *
315 * NB: output_buf contains a plane for each component in image.
316 */
317
318 METHODDEF(int)
decompress_data(j_decompress_ptr cinfo,JSAMPIMAGE output_buf)319 decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
320 {
321 j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec;
322 d_coef_ptr coef = (d_coef_ptr) lossyd->coef_private;
323 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
324 JDIMENSION block_num;
325 int ci, block_row, block_rows;
326 JBLOCKARRAY buffer;
327 JBLOCKROW buffer_ptr;
328 JSAMPARRAY output_ptr;
329 JDIMENSION output_col;
330 jpeg_component_info *compptr;
331 inverse_DCT_method_ptr inverse_DCT;
332
333 /* Force some input to be done if we are getting ahead of the input. */
334 while (cinfo->input_scan_number < cinfo->output_scan_number ||
335 (cinfo->input_scan_number == cinfo->output_scan_number &&
336 cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
337 if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
338 return JPEG_SUSPENDED;
339 }
340
341 /* OK, output from the virtual arrays. */
342 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
343 ci++, compptr++) {
344 /* Don't bother to IDCT an uninteresting component. */
345 if (! compptr->component_needed)
346 continue;
347 /* Align the virtual buffer for this component. */
348 buffer = (*cinfo->mem->access_virt_barray)
349 ((j_common_ptr) cinfo, coef->whole_image[ci],
350 cinfo->output_iMCU_row * compptr->v_samp_factor,
351 (JDIMENSION) compptr->v_samp_factor, FALSE);
352 /* Count non-dummy DCT block rows in this iMCU row. */
353 if (cinfo->output_iMCU_row < last_iMCU_row)
354 block_rows = compptr->v_samp_factor;
355 else {
356 /* NB: can't use last_row_height here; it is input-side-dependent! */
357 block_rows = (int) (compptr->height_in_data_units % compptr->v_samp_factor);
358 if (block_rows == 0) block_rows = compptr->v_samp_factor;
359 }
360 inverse_DCT = lossyd->inverse_DCT[ci];
361 output_ptr = output_buf[ci];
362 /* Loop over all DCT blocks to be processed. */
363 for (block_row = 0; block_row < block_rows; block_row++) {
364 buffer_ptr = buffer[block_row];
365 output_col = 0;
366 for (block_num = 0; block_num < compptr->width_in_data_units; block_num++) {
367 (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
368 output_ptr, output_col);
369 buffer_ptr++;
370 output_col += compptr->codec_data_unit;
371 }
372 output_ptr += compptr->codec_data_unit;
373 }
374 }
375
376 if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
377 return JPEG_ROW_COMPLETED;
378 return JPEG_SCAN_COMPLETED;
379 }
380
381 #endif /* D_MULTISCAN_FILES_SUPPORTED */
382
383
384 #ifdef BLOCK_SMOOTHING_SUPPORTED
385
386 /*
387 * This code applies interblock smoothing as described by section K.8
388 * of the JPEG standard: the first 5 AC coefficients are estimated from
389 * the DC values of a DCT block and its 8 neighboring blocks.
390 * We apply smoothing only for progressive JPEG decoding, and only if
391 * the coefficients it can estimate are not yet known to full precision.
392 */
393
394 /* Natural-order array positions of the first 5 zigzag-order coefficients */
395 #define Q01_POS 1
396 #define Q10_POS 8
397 #define Q20_POS 16
398 #define Q11_POS 9
399 #define Q02_POS 2
400
401 /*
402 * Determine whether block smoothing is applicable and safe.
403 * We also latch the current states of the coef_bits[] entries for the
404 * AC coefficients; otherwise, if the input side of the decompressor
405 * advances into a new scan, we might think the coefficients are known
406 * more accurately than they really are.
407 */
408
409 LOCAL(boolean)
smoothing_ok(j_decompress_ptr cinfo)410 smoothing_ok (j_decompress_ptr cinfo)
411 {
412 j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec;
413 d_coef_ptr coef = (d_coef_ptr) lossyd->coef_private;
414 boolean smoothing_useful = FALSE;
415 int ci, coefi;
416 jpeg_component_info *compptr;
417 JQUANT_TBL * qtable;
418 int * coef_bits;
419 int * coef_bits_latch;
420
421 if ( cinfo->process != JPROC_PROGRESSIVE || cinfo->coef_bits == NULL)
422 return FALSE;
423
424 /* Allocate latch area if not already done */
425 if (coef->coef_bits_latch == NULL)
426 coef->coef_bits_latch = (int *)
427 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
428 cinfo->num_components *
429 (SAVED_COEFS * SIZEOF(int)));
430 coef_bits_latch = coef->coef_bits_latch;
431
432 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
433 ci++, compptr++) {
434 /* All components' quantization values must already be latched. */
435 if ((qtable = compptr->quant_table) == NULL)
436 return FALSE;
437 /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
438 if (qtable->quantval[0] == 0 ||
439 qtable->quantval[Q01_POS] == 0 ||
440 qtable->quantval[Q10_POS] == 0 ||
441 qtable->quantval[Q20_POS] == 0 ||
442 qtable->quantval[Q11_POS] == 0 ||
443 qtable->quantval[Q02_POS] == 0)
444 return FALSE;
445 /* DC values must be at least partly known for all components. */
446 coef_bits = cinfo->coef_bits[ci];
447 if (coef_bits[0] < 0)
448 return FALSE;
449 /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
450 for (coefi = 1; coefi <= 5; coefi++) {
451 coef_bits_latch[coefi] = coef_bits[coefi];
452 if (coef_bits[coefi] != 0)
453 smoothing_useful = TRUE;
454 }
455 coef_bits_latch += SAVED_COEFS;
456 }
457
458 return smoothing_useful;
459 }
460
461
462 /*
463 * Variant of decompress_data for use when doing block smoothing.
464 */
465
466 METHODDEF(int)
decompress_smooth_data(j_decompress_ptr cinfo,JSAMPIMAGE output_buf)467 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
468 {
469 j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec;
470 d_coef_ptr coef = (d_coef_ptr) lossyd->coef_private;
471 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
472 JDIMENSION block_num, last_block_column;
473 int ci, block_row, block_rows, access_rows;
474 JBLOCKARRAY buffer;
475 JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
476 JSAMPARRAY output_ptr;
477 JDIMENSION output_col;
478 jpeg_component_info *compptr;
479 inverse_DCT_method_ptr inverse_DCT;
480 boolean first_row, last_row;
481 JBLOCK workspace;
482 int *coef_bits;
483 JQUANT_TBL *quanttbl;
484 INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
485 int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
486 int Al, pred;
487
488 /* Force some input to be done if we are getting ahead of the input. */
489 while (cinfo->input_scan_number <= cinfo->output_scan_number &&
490 ! cinfo->inputctl->eoi_reached) {
491 if (cinfo->input_scan_number == cinfo->output_scan_number) {
492 /* If input is working on current scan, we ordinarily want it to
493 * have completed the current row. But if input scan is DC,
494 * we want it to keep one row ahead so that next block row's DC
495 * values are up to date.
496 */
497 JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
498 if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
499 break;
500 }
501 if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
502 return JPEG_SUSPENDED;
503 }
504
505 /* OK, output from the virtual arrays. */
506 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
507 ci++, compptr++) {
508 /* Don't bother to IDCT an uninteresting component. */
509 if (! compptr->component_needed)
510 continue;
511 /* Count non-dummy DCT block rows in this iMCU row. */
512 if (cinfo->output_iMCU_row < last_iMCU_row) {
513 block_rows = compptr->v_samp_factor;
514 access_rows = block_rows * 2; /* this and next iMCU row */
515 last_row = FALSE;
516 } else {
517 /* NB: can't use last_row_height here; it is input-side-dependent! */
518 block_rows = (int) (compptr->height_in_data_units % compptr->v_samp_factor);
519 if (block_rows == 0) block_rows = compptr->v_samp_factor;
520 access_rows = block_rows; /* this iMCU row only */
521 last_row = TRUE;
522 }
523 /* Align the virtual buffer for this component. */
524 if (cinfo->output_iMCU_row > 0) {
525 access_rows += compptr->v_samp_factor; /* prior iMCU row too */
526 buffer = (*cinfo->mem->access_virt_barray)
527 ((j_common_ptr) cinfo, coef->whole_image[ci],
528 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
529 (JDIMENSION) access_rows, FALSE);
530 buffer += compptr->v_samp_factor; /* point to current iMCU row */
531 first_row = FALSE;
532 } else {
533 buffer = (*cinfo->mem->access_virt_barray)
534 ((j_common_ptr) cinfo, coef->whole_image[ci],
535 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
536 first_row = TRUE;
537 }
538 /* Fetch component-dependent info */
539 coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
540 quanttbl = compptr->quant_table;
541 Q00 = quanttbl->quantval[0];
542 Q01 = quanttbl->quantval[Q01_POS];
543 Q10 = quanttbl->quantval[Q10_POS];
544 Q20 = quanttbl->quantval[Q20_POS];
545 Q11 = quanttbl->quantval[Q11_POS];
546 Q02 = quanttbl->quantval[Q02_POS];
547 inverse_DCT = lossyd->inverse_DCT[ci];
548 output_ptr = output_buf[ci];
549 /* Loop over all DCT blocks to be processed. */
550 for (block_row = 0; block_row < block_rows; block_row++) {
551 buffer_ptr = buffer[block_row];
552 if (first_row && block_row == 0)
553 prev_block_row = buffer_ptr;
554 else
555 prev_block_row = buffer[block_row-1];
556 if (last_row && block_row == block_rows-1)
557 next_block_row = buffer_ptr;
558 else
559 next_block_row = buffer[block_row+1];
560 /* We fetch the surrounding DC values using a sliding-register approach.
561 * Initialize all nine here so as to do the right thing on narrow pics.
562 */
563 DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
564 DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
565 DC7 = DC8 = DC9 = (int) next_block_row[0][0];
566 output_col = 0;
567 last_block_column = compptr->width_in_data_units - 1;
568 for (block_num = 0; block_num <= last_block_column; block_num++) {
569 /* Fetch current DCT block into workspace so we can modify it. */
570 jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
571 /* Update DC values */
572 if (block_num < last_block_column) {
573 DC3 = (int) prev_block_row[1][0];
574 DC6 = (int) buffer_ptr[1][0];
575 DC9 = (int) next_block_row[1][0];
576 }
577 /* Compute coefficient estimates per K.8.
578 * An estimate is applied only if coefficient is still zero,
579 * and is not known to be fully accurate.
580 */
581 /* AC01 */
582 if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
583 num = 36 * Q00 * (DC4 - DC6);
584 if (num >= 0) {
585 pred = (int) (((Q01<<7) + num) / (Q01<<8));
586 if (Al > 0 && pred >= (1<<Al))
587 pred = (1<<Al)-1;
588 } else {
589 pred = (int) (((Q01<<7) - num) / (Q01<<8));
590 if (Al > 0 && pred >= (1<<Al))
591 pred = (1<<Al)-1;
592 pred = -pred;
593 }
594 workspace[1] = (JCOEF) pred;
595 }
596 /* AC10 */
597 if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
598 num = 36 * Q00 * (DC2 - DC8);
599 if (num >= 0) {
600 pred = (int) (((Q10<<7) + num) / (Q10<<8));
601 if (Al > 0 && pred >= (1<<Al))
602 pred = (1<<Al)-1;
603 } else {
604 pred = (int) (((Q10<<7) - num) / (Q10<<8));
605 if (Al > 0 && pred >= (1<<Al))
606 pred = (1<<Al)-1;
607 pred = -pred;
608 }
609 workspace[8] = (JCOEF) pred;
610 }
611 /* AC20 */
612 if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
613 num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
614 if (num >= 0) {
615 pred = (int) (((Q20<<7) + num) / (Q20<<8));
616 if (Al > 0 && pred >= (1<<Al))
617 pred = (1<<Al)-1;
618 } else {
619 pred = (int) (((Q20<<7) - num) / (Q20<<8));
620 if (Al > 0 && pred >= (1<<Al))
621 pred = (1<<Al)-1;
622 pred = -pred;
623 }
624 workspace[16] = (JCOEF) pred;
625 }
626 /* AC11 */
627 if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
628 num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
629 if (num >= 0) {
630 pred = (int) (((Q11<<7) + num) / (Q11<<8));
631 if (Al > 0 && pred >= (1<<Al))
632 pred = (1<<Al)-1;
633 } else {
634 pred = (int) (((Q11<<7) - num) / (Q11<<8));
635 if (Al > 0 && pred >= (1<<Al))
636 pred = (1<<Al)-1;
637 pred = -pred;
638 }
639 workspace[9] = (JCOEF) pred;
640 }
641 /* AC02 */
642 if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
643 num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
644 if (num >= 0) {
645 pred = (int) (((Q02<<7) + num) / (Q02<<8));
646 if (Al > 0 && pred >= (1<<Al))
647 pred = (1<<Al)-1;
648 } else {
649 pred = (int) (((Q02<<7) - num) / (Q02<<8));
650 if (Al > 0 && pred >= (1<<Al))
651 pred = (1<<Al)-1;
652 pred = -pred;
653 }
654 workspace[2] = (JCOEF) pred;
655 }
656 /* OK, do the IDCT */
657 (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
658 output_ptr, output_col);
659 /* Advance for next column */
660 DC1 = DC2; DC2 = DC3;
661 DC4 = DC5; DC5 = DC6;
662 DC7 = DC8; DC8 = DC9;
663 buffer_ptr++, prev_block_row++, next_block_row++;
664 output_col += compptr->codec_data_unit;
665 }
666 output_ptr += compptr->codec_data_unit;
667 }
668 }
669
670 if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
671 return JPEG_ROW_COMPLETED;
672 return JPEG_SCAN_COMPLETED;
673 }
674
675 #endif /* BLOCK_SMOOTHING_SUPPORTED */
676
677
678 /*
679 * Initialize coefficient buffer controller.
680 */
681
682 GLOBAL(void)
jinit_d_coef_controller(j_decompress_ptr cinfo,boolean need_full_buffer)683 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
684 {
685 j_lossy_d_ptr lossyd = (j_lossy_d_ptr) cinfo->codec;
686 d_coef_ptr coef;
687
688 coef = (d_coef_ptr)
689 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
690 SIZEOF(d_coef_controller));
691 lossyd->coef_private = (void *) coef;
692 lossyd->coef_start_input_pass = start_input_pass;
693 lossyd->coef_start_output_pass = start_output_pass;
694 #ifdef BLOCK_SMOOTHING_SUPPORTED
695 coef->coef_bits_latch = NULL;
696 #endif
697
698 /* Create the coefficient buffer. */
699 if (need_full_buffer) {
700 #ifdef D_MULTISCAN_FILES_SUPPORTED
701 /* Allocate a full-image virtual array for each component, */
702 /* padded to a multiple of samp_factor DCT blocks in each direction. */
703 /* Note we ask for a pre-zeroed array. */
704 int ci, access_rows;
705 jpeg_component_info *compptr;
706
707 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
708 ci++, compptr++) {
709 access_rows = compptr->v_samp_factor;
710 #ifdef BLOCK_SMOOTHING_SUPPORTED
711 /* If block smoothing could be used, need a bigger window */
712 if (cinfo->process == JPROC_PROGRESSIVE)
713 access_rows *= 3;
714 #endif
715 coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
716 ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
717 (JDIMENSION) jround_up((long) compptr->width_in_data_units,
718 (long) compptr->h_samp_factor),
719 (JDIMENSION) jround_up((long) compptr->height_in_data_units,
720 (long) compptr->v_samp_factor),
721 (JDIMENSION) access_rows);
722 }
723 lossyd->pub.consume_data = consume_data;
724 lossyd->pub.decompress_data = decompress_data;
725 lossyd->coef_arrays = coef->whole_image; /* link to virtual arrays */
726 #else
727 ERREXIT(cinfo, JERR_NOT_COMPILED);
728 #endif
729 } else {
730 /* We only need a single-MCU buffer. */
731 JBLOCKROW buffer;
732 int i;
733
734 buffer = (JBLOCKROW)
735 (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
736 D_MAX_DATA_UNITS_IN_MCU * SIZEOF(JBLOCK));
737 for (i = 0; i < D_MAX_DATA_UNITS_IN_MCU; i++) {
738 coef->MCU_buffer[i] = buffer + i;
739 }
740 lossyd->pub.consume_data = dummy_consume_data;
741 lossyd->pub.decompress_data = decompress_onepass;
742 lossyd->coef_arrays = NULL; /* flag for no virtual arrays */
743 }
744 }
745