1 #include "cache.h"
2 #include "run-command.h"
3 #include "exec-cmd.h"
4 #include "sigchain.h"
5 #include "strvec.h"
6 #include "thread-utils.h"
7 #include "strbuf.h"
8 #include "string-list.h"
9 #include "quote.h"
10 #include "config.h"
11 #include "packfile.h"
12 #include "hook.h"
13 
child_process_init(struct child_process * child)14 void child_process_init(struct child_process *child)
15 {
16 	struct child_process blank = CHILD_PROCESS_INIT;
17 	memcpy(child, &blank, sizeof(*child));
18 }
19 
child_process_clear(struct child_process * child)20 void child_process_clear(struct child_process *child)
21 {
22 	strvec_clear(&child->args);
23 	strvec_clear(&child->env_array);
24 }
25 
26 struct child_to_clean {
27 	pid_t pid;
28 	struct child_process *process;
29 	struct child_to_clean *next;
30 };
31 static struct child_to_clean *children_to_clean;
32 static int installed_child_cleanup_handler;
33 
cleanup_children(int sig,int in_signal)34 static void cleanup_children(int sig, int in_signal)
35 {
36 	struct child_to_clean *children_to_wait_for = NULL;
37 
38 	while (children_to_clean) {
39 		struct child_to_clean *p = children_to_clean;
40 		children_to_clean = p->next;
41 
42 		if (p->process && !in_signal) {
43 			struct child_process *process = p->process;
44 			if (process->clean_on_exit_handler) {
45 				trace_printf(
46 					"trace: run_command: running exit handler for pid %"
47 					PRIuMAX, (uintmax_t)p->pid
48 				);
49 				process->clean_on_exit_handler(process);
50 			}
51 		}
52 
53 		kill(p->pid, sig);
54 
55 		if (p->process && p->process->wait_after_clean) {
56 			p->next = children_to_wait_for;
57 			children_to_wait_for = p;
58 		} else {
59 			if (!in_signal)
60 				free(p);
61 		}
62 	}
63 
64 	while (children_to_wait_for) {
65 		struct child_to_clean *p = children_to_wait_for;
66 		children_to_wait_for = p->next;
67 
68 		while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
69 			; /* spin waiting for process exit or error */
70 
71 		if (!in_signal)
72 			free(p);
73 	}
74 }
75 
cleanup_children_on_signal(int sig)76 static void cleanup_children_on_signal(int sig)
77 {
78 	cleanup_children(sig, 1);
79 	sigchain_pop(sig);
80 	raise(sig);
81 }
82 
cleanup_children_on_exit(void)83 static void cleanup_children_on_exit(void)
84 {
85 	cleanup_children(SIGTERM, 0);
86 }
87 
mark_child_for_cleanup(pid_t pid,struct child_process * process)88 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
89 {
90 	struct child_to_clean *p = xmalloc(sizeof(*p));
91 	p->pid = pid;
92 	p->process = process;
93 	p->next = children_to_clean;
94 	children_to_clean = p;
95 
96 	if (!installed_child_cleanup_handler) {
97 		atexit(cleanup_children_on_exit);
98 		sigchain_push_common(cleanup_children_on_signal);
99 		installed_child_cleanup_handler = 1;
100 	}
101 }
102 
clear_child_for_cleanup(pid_t pid)103 static void clear_child_for_cleanup(pid_t pid)
104 {
105 	struct child_to_clean **pp;
106 
107 	for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
108 		struct child_to_clean *clean_me = *pp;
109 
110 		if (clean_me->pid == pid) {
111 			*pp = clean_me->next;
112 			free(clean_me);
113 			return;
114 		}
115 	}
116 }
117 
close_pair(int fd[2])118 static inline void close_pair(int fd[2])
119 {
120 	close(fd[0]);
121 	close(fd[1]);
122 }
123 
is_executable(const char * name)124 int is_executable(const char *name)
125 {
126 	struct stat st;
127 
128 	if (stat(name, &st) || /* stat, not lstat */
129 	    !S_ISREG(st.st_mode))
130 		return 0;
131 
132 #if defined(GIT_WINDOWS_NATIVE)
133 	/*
134 	 * On Windows there is no executable bit. The file extension
135 	 * indicates whether it can be run as an executable, and Git
136 	 * has special-handling to detect scripts and launch them
137 	 * through the indicated script interpreter. We test for the
138 	 * file extension first because virus scanners may make
139 	 * it quite expensive to open many files.
140 	 */
141 	if (ends_with(name, ".exe"))
142 		return S_IXUSR;
143 
144 {
145 	/*
146 	 * Now that we know it does not have an executable extension,
147 	 * peek into the file instead.
148 	 */
149 	char buf[3] = { 0 };
150 	int n;
151 	int fd = open(name, O_RDONLY);
152 	st.st_mode &= ~S_IXUSR;
153 	if (fd >= 0) {
154 		n = read(fd, buf, 2);
155 		if (n == 2)
156 			/* look for a she-bang */
157 			if (!strcmp(buf, "#!"))
158 				st.st_mode |= S_IXUSR;
159 		close(fd);
160 	}
161 }
162 #endif
163 	return st.st_mode & S_IXUSR;
164 }
165 
166 /*
167  * Search $PATH for a command.  This emulates the path search that
168  * execvp would perform, without actually executing the command so it
169  * can be used before fork() to prepare to run a command using
170  * execve() or after execvp() to diagnose why it failed.
171  *
172  * The caller should ensure that file contains no directory
173  * separators.
174  *
175  * Returns the path to the command, as found in $PATH or NULL if the
176  * command could not be found.  The caller inherits ownership of the memory
177  * used to store the resultant path.
178  *
179  * This should not be used on Windows, where the $PATH search rules
180  * are more complicated (e.g., a search for "foo" should find
181  * "foo.exe").
182  */
locate_in_PATH(const char * file)183 static char *locate_in_PATH(const char *file)
184 {
185 	const char *p = getenv("PATH");
186 	struct strbuf buf = STRBUF_INIT;
187 
188 	if (!p || !*p)
189 		return NULL;
190 
191 	while (1) {
192 		const char *end = strchrnul(p, ':');
193 
194 		strbuf_reset(&buf);
195 
196 		/* POSIX specifies an empty entry as the current directory. */
197 		if (end != p) {
198 			strbuf_add(&buf, p, end - p);
199 			strbuf_addch(&buf, '/');
200 		}
201 		strbuf_addstr(&buf, file);
202 
203 		if (is_executable(buf.buf))
204 			return strbuf_detach(&buf, NULL);
205 
206 		if (!*end)
207 			break;
208 		p = end + 1;
209 	}
210 
211 	strbuf_release(&buf);
212 	return NULL;
213 }
214 
exists_in_PATH(const char * command)215 int exists_in_PATH(const char *command)
216 {
217 	char *r = locate_in_PATH(command);
218 	int found = r != NULL;
219 	free(r);
220 	return found;
221 }
222 
sane_execvp(const char * file,char * const argv[])223 int sane_execvp(const char *file, char * const argv[])
224 {
225 #ifndef GIT_WINDOWS_NATIVE
226 	/*
227 	 * execvp() doesn't return, so we all we can do is tell trace2
228 	 * what we are about to do and let it leave a hint in the log
229 	 * (unless of course the execvp() fails).
230 	 *
231 	 * we skip this for Windows because the compat layer already
232 	 * has to emulate the execvp() call anyway.
233 	 */
234 	int exec_id = trace2_exec(file, (const char **)argv);
235 #endif
236 
237 	if (!execvp(file, argv))
238 		return 0; /* cannot happen ;-) */
239 
240 #ifndef GIT_WINDOWS_NATIVE
241 	{
242 		int ec = errno;
243 		trace2_exec_result(exec_id, ec);
244 		errno = ec;
245 	}
246 #endif
247 
248 	/*
249 	 * When a command can't be found because one of the directories
250 	 * listed in $PATH is unsearchable, execvp reports EACCES, but
251 	 * careful usability testing (read: analysis of occasional bug
252 	 * reports) reveals that "No such file or directory" is more
253 	 * intuitive.
254 	 *
255 	 * We avoid commands with "/", because execvp will not do $PATH
256 	 * lookups in that case.
257 	 *
258 	 * The reassignment of EACCES to errno looks like a no-op below,
259 	 * but we need to protect against exists_in_PATH overwriting errno.
260 	 */
261 	if (errno == EACCES && !strchr(file, '/'))
262 		errno = exists_in_PATH(file) ? EACCES : ENOENT;
263 	else if (errno == ENOTDIR && !strchr(file, '/'))
264 		errno = ENOENT;
265 	return -1;
266 }
267 
prepare_shell_cmd(struct strvec * out,const char ** argv)268 static const char **prepare_shell_cmd(struct strvec *out, const char **argv)
269 {
270 	if (!argv[0])
271 		BUG("shell command is empty");
272 
273 	if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
274 #ifndef GIT_WINDOWS_NATIVE
275 		strvec_push(out, SHELL_PATH);
276 #else
277 		strvec_push(out, "sh");
278 #endif
279 		strvec_push(out, "-c");
280 
281 		/*
282 		 * If we have no extra arguments, we do not even need to
283 		 * bother with the "$@" magic.
284 		 */
285 		if (!argv[1])
286 			strvec_push(out, argv[0]);
287 		else
288 			strvec_pushf(out, "%s \"$@\"", argv[0]);
289 	}
290 
291 	strvec_pushv(out, argv);
292 	return out->v;
293 }
294 
295 #ifndef GIT_WINDOWS_NATIVE
296 static int child_notifier = -1;
297 
298 enum child_errcode {
299 	CHILD_ERR_CHDIR,
300 	CHILD_ERR_DUP2,
301 	CHILD_ERR_CLOSE,
302 	CHILD_ERR_SIGPROCMASK,
303 	CHILD_ERR_ENOENT,
304 	CHILD_ERR_SILENT,
305 	CHILD_ERR_ERRNO
306 };
307 
308 struct child_err {
309 	enum child_errcode err;
310 	int syserr; /* errno */
311 };
312 
child_die(enum child_errcode err)313 static void child_die(enum child_errcode err)
314 {
315 	struct child_err buf;
316 
317 	buf.err = err;
318 	buf.syserr = errno;
319 
320 	/* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
321 	xwrite(child_notifier, &buf, sizeof(buf));
322 	_exit(1);
323 }
324 
child_dup2(int fd,int to)325 static void child_dup2(int fd, int to)
326 {
327 	if (dup2(fd, to) < 0)
328 		child_die(CHILD_ERR_DUP2);
329 }
330 
child_close(int fd)331 static void child_close(int fd)
332 {
333 	if (close(fd))
334 		child_die(CHILD_ERR_CLOSE);
335 }
336 
child_close_pair(int fd[2])337 static void child_close_pair(int fd[2])
338 {
339 	child_close(fd[0]);
340 	child_close(fd[1]);
341 }
342 
343 /*
344  * parent will make it look like the child spewed a fatal error and died
345  * this is needed to prevent changes to t0061.
346  */
fake_fatal(const char * err,va_list params)347 static void fake_fatal(const char *err, va_list params)
348 {
349 	vreportf("fatal: ", err, params);
350 }
351 
child_error_fn(const char * err,va_list params)352 static void child_error_fn(const char *err, va_list params)
353 {
354 	const char msg[] = "error() should not be called in child\n";
355 	xwrite(2, msg, sizeof(msg) - 1);
356 }
357 
child_warn_fn(const char * err,va_list params)358 static void child_warn_fn(const char *err, va_list params)
359 {
360 	const char msg[] = "warn() should not be called in child\n";
361 	xwrite(2, msg, sizeof(msg) - 1);
362 }
363 
child_die_fn(const char * err,va_list params)364 static void NORETURN child_die_fn(const char *err, va_list params)
365 {
366 	const char msg[] = "die() should not be called in child\n";
367 	xwrite(2, msg, sizeof(msg) - 1);
368 	_exit(2);
369 }
370 
371 /* this runs in the parent process */
child_err_spew(struct child_process * cmd,struct child_err * cerr)372 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
373 {
374 	static void (*old_errfn)(const char *err, va_list params);
375 
376 	old_errfn = get_error_routine();
377 	set_error_routine(fake_fatal);
378 	errno = cerr->syserr;
379 
380 	switch (cerr->err) {
381 	case CHILD_ERR_CHDIR:
382 		error_errno("exec '%s': cd to '%s' failed",
383 			    cmd->argv[0], cmd->dir);
384 		break;
385 	case CHILD_ERR_DUP2:
386 		error_errno("dup2() in child failed");
387 		break;
388 	case CHILD_ERR_CLOSE:
389 		error_errno("close() in child failed");
390 		break;
391 	case CHILD_ERR_SIGPROCMASK:
392 		error_errno("sigprocmask failed restoring signals");
393 		break;
394 	case CHILD_ERR_ENOENT:
395 		error_errno("cannot run %s", cmd->argv[0]);
396 		break;
397 	case CHILD_ERR_SILENT:
398 		break;
399 	case CHILD_ERR_ERRNO:
400 		error_errno("cannot exec '%s'", cmd->argv[0]);
401 		break;
402 	}
403 	set_error_routine(old_errfn);
404 }
405 
prepare_cmd(struct strvec * out,const struct child_process * cmd)406 static int prepare_cmd(struct strvec *out, const struct child_process *cmd)
407 {
408 	if (!cmd->argv[0])
409 		BUG("command is empty");
410 
411 	/*
412 	 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
413 	 * attempt to interpret the command with 'sh'.
414 	 */
415 	strvec_push(out, SHELL_PATH);
416 
417 	if (cmd->git_cmd) {
418 		prepare_git_cmd(out, cmd->argv);
419 	} else if (cmd->use_shell) {
420 		prepare_shell_cmd(out, cmd->argv);
421 	} else {
422 		strvec_pushv(out, cmd->argv);
423 	}
424 
425 	/*
426 	 * If there are no dir separator characters in the command then perform
427 	 * a path lookup and use the resolved path as the command to exec. If
428 	 * there are dir separator characters, we have exec attempt to invoke
429 	 * the command directly.
430 	 */
431 	if (!has_dir_sep(out->v[1])) {
432 		char *program = locate_in_PATH(out->v[1]);
433 		if (program) {
434 			free((char *)out->v[1]);
435 			out->v[1] = program;
436 		} else {
437 			strvec_clear(out);
438 			errno = ENOENT;
439 			return -1;
440 		}
441 	}
442 
443 	return 0;
444 }
445 
prep_childenv(const char * const * deltaenv)446 static char **prep_childenv(const char *const *deltaenv)
447 {
448 	extern char **environ;
449 	char **childenv;
450 	struct string_list env = STRING_LIST_INIT_DUP;
451 	struct strbuf key = STRBUF_INIT;
452 	const char *const *p;
453 	int i;
454 
455 	/* Construct a sorted string list consisting of the current environ */
456 	for (p = (const char *const *) environ; p && *p; p++) {
457 		const char *equals = strchr(*p, '=');
458 
459 		if (equals) {
460 			strbuf_reset(&key);
461 			strbuf_add(&key, *p, equals - *p);
462 			string_list_append(&env, key.buf)->util = (void *) *p;
463 		} else {
464 			string_list_append(&env, *p)->util = (void *) *p;
465 		}
466 	}
467 	string_list_sort(&env);
468 
469 	/* Merge in 'deltaenv' with the current environ */
470 	for (p = deltaenv; p && *p; p++) {
471 		const char *equals = strchr(*p, '=');
472 
473 		if (equals) {
474 			/* ('key=value'), insert or replace entry */
475 			strbuf_reset(&key);
476 			strbuf_add(&key, *p, equals - *p);
477 			string_list_insert(&env, key.buf)->util = (void *) *p;
478 		} else {
479 			/* otherwise ('key') remove existing entry */
480 			string_list_remove(&env, *p, 0);
481 		}
482 	}
483 
484 	/* Create an array of 'char *' to be used as the childenv */
485 	ALLOC_ARRAY(childenv, env.nr + 1);
486 	for (i = 0; i < env.nr; i++)
487 		childenv[i] = env.items[i].util;
488 	childenv[env.nr] = NULL;
489 
490 	string_list_clear(&env, 0);
491 	strbuf_release(&key);
492 	return childenv;
493 }
494 
495 struct atfork_state {
496 #ifndef NO_PTHREADS
497 	int cs;
498 #endif
499 	sigset_t old;
500 };
501 
502 #define CHECK_BUG(err, msg) \
503 	do { \
504 		int e = (err); \
505 		if (e) \
506 			BUG("%s: %s", msg, strerror(e)); \
507 	} while(0)
508 
atfork_prepare(struct atfork_state * as)509 static void atfork_prepare(struct atfork_state *as)
510 {
511 	sigset_t all;
512 
513 	if (sigfillset(&all))
514 		die_errno("sigfillset");
515 #ifdef NO_PTHREADS
516 	if (sigprocmask(SIG_SETMASK, &all, &as->old))
517 		die_errno("sigprocmask");
518 #else
519 	CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
520 		"blocking all signals");
521 	CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
522 		"disabling cancellation");
523 #endif
524 }
525 
atfork_parent(struct atfork_state * as)526 static void atfork_parent(struct atfork_state *as)
527 {
528 #ifdef NO_PTHREADS
529 	if (sigprocmask(SIG_SETMASK, &as->old, NULL))
530 		die_errno("sigprocmask");
531 #else
532 	CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
533 		"re-enabling cancellation");
534 	CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
535 		"restoring signal mask");
536 #endif
537 }
538 #endif /* GIT_WINDOWS_NATIVE */
539 
set_cloexec(int fd)540 static inline void set_cloexec(int fd)
541 {
542 	int flags = fcntl(fd, F_GETFD);
543 	if (flags >= 0)
544 		fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
545 }
546 
wait_or_whine(pid_t pid,const char * argv0,int in_signal)547 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
548 {
549 	int status, code = -1;
550 	pid_t waiting;
551 	int failed_errno = 0;
552 
553 	while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
554 		;	/* nothing */
555 	if (in_signal) {
556 		if (WIFEXITED(status))
557 			code = WEXITSTATUS(status);
558 		return code;
559 	}
560 
561 	if (waiting < 0) {
562 		failed_errno = errno;
563 		error_errno("waitpid for %s failed", argv0);
564 	} else if (waiting != pid) {
565 		error("waitpid is confused (%s)", argv0);
566 	} else if (WIFSIGNALED(status)) {
567 		code = WTERMSIG(status);
568 		if (code != SIGINT && code != SIGQUIT && code != SIGPIPE)
569 			error("%s died of signal %d", argv0, code);
570 		/*
571 		 * This return value is chosen so that code & 0xff
572 		 * mimics the exit code that a POSIX shell would report for
573 		 * a program that died from this signal.
574 		 */
575 		code += 128;
576 	} else if (WIFEXITED(status)) {
577 		code = WEXITSTATUS(status);
578 	} else {
579 		error("waitpid is confused (%s)", argv0);
580 	}
581 
582 	clear_child_for_cleanup(pid);
583 
584 	errno = failed_errno;
585 	return code;
586 }
587 
trace_add_env(struct strbuf * dst,const char * const * deltaenv)588 static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
589 {
590 	struct string_list envs = STRING_LIST_INIT_DUP;
591 	const char *const *e;
592 	int i;
593 	int printed_unset = 0;
594 
595 	/* Last one wins, see run-command.c:prep_childenv() for context */
596 	for (e = deltaenv; e && *e; e++) {
597 		struct strbuf key = STRBUF_INIT;
598 		char *equals = strchr(*e, '=');
599 
600 		if (equals) {
601 			strbuf_add(&key, *e, equals - *e);
602 			string_list_insert(&envs, key.buf)->util = equals + 1;
603 		} else {
604 			string_list_insert(&envs, *e)->util = NULL;
605 		}
606 		strbuf_release(&key);
607 	}
608 
609 	/* "unset X Y...;" */
610 	for (i = 0; i < envs.nr; i++) {
611 		const char *var = envs.items[i].string;
612 		const char *val = envs.items[i].util;
613 
614 		if (val || !getenv(var))
615 			continue;
616 
617 		if (!printed_unset) {
618 			strbuf_addstr(dst, " unset");
619 			printed_unset = 1;
620 		}
621 		strbuf_addf(dst, " %s", var);
622 	}
623 	if (printed_unset)
624 		strbuf_addch(dst, ';');
625 
626 	/* ... followed by "A=B C=D ..." */
627 	for (i = 0; i < envs.nr; i++) {
628 		const char *var = envs.items[i].string;
629 		const char *val = envs.items[i].util;
630 		const char *oldval;
631 
632 		if (!val)
633 			continue;
634 
635 		oldval = getenv(var);
636 		if (oldval && !strcmp(val, oldval))
637 			continue;
638 
639 		strbuf_addf(dst, " %s=", var);
640 		sq_quote_buf_pretty(dst, val);
641 	}
642 	string_list_clear(&envs, 0);
643 }
644 
trace_run_command(const struct child_process * cp)645 static void trace_run_command(const struct child_process *cp)
646 {
647 	struct strbuf buf = STRBUF_INIT;
648 
649 	if (!trace_want(&trace_default_key))
650 		return;
651 
652 	strbuf_addstr(&buf, "trace: run_command:");
653 	if (cp->dir) {
654 		strbuf_addstr(&buf, " cd ");
655 		sq_quote_buf_pretty(&buf, cp->dir);
656 		strbuf_addch(&buf, ';');
657 	}
658 	/*
659 	 * The caller is responsible for initializing cp->env from
660 	 * cp->env_array if needed. We only check one place.
661 	 */
662 	if (cp->env)
663 		trace_add_env(&buf, cp->env);
664 	if (cp->git_cmd)
665 		strbuf_addstr(&buf, " git");
666 	sq_quote_argv_pretty(&buf, cp->argv);
667 
668 	trace_printf("%s", buf.buf);
669 	strbuf_release(&buf);
670 }
671 
start_command(struct child_process * cmd)672 int start_command(struct child_process *cmd)
673 {
674 	int need_in, need_out, need_err;
675 	int fdin[2], fdout[2], fderr[2];
676 	int failed_errno;
677 	char *str;
678 
679 	if (!cmd->argv)
680 		cmd->argv = cmd->args.v;
681 	if (!cmd->env)
682 		cmd->env = cmd->env_array.v;
683 
684 	/*
685 	 * In case of errors we must keep the promise to close FDs
686 	 * that have been passed in via ->in and ->out.
687 	 */
688 
689 	need_in = !cmd->no_stdin && cmd->in < 0;
690 	if (need_in) {
691 		if (pipe(fdin) < 0) {
692 			failed_errno = errno;
693 			if (cmd->out > 0)
694 				close(cmd->out);
695 			str = "standard input";
696 			goto fail_pipe;
697 		}
698 		cmd->in = fdin[1];
699 	}
700 
701 	need_out = !cmd->no_stdout
702 		&& !cmd->stdout_to_stderr
703 		&& cmd->out < 0;
704 	if (need_out) {
705 		if (pipe(fdout) < 0) {
706 			failed_errno = errno;
707 			if (need_in)
708 				close_pair(fdin);
709 			else if (cmd->in)
710 				close(cmd->in);
711 			str = "standard output";
712 			goto fail_pipe;
713 		}
714 		cmd->out = fdout[0];
715 	}
716 
717 	need_err = !cmd->no_stderr && cmd->err < 0;
718 	if (need_err) {
719 		if (pipe(fderr) < 0) {
720 			failed_errno = errno;
721 			if (need_in)
722 				close_pair(fdin);
723 			else if (cmd->in)
724 				close(cmd->in);
725 			if (need_out)
726 				close_pair(fdout);
727 			else if (cmd->out)
728 				close(cmd->out);
729 			str = "standard error";
730 fail_pipe:
731 			error("cannot create %s pipe for %s: %s",
732 				str, cmd->argv[0], strerror(failed_errno));
733 			child_process_clear(cmd);
734 			errno = failed_errno;
735 			return -1;
736 		}
737 		cmd->err = fderr[0];
738 	}
739 
740 	trace2_child_start(cmd);
741 	trace_run_command(cmd);
742 
743 	fflush(NULL);
744 
745 	if (cmd->close_object_store)
746 		close_object_store(the_repository->objects);
747 
748 #ifndef GIT_WINDOWS_NATIVE
749 {
750 	int notify_pipe[2];
751 	int null_fd = -1;
752 	char **childenv;
753 	struct strvec argv = STRVEC_INIT;
754 	struct child_err cerr;
755 	struct atfork_state as;
756 
757 	if (prepare_cmd(&argv, cmd) < 0) {
758 		failed_errno = errno;
759 		cmd->pid = -1;
760 		if (!cmd->silent_exec_failure)
761 			error_errno("cannot run %s", cmd->argv[0]);
762 		goto end_of_spawn;
763 	}
764 
765 	if (pipe(notify_pipe))
766 		notify_pipe[0] = notify_pipe[1] = -1;
767 
768 	if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
769 		null_fd = xopen("/dev/null", O_RDWR | O_CLOEXEC);
770 		set_cloexec(null_fd);
771 	}
772 
773 	childenv = prep_childenv(cmd->env);
774 	atfork_prepare(&as);
775 
776 	/*
777 	 * NOTE: In order to prevent deadlocking when using threads special
778 	 * care should be taken with the function calls made in between the
779 	 * fork() and exec() calls.  No calls should be made to functions which
780 	 * require acquiring a lock (e.g. malloc) as the lock could have been
781 	 * held by another thread at the time of forking, causing the lock to
782 	 * never be released in the child process.  This means only
783 	 * Async-Signal-Safe functions are permitted in the child.
784 	 */
785 	cmd->pid = fork();
786 	failed_errno = errno;
787 	if (!cmd->pid) {
788 		int sig;
789 		/*
790 		 * Ensure the default die/error/warn routines do not get
791 		 * called, they can take stdio locks and malloc.
792 		 */
793 		set_die_routine(child_die_fn);
794 		set_error_routine(child_error_fn);
795 		set_warn_routine(child_warn_fn);
796 
797 		close(notify_pipe[0]);
798 		set_cloexec(notify_pipe[1]);
799 		child_notifier = notify_pipe[1];
800 
801 		if (cmd->no_stdin)
802 			child_dup2(null_fd, 0);
803 		else if (need_in) {
804 			child_dup2(fdin[0], 0);
805 			child_close_pair(fdin);
806 		} else if (cmd->in) {
807 			child_dup2(cmd->in, 0);
808 			child_close(cmd->in);
809 		}
810 
811 		if (cmd->no_stderr)
812 			child_dup2(null_fd, 2);
813 		else if (need_err) {
814 			child_dup2(fderr[1], 2);
815 			child_close_pair(fderr);
816 		} else if (cmd->err > 1) {
817 			child_dup2(cmd->err, 2);
818 			child_close(cmd->err);
819 		}
820 
821 		if (cmd->no_stdout)
822 			child_dup2(null_fd, 1);
823 		else if (cmd->stdout_to_stderr)
824 			child_dup2(2, 1);
825 		else if (need_out) {
826 			child_dup2(fdout[1], 1);
827 			child_close_pair(fdout);
828 		} else if (cmd->out > 1) {
829 			child_dup2(cmd->out, 1);
830 			child_close(cmd->out);
831 		}
832 
833 		if (cmd->dir && chdir(cmd->dir))
834 			child_die(CHILD_ERR_CHDIR);
835 
836 		/*
837 		 * restore default signal handlers here, in case
838 		 * we catch a signal right before execve below
839 		 */
840 		for (sig = 1; sig < NSIG; sig++) {
841 			/* ignored signals get reset to SIG_DFL on execve */
842 			if (signal(sig, SIG_DFL) == SIG_IGN)
843 				signal(sig, SIG_IGN);
844 		}
845 
846 		if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
847 			child_die(CHILD_ERR_SIGPROCMASK);
848 
849 		/*
850 		 * Attempt to exec using the command and arguments starting at
851 		 * argv.argv[1].  argv.argv[0] contains SHELL_PATH which will
852 		 * be used in the event exec failed with ENOEXEC at which point
853 		 * we will try to interpret the command using 'sh'.
854 		 */
855 		execve(argv.v[1], (char *const *) argv.v + 1,
856 		       (char *const *) childenv);
857 		if (errno == ENOEXEC)
858 			execve(argv.v[0], (char *const *) argv.v,
859 			       (char *const *) childenv);
860 
861 		if (errno == ENOENT) {
862 			if (cmd->silent_exec_failure)
863 				child_die(CHILD_ERR_SILENT);
864 			child_die(CHILD_ERR_ENOENT);
865 		} else {
866 			child_die(CHILD_ERR_ERRNO);
867 		}
868 	}
869 	atfork_parent(&as);
870 	if (cmd->pid < 0)
871 		error_errno("cannot fork() for %s", cmd->argv[0]);
872 	else if (cmd->clean_on_exit)
873 		mark_child_for_cleanup(cmd->pid, cmd);
874 
875 	/*
876 	 * Wait for child's exec. If the exec succeeds (or if fork()
877 	 * failed), EOF is seen immediately by the parent. Otherwise, the
878 	 * child process sends a child_err struct.
879 	 * Note that use of this infrastructure is completely advisory,
880 	 * therefore, we keep error checks minimal.
881 	 */
882 	close(notify_pipe[1]);
883 	if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
884 		/*
885 		 * At this point we know that fork() succeeded, but exec()
886 		 * failed. Errors have been reported to our stderr.
887 		 */
888 		wait_or_whine(cmd->pid, cmd->argv[0], 0);
889 		child_err_spew(cmd, &cerr);
890 		failed_errno = errno;
891 		cmd->pid = -1;
892 	}
893 	close(notify_pipe[0]);
894 
895 	if (null_fd >= 0)
896 		close(null_fd);
897 	strvec_clear(&argv);
898 	free(childenv);
899 }
900 end_of_spawn:
901 
902 #else
903 {
904 	int fhin = 0, fhout = 1, fherr = 2;
905 	const char **sargv = cmd->argv;
906 	struct strvec nargv = STRVEC_INIT;
907 
908 	if (cmd->no_stdin)
909 		fhin = open("/dev/null", O_RDWR);
910 	else if (need_in)
911 		fhin = dup(fdin[0]);
912 	else if (cmd->in)
913 		fhin = dup(cmd->in);
914 
915 	if (cmd->no_stderr)
916 		fherr = open("/dev/null", O_RDWR);
917 	else if (need_err)
918 		fherr = dup(fderr[1]);
919 	else if (cmd->err > 2)
920 		fherr = dup(cmd->err);
921 
922 	if (cmd->no_stdout)
923 		fhout = open("/dev/null", O_RDWR);
924 	else if (cmd->stdout_to_stderr)
925 		fhout = dup(fherr);
926 	else if (need_out)
927 		fhout = dup(fdout[1]);
928 	else if (cmd->out > 1)
929 		fhout = dup(cmd->out);
930 
931 	if (cmd->git_cmd)
932 		cmd->argv = prepare_git_cmd(&nargv, cmd->argv);
933 	else if (cmd->use_shell)
934 		cmd->argv = prepare_shell_cmd(&nargv, cmd->argv);
935 
936 	cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env,
937 			cmd->dir, fhin, fhout, fherr);
938 	failed_errno = errno;
939 	if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
940 		error_errno("cannot spawn %s", cmd->argv[0]);
941 	if (cmd->clean_on_exit && cmd->pid >= 0)
942 		mark_child_for_cleanup(cmd->pid, cmd);
943 
944 	strvec_clear(&nargv);
945 	cmd->argv = sargv;
946 	if (fhin != 0)
947 		close(fhin);
948 	if (fhout != 1)
949 		close(fhout);
950 	if (fherr != 2)
951 		close(fherr);
952 }
953 #endif
954 
955 	if (cmd->pid < 0) {
956 		trace2_child_exit(cmd, -1);
957 
958 		if (need_in)
959 			close_pair(fdin);
960 		else if (cmd->in)
961 			close(cmd->in);
962 		if (need_out)
963 			close_pair(fdout);
964 		else if (cmd->out)
965 			close(cmd->out);
966 		if (need_err)
967 			close_pair(fderr);
968 		else if (cmd->err)
969 			close(cmd->err);
970 		child_process_clear(cmd);
971 		errno = failed_errno;
972 		return -1;
973 	}
974 
975 	if (need_in)
976 		close(fdin[0]);
977 	else if (cmd->in)
978 		close(cmd->in);
979 
980 	if (need_out)
981 		close(fdout[1]);
982 	else if (cmd->out)
983 		close(cmd->out);
984 
985 	if (need_err)
986 		close(fderr[1]);
987 	else if (cmd->err)
988 		close(cmd->err);
989 
990 	return 0;
991 }
992 
finish_command(struct child_process * cmd)993 int finish_command(struct child_process *cmd)
994 {
995 	int ret = wait_or_whine(cmd->pid, cmd->argv[0], 0);
996 	trace2_child_exit(cmd, ret);
997 	child_process_clear(cmd);
998 	invalidate_lstat_cache();
999 	return ret;
1000 }
1001 
finish_command_in_signal(struct child_process * cmd)1002 int finish_command_in_signal(struct child_process *cmd)
1003 {
1004 	int ret = wait_or_whine(cmd->pid, cmd->argv[0], 1);
1005 	trace2_child_exit(cmd, ret);
1006 	return ret;
1007 }
1008 
1009 
run_command(struct child_process * cmd)1010 int run_command(struct child_process *cmd)
1011 {
1012 	int code;
1013 
1014 	if (cmd->out < 0 || cmd->err < 0)
1015 		BUG("run_command with a pipe can cause deadlock");
1016 
1017 	code = start_command(cmd);
1018 	if (code)
1019 		return code;
1020 	return finish_command(cmd);
1021 }
1022 
run_command_v_opt(const char ** argv,int opt)1023 int run_command_v_opt(const char **argv, int opt)
1024 {
1025 	return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
1026 }
1027 
run_command_v_opt_tr2(const char ** argv,int opt,const char * tr2_class)1028 int run_command_v_opt_tr2(const char **argv, int opt, const char *tr2_class)
1029 {
1030 	return run_command_v_opt_cd_env_tr2(argv, opt, NULL, NULL, tr2_class);
1031 }
1032 
run_command_v_opt_cd_env(const char ** argv,int opt,const char * dir,const char * const * env)1033 int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
1034 {
1035 	return run_command_v_opt_cd_env_tr2(argv, opt, dir, env, NULL);
1036 }
1037 
run_command_v_opt_cd_env_tr2(const char ** argv,int opt,const char * dir,const char * const * env,const char * tr2_class)1038 int run_command_v_opt_cd_env_tr2(const char **argv, int opt, const char *dir,
1039 				 const char *const *env, const char *tr2_class)
1040 {
1041 	struct child_process cmd = CHILD_PROCESS_INIT;
1042 	cmd.argv = argv;
1043 	cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
1044 	cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
1045 	cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
1046 	cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
1047 	cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
1048 	cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
1049 	cmd.wait_after_clean = opt & RUN_WAIT_AFTER_CLEAN ? 1 : 0;
1050 	cmd.close_object_store = opt & RUN_CLOSE_OBJECT_STORE ? 1 : 0;
1051 	cmd.dir = dir;
1052 	cmd.env = env;
1053 	cmd.trace2_child_class = tr2_class;
1054 	return run_command(&cmd);
1055 }
1056 
1057 #ifndef NO_PTHREADS
1058 static pthread_t main_thread;
1059 static int main_thread_set;
1060 static pthread_key_t async_key;
1061 static pthread_key_t async_die_counter;
1062 
run_thread(void * data)1063 static void *run_thread(void *data)
1064 {
1065 	struct async *async = data;
1066 	intptr_t ret;
1067 
1068 	if (async->isolate_sigpipe) {
1069 		sigset_t mask;
1070 		sigemptyset(&mask);
1071 		sigaddset(&mask, SIGPIPE);
1072 		if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
1073 			ret = error("unable to block SIGPIPE in async thread");
1074 			return (void *)ret;
1075 		}
1076 	}
1077 
1078 	pthread_setspecific(async_key, async);
1079 	ret = async->proc(async->proc_in, async->proc_out, async->data);
1080 	return (void *)ret;
1081 }
1082 
die_async(const char * err,va_list params)1083 static NORETURN void die_async(const char *err, va_list params)
1084 {
1085 	vreportf("fatal: ", err, params);
1086 
1087 	if (in_async()) {
1088 		struct async *async = pthread_getspecific(async_key);
1089 		if (async->proc_in >= 0)
1090 			close(async->proc_in);
1091 		if (async->proc_out >= 0)
1092 			close(async->proc_out);
1093 		pthread_exit((void *)128);
1094 	}
1095 
1096 	exit(128);
1097 }
1098 
async_die_is_recursing(void)1099 static int async_die_is_recursing(void)
1100 {
1101 	void *ret = pthread_getspecific(async_die_counter);
1102 	pthread_setspecific(async_die_counter, &async_die_counter); /* set to any non-NULL valid pointer */
1103 	return ret != NULL;
1104 }
1105 
in_async(void)1106 int in_async(void)
1107 {
1108 	if (!main_thread_set)
1109 		return 0; /* no asyncs started yet */
1110 	return !pthread_equal(main_thread, pthread_self());
1111 }
1112 
async_exit(int code)1113 static void NORETURN async_exit(int code)
1114 {
1115 	pthread_exit((void *)(intptr_t)code);
1116 }
1117 
1118 #else
1119 
1120 static struct {
1121 	void (**handlers)(void);
1122 	size_t nr;
1123 	size_t alloc;
1124 } git_atexit_hdlrs;
1125 
1126 static int git_atexit_installed;
1127 
git_atexit_dispatch(void)1128 static void git_atexit_dispatch(void)
1129 {
1130 	size_t i;
1131 
1132 	for (i=git_atexit_hdlrs.nr ; i ; i--)
1133 		git_atexit_hdlrs.handlers[i-1]();
1134 }
1135 
git_atexit_clear(void)1136 static void git_atexit_clear(void)
1137 {
1138 	free(git_atexit_hdlrs.handlers);
1139 	memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1140 	git_atexit_installed = 0;
1141 }
1142 
1143 #undef atexit
git_atexit(void (* handler)(void))1144 int git_atexit(void (*handler)(void))
1145 {
1146 	ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1147 	git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1148 	if (!git_atexit_installed) {
1149 		if (atexit(&git_atexit_dispatch))
1150 			return -1;
1151 		git_atexit_installed = 1;
1152 	}
1153 	return 0;
1154 }
1155 #define atexit git_atexit
1156 
1157 static int process_is_async;
in_async(void)1158 int in_async(void)
1159 {
1160 	return process_is_async;
1161 }
1162 
async_exit(int code)1163 static void NORETURN async_exit(int code)
1164 {
1165 	exit(code);
1166 }
1167 
1168 #endif
1169 
check_pipe(int err)1170 void check_pipe(int err)
1171 {
1172 	if (err == EPIPE) {
1173 		if (in_async())
1174 			async_exit(141);
1175 
1176 		signal(SIGPIPE, SIG_DFL);
1177 		raise(SIGPIPE);
1178 		/* Should never happen, but just in case... */
1179 		exit(141);
1180 	}
1181 }
1182 
start_async(struct async * async)1183 int start_async(struct async *async)
1184 {
1185 	int need_in, need_out;
1186 	int fdin[2], fdout[2];
1187 	int proc_in, proc_out;
1188 
1189 	need_in = async->in < 0;
1190 	if (need_in) {
1191 		if (pipe(fdin) < 0) {
1192 			if (async->out > 0)
1193 				close(async->out);
1194 			return error_errno("cannot create pipe");
1195 		}
1196 		async->in = fdin[1];
1197 	}
1198 
1199 	need_out = async->out < 0;
1200 	if (need_out) {
1201 		if (pipe(fdout) < 0) {
1202 			if (need_in)
1203 				close_pair(fdin);
1204 			else if (async->in)
1205 				close(async->in);
1206 			return error_errno("cannot create pipe");
1207 		}
1208 		async->out = fdout[0];
1209 	}
1210 
1211 	if (need_in)
1212 		proc_in = fdin[0];
1213 	else if (async->in)
1214 		proc_in = async->in;
1215 	else
1216 		proc_in = -1;
1217 
1218 	if (need_out)
1219 		proc_out = fdout[1];
1220 	else if (async->out)
1221 		proc_out = async->out;
1222 	else
1223 		proc_out = -1;
1224 
1225 #ifdef NO_PTHREADS
1226 	/* Flush stdio before fork() to avoid cloning buffers */
1227 	fflush(NULL);
1228 
1229 	async->pid = fork();
1230 	if (async->pid < 0) {
1231 		error_errno("fork (async) failed");
1232 		goto error;
1233 	}
1234 	if (!async->pid) {
1235 		if (need_in)
1236 			close(fdin[1]);
1237 		if (need_out)
1238 			close(fdout[0]);
1239 		git_atexit_clear();
1240 		process_is_async = 1;
1241 		exit(!!async->proc(proc_in, proc_out, async->data));
1242 	}
1243 
1244 	mark_child_for_cleanup(async->pid, NULL);
1245 
1246 	if (need_in)
1247 		close(fdin[0]);
1248 	else if (async->in)
1249 		close(async->in);
1250 
1251 	if (need_out)
1252 		close(fdout[1]);
1253 	else if (async->out)
1254 		close(async->out);
1255 #else
1256 	if (!main_thread_set) {
1257 		/*
1258 		 * We assume that the first time that start_async is called
1259 		 * it is from the main thread.
1260 		 */
1261 		main_thread_set = 1;
1262 		main_thread = pthread_self();
1263 		pthread_key_create(&async_key, NULL);
1264 		pthread_key_create(&async_die_counter, NULL);
1265 		set_die_routine(die_async);
1266 		set_die_is_recursing_routine(async_die_is_recursing);
1267 	}
1268 
1269 	if (proc_in >= 0)
1270 		set_cloexec(proc_in);
1271 	if (proc_out >= 0)
1272 		set_cloexec(proc_out);
1273 	async->proc_in = proc_in;
1274 	async->proc_out = proc_out;
1275 	{
1276 		int err = pthread_create(&async->tid, NULL, run_thread, async);
1277 		if (err) {
1278 			error(_("cannot create async thread: %s"), strerror(err));
1279 			goto error;
1280 		}
1281 	}
1282 #endif
1283 	return 0;
1284 
1285 error:
1286 	if (need_in)
1287 		close_pair(fdin);
1288 	else if (async->in)
1289 		close(async->in);
1290 
1291 	if (need_out)
1292 		close_pair(fdout);
1293 	else if (async->out)
1294 		close(async->out);
1295 	return -1;
1296 }
1297 
finish_async(struct async * async)1298 int finish_async(struct async *async)
1299 {
1300 #ifdef NO_PTHREADS
1301 	int ret = wait_or_whine(async->pid, "child process", 0);
1302 
1303 	invalidate_lstat_cache();
1304 
1305 	return ret;
1306 #else
1307 	void *ret = (void *)(intptr_t)(-1);
1308 
1309 	if (pthread_join(async->tid, &ret))
1310 		error("pthread_join failed");
1311 	invalidate_lstat_cache();
1312 	return (int)(intptr_t)ret;
1313 
1314 #endif
1315 }
1316 
async_with_fork(void)1317 int async_with_fork(void)
1318 {
1319 #ifdef NO_PTHREADS
1320 	return 1;
1321 #else
1322 	return 0;
1323 #endif
1324 }
1325 
run_hook_ve(const char * const * env,const char * name,va_list args)1326 int run_hook_ve(const char *const *env, const char *name, va_list args)
1327 {
1328 	struct child_process hook = CHILD_PROCESS_INIT;
1329 	const char *p;
1330 
1331 	p = find_hook(name);
1332 	if (!p)
1333 		return 0;
1334 
1335 	strvec_push(&hook.args, p);
1336 	while ((p = va_arg(args, const char *)))
1337 		strvec_push(&hook.args, p);
1338 	hook.env = env;
1339 	hook.no_stdin = 1;
1340 	hook.stdout_to_stderr = 1;
1341 	hook.trace2_hook_name = name;
1342 
1343 	return run_command(&hook);
1344 }
1345 
run_hook_le(const char * const * env,const char * name,...)1346 int run_hook_le(const char *const *env, const char *name, ...)
1347 {
1348 	va_list args;
1349 	int ret;
1350 
1351 	va_start(args, name);
1352 	ret = run_hook_ve(env, name, args);
1353 	va_end(args);
1354 
1355 	return ret;
1356 }
1357 
1358 struct io_pump {
1359 	/* initialized by caller */
1360 	int fd;
1361 	int type; /* POLLOUT or POLLIN */
1362 	union {
1363 		struct {
1364 			const char *buf;
1365 			size_t len;
1366 		} out;
1367 		struct {
1368 			struct strbuf *buf;
1369 			size_t hint;
1370 		} in;
1371 	} u;
1372 
1373 	/* returned by pump_io */
1374 	int error; /* 0 for success, otherwise errno */
1375 
1376 	/* internal use */
1377 	struct pollfd *pfd;
1378 };
1379 
pump_io_round(struct io_pump * slots,int nr,struct pollfd * pfd)1380 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1381 {
1382 	int pollsize = 0;
1383 	int i;
1384 
1385 	for (i = 0; i < nr; i++) {
1386 		struct io_pump *io = &slots[i];
1387 		if (io->fd < 0)
1388 			continue;
1389 		pfd[pollsize].fd = io->fd;
1390 		pfd[pollsize].events = io->type;
1391 		io->pfd = &pfd[pollsize++];
1392 	}
1393 
1394 	if (!pollsize)
1395 		return 0;
1396 
1397 	if (poll(pfd, pollsize, -1) < 0) {
1398 		if (errno == EINTR)
1399 			return 1;
1400 		die_errno("poll failed");
1401 	}
1402 
1403 	for (i = 0; i < nr; i++) {
1404 		struct io_pump *io = &slots[i];
1405 
1406 		if (io->fd < 0)
1407 			continue;
1408 
1409 		if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1410 			continue;
1411 
1412 		if (io->type == POLLOUT) {
1413 			ssize_t len = xwrite(io->fd,
1414 					     io->u.out.buf, io->u.out.len);
1415 			if (len < 0) {
1416 				io->error = errno;
1417 				close(io->fd);
1418 				io->fd = -1;
1419 			} else {
1420 				io->u.out.buf += len;
1421 				io->u.out.len -= len;
1422 				if (!io->u.out.len) {
1423 					close(io->fd);
1424 					io->fd = -1;
1425 				}
1426 			}
1427 		}
1428 
1429 		if (io->type == POLLIN) {
1430 			ssize_t len = strbuf_read_once(io->u.in.buf,
1431 						       io->fd, io->u.in.hint);
1432 			if (len < 0)
1433 				io->error = errno;
1434 			if (len <= 0) {
1435 				close(io->fd);
1436 				io->fd = -1;
1437 			}
1438 		}
1439 	}
1440 
1441 	return 1;
1442 }
1443 
pump_io(struct io_pump * slots,int nr)1444 static int pump_io(struct io_pump *slots, int nr)
1445 {
1446 	struct pollfd *pfd;
1447 	int i;
1448 
1449 	for (i = 0; i < nr; i++)
1450 		slots[i].error = 0;
1451 
1452 	ALLOC_ARRAY(pfd, nr);
1453 	while (pump_io_round(slots, nr, pfd))
1454 		; /* nothing */
1455 	free(pfd);
1456 
1457 	/* There may be multiple errno values, so just pick the first. */
1458 	for (i = 0; i < nr; i++) {
1459 		if (slots[i].error) {
1460 			errno = slots[i].error;
1461 			return -1;
1462 		}
1463 	}
1464 	return 0;
1465 }
1466 
1467 
pipe_command(struct child_process * cmd,const char * in,size_t in_len,struct strbuf * out,size_t out_hint,struct strbuf * err,size_t err_hint)1468 int pipe_command(struct child_process *cmd,
1469 		 const char *in, size_t in_len,
1470 		 struct strbuf *out, size_t out_hint,
1471 		 struct strbuf *err, size_t err_hint)
1472 {
1473 	struct io_pump io[3];
1474 	int nr = 0;
1475 
1476 	if (in)
1477 		cmd->in = -1;
1478 	if (out)
1479 		cmd->out = -1;
1480 	if (err)
1481 		cmd->err = -1;
1482 
1483 	if (start_command(cmd) < 0)
1484 		return -1;
1485 
1486 	if (in) {
1487 		io[nr].fd = cmd->in;
1488 		io[nr].type = POLLOUT;
1489 		io[nr].u.out.buf = in;
1490 		io[nr].u.out.len = in_len;
1491 		nr++;
1492 	}
1493 	if (out) {
1494 		io[nr].fd = cmd->out;
1495 		io[nr].type = POLLIN;
1496 		io[nr].u.in.buf = out;
1497 		io[nr].u.in.hint = out_hint;
1498 		nr++;
1499 	}
1500 	if (err) {
1501 		io[nr].fd = cmd->err;
1502 		io[nr].type = POLLIN;
1503 		io[nr].u.in.buf = err;
1504 		io[nr].u.in.hint = err_hint;
1505 		nr++;
1506 	}
1507 
1508 	if (pump_io(io, nr) < 0) {
1509 		finish_command(cmd); /* throw away exit code */
1510 		return -1;
1511 	}
1512 
1513 	return finish_command(cmd);
1514 }
1515 
1516 enum child_state {
1517 	GIT_CP_FREE,
1518 	GIT_CP_WORKING,
1519 	GIT_CP_WAIT_CLEANUP,
1520 };
1521 
1522 struct parallel_processes {
1523 	void *data;
1524 
1525 	int max_processes;
1526 	int nr_processes;
1527 
1528 	get_next_task_fn get_next_task;
1529 	start_failure_fn start_failure;
1530 	task_finished_fn task_finished;
1531 
1532 	struct {
1533 		enum child_state state;
1534 		struct child_process process;
1535 		struct strbuf err;
1536 		void *data;
1537 	} *children;
1538 	/*
1539 	 * The struct pollfd is logically part of *children,
1540 	 * but the system call expects it as its own array.
1541 	 */
1542 	struct pollfd *pfd;
1543 
1544 	unsigned shutdown : 1;
1545 
1546 	int output_owner;
1547 	struct strbuf buffered_output; /* of finished children */
1548 };
1549 
default_start_failure(struct strbuf * out,void * pp_cb,void * pp_task_cb)1550 static int default_start_failure(struct strbuf *out,
1551 				 void *pp_cb,
1552 				 void *pp_task_cb)
1553 {
1554 	return 0;
1555 }
1556 
default_task_finished(int result,struct strbuf * out,void * pp_cb,void * pp_task_cb)1557 static int default_task_finished(int result,
1558 				 struct strbuf *out,
1559 				 void *pp_cb,
1560 				 void *pp_task_cb)
1561 {
1562 	return 0;
1563 }
1564 
kill_children(struct parallel_processes * pp,int signo)1565 static void kill_children(struct parallel_processes *pp, int signo)
1566 {
1567 	int i, n = pp->max_processes;
1568 
1569 	for (i = 0; i < n; i++)
1570 		if (pp->children[i].state == GIT_CP_WORKING)
1571 			kill(pp->children[i].process.pid, signo);
1572 }
1573 
1574 static struct parallel_processes *pp_for_signal;
1575 
handle_children_on_signal(int signo)1576 static void handle_children_on_signal(int signo)
1577 {
1578 	kill_children(pp_for_signal, signo);
1579 	sigchain_pop(signo);
1580 	raise(signo);
1581 }
1582 
pp_init(struct parallel_processes * pp,int n,get_next_task_fn get_next_task,start_failure_fn start_failure,task_finished_fn task_finished,void * data)1583 static void pp_init(struct parallel_processes *pp,
1584 		    int n,
1585 		    get_next_task_fn get_next_task,
1586 		    start_failure_fn start_failure,
1587 		    task_finished_fn task_finished,
1588 		    void *data)
1589 {
1590 	int i;
1591 
1592 	if (n < 1)
1593 		n = online_cpus();
1594 
1595 	pp->max_processes = n;
1596 
1597 	trace_printf("run_processes_parallel: preparing to run up to %d tasks", n);
1598 
1599 	pp->data = data;
1600 	if (!get_next_task)
1601 		BUG("you need to specify a get_next_task function");
1602 	pp->get_next_task = get_next_task;
1603 
1604 	pp->start_failure = start_failure ? start_failure : default_start_failure;
1605 	pp->task_finished = task_finished ? task_finished : default_task_finished;
1606 
1607 	pp->nr_processes = 0;
1608 	pp->output_owner = 0;
1609 	pp->shutdown = 0;
1610 	CALLOC_ARRAY(pp->children, n);
1611 	CALLOC_ARRAY(pp->pfd, n);
1612 	strbuf_init(&pp->buffered_output, 0);
1613 
1614 	for (i = 0; i < n; i++) {
1615 		strbuf_init(&pp->children[i].err, 0);
1616 		child_process_init(&pp->children[i].process);
1617 		pp->pfd[i].events = POLLIN | POLLHUP;
1618 		pp->pfd[i].fd = -1;
1619 	}
1620 
1621 	pp_for_signal = pp;
1622 	sigchain_push_common(handle_children_on_signal);
1623 }
1624 
pp_cleanup(struct parallel_processes * pp)1625 static void pp_cleanup(struct parallel_processes *pp)
1626 {
1627 	int i;
1628 
1629 	trace_printf("run_processes_parallel: done");
1630 	for (i = 0; i < pp->max_processes; i++) {
1631 		strbuf_release(&pp->children[i].err);
1632 		child_process_clear(&pp->children[i].process);
1633 	}
1634 
1635 	free(pp->children);
1636 	free(pp->pfd);
1637 
1638 	/*
1639 	 * When get_next_task added messages to the buffer in its last
1640 	 * iteration, the buffered output is non empty.
1641 	 */
1642 	strbuf_write(&pp->buffered_output, stderr);
1643 	strbuf_release(&pp->buffered_output);
1644 
1645 	sigchain_pop_common();
1646 }
1647 
1648 /* returns
1649  *  0 if a new task was started.
1650  *  1 if no new jobs was started (get_next_task ran out of work, non critical
1651  *    problem with starting a new command)
1652  * <0 no new job was started, user wishes to shutdown early. Use negative code
1653  *    to signal the children.
1654  */
pp_start_one(struct parallel_processes * pp)1655 static int pp_start_one(struct parallel_processes *pp)
1656 {
1657 	int i, code;
1658 
1659 	for (i = 0; i < pp->max_processes; i++)
1660 		if (pp->children[i].state == GIT_CP_FREE)
1661 			break;
1662 	if (i == pp->max_processes)
1663 		BUG("bookkeeping is hard");
1664 
1665 	code = pp->get_next_task(&pp->children[i].process,
1666 				 &pp->children[i].err,
1667 				 pp->data,
1668 				 &pp->children[i].data);
1669 	if (!code) {
1670 		strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1671 		strbuf_reset(&pp->children[i].err);
1672 		return 1;
1673 	}
1674 	pp->children[i].process.err = -1;
1675 	pp->children[i].process.stdout_to_stderr = 1;
1676 	pp->children[i].process.no_stdin = 1;
1677 
1678 	if (start_command(&pp->children[i].process)) {
1679 		code = pp->start_failure(&pp->children[i].err,
1680 					 pp->data,
1681 					 pp->children[i].data);
1682 		strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1683 		strbuf_reset(&pp->children[i].err);
1684 		if (code)
1685 			pp->shutdown = 1;
1686 		return code;
1687 	}
1688 
1689 	pp->nr_processes++;
1690 	pp->children[i].state = GIT_CP_WORKING;
1691 	pp->pfd[i].fd = pp->children[i].process.err;
1692 	return 0;
1693 }
1694 
pp_buffer_stderr(struct parallel_processes * pp,int output_timeout)1695 static void pp_buffer_stderr(struct parallel_processes *pp, int output_timeout)
1696 {
1697 	int i;
1698 
1699 	while ((i = poll(pp->pfd, pp->max_processes, output_timeout)) < 0) {
1700 		if (errno == EINTR)
1701 			continue;
1702 		pp_cleanup(pp);
1703 		die_errno("poll");
1704 	}
1705 
1706 	/* Buffer output from all pipes. */
1707 	for (i = 0; i < pp->max_processes; i++) {
1708 		if (pp->children[i].state == GIT_CP_WORKING &&
1709 		    pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1710 			int n = strbuf_read_once(&pp->children[i].err,
1711 						 pp->children[i].process.err, 0);
1712 			if (n == 0) {
1713 				close(pp->children[i].process.err);
1714 				pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1715 			} else if (n < 0)
1716 				if (errno != EAGAIN)
1717 					die_errno("read");
1718 		}
1719 	}
1720 }
1721 
pp_output(struct parallel_processes * pp)1722 static void pp_output(struct parallel_processes *pp)
1723 {
1724 	int i = pp->output_owner;
1725 	if (pp->children[i].state == GIT_CP_WORKING &&
1726 	    pp->children[i].err.len) {
1727 		strbuf_write(&pp->children[i].err, stderr);
1728 		strbuf_reset(&pp->children[i].err);
1729 	}
1730 }
1731 
pp_collect_finished(struct parallel_processes * pp)1732 static int pp_collect_finished(struct parallel_processes *pp)
1733 {
1734 	int i, code;
1735 	int n = pp->max_processes;
1736 	int result = 0;
1737 
1738 	while (pp->nr_processes > 0) {
1739 		for (i = 0; i < pp->max_processes; i++)
1740 			if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1741 				break;
1742 		if (i == pp->max_processes)
1743 			break;
1744 
1745 		code = finish_command(&pp->children[i].process);
1746 
1747 		code = pp->task_finished(code,
1748 					 &pp->children[i].err, pp->data,
1749 					 pp->children[i].data);
1750 
1751 		if (code)
1752 			result = code;
1753 		if (code < 0)
1754 			break;
1755 
1756 		pp->nr_processes--;
1757 		pp->children[i].state = GIT_CP_FREE;
1758 		pp->pfd[i].fd = -1;
1759 		child_process_init(&pp->children[i].process);
1760 
1761 		if (i != pp->output_owner) {
1762 			strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1763 			strbuf_reset(&pp->children[i].err);
1764 		} else {
1765 			strbuf_write(&pp->children[i].err, stderr);
1766 			strbuf_reset(&pp->children[i].err);
1767 
1768 			/* Output all other finished child processes */
1769 			strbuf_write(&pp->buffered_output, stderr);
1770 			strbuf_reset(&pp->buffered_output);
1771 
1772 			/*
1773 			 * Pick next process to output live.
1774 			 * NEEDSWORK:
1775 			 * For now we pick it randomly by doing a round
1776 			 * robin. Later we may want to pick the one with
1777 			 * the most output or the longest or shortest
1778 			 * running process time.
1779 			 */
1780 			for (i = 0; i < n; i++)
1781 				if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1782 					break;
1783 			pp->output_owner = (pp->output_owner + i) % n;
1784 		}
1785 	}
1786 	return result;
1787 }
1788 
run_processes_parallel(int n,get_next_task_fn get_next_task,start_failure_fn start_failure,task_finished_fn task_finished,void * pp_cb)1789 int run_processes_parallel(int n,
1790 			   get_next_task_fn get_next_task,
1791 			   start_failure_fn start_failure,
1792 			   task_finished_fn task_finished,
1793 			   void *pp_cb)
1794 {
1795 	int i, code;
1796 	int output_timeout = 100;
1797 	int spawn_cap = 4;
1798 	struct parallel_processes pp;
1799 
1800 	pp_init(&pp, n, get_next_task, start_failure, task_finished, pp_cb);
1801 	while (1) {
1802 		for (i = 0;
1803 		    i < spawn_cap && !pp.shutdown &&
1804 		    pp.nr_processes < pp.max_processes;
1805 		    i++) {
1806 			code = pp_start_one(&pp);
1807 			if (!code)
1808 				continue;
1809 			if (code < 0) {
1810 				pp.shutdown = 1;
1811 				kill_children(&pp, -code);
1812 			}
1813 			break;
1814 		}
1815 		if (!pp.nr_processes)
1816 			break;
1817 		pp_buffer_stderr(&pp, output_timeout);
1818 		pp_output(&pp);
1819 		code = pp_collect_finished(&pp);
1820 		if (code) {
1821 			pp.shutdown = 1;
1822 			if (code < 0)
1823 				kill_children(&pp, -code);
1824 		}
1825 	}
1826 
1827 	pp_cleanup(&pp);
1828 	return 0;
1829 }
1830 
run_processes_parallel_tr2(int n,get_next_task_fn get_next_task,start_failure_fn start_failure,task_finished_fn task_finished,void * pp_cb,const char * tr2_category,const char * tr2_label)1831 int run_processes_parallel_tr2(int n, get_next_task_fn get_next_task,
1832 			       start_failure_fn start_failure,
1833 			       task_finished_fn task_finished, void *pp_cb,
1834 			       const char *tr2_category, const char *tr2_label)
1835 {
1836 	int result;
1837 
1838 	trace2_region_enter_printf(tr2_category, tr2_label, NULL, "max:%d",
1839 				   ((n < 1) ? online_cpus() : n));
1840 
1841 	result = run_processes_parallel(n, get_next_task, start_failure,
1842 					task_finished, pp_cb);
1843 
1844 	trace2_region_leave(tr2_category, tr2_label, NULL);
1845 
1846 	return result;
1847 }
1848 
run_auto_maintenance(int quiet)1849 int run_auto_maintenance(int quiet)
1850 {
1851 	int enabled;
1852 	struct child_process maint = CHILD_PROCESS_INIT;
1853 
1854 	if (!git_config_get_bool("maintenance.auto", &enabled) &&
1855 	    !enabled)
1856 		return 0;
1857 
1858 	maint.git_cmd = 1;
1859 	maint.close_object_store = 1;
1860 	strvec_pushl(&maint.args, "maintenance", "run", "--auto", NULL);
1861 	strvec_push(&maint.args, quiet ? "--quiet" : "--no-quiet");
1862 
1863 	return run_command(&maint);
1864 }
1865 
prepare_other_repo_env(struct strvec * env_array,const char * new_git_dir)1866 void prepare_other_repo_env(struct strvec *env_array, const char *new_git_dir)
1867 {
1868 	const char * const *var;
1869 
1870 	for (var = local_repo_env; *var; var++) {
1871 		if (strcmp(*var, CONFIG_DATA_ENVIRONMENT) &&
1872 		    strcmp(*var, CONFIG_COUNT_ENVIRONMENT))
1873 			strvec_push(env_array, *var);
1874 	}
1875 	strvec_pushf(env_array, "%s=%s", GIT_DIR_ENVIRONMENT, new_git_dir);
1876 }
1877 
start_bg_command(struct child_process * cmd,start_bg_wait_cb * wait_cb,void * cb_data,unsigned int timeout_sec)1878 enum start_bg_result start_bg_command(struct child_process *cmd,
1879 				      start_bg_wait_cb *wait_cb,
1880 				      void *cb_data,
1881 				      unsigned int timeout_sec)
1882 {
1883 	enum start_bg_result sbgr = SBGR_ERROR;
1884 	int ret;
1885 	int wait_status;
1886 	pid_t pid_seen;
1887 	time_t time_limit;
1888 
1889 	/*
1890 	 * We do not allow clean-on-exit because the child process
1891 	 * should persist in the background and possibly/probably
1892 	 * after this process exits.  So we don't want to kill the
1893 	 * child during our atexit routine.
1894 	 */
1895 	if (cmd->clean_on_exit)
1896 		BUG("start_bg_command() does not allow non-zero clean_on_exit");
1897 
1898 	if (!cmd->trace2_child_class)
1899 		cmd->trace2_child_class = "background";
1900 
1901 	ret = start_command(cmd);
1902 	if (ret) {
1903 		/*
1904 		 * We assume that if `start_command()` fails, we
1905 		 * either get a complete `trace2_child_start() /
1906 		 * trace2_child_exit()` pair or it fails before the
1907 		 * `trace2_child_start()` is emitted, so we do not
1908 		 * need to worry about it here.
1909 		 *
1910 		 * We also assume that `start_command()` does not add
1911 		 * us to the cleanup list.  And that it calls
1912 		 * calls `child_process_clear()`.
1913 		 */
1914 		sbgr = SBGR_ERROR;
1915 		goto done;
1916 	}
1917 
1918 	time(&time_limit);
1919 	time_limit += timeout_sec;
1920 
1921 wait:
1922 	pid_seen = waitpid(cmd->pid, &wait_status, WNOHANG);
1923 
1924 	if (!pid_seen) {
1925 		/*
1926 		 * The child is currently running.  Ask the callback
1927 		 * if the child is ready to do work or whether we
1928 		 * should keep waiting for it to boot up.
1929 		 */
1930 		ret = (*wait_cb)(cmd, cb_data);
1931 		if (!ret) {
1932 			/*
1933 			 * The child is running and "ready".
1934 			 */
1935 			trace2_child_ready(cmd, "ready");
1936 			sbgr = SBGR_READY;
1937 			goto done;
1938 		} else if (ret > 0) {
1939 			/*
1940 			 * The callback said to give it more time to boot up
1941 			 * (subject to our timeout limit).
1942 			 */
1943 			time_t now;
1944 
1945 			time(&now);
1946 			if (now < time_limit)
1947 				goto wait;
1948 
1949 			/*
1950 			 * Our timeout has expired.  We don't try to
1951 			 * kill the child, but rather let it continue
1952 			 * (hopefully) trying to startup.
1953 			 */
1954 			trace2_child_ready(cmd, "timeout");
1955 			sbgr = SBGR_TIMEOUT;
1956 			goto done;
1957 		} else {
1958 			/*
1959 			 * The cb gave up on this child.  It is still running,
1960 			 * but our cb got an error trying to probe it.
1961 			 */
1962 			trace2_child_ready(cmd, "error");
1963 			sbgr = SBGR_CB_ERROR;
1964 			goto done;
1965 		}
1966 	}
1967 
1968 	else if (pid_seen == cmd->pid) {
1969 		int child_code = -1;
1970 
1971 		/*
1972 		 * The child started, but exited or was terminated
1973 		 * before becoming "ready".
1974 		 *
1975 		 * We try to match the behavior of `wait_or_whine()`
1976 		 * WRT the handling of WIFSIGNALED() and WIFEXITED()
1977 		 * and convert the child's status to a return code for
1978 		 * tracing purposes and emit the `trace2_child_exit()`
1979 		 * event.
1980 		 *
1981 		 * We do not want the wait_or_whine() error message
1982 		 * because we will be called by client-side library
1983 		 * routines.
1984 		 */
1985 		if (WIFEXITED(wait_status))
1986 			child_code = WEXITSTATUS(wait_status);
1987 		else if (WIFSIGNALED(wait_status))
1988 			child_code = WTERMSIG(wait_status) + 128;
1989 		trace2_child_exit(cmd, child_code);
1990 
1991 		sbgr = SBGR_DIED;
1992 		goto done;
1993 	}
1994 
1995 	else if (pid_seen < 0 && errno == EINTR)
1996 		goto wait;
1997 
1998 	trace2_child_exit(cmd, -1);
1999 	sbgr = SBGR_ERROR;
2000 
2001 done:
2002 	child_process_clear(cmd);
2003 	invalidate_lstat_cache();
2004 	return sbgr;
2005 }
2006