1 #include "cache.h"
2 #include "config.h"
3 #include "entry.h"
4 #include "parallel-checkout.h"
5 #include "pkt-line.h"
6 #include "progress.h"
7 #include "run-command.h"
8 #include "sigchain.h"
9 #include "streaming.h"
10 #include "thread-utils.h"
11 #include "trace2.h"
12 
13 struct pc_worker {
14 	struct child_process cp;
15 	size_t next_item_to_complete, nr_items_to_complete;
16 };
17 
18 struct parallel_checkout {
19 	enum pc_status status;
20 	struct parallel_checkout_item *items; /* The parallel checkout queue. */
21 	size_t nr, alloc;
22 	struct progress *progress;
23 	unsigned int *progress_cnt;
24 };
25 
26 static struct parallel_checkout parallel_checkout;
27 
parallel_checkout_status(void)28 enum pc_status parallel_checkout_status(void)
29 {
30 	return parallel_checkout.status;
31 }
32 
33 static const int DEFAULT_THRESHOLD_FOR_PARALLELISM = 100;
34 static const int DEFAULT_NUM_WORKERS = 1;
35 
get_parallel_checkout_configs(int * num_workers,int * threshold)36 void get_parallel_checkout_configs(int *num_workers, int *threshold)
37 {
38 	char *env_workers = getenv("GIT_TEST_CHECKOUT_WORKERS");
39 
40 	if (env_workers && *env_workers) {
41 		if (strtol_i(env_workers, 10, num_workers)) {
42 			die("invalid value for GIT_TEST_CHECKOUT_WORKERS: '%s'",
43 			    env_workers);
44 		}
45 		if (*num_workers < 1)
46 			*num_workers = online_cpus();
47 
48 		*threshold = 0;
49 		return;
50 	}
51 
52 	if (git_config_get_int("checkout.workers", num_workers))
53 		*num_workers = DEFAULT_NUM_WORKERS;
54 	else if (*num_workers < 1)
55 		*num_workers = online_cpus();
56 
57 	if (git_config_get_int("checkout.thresholdForParallelism", threshold))
58 		*threshold = DEFAULT_THRESHOLD_FOR_PARALLELISM;
59 }
60 
init_parallel_checkout(void)61 void init_parallel_checkout(void)
62 {
63 	if (parallel_checkout.status != PC_UNINITIALIZED)
64 		BUG("parallel checkout already initialized");
65 
66 	parallel_checkout.status = PC_ACCEPTING_ENTRIES;
67 }
68 
finish_parallel_checkout(void)69 static void finish_parallel_checkout(void)
70 {
71 	if (parallel_checkout.status == PC_UNINITIALIZED)
72 		BUG("cannot finish parallel checkout: not initialized yet");
73 
74 	free(parallel_checkout.items);
75 	memset(&parallel_checkout, 0, sizeof(parallel_checkout));
76 }
77 
is_eligible_for_parallel_checkout(const struct cache_entry * ce,const struct conv_attrs * ca)78 static int is_eligible_for_parallel_checkout(const struct cache_entry *ce,
79 					     const struct conv_attrs *ca)
80 {
81 	enum conv_attrs_classification c;
82 	size_t packed_item_size;
83 
84 	/*
85 	 * Symlinks cannot be checked out in parallel as, in case of path
86 	 * collision, they could racily replace leading directories of other
87 	 * entries being checked out. Submodules are checked out in child
88 	 * processes, which have their own parallel checkout queues.
89 	 */
90 	if (!S_ISREG(ce->ce_mode))
91 		return 0;
92 
93 	packed_item_size = sizeof(struct pc_item_fixed_portion) + ce->ce_namelen +
94 		(ca->working_tree_encoding ? strlen(ca->working_tree_encoding) : 0);
95 
96 	/*
97 	 * The amount of data we send to the workers per checkout item is
98 	 * typically small (75~300B). So unless we find an insanely huge path
99 	 * of 64KB, we should never reach the 65KB limit of one pkt-line. If
100 	 * that does happen, we let the sequential code handle the item.
101 	 */
102 	if (packed_item_size > LARGE_PACKET_DATA_MAX)
103 		return 0;
104 
105 	c = classify_conv_attrs(ca);
106 	switch (c) {
107 	case CA_CLASS_INCORE:
108 		return 1;
109 
110 	case CA_CLASS_INCORE_FILTER:
111 		/*
112 		 * It would be safe to allow concurrent instances of
113 		 * single-file smudge filters, like rot13, but we should not
114 		 * assume that all filters are parallel-process safe. So we
115 		 * don't allow this.
116 		 */
117 		return 0;
118 
119 	case CA_CLASS_INCORE_PROCESS:
120 		/*
121 		 * The parallel queue and the delayed queue are not compatible,
122 		 * so they must be kept completely separated. And we can't tell
123 		 * if a long-running process will delay its response without
124 		 * actually asking it to perform the filtering. Therefore, this
125 		 * type of filter is not allowed in parallel checkout.
126 		 *
127 		 * Furthermore, there should only be one instance of the
128 		 * long-running process filter as we don't know how it is
129 		 * managing its own concurrency. So, spreading the entries that
130 		 * requisite such a filter among the parallel workers would
131 		 * require a lot more inter-process communication. We would
132 		 * probably have to designate a single process to interact with
133 		 * the filter and send all the necessary data to it, for each
134 		 * entry.
135 		 */
136 		return 0;
137 
138 	case CA_CLASS_STREAMABLE:
139 		return 1;
140 
141 	default:
142 		BUG("unsupported conv_attrs classification '%d'", c);
143 	}
144 }
145 
enqueue_checkout(struct cache_entry * ce,struct conv_attrs * ca)146 int enqueue_checkout(struct cache_entry *ce, struct conv_attrs *ca)
147 {
148 	struct parallel_checkout_item *pc_item;
149 
150 	if (parallel_checkout.status != PC_ACCEPTING_ENTRIES ||
151 	    !is_eligible_for_parallel_checkout(ce, ca))
152 		return -1;
153 
154 	ALLOC_GROW(parallel_checkout.items, parallel_checkout.nr + 1,
155 		   parallel_checkout.alloc);
156 
157 	pc_item = &parallel_checkout.items[parallel_checkout.nr];
158 	pc_item->ce = ce;
159 	memcpy(&pc_item->ca, ca, sizeof(pc_item->ca));
160 	pc_item->status = PC_ITEM_PENDING;
161 	pc_item->id = parallel_checkout.nr;
162 	parallel_checkout.nr++;
163 
164 	return 0;
165 }
166 
pc_queue_size(void)167 size_t pc_queue_size(void)
168 {
169 	return parallel_checkout.nr;
170 }
171 
advance_progress_meter(void)172 static void advance_progress_meter(void)
173 {
174 	if (parallel_checkout.progress) {
175 		(*parallel_checkout.progress_cnt)++;
176 		display_progress(parallel_checkout.progress,
177 				 *parallel_checkout.progress_cnt);
178 	}
179 }
180 
handle_results(struct checkout * state)181 static int handle_results(struct checkout *state)
182 {
183 	int ret = 0;
184 	size_t i;
185 	int have_pending = 0;
186 
187 	/*
188 	 * We first update the successfully written entries with the collected
189 	 * stat() data, so that they can be found by mark_colliding_entries(),
190 	 * in the next loop, when necessary.
191 	 */
192 	for (i = 0; i < parallel_checkout.nr; i++) {
193 		struct parallel_checkout_item *pc_item = &parallel_checkout.items[i];
194 		if (pc_item->status == PC_ITEM_WRITTEN)
195 			update_ce_after_write(state, pc_item->ce, &pc_item->st);
196 	}
197 
198 	for (i = 0; i < parallel_checkout.nr; i++) {
199 		struct parallel_checkout_item *pc_item = &parallel_checkout.items[i];
200 
201 		switch(pc_item->status) {
202 		case PC_ITEM_WRITTEN:
203 			/* Already handled */
204 			break;
205 		case PC_ITEM_COLLIDED:
206 			/*
207 			 * The entry could not be checked out due to a path
208 			 * collision with another entry. Since there can only
209 			 * be one entry of each colliding group on the disk, we
210 			 * could skip trying to check out this one and move on.
211 			 * However, this would leave the unwritten entries with
212 			 * null stat() fields on the index, which could
213 			 * potentially slow down subsequent operations that
214 			 * require refreshing it: git would not be able to
215 			 * trust st_size and would have to go to the filesystem
216 			 * to see if the contents match (see ie_modified()).
217 			 *
218 			 * Instead, let's pay the overhead only once, now, and
219 			 * call checkout_entry_ca() again for this file, to
220 			 * have its stat() data stored in the index. This also
221 			 * has the benefit of adding this entry and its
222 			 * colliding pair to the collision report message.
223 			 * Additionally, this overwriting behavior is consistent
224 			 * with what the sequential checkout does, so it doesn't
225 			 * add any extra overhead.
226 			 */
227 			ret |= checkout_entry_ca(pc_item->ce, &pc_item->ca,
228 						 state, NULL, NULL);
229 			advance_progress_meter();
230 			break;
231 		case PC_ITEM_PENDING:
232 			have_pending = 1;
233 			/* fall through */
234 		case PC_ITEM_FAILED:
235 			ret = -1;
236 			break;
237 		default:
238 			BUG("unknown checkout item status in parallel checkout");
239 		}
240 	}
241 
242 	if (have_pending)
243 		error("parallel checkout finished with pending entries");
244 
245 	return ret;
246 }
247 
reset_fd(int fd,const char * path)248 static int reset_fd(int fd, const char *path)
249 {
250 	if (lseek(fd, 0, SEEK_SET) != 0)
251 		return error_errno("failed to rewind descriptor of '%s'", path);
252 	if (ftruncate(fd, 0))
253 		return error_errno("failed to truncate file '%s'", path);
254 	return 0;
255 }
256 
write_pc_item_to_fd(struct parallel_checkout_item * pc_item,int fd,const char * path)257 static int write_pc_item_to_fd(struct parallel_checkout_item *pc_item, int fd,
258 			       const char *path)
259 {
260 	int ret;
261 	struct stream_filter *filter;
262 	struct strbuf buf = STRBUF_INIT;
263 	char *blob;
264 	unsigned long size;
265 	ssize_t wrote;
266 
267 	/* Sanity check */
268 	assert(is_eligible_for_parallel_checkout(pc_item->ce, &pc_item->ca));
269 
270 	filter = get_stream_filter_ca(&pc_item->ca, &pc_item->ce->oid);
271 	if (filter) {
272 		if (stream_blob_to_fd(fd, &pc_item->ce->oid, filter, 1)) {
273 			/* On error, reset fd to try writing without streaming */
274 			if (reset_fd(fd, path))
275 				return -1;
276 		} else {
277 			return 0;
278 		}
279 	}
280 
281 	blob = read_blob_entry(pc_item->ce, &size);
282 	if (!blob)
283 		return error("cannot read object %s '%s'",
284 			     oid_to_hex(&pc_item->ce->oid), pc_item->ce->name);
285 
286 	/*
287 	 * checkout metadata is used to give context for external process
288 	 * filters. Files requiring such filters are not eligible for parallel
289 	 * checkout, so pass NULL. Note: if that changes, the metadata must also
290 	 * be passed from the main process to the workers.
291 	 */
292 	ret = convert_to_working_tree_ca(&pc_item->ca, pc_item->ce->name,
293 					 blob, size, &buf, NULL);
294 
295 	if (ret) {
296 		size_t newsize;
297 		free(blob);
298 		blob = strbuf_detach(&buf, &newsize);
299 		size = newsize;
300 	}
301 
302 	wrote = write_in_full(fd, blob, size);
303 	free(blob);
304 	if (wrote < 0)
305 		return error("unable to write file '%s'", path);
306 
307 	return 0;
308 }
309 
close_and_clear(int * fd)310 static int close_and_clear(int *fd)
311 {
312 	int ret = 0;
313 
314 	if (*fd >= 0) {
315 		ret = close(*fd);
316 		*fd = -1;
317 	}
318 
319 	return ret;
320 }
321 
write_pc_item(struct parallel_checkout_item * pc_item,struct checkout * state)322 void write_pc_item(struct parallel_checkout_item *pc_item,
323 		   struct checkout *state)
324 {
325 	unsigned int mode = (pc_item->ce->ce_mode & 0100) ? 0777 : 0666;
326 	int fd = -1, fstat_done = 0;
327 	struct strbuf path = STRBUF_INIT;
328 	const char *dir_sep;
329 
330 	strbuf_add(&path, state->base_dir, state->base_dir_len);
331 	strbuf_add(&path, pc_item->ce->name, pc_item->ce->ce_namelen);
332 
333 	dir_sep = find_last_dir_sep(path.buf);
334 
335 	/*
336 	 * The leading dirs should have been already created by now. But, in
337 	 * case of path collisions, one of the dirs could have been replaced by
338 	 * a symlink (checked out after we enqueued this entry for parallel
339 	 * checkout). Thus, we must check the leading dirs again.
340 	 */
341 	if (dir_sep && !has_dirs_only_path(path.buf, dir_sep - path.buf,
342 					   state->base_dir_len)) {
343 		pc_item->status = PC_ITEM_COLLIDED;
344 		trace2_data_string("pcheckout", NULL, "collision/dirname", path.buf);
345 		goto out;
346 	}
347 
348 	fd = open(path.buf, O_WRONLY | O_CREAT | O_EXCL, mode);
349 
350 	if (fd < 0) {
351 		if (errno == EEXIST || errno == EISDIR) {
352 			/*
353 			 * Errors which probably represent a path collision.
354 			 * Suppress the error message and mark the item to be
355 			 * retried later, sequentially. ENOTDIR and ENOENT are
356 			 * also interesting, but the above has_dirs_only_path()
357 			 * call should have already caught these cases.
358 			 */
359 			pc_item->status = PC_ITEM_COLLIDED;
360 			trace2_data_string("pcheckout", NULL,
361 					   "collision/basename", path.buf);
362 		} else {
363 			error_errno("failed to open file '%s'", path.buf);
364 			pc_item->status = PC_ITEM_FAILED;
365 		}
366 		goto out;
367 	}
368 
369 	if (write_pc_item_to_fd(pc_item, fd, path.buf)) {
370 		/* Error was already reported. */
371 		pc_item->status = PC_ITEM_FAILED;
372 		close_and_clear(&fd);
373 		unlink(path.buf);
374 		goto out;
375 	}
376 
377 	fstat_done = fstat_checkout_output(fd, state, &pc_item->st);
378 
379 	if (close_and_clear(&fd)) {
380 		error_errno("unable to close file '%s'", path.buf);
381 		pc_item->status = PC_ITEM_FAILED;
382 		goto out;
383 	}
384 
385 	if (state->refresh_cache && !fstat_done && lstat(path.buf, &pc_item->st) < 0) {
386 		error_errno("unable to stat just-written file '%s'",  path.buf);
387 		pc_item->status = PC_ITEM_FAILED;
388 		goto out;
389 	}
390 
391 	pc_item->status = PC_ITEM_WRITTEN;
392 
393 out:
394 	strbuf_release(&path);
395 }
396 
send_one_item(int fd,struct parallel_checkout_item * pc_item)397 static void send_one_item(int fd, struct parallel_checkout_item *pc_item)
398 {
399 	size_t len_data;
400 	char *data, *variant;
401 	struct pc_item_fixed_portion *fixed_portion;
402 	const char *working_tree_encoding = pc_item->ca.working_tree_encoding;
403 	size_t name_len = pc_item->ce->ce_namelen;
404 	size_t working_tree_encoding_len = working_tree_encoding ?
405 					   strlen(working_tree_encoding) : 0;
406 
407 	/*
408 	 * Any changes in the calculation of the message size must also be made
409 	 * in is_eligible_for_parallel_checkout().
410 	 */
411 	len_data = sizeof(struct pc_item_fixed_portion) + name_len +
412 		   working_tree_encoding_len;
413 
414 	data = xmalloc(len_data);
415 
416 	fixed_portion = (struct pc_item_fixed_portion *)data;
417 	fixed_portion->id = pc_item->id;
418 	fixed_portion->ce_mode = pc_item->ce->ce_mode;
419 	fixed_portion->crlf_action = pc_item->ca.crlf_action;
420 	fixed_portion->ident = pc_item->ca.ident;
421 	fixed_portion->name_len = name_len;
422 	fixed_portion->working_tree_encoding_len = working_tree_encoding_len;
423 	/*
424 	 * We pad the unused bytes in the hash array because, otherwise,
425 	 * Valgrind would complain about passing uninitialized bytes to a
426 	 * write() syscall. The warning doesn't represent any real risk here,
427 	 * but it could hinder the detection of actual errors.
428 	 */
429 	oidcpy_with_padding(&fixed_portion->oid, &pc_item->ce->oid);
430 
431 	variant = data + sizeof(*fixed_portion);
432 	if (working_tree_encoding_len) {
433 		memcpy(variant, working_tree_encoding, working_tree_encoding_len);
434 		variant += working_tree_encoding_len;
435 	}
436 	memcpy(variant, pc_item->ce->name, name_len);
437 
438 	packet_write(fd, data, len_data);
439 
440 	free(data);
441 }
442 
send_batch(int fd,size_t start,size_t nr)443 static void send_batch(int fd, size_t start, size_t nr)
444 {
445 	size_t i;
446 	sigchain_push(SIGPIPE, SIG_IGN);
447 	for (i = 0; i < nr; i++)
448 		send_one_item(fd, &parallel_checkout.items[start + i]);
449 	packet_flush(fd);
450 	sigchain_pop(SIGPIPE);
451 }
452 
setup_workers(struct checkout * state,int num_workers)453 static struct pc_worker *setup_workers(struct checkout *state, int num_workers)
454 {
455 	struct pc_worker *workers;
456 	int i, workers_with_one_extra_item;
457 	size_t base_batch_size, batch_beginning = 0;
458 
459 	ALLOC_ARRAY(workers, num_workers);
460 
461 	for (i = 0; i < num_workers; i++) {
462 		struct child_process *cp = &workers[i].cp;
463 
464 		child_process_init(cp);
465 		cp->git_cmd = 1;
466 		cp->in = -1;
467 		cp->out = -1;
468 		cp->clean_on_exit = 1;
469 		strvec_push(&cp->args, "checkout--worker");
470 		if (state->base_dir_len)
471 			strvec_pushf(&cp->args, "--prefix=%s", state->base_dir);
472 		if (start_command(cp))
473 			die("failed to spawn checkout worker");
474 	}
475 
476 	base_batch_size = parallel_checkout.nr / num_workers;
477 	workers_with_one_extra_item = parallel_checkout.nr % num_workers;
478 
479 	for (i = 0; i < num_workers; i++) {
480 		struct pc_worker *worker = &workers[i];
481 		size_t batch_size = base_batch_size;
482 
483 		/* distribute the extra work evenly */
484 		if (i < workers_with_one_extra_item)
485 			batch_size++;
486 
487 		send_batch(worker->cp.in, batch_beginning, batch_size);
488 		worker->next_item_to_complete = batch_beginning;
489 		worker->nr_items_to_complete = batch_size;
490 
491 		batch_beginning += batch_size;
492 	}
493 
494 	return workers;
495 }
496 
finish_workers(struct pc_worker * workers,int num_workers)497 static void finish_workers(struct pc_worker *workers, int num_workers)
498 {
499 	int i;
500 
501 	/*
502 	 * Close pipes before calling finish_command() to let the workers
503 	 * exit asynchronously and avoid spending extra time on wait().
504 	 */
505 	for (i = 0; i < num_workers; i++) {
506 		struct child_process *cp = &workers[i].cp;
507 		if (cp->in >= 0)
508 			close(cp->in);
509 		if (cp->out >= 0)
510 			close(cp->out);
511 	}
512 
513 	for (i = 0; i < num_workers; i++) {
514 		int rc = finish_command(&workers[i].cp);
515 		if (rc > 128) {
516 			/*
517 			 * For a normal non-zero exit, the worker should have
518 			 * already printed something useful to stderr. But a
519 			 * death by signal should be mentioned to the user.
520 			 */
521 			error("checkout worker %d died of signal %d", i, rc - 128);
522 		}
523 	}
524 
525 	free(workers);
526 }
527 
assert_pc_item_result_size(int got,int exp)528 static inline void assert_pc_item_result_size(int got, int exp)
529 {
530 	if (got != exp)
531 		BUG("wrong result size from checkout worker (got %dB, exp %dB)",
532 		    got, exp);
533 }
534 
parse_and_save_result(const char * buffer,int len,struct pc_worker * worker)535 static void parse_and_save_result(const char *buffer, int len,
536 				  struct pc_worker *worker)
537 {
538 	struct pc_item_result *res;
539 	struct parallel_checkout_item *pc_item;
540 	struct stat *st = NULL;
541 
542 	if (len < PC_ITEM_RESULT_BASE_SIZE)
543 		BUG("too short result from checkout worker (got %dB, exp >=%dB)",
544 		    len, (int)PC_ITEM_RESULT_BASE_SIZE);
545 
546 	res = (struct pc_item_result *)buffer;
547 
548 	/*
549 	 * Worker should send either the full result struct on success, or
550 	 * just the base (i.e. no stat data), otherwise.
551 	 */
552 	if (res->status == PC_ITEM_WRITTEN) {
553 		assert_pc_item_result_size(len, (int)sizeof(struct pc_item_result));
554 		st = &res->st;
555 	} else {
556 		assert_pc_item_result_size(len, (int)PC_ITEM_RESULT_BASE_SIZE);
557 	}
558 
559 	if (!worker->nr_items_to_complete)
560 		BUG("received result from supposedly finished checkout worker");
561 	if (res->id != worker->next_item_to_complete)
562 		BUG("unexpected item id from checkout worker (got %"PRIuMAX", exp %"PRIuMAX")",
563 		    (uintmax_t)res->id, (uintmax_t)worker->next_item_to_complete);
564 
565 	worker->next_item_to_complete++;
566 	worker->nr_items_to_complete--;
567 
568 	pc_item = &parallel_checkout.items[res->id];
569 	pc_item->status = res->status;
570 	if (st)
571 		pc_item->st = *st;
572 
573 	if (res->status != PC_ITEM_COLLIDED)
574 		advance_progress_meter();
575 }
576 
gather_results_from_workers(struct pc_worker * workers,int num_workers)577 static void gather_results_from_workers(struct pc_worker *workers,
578 					int num_workers)
579 {
580 	int i, active_workers = num_workers;
581 	struct pollfd *pfds;
582 
583 	CALLOC_ARRAY(pfds, num_workers);
584 	for (i = 0; i < num_workers; i++) {
585 		pfds[i].fd = workers[i].cp.out;
586 		pfds[i].events = POLLIN;
587 	}
588 
589 	while (active_workers) {
590 		int nr = poll(pfds, num_workers, -1);
591 
592 		if (nr < 0) {
593 			if (errno == EINTR)
594 				continue;
595 			die_errno("failed to poll checkout workers");
596 		}
597 
598 		for (i = 0; i < num_workers && nr > 0; i++) {
599 			struct pc_worker *worker = &workers[i];
600 			struct pollfd *pfd = &pfds[i];
601 
602 			if (!pfd->revents)
603 				continue;
604 
605 			if (pfd->revents & POLLIN) {
606 				int len = packet_read(pfd->fd, packet_buffer,
607 						      sizeof(packet_buffer), 0);
608 
609 				if (len < 0) {
610 					BUG("packet_read() returned negative value");
611 				} else if (!len) {
612 					pfd->fd = -1;
613 					active_workers--;
614 				} else {
615 					parse_and_save_result(packet_buffer,
616 							      len, worker);
617 				}
618 			} else if (pfd->revents & POLLHUP) {
619 				pfd->fd = -1;
620 				active_workers--;
621 			} else if (pfd->revents & (POLLNVAL | POLLERR)) {
622 				die("error polling from checkout worker");
623 			}
624 
625 			nr--;
626 		}
627 	}
628 
629 	free(pfds);
630 }
631 
write_items_sequentially(struct checkout * state)632 static void write_items_sequentially(struct checkout *state)
633 {
634 	size_t i;
635 
636 	for (i = 0; i < parallel_checkout.nr; i++) {
637 		struct parallel_checkout_item *pc_item = &parallel_checkout.items[i];
638 		write_pc_item(pc_item, state);
639 		if (pc_item->status != PC_ITEM_COLLIDED)
640 			advance_progress_meter();
641 	}
642 }
643 
run_parallel_checkout(struct checkout * state,int num_workers,int threshold,struct progress * progress,unsigned int * progress_cnt)644 int run_parallel_checkout(struct checkout *state, int num_workers, int threshold,
645 			  struct progress *progress, unsigned int *progress_cnt)
646 {
647 	int ret;
648 
649 	if (parallel_checkout.status != PC_ACCEPTING_ENTRIES)
650 		BUG("cannot run parallel checkout: uninitialized or already running");
651 
652 	parallel_checkout.status = PC_RUNNING;
653 	parallel_checkout.progress = progress;
654 	parallel_checkout.progress_cnt = progress_cnt;
655 
656 	if (parallel_checkout.nr < num_workers)
657 		num_workers = parallel_checkout.nr;
658 
659 	if (num_workers <= 1 || parallel_checkout.nr < threshold) {
660 		write_items_sequentially(state);
661 	} else {
662 		struct pc_worker *workers = setup_workers(state, num_workers);
663 		gather_results_from_workers(workers, num_workers);
664 		finish_workers(workers, num_workers);
665 	}
666 
667 	ret = handle_results(state);
668 
669 	finish_parallel_checkout();
670 	return ret;
671 }
672