1 #include "cache.h"
2 #include "hash-lookup.h"
3 
take2(const struct object_id * oid,size_t ofs)4 static uint32_t take2(const struct object_id *oid, size_t ofs)
5 {
6 	return ((oid->hash[ofs] << 8) | oid->hash[ofs + 1]);
7 }
8 
9 /*
10  * Conventional binary search loop looks like this:
11  *
12  *      do {
13  *              int mi = lo + (hi - lo) / 2;
14  *              int cmp = "entry pointed at by mi" minus "target";
15  *              if (!cmp)
16  *                      return (mi is the wanted one)
17  *              if (cmp > 0)
18  *                      hi = mi; "mi is larger than target"
19  *              else
20  *                      lo = mi+1; "mi is smaller than target"
21  *      } while (lo < hi);
22  *
23  * The invariants are:
24  *
25  * - When entering the loop, lo points at a slot that is never
26  *   above the target (it could be at the target), hi points at a
27  *   slot that is guaranteed to be above the target (it can never
28  *   be at the target).
29  *
30  * - We find a point 'mi' between lo and hi (mi could be the same
31  *   as lo, but never can be the same as hi), and check if it hits
32  *   the target.  There are three cases:
33  *
34  *    - if it is a hit, we are happy.
35  *
36  *    - if it is strictly higher than the target, we update hi with
37  *      it.
38  *
39  *    - if it is strictly lower than the target, we update lo to be
40  *      one slot after it, because we allow lo to be at the target.
41  *
42  * When choosing 'mi', we do not have to take the "middle" but
43  * anywhere in between lo and hi, as long as lo <= mi < hi is
44  * satisfied.  When we somehow know that the distance between the
45  * target and lo is much shorter than the target and hi, we could
46  * pick mi that is much closer to lo than the midway.
47  */
48 /*
49  * The table should contain "nr" elements.
50  * The oid of element i (between 0 and nr - 1) should be returned
51  * by "fn(i, table)".
52  */
oid_pos(const struct object_id * oid,const void * table,size_t nr,oid_access_fn fn)53 int oid_pos(const struct object_id *oid, const void *table, size_t nr,
54 	    oid_access_fn fn)
55 {
56 	size_t hi = nr;
57 	size_t lo = 0;
58 	size_t mi = 0;
59 
60 	if (!nr)
61 		return -1;
62 
63 	if (nr != 1) {
64 		size_t lov, hiv, miv, ofs;
65 
66 		for (ofs = 0; ofs < the_hash_algo->rawsz - 2; ofs += 2) {
67 			lov = take2(fn(0, table), ofs);
68 			hiv = take2(fn(nr - 1, table), ofs);
69 			miv = take2(oid, ofs);
70 			if (miv < lov)
71 				return -1;
72 			if (hiv < miv)
73 				return index_pos_to_insert_pos(nr);
74 			if (lov != hiv) {
75 				/*
76 				 * At this point miv could be equal
77 				 * to hiv (but hash could still be higher);
78 				 * the invariant of (mi < hi) should be
79 				 * kept.
80 				 */
81 				mi = (nr - 1) * (miv - lov) / (hiv - lov);
82 				if (lo <= mi && mi < hi)
83 					break;
84 				BUG("assertion failed in binary search");
85 			}
86 		}
87 	}
88 
89 	do {
90 		int cmp;
91 		cmp = oidcmp(fn(mi, table), oid);
92 		if (!cmp)
93 			return mi;
94 		if (cmp > 0)
95 			hi = mi;
96 		else
97 			lo = mi + 1;
98 		mi = lo + (hi - lo) / 2;
99 	} while (lo < hi);
100 	return index_pos_to_insert_pos(lo);
101 }
102 
bsearch_hash(const unsigned char * hash,const uint32_t * fanout_nbo,const unsigned char * table,size_t stride,uint32_t * result)103 int bsearch_hash(const unsigned char *hash, const uint32_t *fanout_nbo,
104 		 const unsigned char *table, size_t stride, uint32_t *result)
105 {
106 	uint32_t hi, lo;
107 
108 	hi = ntohl(fanout_nbo[*hash]);
109 	lo = ((*hash == 0x0) ? 0 : ntohl(fanout_nbo[*hash - 1]));
110 
111 	while (lo < hi) {
112 		unsigned mi = lo + (hi - lo) / 2;
113 		int cmp = hashcmp(table + mi * stride, hash);
114 
115 		if (!cmp) {
116 			if (result)
117 				*result = mi;
118 			return 1;
119 		}
120 		if (cmp > 0)
121 			hi = mi;
122 		else
123 			lo = mi + 1;
124 	}
125 
126 	if (result)
127 		*result = lo;
128 	return 0;
129 }
130