1// Go support for Protocol Buffers - Google's data interchange format
2//
3// Copyright 2010 The Go Authors.  All rights reserved.
4// https://github.com/golang/protobuf
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met:
9//
10//     * Redistributions of source code must retain the above copyright
11// notice, this list of conditions and the following disclaimer.
12//     * Redistributions in binary form must reproduce the above
13// copyright notice, this list of conditions and the following disclaimer
14// in the documentation and/or other materials provided with the
15// distribution.
16//     * Neither the name of Google Inc. nor the names of its
17// contributors may be used to endorse or promote products derived from
18// this software without specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32package proto
33
34/*
35 * Routines for encoding data into the wire format for protocol buffers.
36 */
37
38import (
39	"fmt"
40	"log"
41	"os"
42	"reflect"
43	"sort"
44	"strconv"
45	"strings"
46	"sync"
47)
48
49const debug bool = false
50
51// Constants that identify the encoding of a value on the wire.
52const (
53	WireVarint     = 0
54	WireFixed64    = 1
55	WireBytes      = 2
56	WireStartGroup = 3
57	WireEndGroup   = 4
58	WireFixed32    = 5
59)
60
61const startSize = 10 // initial slice/string sizes
62
63// Encoders are defined in encode.go
64// An encoder outputs the full representation of a field, including its
65// tag and encoder type.
66type encoder func(p *Buffer, prop *Properties, base structPointer) error
67
68// A valueEncoder encodes a single integer in a particular encoding.
69type valueEncoder func(o *Buffer, x uint64) error
70
71// Sizers are defined in encode.go
72// A sizer returns the encoded size of a field, including its tag and encoder
73// type.
74type sizer func(prop *Properties, base structPointer) int
75
76// A valueSizer returns the encoded size of a single integer in a particular
77// encoding.
78type valueSizer func(x uint64) int
79
80// Decoders are defined in decode.go
81// A decoder creates a value from its wire representation.
82// Unrecognized subelements are saved in unrec.
83type decoder func(p *Buffer, prop *Properties, base structPointer) error
84
85// A valueDecoder decodes a single integer in a particular encoding.
86type valueDecoder func(o *Buffer) (x uint64, err error)
87
88// A oneofMarshaler does the marshaling for all oneof fields in a message.
89type oneofMarshaler func(Message, *Buffer) error
90
91// A oneofUnmarshaler does the unmarshaling for a oneof field in a message.
92type oneofUnmarshaler func(Message, int, int, *Buffer) (bool, error)
93
94// A oneofSizer does the sizing for all oneof fields in a message.
95type oneofSizer func(Message) int
96
97// tagMap is an optimization over map[int]int for typical protocol buffer
98// use-cases. Encoded protocol buffers are often in tag order with small tag
99// numbers.
100type tagMap struct {
101	fastTags []int
102	slowTags map[int]int
103}
104
105// tagMapFastLimit is the upper bound on the tag number that will be stored in
106// the tagMap slice rather than its map.
107const tagMapFastLimit = 1024
108
109func (p *tagMap) get(t int) (int, bool) {
110	if t > 0 && t < tagMapFastLimit {
111		if t >= len(p.fastTags) {
112			return 0, false
113		}
114		fi := p.fastTags[t]
115		return fi, fi >= 0
116	}
117	fi, ok := p.slowTags[t]
118	return fi, ok
119}
120
121func (p *tagMap) put(t int, fi int) {
122	if t > 0 && t < tagMapFastLimit {
123		for len(p.fastTags) < t+1 {
124			p.fastTags = append(p.fastTags, -1)
125		}
126		p.fastTags[t] = fi
127		return
128	}
129	if p.slowTags == nil {
130		p.slowTags = make(map[int]int)
131	}
132	p.slowTags[t] = fi
133}
134
135// StructProperties represents properties for all the fields of a struct.
136// decoderTags and decoderOrigNames should only be used by the decoder.
137type StructProperties struct {
138	Prop             []*Properties  // properties for each field
139	reqCount         int            // required count
140	decoderTags      tagMap         // map from proto tag to struct field number
141	decoderOrigNames map[string]int // map from original name to struct field number
142	order            []int          // list of struct field numbers in tag order
143	unrecField       field          // field id of the XXX_unrecognized []byte field
144	extendable       bool           // is this an extendable proto
145
146	oneofMarshaler   oneofMarshaler
147	oneofUnmarshaler oneofUnmarshaler
148	oneofSizer       oneofSizer
149	stype            reflect.Type
150
151	// OneofTypes contains information about the oneof fields in this message.
152	// It is keyed by the original name of a field.
153	OneofTypes map[string]*OneofProperties
154}
155
156// OneofProperties represents information about a specific field in a oneof.
157type OneofProperties struct {
158	Type  reflect.Type // pointer to generated struct type for this oneof field
159	Field int          // struct field number of the containing oneof in the message
160	Prop  *Properties
161}
162
163// Implement the sorting interface so we can sort the fields in tag order, as recommended by the spec.
164// See encode.go, (*Buffer).enc_struct.
165
166func (sp *StructProperties) Len() int { return len(sp.order) }
167func (sp *StructProperties) Less(i, j int) bool {
168	return sp.Prop[sp.order[i]].Tag < sp.Prop[sp.order[j]].Tag
169}
170func (sp *StructProperties) Swap(i, j int) { sp.order[i], sp.order[j] = sp.order[j], sp.order[i] }
171
172// Properties represents the protocol-specific behavior of a single struct field.
173type Properties struct {
174	Name     string // name of the field, for error messages
175	OrigName string // original name before protocol compiler (always set)
176	JSONName string // name to use for JSON; determined by protoc
177	Wire     string
178	WireType int
179	Tag      int
180	Required bool
181	Optional bool
182	Repeated bool
183	Packed   bool   // relevant for repeated primitives only
184	Enum     string // set for enum types only
185	proto3   bool   // whether this is known to be a proto3 field; set for []byte only
186	oneof    bool   // whether this is a oneof field
187
188	Default    string // default value
189	HasDefault bool   // whether an explicit default was provided
190	def_uint64 uint64
191
192	enc           encoder
193	valEnc        valueEncoder // set for bool and numeric types only
194	field         field
195	tagcode       []byte // encoding of EncodeVarint((Tag<<3)|WireType)
196	tagbuf        [8]byte
197	stype         reflect.Type      // set for struct types only
198	sprop         *StructProperties // set for struct types only
199	isMarshaler   bool
200	isUnmarshaler bool
201
202	mtype    reflect.Type // set for map types only
203	mkeyprop *Properties  // set for map types only
204	mvalprop *Properties  // set for map types only
205
206	size    sizer
207	valSize valueSizer // set for bool and numeric types only
208
209	dec    decoder
210	valDec valueDecoder // set for bool and numeric types only
211
212	// If this is a packable field, this will be the decoder for the packed version of the field.
213	packedDec decoder
214}
215
216// String formats the properties in the protobuf struct field tag style.
217func (p *Properties) String() string {
218	s := p.Wire
219	s = ","
220	s += strconv.Itoa(p.Tag)
221	if p.Required {
222		s += ",req"
223	}
224	if p.Optional {
225		s += ",opt"
226	}
227	if p.Repeated {
228		s += ",rep"
229	}
230	if p.Packed {
231		s += ",packed"
232	}
233	s += ",name=" + p.OrigName
234	if p.JSONName != p.OrigName {
235		s += ",json=" + p.JSONName
236	}
237	if p.proto3 {
238		s += ",proto3"
239	}
240	if p.oneof {
241		s += ",oneof"
242	}
243	if len(p.Enum) > 0 {
244		s += ",enum=" + p.Enum
245	}
246	if p.HasDefault {
247		s += ",def=" + p.Default
248	}
249	return s
250}
251
252// Parse populates p by parsing a string in the protobuf struct field tag style.
253func (p *Properties) Parse(s string) {
254	// "bytes,49,opt,name=foo,def=hello!"
255	fields := strings.Split(s, ",") // breaks def=, but handled below.
256	if len(fields) < 2 {
257		fmt.Fprintf(os.Stderr, "proto: tag has too few fields: %q\n", s)
258		return
259	}
260
261	p.Wire = fields[0]
262	switch p.Wire {
263	case "varint":
264		p.WireType = WireVarint
265		p.valEnc = (*Buffer).EncodeVarint
266		p.valDec = (*Buffer).DecodeVarint
267		p.valSize = sizeVarint
268	case "fixed32":
269		p.WireType = WireFixed32
270		p.valEnc = (*Buffer).EncodeFixed32
271		p.valDec = (*Buffer).DecodeFixed32
272		p.valSize = sizeFixed32
273	case "fixed64":
274		p.WireType = WireFixed64
275		p.valEnc = (*Buffer).EncodeFixed64
276		p.valDec = (*Buffer).DecodeFixed64
277		p.valSize = sizeFixed64
278	case "zigzag32":
279		p.WireType = WireVarint
280		p.valEnc = (*Buffer).EncodeZigzag32
281		p.valDec = (*Buffer).DecodeZigzag32
282		p.valSize = sizeZigzag32
283	case "zigzag64":
284		p.WireType = WireVarint
285		p.valEnc = (*Buffer).EncodeZigzag64
286		p.valDec = (*Buffer).DecodeZigzag64
287		p.valSize = sizeZigzag64
288	case "bytes", "group":
289		p.WireType = WireBytes
290		// no numeric converter for non-numeric types
291	default:
292		fmt.Fprintf(os.Stderr, "proto: tag has unknown wire type: %q\n", s)
293		return
294	}
295
296	var err error
297	p.Tag, err = strconv.Atoi(fields[1])
298	if err != nil {
299		return
300	}
301
302	for i := 2; i < len(fields); i++ {
303		f := fields[i]
304		switch {
305		case f == "req":
306			p.Required = true
307		case f == "opt":
308			p.Optional = true
309		case f == "rep":
310			p.Repeated = true
311		case f == "packed":
312			p.Packed = true
313		case strings.HasPrefix(f, "name="):
314			p.OrigName = f[5:]
315		case strings.HasPrefix(f, "json="):
316			p.JSONName = f[5:]
317		case strings.HasPrefix(f, "enum="):
318			p.Enum = f[5:]
319		case f == "proto3":
320			p.proto3 = true
321		case f == "oneof":
322			p.oneof = true
323		case strings.HasPrefix(f, "def="):
324			p.HasDefault = true
325			p.Default = f[4:] // rest of string
326			if i+1 < len(fields) {
327				// Commas aren't escaped, and def is always last.
328				p.Default += "," + strings.Join(fields[i+1:], ",")
329				break
330			}
331		}
332	}
333}
334
335func logNoSliceEnc(t1, t2 reflect.Type) {
336	fmt.Fprintf(os.Stderr, "proto: no slice oenc for %T = []%T\n", t1, t2)
337}
338
339var protoMessageType = reflect.TypeOf((*Message)(nil)).Elem()
340
341// Initialize the fields for encoding and decoding.
342func (p *Properties) setEncAndDec(typ reflect.Type, f *reflect.StructField, lockGetProp bool) {
343	p.enc = nil
344	p.dec = nil
345	p.size = nil
346
347	switch t1 := typ; t1.Kind() {
348	default:
349		fmt.Fprintf(os.Stderr, "proto: no coders for %v\n", t1)
350
351	// proto3 scalar types
352
353	case reflect.Bool:
354		p.enc = (*Buffer).enc_proto3_bool
355		p.dec = (*Buffer).dec_proto3_bool
356		p.size = size_proto3_bool
357	case reflect.Int32:
358		p.enc = (*Buffer).enc_proto3_int32
359		p.dec = (*Buffer).dec_proto3_int32
360		p.size = size_proto3_int32
361	case reflect.Uint32:
362		p.enc = (*Buffer).enc_proto3_uint32
363		p.dec = (*Buffer).dec_proto3_int32 // can reuse
364		p.size = size_proto3_uint32
365	case reflect.Int64, reflect.Uint64:
366		p.enc = (*Buffer).enc_proto3_int64
367		p.dec = (*Buffer).dec_proto3_int64
368		p.size = size_proto3_int64
369	case reflect.Float32:
370		p.enc = (*Buffer).enc_proto3_uint32 // can just treat them as bits
371		p.dec = (*Buffer).dec_proto3_int32
372		p.size = size_proto3_uint32
373	case reflect.Float64:
374		p.enc = (*Buffer).enc_proto3_int64 // can just treat them as bits
375		p.dec = (*Buffer).dec_proto3_int64
376		p.size = size_proto3_int64
377	case reflect.String:
378		p.enc = (*Buffer).enc_proto3_string
379		p.dec = (*Buffer).dec_proto3_string
380		p.size = size_proto3_string
381
382	case reflect.Ptr:
383		switch t2 := t1.Elem(); t2.Kind() {
384		default:
385			fmt.Fprintf(os.Stderr, "proto: no encoder function for %v -> %v\n", t1, t2)
386			break
387		case reflect.Bool:
388			p.enc = (*Buffer).enc_bool
389			p.dec = (*Buffer).dec_bool
390			p.size = size_bool
391		case reflect.Int32:
392			p.enc = (*Buffer).enc_int32
393			p.dec = (*Buffer).dec_int32
394			p.size = size_int32
395		case reflect.Uint32:
396			p.enc = (*Buffer).enc_uint32
397			p.dec = (*Buffer).dec_int32 // can reuse
398			p.size = size_uint32
399		case reflect.Int64, reflect.Uint64:
400			p.enc = (*Buffer).enc_int64
401			p.dec = (*Buffer).dec_int64
402			p.size = size_int64
403		case reflect.Float32:
404			p.enc = (*Buffer).enc_uint32 // can just treat them as bits
405			p.dec = (*Buffer).dec_int32
406			p.size = size_uint32
407		case reflect.Float64:
408			p.enc = (*Buffer).enc_int64 // can just treat them as bits
409			p.dec = (*Buffer).dec_int64
410			p.size = size_int64
411		case reflect.String:
412			p.enc = (*Buffer).enc_string
413			p.dec = (*Buffer).dec_string
414			p.size = size_string
415		case reflect.Struct:
416			p.stype = t1.Elem()
417			p.isMarshaler = isMarshaler(t1)
418			p.isUnmarshaler = isUnmarshaler(t1)
419			if p.Wire == "bytes" {
420				p.enc = (*Buffer).enc_struct_message
421				p.dec = (*Buffer).dec_struct_message
422				p.size = size_struct_message
423			} else {
424				p.enc = (*Buffer).enc_struct_group
425				p.dec = (*Buffer).dec_struct_group
426				p.size = size_struct_group
427			}
428		}
429
430	case reflect.Slice:
431		switch t2 := t1.Elem(); t2.Kind() {
432		default:
433			logNoSliceEnc(t1, t2)
434			break
435		case reflect.Bool:
436			if p.Packed {
437				p.enc = (*Buffer).enc_slice_packed_bool
438				p.size = size_slice_packed_bool
439			} else {
440				p.enc = (*Buffer).enc_slice_bool
441				p.size = size_slice_bool
442			}
443			p.dec = (*Buffer).dec_slice_bool
444			p.packedDec = (*Buffer).dec_slice_packed_bool
445		case reflect.Int32:
446			if p.Packed {
447				p.enc = (*Buffer).enc_slice_packed_int32
448				p.size = size_slice_packed_int32
449			} else {
450				p.enc = (*Buffer).enc_slice_int32
451				p.size = size_slice_int32
452			}
453			p.dec = (*Buffer).dec_slice_int32
454			p.packedDec = (*Buffer).dec_slice_packed_int32
455		case reflect.Uint32:
456			if p.Packed {
457				p.enc = (*Buffer).enc_slice_packed_uint32
458				p.size = size_slice_packed_uint32
459			} else {
460				p.enc = (*Buffer).enc_slice_uint32
461				p.size = size_slice_uint32
462			}
463			p.dec = (*Buffer).dec_slice_int32
464			p.packedDec = (*Buffer).dec_slice_packed_int32
465		case reflect.Int64, reflect.Uint64:
466			if p.Packed {
467				p.enc = (*Buffer).enc_slice_packed_int64
468				p.size = size_slice_packed_int64
469			} else {
470				p.enc = (*Buffer).enc_slice_int64
471				p.size = size_slice_int64
472			}
473			p.dec = (*Buffer).dec_slice_int64
474			p.packedDec = (*Buffer).dec_slice_packed_int64
475		case reflect.Uint8:
476			p.enc = (*Buffer).enc_slice_byte
477			p.dec = (*Buffer).dec_slice_byte
478			p.size = size_slice_byte
479			// This is a []byte, which is either a bytes field,
480			// or the value of a map field. In the latter case,
481			// we always encode an empty []byte, so we should not
482			// use the proto3 enc/size funcs.
483			// f == nil iff this is the key/value of a map field.
484			if p.proto3 && f != nil {
485				p.enc = (*Buffer).enc_proto3_slice_byte
486				p.size = size_proto3_slice_byte
487			}
488		case reflect.Float32, reflect.Float64:
489			switch t2.Bits() {
490			case 32:
491				// can just treat them as bits
492				if p.Packed {
493					p.enc = (*Buffer).enc_slice_packed_uint32
494					p.size = size_slice_packed_uint32
495				} else {
496					p.enc = (*Buffer).enc_slice_uint32
497					p.size = size_slice_uint32
498				}
499				p.dec = (*Buffer).dec_slice_int32
500				p.packedDec = (*Buffer).dec_slice_packed_int32
501			case 64:
502				// can just treat them as bits
503				if p.Packed {
504					p.enc = (*Buffer).enc_slice_packed_int64
505					p.size = size_slice_packed_int64
506				} else {
507					p.enc = (*Buffer).enc_slice_int64
508					p.size = size_slice_int64
509				}
510				p.dec = (*Buffer).dec_slice_int64
511				p.packedDec = (*Buffer).dec_slice_packed_int64
512			default:
513				logNoSliceEnc(t1, t2)
514				break
515			}
516		case reflect.String:
517			p.enc = (*Buffer).enc_slice_string
518			p.dec = (*Buffer).dec_slice_string
519			p.size = size_slice_string
520		case reflect.Ptr:
521			switch t3 := t2.Elem(); t3.Kind() {
522			default:
523				fmt.Fprintf(os.Stderr, "proto: no ptr oenc for %T -> %T -> %T\n", t1, t2, t3)
524				break
525			case reflect.Struct:
526				p.stype = t2.Elem()
527				p.isMarshaler = isMarshaler(t2)
528				p.isUnmarshaler = isUnmarshaler(t2)
529				if p.Wire == "bytes" {
530					p.enc = (*Buffer).enc_slice_struct_message
531					p.dec = (*Buffer).dec_slice_struct_message
532					p.size = size_slice_struct_message
533				} else {
534					p.enc = (*Buffer).enc_slice_struct_group
535					p.dec = (*Buffer).dec_slice_struct_group
536					p.size = size_slice_struct_group
537				}
538			}
539		case reflect.Slice:
540			switch t2.Elem().Kind() {
541			default:
542				fmt.Fprintf(os.Stderr, "proto: no slice elem oenc for %T -> %T -> %T\n", t1, t2, t2.Elem())
543				break
544			case reflect.Uint8:
545				p.enc = (*Buffer).enc_slice_slice_byte
546				p.dec = (*Buffer).dec_slice_slice_byte
547				p.size = size_slice_slice_byte
548			}
549		}
550
551	case reflect.Map:
552		p.enc = (*Buffer).enc_new_map
553		p.dec = (*Buffer).dec_new_map
554		p.size = size_new_map
555
556		p.mtype = t1
557		p.mkeyprop = &Properties{}
558		p.mkeyprop.init(reflect.PtrTo(p.mtype.Key()), "Key", f.Tag.Get("protobuf_key"), nil, lockGetProp)
559		p.mvalprop = &Properties{}
560		vtype := p.mtype.Elem()
561		if vtype.Kind() != reflect.Ptr && vtype.Kind() != reflect.Slice {
562			// The value type is not a message (*T) or bytes ([]byte),
563			// so we need encoders for the pointer to this type.
564			vtype = reflect.PtrTo(vtype)
565		}
566		p.mvalprop.init(vtype, "Value", f.Tag.Get("protobuf_val"), nil, lockGetProp)
567	}
568
569	// precalculate tag code
570	wire := p.WireType
571	if p.Packed {
572		wire = WireBytes
573	}
574	x := uint32(p.Tag)<<3 | uint32(wire)
575	i := 0
576	for i = 0; x > 127; i++ {
577		p.tagbuf[i] = 0x80 | uint8(x&0x7F)
578		x >>= 7
579	}
580	p.tagbuf[i] = uint8(x)
581	p.tagcode = p.tagbuf[0 : i+1]
582
583	if p.stype != nil {
584		if lockGetProp {
585			p.sprop = GetProperties(p.stype)
586		} else {
587			p.sprop = getPropertiesLocked(p.stype)
588		}
589	}
590}
591
592var (
593	marshalerType   = reflect.TypeOf((*Marshaler)(nil)).Elem()
594	unmarshalerType = reflect.TypeOf((*Unmarshaler)(nil)).Elem()
595)
596
597// isMarshaler reports whether type t implements Marshaler.
598func isMarshaler(t reflect.Type) bool {
599	// We're checking for (likely) pointer-receiver methods
600	// so if t is not a pointer, something is very wrong.
601	// The calls above only invoke isMarshaler on pointer types.
602	if t.Kind() != reflect.Ptr {
603		panic("proto: misuse of isMarshaler")
604	}
605	return t.Implements(marshalerType)
606}
607
608// isUnmarshaler reports whether type t implements Unmarshaler.
609func isUnmarshaler(t reflect.Type) bool {
610	// We're checking for (likely) pointer-receiver methods
611	// so if t is not a pointer, something is very wrong.
612	// The calls above only invoke isUnmarshaler on pointer types.
613	if t.Kind() != reflect.Ptr {
614		panic("proto: misuse of isUnmarshaler")
615	}
616	return t.Implements(unmarshalerType)
617}
618
619// Init populates the properties from a protocol buffer struct tag.
620func (p *Properties) Init(typ reflect.Type, name, tag string, f *reflect.StructField) {
621	p.init(typ, name, tag, f, true)
622}
623
624func (p *Properties) init(typ reflect.Type, name, tag string, f *reflect.StructField, lockGetProp bool) {
625	// "bytes,49,opt,def=hello!"
626	p.Name = name
627	p.OrigName = name
628	if f != nil {
629		p.field = toField(f)
630	}
631	if tag == "" {
632		return
633	}
634	p.Parse(tag)
635	p.setEncAndDec(typ, f, lockGetProp)
636}
637
638var (
639	propertiesMu  sync.RWMutex
640	propertiesMap = make(map[reflect.Type]*StructProperties)
641)
642
643// GetProperties returns the list of properties for the type represented by t.
644// t must represent a generated struct type of a protocol message.
645func GetProperties(t reflect.Type) *StructProperties {
646	if t.Kind() != reflect.Struct {
647		panic("proto: type must have kind struct")
648	}
649
650	// Most calls to GetProperties in a long-running program will be
651	// retrieving details for types we have seen before.
652	propertiesMu.RLock()
653	sprop, ok := propertiesMap[t]
654	propertiesMu.RUnlock()
655	if ok {
656		if collectStats {
657			stats.Chit++
658		}
659		return sprop
660	}
661
662	propertiesMu.Lock()
663	sprop = getPropertiesLocked(t)
664	propertiesMu.Unlock()
665	return sprop
666}
667
668// getPropertiesLocked requires that propertiesMu is held.
669func getPropertiesLocked(t reflect.Type) *StructProperties {
670	if prop, ok := propertiesMap[t]; ok {
671		if collectStats {
672			stats.Chit++
673		}
674		return prop
675	}
676	if collectStats {
677		stats.Cmiss++
678	}
679
680	prop := new(StructProperties)
681	// in case of recursive protos, fill this in now.
682	propertiesMap[t] = prop
683
684	// build properties
685	prop.extendable = reflect.PtrTo(t).Implements(extendableProtoType)
686	prop.unrecField = invalidField
687	prop.Prop = make([]*Properties, t.NumField())
688	prop.order = make([]int, t.NumField())
689
690	for i := 0; i < t.NumField(); i++ {
691		f := t.Field(i)
692		p := new(Properties)
693		name := f.Name
694		p.init(f.Type, name, f.Tag.Get("protobuf"), &f, false)
695
696		if f.Name == "XXX_extensions" { // special case
697			p.enc = (*Buffer).enc_map
698			p.dec = nil // not needed
699			p.size = size_map
700		}
701		if f.Name == "XXX_unrecognized" { // special case
702			prop.unrecField = toField(&f)
703		}
704		oneof := f.Tag.Get("protobuf_oneof") != "" // special case
705		prop.Prop[i] = p
706		prop.order[i] = i
707		if debug {
708			print(i, " ", f.Name, " ", t.String(), " ")
709			if p.Tag > 0 {
710				print(p.String())
711			}
712			print("\n")
713		}
714		if p.enc == nil && !strings.HasPrefix(f.Name, "XXX_") && !oneof {
715			fmt.Fprintln(os.Stderr, "proto: no encoder for", f.Name, f.Type.String(), "[GetProperties]")
716		}
717	}
718
719	// Re-order prop.order.
720	sort.Sort(prop)
721
722	type oneofMessage interface {
723		XXX_OneofFuncs() (func(Message, *Buffer) error, func(Message, int, int, *Buffer) (bool, error), func(Message) int, []interface{})
724	}
725	if om, ok := reflect.Zero(reflect.PtrTo(t)).Interface().(oneofMessage); ok {
726		var oots []interface{}
727		prop.oneofMarshaler, prop.oneofUnmarshaler, prop.oneofSizer, oots = om.XXX_OneofFuncs()
728		prop.stype = t
729
730		// Interpret oneof metadata.
731		prop.OneofTypes = make(map[string]*OneofProperties)
732		for _, oot := range oots {
733			oop := &OneofProperties{
734				Type: reflect.ValueOf(oot).Type(), // *T
735				Prop: new(Properties),
736			}
737			sft := oop.Type.Elem().Field(0)
738			oop.Prop.Name = sft.Name
739			oop.Prop.Parse(sft.Tag.Get("protobuf"))
740			// There will be exactly one interface field that
741			// this new value is assignable to.
742			for i := 0; i < t.NumField(); i++ {
743				f := t.Field(i)
744				if f.Type.Kind() != reflect.Interface {
745					continue
746				}
747				if !oop.Type.AssignableTo(f.Type) {
748					continue
749				}
750				oop.Field = i
751				break
752			}
753			prop.OneofTypes[oop.Prop.OrigName] = oop
754		}
755	}
756
757	// build required counts
758	// build tags
759	reqCount := 0
760	prop.decoderOrigNames = make(map[string]int)
761	for i, p := range prop.Prop {
762		if strings.HasPrefix(p.Name, "XXX_") {
763			// Internal fields should not appear in tags/origNames maps.
764			// They are handled specially when encoding and decoding.
765			continue
766		}
767		if p.Required {
768			reqCount++
769		}
770		prop.decoderTags.put(p.Tag, i)
771		prop.decoderOrigNames[p.OrigName] = i
772	}
773	prop.reqCount = reqCount
774
775	return prop
776}
777
778// Return the Properties object for the x[0]'th field of the structure.
779func propByIndex(t reflect.Type, x []int) *Properties {
780	if len(x) != 1 {
781		fmt.Fprintf(os.Stderr, "proto: field index dimension %d (not 1) for type %s\n", len(x), t)
782		return nil
783	}
784	prop := GetProperties(t)
785	return prop.Prop[x[0]]
786}
787
788// Get the address and type of a pointer to a struct from an interface.
789func getbase(pb Message) (t reflect.Type, b structPointer, err error) {
790	if pb == nil {
791		err = ErrNil
792		return
793	}
794	// get the reflect type of the pointer to the struct.
795	t = reflect.TypeOf(pb)
796	// get the address of the struct.
797	value := reflect.ValueOf(pb)
798	b = toStructPointer(value)
799	return
800}
801
802// A global registry of enum types.
803// The generated code will register the generated maps by calling RegisterEnum.
804
805var enumValueMaps = make(map[string]map[string]int32)
806
807// RegisterEnum is called from the generated code to install the enum descriptor
808// maps into the global table to aid parsing text format protocol buffers.
809func RegisterEnum(typeName string, unusedNameMap map[int32]string, valueMap map[string]int32) {
810	if _, ok := enumValueMaps[typeName]; ok {
811		panic("proto: duplicate enum registered: " + typeName)
812	}
813	enumValueMaps[typeName] = valueMap
814}
815
816// EnumValueMap returns the mapping from names to integers of the
817// enum type enumType, or a nil if not found.
818func EnumValueMap(enumType string) map[string]int32 {
819	return enumValueMaps[enumType]
820}
821
822// A registry of all linked message types.
823// The string is a fully-qualified proto name ("pkg.Message").
824var (
825	protoTypes    = make(map[string]reflect.Type)
826	revProtoTypes = make(map[reflect.Type]string)
827)
828
829// RegisterType is called from generated code and maps from the fully qualified
830// proto name to the type (pointer to struct) of the protocol buffer.
831func RegisterType(x Message, name string) {
832	if _, ok := protoTypes[name]; ok {
833		// TODO: Some day, make this a panic.
834		log.Printf("proto: duplicate proto type registered: %s", name)
835		return
836	}
837	t := reflect.TypeOf(x)
838	protoTypes[name] = t
839	revProtoTypes[t] = name
840}
841
842// MessageName returns the fully-qualified proto name for the given message type.
843func MessageName(x Message) string { return revProtoTypes[reflect.TypeOf(x)] }
844
845// MessageType returns the message type (pointer to struct) for a named message.
846func MessageType(name string) reflect.Type { return protoTypes[name] }
847