1 /* GLIB - Library of useful routines for C programming
2  * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
3  *
4  * gthread.c: MT safety related functions
5  * Copyright 1998 Sebastian Wilhelmi; University of Karlsruhe
6  *                Owen Taylor
7  *
8  * This library is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * This library is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 /* Prelude {{{1 ----------------------------------------------------------- */
23 
24 /*
25  * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
26  * file for a list of people on the GLib Team.  See the ChangeLog
27  * files for a list of changes.  These files are distributed with
28  * GLib at ftp://ftp.gtk.org/pub/gtk/.
29  */
30 
31 /*
32  * MT safe
33  */
34 
35 /* implement gthread.h's inline functions */
36 #define G_IMPLEMENT_INLINES 1
37 #define __G_THREAD_C__
38 
39 #include "config.h"
40 
41 #include "gthread.h"
42 #include "gthreadprivate.h"
43 
44 #include <string.h>
45 
46 #ifdef G_OS_UNIX
47 #include <unistd.h>
48 #endif
49 
50 #ifndef G_OS_WIN32
51 #include <sys/time.h>
52 #include <time.h>
53 #else
54 #include <windows.h>
55 #endif /* G_OS_WIN32 */
56 
57 #include "gslice.h"
58 #include "gstrfuncs.h"
59 #include "gtestutils.h"
60 #include "glib_trace.h"
61 #include "gtrace-private.h"
62 
63 /**
64  * SECTION:threads
65  * @title: Threads
66  * @short_description: portable support for threads, mutexes, locks,
67  *     conditions and thread private data
68  * @see_also: #GThreadPool, #GAsyncQueue
69  *
70  * Threads act almost like processes, but unlike processes all threads
71  * of one process share the same memory. This is good, as it provides
72  * easy communication between the involved threads via this shared
73  * memory, and it is bad, because strange things (so called
74  * "Heisenbugs") might happen if the program is not carefully designed.
75  * In particular, due to the concurrent nature of threads, no
76  * assumptions on the order of execution of code running in different
77  * threads can be made, unless order is explicitly forced by the
78  * programmer through synchronization primitives.
79  *
80  * The aim of the thread-related functions in GLib is to provide a
81  * portable means for writing multi-threaded software. There are
82  * primitives for mutexes to protect the access to portions of memory
83  * (#GMutex, #GRecMutex and #GRWLock). There is a facility to use
84  * individual bits for locks (g_bit_lock()). There are primitives
85  * for condition variables to allow synchronization of threads (#GCond).
86  * There are primitives for thread-private data - data that every
87  * thread has a private instance of (#GPrivate). There are facilities
88  * for one-time initialization (#GOnce, g_once_init_enter()). Finally,
89  * there are primitives to create and manage threads (#GThread).
90  *
91  * The GLib threading system used to be initialized with g_thread_init().
92  * This is no longer necessary. Since version 2.32, the GLib threading
93  * system is automatically initialized at the start of your program,
94  * and all thread-creation functions and synchronization primitives
95  * are available right away.
96  *
97  * Note that it is not safe to assume that your program has no threads
98  * even if you don't call g_thread_new() yourself. GLib and GIO can
99  * and will create threads for their own purposes in some cases, such
100  * as when using g_unix_signal_source_new() or when using GDBus.
101  *
102  * Originally, UNIX did not have threads, and therefore some traditional
103  * UNIX APIs are problematic in threaded programs. Some notable examples
104  * are
105  *
106  * - C library functions that return data in statically allocated
107  *   buffers, such as strtok() or strerror(). For many of these,
108  *   there are thread-safe variants with a _r suffix, or you can
109  *   look at corresponding GLib APIs (like g_strsplit() or g_strerror()).
110  *
111  * - The functions setenv() and unsetenv() manipulate the process
112  *   environment in a not thread-safe way, and may interfere with getenv()
113  *   calls in other threads. Note that getenv() calls may be hidden behind
114  *   other APIs. For example, GNU gettext() calls getenv() under the
115  *   covers. In general, it is best to treat the environment as readonly.
116  *   If you absolutely have to modify the environment, do it early in
117  *   main(), when no other threads are around yet.
118  *
119  * - The setlocale() function changes the locale for the entire process,
120  *   affecting all threads. Temporary changes to the locale are often made
121  *   to change the behavior of string scanning or formatting functions
122  *   like scanf() or printf(). GLib offers a number of string APIs
123  *   (like g_ascii_formatd() or g_ascii_strtod()) that can often be
124  *   used as an alternative. Or you can use the uselocale() function
125  *   to change the locale only for the current thread.
126  *
127  * - The fork() function only takes the calling thread into the child's
128  *   copy of the process image. If other threads were executing in critical
129  *   sections they could have left mutexes locked which could easily
130  *   cause deadlocks in the new child. For this reason, you should
131  *   call exit() or exec() as soon as possible in the child and only
132  *   make signal-safe library calls before that.
133  *
134  * - The daemon() function uses fork() in a way contrary to what is
135  *   described above. It should not be used with GLib programs.
136  *
137  * GLib itself is internally completely thread-safe (all global data is
138  * automatically locked), but individual data structure instances are
139  * not automatically locked for performance reasons. For example,
140  * you must coordinate accesses to the same #GHashTable from multiple
141  * threads. The two notable exceptions from this rule are #GMainLoop
142  * and #GAsyncQueue, which are thread-safe and need no further
143  * application-level locking to be accessed from multiple threads.
144  * Most refcounting functions such as g_object_ref() are also thread-safe.
145  *
146  * A common use for #GThreads is to move a long-running blocking operation out
147  * of the main thread and into a worker thread. For GLib functions, such as
148  * single GIO operations, this is not necessary, and complicates the code.
149  * Instead, the `…_async()` version of the function should be used from the main
150  * thread, eliminating the need for locking and synchronisation between multiple
151  * threads. If an operation does need to be moved to a worker thread, consider
152  * using g_task_run_in_thread(), or a #GThreadPool. #GThreadPool is often a
153  * better choice than #GThread, as it handles thread reuse and task queueing;
154  * #GTask uses this internally.
155  *
156  * However, if multiple blocking operations need to be performed in sequence,
157  * and it is not possible to use #GTask for them, moving them to a worker thread
158  * can clarify the code.
159  */
160 
161 /* G_LOCK Documentation {{{1 ---------------------------------------------- */
162 
163 /**
164  * G_LOCK_DEFINE:
165  * @name: the name of the lock
166  *
167  * The `G_LOCK_` macros provide a convenient interface to #GMutex.
168  * %G_LOCK_DEFINE defines a lock. It can appear in any place where
169  * variable definitions may appear in programs, i.e. in the first block
170  * of a function or outside of functions. The @name parameter will be
171  * mangled to get the name of the #GMutex. This means that you
172  * can use names of existing variables as the parameter - e.g. the name
173  * of the variable you intend to protect with the lock. Look at our
174  * give_me_next_number() example using the `G_LOCK` macros:
175  *
176  * Here is an example for using the `G_LOCK` convenience macros:
177  *
178  * |[<!-- language="C" -->
179  *   G_LOCK_DEFINE (current_number);
180  *
181  *   int
182  *   give_me_next_number (void)
183  *   {
184  *     static int current_number = 0;
185  *     int ret_val;
186  *
187  *     G_LOCK (current_number);
188  *     ret_val = current_number = calc_next_number (current_number);
189  *     G_UNLOCK (current_number);
190  *
191  *     return ret_val;
192  *   }
193  * ]|
194  */
195 
196 /**
197  * G_LOCK_DEFINE_STATIC:
198  * @name: the name of the lock
199  *
200  * This works like %G_LOCK_DEFINE, but it creates a static object.
201  */
202 
203 /**
204  * G_LOCK_EXTERN:
205  * @name: the name of the lock
206  *
207  * This declares a lock, that is defined with %G_LOCK_DEFINE in another
208  * module.
209  */
210 
211 /**
212  * G_LOCK:
213  * @name: the name of the lock
214  *
215  * Works like g_mutex_lock(), but for a lock defined with
216  * %G_LOCK_DEFINE.
217  */
218 
219 /**
220  * G_TRYLOCK:
221  * @name: the name of the lock
222  *
223  * Works like g_mutex_trylock(), but for a lock defined with
224  * %G_LOCK_DEFINE.
225  *
226  * Returns: %TRUE, if the lock could be locked.
227  */
228 
229 /**
230  * G_UNLOCK:
231  * @name: the name of the lock
232  *
233  * Works like g_mutex_unlock(), but for a lock defined with
234  * %G_LOCK_DEFINE.
235  */
236 
237 /* GMutex Documentation {{{1 ------------------------------------------ */
238 
239 /**
240  * GMutex:
241  *
242  * The #GMutex struct is an opaque data structure to represent a mutex
243  * (mutual exclusion). It can be used to protect data against shared
244  * access.
245  *
246  * Take for example the following function:
247  * |[<!-- language="C" -->
248  *   int
249  *   give_me_next_number (void)
250  *   {
251  *     static int current_number = 0;
252  *
253  *     // now do a very complicated calculation to calculate the new
254  *     // number, this might for example be a random number generator
255  *     current_number = calc_next_number (current_number);
256  *
257  *     return current_number;
258  *   }
259  * ]|
260  * It is easy to see that this won't work in a multi-threaded
261  * application. There current_number must be protected against shared
262  * access. A #GMutex can be used as a solution to this problem:
263  * |[<!-- language="C" -->
264  *   int
265  *   give_me_next_number (void)
266  *   {
267  *     static GMutex mutex;
268  *     static int current_number = 0;
269  *     int ret_val;
270  *
271  *     g_mutex_lock (&mutex);
272  *     ret_val = current_number = calc_next_number (current_number);
273  *     g_mutex_unlock (&mutex);
274  *
275  *     return ret_val;
276  *   }
277  * ]|
278  * Notice that the #GMutex is not initialised to any particular value.
279  * Its placement in static storage ensures that it will be initialised
280  * to all-zeros, which is appropriate.
281  *
282  * If a #GMutex is placed in other contexts (eg: embedded in a struct)
283  * then it must be explicitly initialised using g_mutex_init().
284  *
285  * A #GMutex should only be accessed via g_mutex_ functions.
286  */
287 
288 /* GRecMutex Documentation {{{1 -------------------------------------- */
289 
290 /**
291  * GRecMutex:
292  *
293  * The GRecMutex struct is an opaque data structure to represent a
294  * recursive mutex. It is similar to a #GMutex with the difference
295  * that it is possible to lock a GRecMutex multiple times in the same
296  * thread without deadlock. When doing so, care has to be taken to
297  * unlock the recursive mutex as often as it has been locked.
298  *
299  * If a #GRecMutex is allocated in static storage then it can be used
300  * without initialisation.  Otherwise, you should call
301  * g_rec_mutex_init() on it and g_rec_mutex_clear() when done.
302  *
303  * A GRecMutex should only be accessed with the
304  * g_rec_mutex_ functions.
305  *
306  * Since: 2.32
307  */
308 
309 /* GRWLock Documentation {{{1 ---------------------------------------- */
310 
311 /**
312  * GRWLock:
313  *
314  * The GRWLock struct is an opaque data structure to represent a
315  * reader-writer lock. It is similar to a #GMutex in that it allows
316  * multiple threads to coordinate access to a shared resource.
317  *
318  * The difference to a mutex is that a reader-writer lock discriminates
319  * between read-only ('reader') and full ('writer') access. While only
320  * one thread at a time is allowed write access (by holding the 'writer'
321  * lock via g_rw_lock_writer_lock()), multiple threads can gain
322  * simultaneous read-only access (by holding the 'reader' lock via
323  * g_rw_lock_reader_lock()).
324  *
325  * It is unspecified whether readers or writers have priority in acquiring the
326  * lock when a reader already holds the lock and a writer is queued to acquire
327  * it.
328  *
329  * Here is an example for an array with access functions:
330  * |[<!-- language="C" -->
331  *   GRWLock lock;
332  *   GPtrArray *array;
333  *
334  *   gpointer
335  *   my_array_get (guint index)
336  *   {
337  *     gpointer retval = NULL;
338  *
339  *     if (!array)
340  *       return NULL;
341  *
342  *     g_rw_lock_reader_lock (&lock);
343  *     if (index < array->len)
344  *       retval = g_ptr_array_index (array, index);
345  *     g_rw_lock_reader_unlock (&lock);
346  *
347  *     return retval;
348  *   }
349  *
350  *   void
351  *   my_array_set (guint index, gpointer data)
352  *   {
353  *     g_rw_lock_writer_lock (&lock);
354  *
355  *     if (!array)
356  *       array = g_ptr_array_new ();
357  *
358  *     if (index >= array->len)
359  *       g_ptr_array_set_size (array, index+1);
360  *     g_ptr_array_index (array, index) = data;
361  *
362  *     g_rw_lock_writer_unlock (&lock);
363  *   }
364  *  ]|
365  * This example shows an array which can be accessed by many readers
366  * (the my_array_get() function) simultaneously, whereas the writers
367  * (the my_array_set() function) will only be allowed one at a time
368  * and only if no readers currently access the array. This is because
369  * of the potentially dangerous resizing of the array. Using these
370  * functions is fully multi-thread safe now.
371  *
372  * If a #GRWLock is allocated in static storage then it can be used
373  * without initialisation.  Otherwise, you should call
374  * g_rw_lock_init() on it and g_rw_lock_clear() when done.
375  *
376  * A GRWLock should only be accessed with the g_rw_lock_ functions.
377  *
378  * Since: 2.32
379  */
380 
381 /* GCond Documentation {{{1 ------------------------------------------ */
382 
383 /**
384  * GCond:
385  *
386  * The #GCond struct is an opaque data structure that represents a
387  * condition. Threads can block on a #GCond if they find a certain
388  * condition to be false. If other threads change the state of this
389  * condition they signal the #GCond, and that causes the waiting
390  * threads to be woken up.
391  *
392  * Consider the following example of a shared variable.  One or more
393  * threads can wait for data to be published to the variable and when
394  * another thread publishes the data, it can signal one of the waiting
395  * threads to wake up to collect the data.
396  *
397  * Here is an example for using GCond to block a thread until a condition
398  * is satisfied:
399  * |[<!-- language="C" -->
400  *   gpointer current_data = NULL;
401  *   GMutex data_mutex;
402  *   GCond data_cond;
403  *
404  *   void
405  *   push_data (gpointer data)
406  *   {
407  *     g_mutex_lock (&data_mutex);
408  *     current_data = data;
409  *     g_cond_signal (&data_cond);
410  *     g_mutex_unlock (&data_mutex);
411  *   }
412  *
413  *   gpointer
414  *   pop_data (void)
415  *   {
416  *     gpointer data;
417  *
418  *     g_mutex_lock (&data_mutex);
419  *     while (!current_data)
420  *       g_cond_wait (&data_cond, &data_mutex);
421  *     data = current_data;
422  *     current_data = NULL;
423  *     g_mutex_unlock (&data_mutex);
424  *
425  *     return data;
426  *   }
427  * ]|
428  * Whenever a thread calls pop_data() now, it will wait until
429  * current_data is non-%NULL, i.e. until some other thread
430  * has called push_data().
431  *
432  * The example shows that use of a condition variable must always be
433  * paired with a mutex.  Without the use of a mutex, there would be a
434  * race between the check of @current_data by the while loop in
435  * pop_data() and waiting. Specifically, another thread could set
436  * @current_data after the check, and signal the cond (with nobody
437  * waiting on it) before the first thread goes to sleep. #GCond is
438  * specifically useful for its ability to release the mutex and go
439  * to sleep atomically.
440  *
441  * It is also important to use the g_cond_wait() and g_cond_wait_until()
442  * functions only inside a loop which checks for the condition to be
443  * true.  See g_cond_wait() for an explanation of why the condition may
444  * not be true even after it returns.
445  *
446  * If a #GCond is allocated in static storage then it can be used
447  * without initialisation.  Otherwise, you should call g_cond_init()
448  * on it and g_cond_clear() when done.
449  *
450  * A #GCond should only be accessed via the g_cond_ functions.
451  */
452 
453 /* GThread Documentation {{{1 ---------------------------------------- */
454 
455 /**
456  * GThread:
457  *
458  * The #GThread struct represents a running thread. This struct
459  * is returned by g_thread_new() or g_thread_try_new(). You can
460  * obtain the #GThread struct representing the current thread by
461  * calling g_thread_self().
462  *
463  * GThread is refcounted, see g_thread_ref() and g_thread_unref().
464  * The thread represented by it holds a reference while it is running,
465  * and g_thread_join() consumes the reference that it is given, so
466  * it is normally not necessary to manage GThread references
467  * explicitly.
468  *
469  * The structure is opaque -- none of its fields may be directly
470  * accessed.
471  */
472 
473 /**
474  * GThreadFunc:
475  * @data: data passed to the thread
476  *
477  * Specifies the type of the @func functions passed to g_thread_new()
478  * or g_thread_try_new().
479  *
480  * Returns: the return value of the thread
481  */
482 
483 /**
484  * g_thread_supported:
485  *
486  * This macro returns %TRUE if the thread system is initialized,
487  * and %FALSE if it is not.
488  *
489  * For language bindings, g_thread_get_initialized() provides
490  * the same functionality as a function.
491  *
492  * Returns: %TRUE, if the thread system is initialized
493  */
494 
495 /* GThreadError {{{1 ------------------------------------------------------- */
496 /**
497  * GThreadError:
498  * @G_THREAD_ERROR_AGAIN: a thread couldn't be created due to resource
499  *                        shortage. Try again later.
500  *
501  * Possible errors of thread related functions.
502  **/
503 
504 /**
505  * G_THREAD_ERROR:
506  *
507  * The error domain of the GLib thread subsystem.
508  **/
509 G_DEFINE_QUARK (g_thread_error, g_thread_error)
510 
511 /* Local Data {{{1 -------------------------------------------------------- */
512 
513 static GMutex    g_once_mutex;
514 static GCond     g_once_cond;
515 static GSList   *g_once_init_list = NULL;
516 
517 static guint g_thread_n_created_counter = 0;  /* (atomic) */
518 
519 static void g_thread_cleanup (gpointer data);
520 static GPrivate     g_thread_specific_private = G_PRIVATE_INIT (g_thread_cleanup);
521 
522 /*
523  * g_private_set_alloc0:
524  * @key: a #GPrivate
525  * @size: size of the allocation, in bytes
526  *
527  * Sets the thread local variable @key to have a newly-allocated and zero-filled
528  * value of given @size, and returns a pointer to that memory. Allocations made
529  * using this API will be suppressed in valgrind: it is intended to be used for
530  * one-time allocations which are known to be leaked, such as those for
531  * per-thread initialisation data. Otherwise, this function behaves the same as
532  * g_private_set().
533  *
534  * Returns: (transfer full): new thread-local heap allocation of size @size
535  * Since: 2.60
536  */
537 /*< private >*/
538 gpointer
g_private_set_alloc0(GPrivate * key,gsize size)539 g_private_set_alloc0 (GPrivate *key,
540                       gsize     size)
541 {
542   gpointer allocated = g_malloc0 (size);
543 
544   g_private_set (key, allocated);
545 
546   return g_steal_pointer (&allocated);
547 }
548 
549 /* GOnce {{{1 ------------------------------------------------------------- */
550 
551 /**
552  * GOnce:
553  * @status: the status of the #GOnce
554  * @retval: the value returned by the call to the function, if @status
555  *          is %G_ONCE_STATUS_READY
556  *
557  * A #GOnce struct controls a one-time initialization function. Any
558  * one-time initialization function must have its own unique #GOnce
559  * struct.
560  *
561  * Since: 2.4
562  */
563 
564 /**
565  * G_ONCE_INIT:
566  *
567  * A #GOnce must be initialized with this macro before it can be used.
568  *
569  * |[<!-- language="C" -->
570  *   GOnce my_once = G_ONCE_INIT;
571  * ]|
572  *
573  * Since: 2.4
574  */
575 
576 /**
577  * GOnceStatus:
578  * @G_ONCE_STATUS_NOTCALLED: the function has not been called yet.
579  * @G_ONCE_STATUS_PROGRESS: the function call is currently in progress.
580  * @G_ONCE_STATUS_READY: the function has been called.
581  *
582  * The possible statuses of a one-time initialization function
583  * controlled by a #GOnce struct.
584  *
585  * Since: 2.4
586  */
587 
588 /**
589  * g_once:
590  * @once: a #GOnce structure
591  * @func: the #GThreadFunc function associated to @once. This function
592  *        is called only once, regardless of the number of times it and
593  *        its associated #GOnce struct are passed to g_once().
594  * @arg: data to be passed to @func
595  *
596  * The first call to this routine by a process with a given #GOnce
597  * struct calls @func with the given argument. Thereafter, subsequent
598  * calls to g_once()  with the same #GOnce struct do not call @func
599  * again, but return the stored result of the first call. On return
600  * from g_once(), the status of @once will be %G_ONCE_STATUS_READY.
601  *
602  * For example, a mutex or a thread-specific data key must be created
603  * exactly once. In a threaded environment, calling g_once() ensures
604  * that the initialization is serialized across multiple threads.
605  *
606  * Calling g_once() recursively on the same #GOnce struct in
607  * @func will lead to a deadlock.
608  *
609  * |[<!-- language="C" -->
610  *   gpointer
611  *   get_debug_flags (void)
612  *   {
613  *     static GOnce my_once = G_ONCE_INIT;
614  *
615  *     g_once (&my_once, parse_debug_flags, NULL);
616  *
617  *     return my_once.retval;
618  *   }
619  * ]|
620  *
621  * Since: 2.4
622  */
623 gpointer
g_once_impl(GOnce * once,GThreadFunc func,gpointer arg)624 g_once_impl (GOnce       *once,
625 	     GThreadFunc  func,
626 	     gpointer     arg)
627 {
628   g_mutex_lock (&g_once_mutex);
629 
630   while (once->status == G_ONCE_STATUS_PROGRESS)
631     g_cond_wait (&g_once_cond, &g_once_mutex);
632 
633   if (once->status != G_ONCE_STATUS_READY)
634     {
635       gpointer retval;
636 
637       once->status = G_ONCE_STATUS_PROGRESS;
638       g_mutex_unlock (&g_once_mutex);
639 
640       retval = func (arg);
641 
642       g_mutex_lock (&g_once_mutex);
643 /* We prefer the new C11-style atomic extension of GCC if available. If not,
644  * fall back to always locking. */
645 #if defined(G_ATOMIC_LOCK_FREE) && defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4) && defined(__ATOMIC_SEQ_CST)
646       /* Only the second store needs to be atomic, as the two writes are related
647        * by a happens-before relationship here. */
648       once->retval = retval;
649       __atomic_store_n (&once->status, G_ONCE_STATUS_READY, __ATOMIC_RELEASE);
650 #else
651       once->retval = retval;
652       once->status = G_ONCE_STATUS_READY;
653 #endif
654       g_cond_broadcast (&g_once_cond);
655     }
656 
657   g_mutex_unlock (&g_once_mutex);
658 
659   return once->retval;
660 }
661 
662 /**
663  * g_once_init_enter:
664  * @location: (not nullable): location of a static initializable variable
665  *    containing 0
666  *
667  * Function to be called when starting a critical initialization
668  * section. The argument @location must point to a static
669  * 0-initialized variable that will be set to a value other than 0 at
670  * the end of the initialization section. In combination with
671  * g_once_init_leave() and the unique address @value_location, it can
672  * be ensured that an initialization section will be executed only once
673  * during a program's life time, and that concurrent threads are
674  * blocked until initialization completed. To be used in constructs
675  * like this:
676  *
677  * |[<!-- language="C" -->
678  *   static gsize initialization_value = 0;
679  *
680  *   if (g_once_init_enter (&initialization_value))
681  *     {
682  *       gsize setup_value = 42; // initialization code here
683  *
684  *       g_once_init_leave (&initialization_value, setup_value);
685  *     }
686  *
687  *   // use initialization_value here
688  * ]|
689  *
690  * While @location has a `volatile` qualifier, this is a historical artifact and
691  * the pointer passed to it should not be `volatile`.
692  *
693  * Returns: %TRUE if the initialization section should be entered,
694  *     %FALSE and blocks otherwise
695  *
696  * Since: 2.14
697  */
gboolean(g_once_init_enter)698 gboolean
699 (g_once_init_enter) (volatile void *location)
700 {
701   gsize *value_location = (gsize *) location;
702   gboolean need_init = FALSE;
703   g_mutex_lock (&g_once_mutex);
704   if (g_atomic_pointer_get (value_location) == 0)
705     {
706       if (!g_slist_find (g_once_init_list, (void*) value_location))
707         {
708           need_init = TRUE;
709           g_once_init_list = g_slist_prepend (g_once_init_list, (void*) value_location);
710         }
711       else
712         do
713           g_cond_wait (&g_once_cond, &g_once_mutex);
714         while (g_slist_find (g_once_init_list, (void*) value_location));
715     }
716   g_mutex_unlock (&g_once_mutex);
717   return need_init;
718 }
719 
720 /**
721  * g_once_init_leave:
722  * @location: (not nullable): location of a static initializable variable
723  *    containing 0
724  * @result: new non-0 value for *@value_location
725  *
726  * Counterpart to g_once_init_enter(). Expects a location of a static
727  * 0-initialized initialization variable, and an initialization value
728  * other than 0. Sets the variable to the initialization value, and
729  * releases concurrent threads blocking in g_once_init_enter() on this
730  * initialization variable.
731  *
732  * While @location has a `volatile` qualifier, this is a historical artifact and
733  * the pointer passed to it should not be `volatile`.
734  *
735  * Since: 2.14
736  */
737 void
738 (g_once_init_leave) (volatile void *location,
739                      gsize          result)
740 {
741   gsize *value_location = (gsize *) location;
742 
743   g_return_if_fail (g_atomic_pointer_get (value_location) == 0);
744   g_return_if_fail (result != 0);
745 
746   g_atomic_pointer_set (value_location, result);
747   g_mutex_lock (&g_once_mutex);
748   g_return_if_fail (g_once_init_list != NULL);
749   g_once_init_list = g_slist_remove (g_once_init_list, (void*) value_location);
750   g_cond_broadcast (&g_once_cond);
751   g_mutex_unlock (&g_once_mutex);
752 }
753 
754 /* GThread {{{1 -------------------------------------------------------- */
755 
756 /**
757  * g_thread_ref:
758  * @thread: a #GThread
759  *
760  * Increase the reference count on @thread.
761  *
762  * Returns: (transfer full): a new reference to @thread
763  *
764  * Since: 2.32
765  */
766 GThread *
g_thread_ref(GThread * thread)767 g_thread_ref (GThread *thread)
768 {
769   GRealThread *real = (GRealThread *) thread;
770 
771   g_atomic_int_inc (&real->ref_count);
772 
773   return thread;
774 }
775 
776 /**
777  * g_thread_unref:
778  * @thread: (transfer full): a #GThread
779  *
780  * Decrease the reference count on @thread, possibly freeing all
781  * resources associated with it.
782  *
783  * Note that each thread holds a reference to its #GThread while
784  * it is running, so it is safe to drop your own reference to it
785  * if you don't need it anymore.
786  *
787  * Since: 2.32
788  */
789 void
g_thread_unref(GThread * thread)790 g_thread_unref (GThread *thread)
791 {
792   GRealThread *real = (GRealThread *) thread;
793 
794   if (g_atomic_int_dec_and_test (&real->ref_count))
795     {
796       if (real->ours)
797         g_system_thread_free (real);
798       else
799         g_slice_free (GRealThread, real);
800     }
801 }
802 
803 static void
g_thread_cleanup(gpointer data)804 g_thread_cleanup (gpointer data)
805 {
806   g_thread_unref (data);
807 }
808 
809 gpointer
g_thread_proxy(gpointer data)810 g_thread_proxy (gpointer data)
811 {
812   GRealThread* thread = data;
813 
814   g_assert (data);
815   g_private_set (&g_thread_specific_private, data);
816 
817   TRACE (GLIB_THREAD_SPAWNED (thread->thread.func, thread->thread.data,
818                               thread->name));
819 
820   if (thread->name)
821     {
822       g_system_thread_set_name (thread->name);
823       g_free (thread->name);
824       thread->name = NULL;
825     }
826 
827   thread->retval = thread->thread.func (thread->thread.data);
828 
829   return NULL;
830 }
831 
832 guint
g_thread_n_created(void)833 g_thread_n_created (void)
834 {
835   return g_atomic_int_get (&g_thread_n_created_counter);
836 }
837 
838 /**
839  * g_thread_new:
840  * @name: (nullable): an (optional) name for the new thread
841  * @func: (closure data) (scope async): a function to execute in the new thread
842  * @data: (nullable): an argument to supply to the new thread
843  *
844  * This function creates a new thread. The new thread starts by invoking
845  * @func with the argument data. The thread will run until @func returns
846  * or until g_thread_exit() is called from the new thread. The return value
847  * of @func becomes the return value of the thread, which can be obtained
848  * with g_thread_join().
849  *
850  * The @name can be useful for discriminating threads in a debugger.
851  * It is not used for other purposes and does not have to be unique.
852  * Some systems restrict the length of @name to 16 bytes.
853  *
854  * If the thread can not be created the program aborts. See
855  * g_thread_try_new() if you want to attempt to deal with failures.
856  *
857  * If you are using threads to offload (potentially many) short-lived tasks,
858  * #GThreadPool may be more appropriate than manually spawning and tracking
859  * multiple #GThreads.
860  *
861  * To free the struct returned by this function, use g_thread_unref().
862  * Note that g_thread_join() implicitly unrefs the #GThread as well.
863  *
864  * New threads by default inherit their scheduler policy (POSIX) or thread
865  * priority (Windows) of the thread creating the new thread.
866  *
867  * This behaviour changed in GLib 2.64: before threads on Windows were not
868  * inheriting the thread priority but were spawned with the default priority.
869  * Starting with GLib 2.64 the behaviour is now consistent between Windows and
870  * POSIX and all threads inherit their parent thread's priority.
871  *
872  * Returns: (transfer full): the new #GThread
873  *
874  * Since: 2.32
875  */
876 GThread *
g_thread_new(const gchar * name,GThreadFunc func,gpointer data)877 g_thread_new (const gchar *name,
878               GThreadFunc  func,
879               gpointer     data)
880 {
881   GError *error = NULL;
882   GThread *thread;
883 
884   thread = g_thread_new_internal (name, g_thread_proxy, func, data, 0, NULL, &error);
885 
886   if G_UNLIKELY (thread == NULL)
887     g_error ("creating thread '%s': %s", name ? name : "", error->message);
888 
889   return thread;
890 }
891 
892 /**
893  * g_thread_try_new:
894  * @name: (nullable): an (optional) name for the new thread
895  * @func: (closure data) (scope async): a function to execute in the new thread
896  * @data: (nullable): an argument to supply to the new thread
897  * @error: return location for error, or %NULL
898  *
899  * This function is the same as g_thread_new() except that
900  * it allows for the possibility of failure.
901  *
902  * If a thread can not be created (due to resource limits),
903  * @error is set and %NULL is returned.
904  *
905  * Returns: (transfer full): the new #GThread, or %NULL if an error occurred
906  *
907  * Since: 2.32
908  */
909 GThread *
g_thread_try_new(const gchar * name,GThreadFunc func,gpointer data,GError ** error)910 g_thread_try_new (const gchar  *name,
911                   GThreadFunc   func,
912                   gpointer      data,
913                   GError      **error)
914 {
915   return g_thread_new_internal (name, g_thread_proxy, func, data, 0, NULL, error);
916 }
917 
918 GThread *
g_thread_new_internal(const gchar * name,GThreadFunc proxy,GThreadFunc func,gpointer data,gsize stack_size,const GThreadSchedulerSettings * scheduler_settings,GError ** error)919 g_thread_new_internal (const gchar *name,
920                        GThreadFunc proxy,
921                        GThreadFunc func,
922                        gpointer data,
923                        gsize stack_size,
924                        const GThreadSchedulerSettings *scheduler_settings,
925                        GError **error)
926 {
927   g_return_val_if_fail (func != NULL, NULL);
928 
929   g_atomic_int_inc (&g_thread_n_created_counter);
930 
931   g_trace_mark (G_TRACE_CURRENT_TIME, 0, "GLib", "GThread created", "%s", name ? name : "(unnamed)");
932   return (GThread *) g_system_thread_new (proxy, stack_size, scheduler_settings,
933                                           name, func, data, error);
934 }
935 
936 gboolean
g_thread_get_scheduler_settings(GThreadSchedulerSettings * scheduler_settings)937 g_thread_get_scheduler_settings (GThreadSchedulerSettings *scheduler_settings)
938 {
939   g_return_val_if_fail (scheduler_settings != NULL, FALSE);
940 
941   return g_system_thread_get_scheduler_settings (scheduler_settings);
942 }
943 
944 /**
945  * g_thread_exit:
946  * @retval: the return value of this thread
947  *
948  * Terminates the current thread.
949  *
950  * If another thread is waiting for us using g_thread_join() then the
951  * waiting thread will be woken up and get @retval as the return value
952  * of g_thread_join().
953  *
954  * Calling g_thread_exit() with a parameter @retval is equivalent to
955  * returning @retval from the function @func, as given to g_thread_new().
956  *
957  * You must only call g_thread_exit() from a thread that you created
958  * yourself with g_thread_new() or related APIs. You must not call
959  * this function from a thread created with another threading library
960  * or or from within a #GThreadPool.
961  */
962 void
g_thread_exit(gpointer retval)963 g_thread_exit (gpointer retval)
964 {
965   GRealThread* real = (GRealThread*) g_thread_self ();
966 
967   if G_UNLIKELY (!real->ours)
968     g_error ("attempt to g_thread_exit() a thread not created by GLib");
969 
970   real->retval = retval;
971 
972   g_system_thread_exit ();
973 }
974 
975 /**
976  * g_thread_join:
977  * @thread: (transfer full): a #GThread
978  *
979  * Waits until @thread finishes, i.e. the function @func, as
980  * given to g_thread_new(), returns or g_thread_exit() is called.
981  * If @thread has already terminated, then g_thread_join()
982  * returns immediately.
983  *
984  * Any thread can wait for any other thread by calling g_thread_join(),
985  * not just its 'creator'. Calling g_thread_join() from multiple threads
986  * for the same @thread leads to undefined behaviour.
987  *
988  * The value returned by @func or given to g_thread_exit() is
989  * returned by this function.
990  *
991  * g_thread_join() consumes the reference to the passed-in @thread.
992  * This will usually cause the #GThread struct and associated resources
993  * to be freed. Use g_thread_ref() to obtain an extra reference if you
994  * want to keep the GThread alive beyond the g_thread_join() call.
995  *
996  * Returns: (transfer full): the return value of the thread
997  */
998 gpointer
g_thread_join(GThread * thread)999 g_thread_join (GThread *thread)
1000 {
1001   GRealThread *real = (GRealThread*) thread;
1002   gpointer retval;
1003 
1004   g_return_val_if_fail (thread, NULL);
1005   g_return_val_if_fail (real->ours, NULL);
1006 
1007   g_system_thread_wait (real);
1008 
1009   retval = real->retval;
1010 
1011   /* Just to make sure, this isn't used any more */
1012   thread->joinable = 0;
1013 
1014   g_thread_unref (thread);
1015 
1016   return retval;
1017 }
1018 
1019 /**
1020  * g_thread_self:
1021  *
1022  * This function returns the #GThread corresponding to the
1023  * current thread. Note that this function does not increase
1024  * the reference count of the returned struct.
1025  *
1026  * This function will return a #GThread even for threads that
1027  * were not created by GLib (i.e. those created by other threading
1028  * APIs). This may be useful for thread identification purposes
1029  * (i.e. comparisons) but you must not use GLib functions (such
1030  * as g_thread_join()) on these threads.
1031  *
1032  * Returns: (transfer none): the #GThread representing the current thread
1033  */
1034 GThread*
g_thread_self(void)1035 g_thread_self (void)
1036 {
1037   GRealThread* thread = g_private_get (&g_thread_specific_private);
1038 
1039   if (!thread)
1040     {
1041       /* If no thread data is available, provide and set one.
1042        * This can happen for the main thread and for threads
1043        * that are not created by GLib.
1044        */
1045       thread = g_slice_new0 (GRealThread);
1046       thread->ref_count = 1;
1047 
1048       g_private_set (&g_thread_specific_private, thread);
1049     }
1050 
1051   return (GThread*) thread;
1052 }
1053 
1054 /**
1055  * g_get_num_processors:
1056  *
1057  * Determine the approximate number of threads that the system will
1058  * schedule simultaneously for this process.  This is intended to be
1059  * used as a parameter to g_thread_pool_new() for CPU bound tasks and
1060  * similar cases.
1061  *
1062  * Returns: Number of schedulable threads, always greater than 0
1063  *
1064  * Since: 2.36
1065  */
1066 guint
g_get_num_processors(void)1067 g_get_num_processors (void)
1068 {
1069 #ifdef G_OS_WIN32
1070   unsigned int count;
1071   SYSTEM_INFO sysinfo;
1072   DWORD_PTR process_cpus;
1073   DWORD_PTR system_cpus;
1074 
1075   /* This *never* fails, use it as fallback */
1076   GetNativeSystemInfo (&sysinfo);
1077   count = (int) sysinfo.dwNumberOfProcessors;
1078 
1079   if (GetProcessAffinityMask (GetCurrentProcess (),
1080                               &process_cpus, &system_cpus))
1081     {
1082       unsigned int af_count;
1083 
1084       for (af_count = 0; process_cpus != 0; process_cpus >>= 1)
1085         if (process_cpus & 1)
1086           af_count++;
1087 
1088       /* Prefer affinity-based result, if available */
1089       if (af_count > 0)
1090         count = af_count;
1091     }
1092 
1093   if (count > 0)
1094     return count;
1095 #elif defined(_SC_NPROCESSORS_ONLN)
1096   {
1097     int count;
1098 
1099     count = sysconf (_SC_NPROCESSORS_ONLN);
1100     if (count > 0)
1101       return count;
1102   }
1103 #elif defined HW_NCPU
1104   {
1105     int mib[2], count = 0;
1106     size_t len;
1107 
1108     mib[0] = CTL_HW;
1109     mib[1] = HW_NCPU;
1110     len = sizeof(count);
1111 
1112     if (sysctl (mib, 2, &count, &len, NULL, 0) == 0 && count > 0)
1113       return count;
1114   }
1115 #endif
1116 
1117   return 1; /* Fallback */
1118 }
1119 
1120 /* Epilogue {{{1 */
1121 /* vim: set foldmethod=marker: */
1122