1@section Sections
2The raw data contained within a BFD is maintained through the
3section abstraction.  A single BFD may have any number of
4sections.  It keeps hold of them by pointing to the first;
5each one points to the next in the list.
6
7Sections are supported in BFD in @code{section.c}.
8
9@menu
10* Section Input::
11* Section Output::
12* typedef asection::
13* section prototypes::
14@end menu
15
16@node Section Input, Section Output, Sections, Sections
17@subsection Section input
18When a BFD is opened for reading, the section structures are
19created and attached to the BFD.
20
21Each section has a name which describes the section in the
22outside world---for example, @code{a.out} would contain at least
23three sections, called @code{.text}, @code{.data} and @code{.bss}.
24
25Names need not be unique; for example a COFF file may have several
26sections named @code{.data}.
27
28Sometimes a BFD will contain more than the ``natural'' number of
29sections. A back end may attach other sections containing
30constructor data, or an application may add a section (using
31@code{bfd_make_section}) to the sections attached to an already open
32BFD. For example, the linker creates an extra section
33@code{COMMON} for each input file's BFD to hold information about
34common storage.
35
36The raw data is not necessarily read in when
37the section descriptor is created. Some targets may leave the
38data in place until a @code{bfd_get_section_contents} call is
39made. Other back ends may read in all the data at once.  For
40example, an S-record file has to be read once to determine the
41size of the data.
42
43@node Section Output, typedef asection, Section Input, Sections
44@subsection Section output
45To write a new object style BFD, the various sections to be
46written have to be created. They are attached to the BFD in
47the same way as input sections; data is written to the
48sections using @code{bfd_set_section_contents}.
49
50Any program that creates or combines sections (e.g., the assembler
51and linker) must use the @code{asection} fields @code{output_section} and
52@code{output_offset} to indicate the file sections to which each
53section must be written.  (If the section is being created from
54scratch, @code{output_section} should probably point to the section
55itself and @code{output_offset} should probably be zero.)
56
57The data to be written comes from input sections attached
58(via @code{output_section} pointers) to
59the output sections.  The output section structure can be
60considered a filter for the input section: the output section
61determines the vma of the output data and the name, but the
62input section determines the offset into the output section of
63the data to be written.
64
65E.g., to create a section "O", starting at 0x100, 0x123 long,
66containing two subsections, "A" at offset 0x0 (i.e., at vma
670x100) and "B" at offset 0x20 (i.e., at vma 0x120) the @code{asection}
68structures would look like:
69
70@example
71   section name          "A"
72     output_offset   0x00
73     size            0x20
74     output_section ----------->  section name    "O"
75                             |    vma             0x100
76   section name          "B" |    size            0x123
77     output_offset   0x20    |
78     size            0x103   |
79     output_section  --------|
80@end example
81
82@subsection Link orders
83The data within a section is stored in a @dfn{link_order}.
84These are much like the fixups in @code{gas}.  The link_order
85abstraction allows a section to grow and shrink within itself.
86
87A link_order knows how big it is, and which is the next
88link_order and where the raw data for it is; it also points to
89a list of relocations which apply to it.
90
91The link_order is used by the linker to perform relaxing on
92final code.  The compiler creates code which is as big as
93necessary to make it work without relaxing, and the user can
94select whether to relax.  Sometimes relaxing takes a lot of
95time.  The linker runs around the relocations to see if any
96are attached to data which can be shrunk, if so it does it on
97a link_order by link_order basis.
98
99
100@node typedef asection, section prototypes, Section Output, Sections
101@subsection typedef asection
102Here is the section structure:
103
104
105@example
106
107typedef struct bfd_section
108@{
109  /* The name of the section; the name isn't a copy, the pointer is
110     the same as that passed to bfd_make_section.  */
111  const char *name;
112
113  /* A unique sequence number.  */
114  unsigned int id;
115
116  /* A unique section number which can be used by assembler to
117     distinguish different sections with the same section name.  */
118  unsigned int section_id;
119
120  /* Which section in the bfd; 0..n-1 as sections are created in a bfd.  */
121  unsigned int index;
122
123  /* The next section in the list belonging to the BFD, or NULL.  */
124  struct bfd_section *next;
125
126  /* The previous section in the list belonging to the BFD, or NULL.  */
127  struct bfd_section *prev;
128
129  /* The field flags contains attributes of the section. Some
130     flags are read in from the object file, and some are
131     synthesized from other information.  */
132  flagword flags;
133
134#define SEC_NO_FLAGS                      0x0
135
136  /* Tells the OS to allocate space for this section when loading.
137     This is clear for a section containing debug information only.  */
138#define SEC_ALLOC                         0x1
139
140  /* Tells the OS to load the section from the file when loading.
141     This is clear for a .bss section.  */
142#define SEC_LOAD                          0x2
143
144  /* The section contains data still to be relocated, so there is
145     some relocation information too.  */
146#define SEC_RELOC                         0x4
147
148  /* A signal to the OS that the section contains read only data.  */
149#define SEC_READONLY                      0x8
150
151  /* The section contains code only.  */
152#define SEC_CODE                         0x10
153
154  /* The section contains data only.  */
155#define SEC_DATA                         0x20
156
157  /* The section will reside in ROM.  */
158#define SEC_ROM                          0x40
159
160  /* The section contains constructor information. This section
161     type is used by the linker to create lists of constructors and
162     destructors used by @code{g++}. When a back end sees a symbol
163     which should be used in a constructor list, it creates a new
164     section for the type of name (e.g., @code{__CTOR_LIST__}), attaches
165     the symbol to it, and builds a relocation. To build the lists
166     of constructors, all the linker has to do is catenate all the
167     sections called @code{__CTOR_LIST__} and relocate the data
168     contained within - exactly the operations it would peform on
169     standard data.  */
170#define SEC_CONSTRUCTOR                  0x80
171
172  /* The section has contents - a data section could be
173     @code{SEC_ALLOC} | @code{SEC_HAS_CONTENTS}; a debug section could be
174     @code{SEC_HAS_CONTENTS}  */
175#define SEC_HAS_CONTENTS                0x100
176
177  /* An instruction to the linker to not output the section
178     even if it has information which would normally be written.  */
179#define SEC_NEVER_LOAD                  0x200
180
181  /* The section contains thread local data.  */
182#define SEC_THREAD_LOCAL                0x400
183
184  /* The section's size is fixed.  Generic linker code will not
185     recalculate it and it is up to whoever has set this flag to
186     get the size right.  */
187#define SEC_FIXED_SIZE                  0x800
188
189  /* The section contains common symbols (symbols may be defined
190     multiple times, the value of a symbol is the amount of
191     space it requires, and the largest symbol value is the one
192     used).  Most targets have exactly one of these (which we
193     translate to bfd_com_section_ptr), but ECOFF has two.  */
194#define SEC_IS_COMMON                  0x1000
195
196  /* The section contains only debugging information.  For
197     example, this is set for ELF .debug and .stab sections.
198     strip tests this flag to see if a section can be
199     discarded.  */
200#define SEC_DEBUGGING                  0x2000
201
202  /* The contents of this section are held in memory pointed to
203     by the contents field.  This is checked by bfd_get_section_contents,
204     and the data is retrieved from memory if appropriate.  */
205#define SEC_IN_MEMORY                  0x4000
206
207  /* The contents of this section are to be excluded by the
208     linker for executable and shared objects unless those
209     objects are to be further relocated.  */
210#define SEC_EXCLUDE                    0x8000
211
212  /* The contents of this section are to be sorted based on the sum of
213     the symbol and addend values specified by the associated relocation
214     entries.  Entries without associated relocation entries will be
215     appended to the end of the section in an unspecified order.  */
216#define SEC_SORT_ENTRIES              0x10000
217
218  /* When linking, duplicate sections of the same name should be
219     discarded, rather than being combined into a single section as
220     is usually done.  This is similar to how common symbols are
221     handled.  See SEC_LINK_DUPLICATES below.  */
222#define SEC_LINK_ONCE                 0x20000
223
224  /* If SEC_LINK_ONCE is set, this bitfield describes how the linker
225     should handle duplicate sections.  */
226#define SEC_LINK_DUPLICATES           0xc0000
227
228  /* This value for SEC_LINK_DUPLICATES means that duplicate
229     sections with the same name should simply be discarded.  */
230#define SEC_LINK_DUPLICATES_DISCARD       0x0
231
232  /* This value for SEC_LINK_DUPLICATES means that the linker
233     should warn if there are any duplicate sections, although
234     it should still only link one copy.  */
235#define SEC_LINK_DUPLICATES_ONE_ONLY  0x40000
236
237  /* This value for SEC_LINK_DUPLICATES means that the linker
238     should warn if any duplicate sections are a different size.  */
239#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000
240
241  /* This value for SEC_LINK_DUPLICATES means that the linker
242     should warn if any duplicate sections contain different
243     contents.  */
244#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
245  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
246
247  /* This section was created by the linker as part of dynamic
248     relocation or other arcane processing.  It is skipped when
249     going through the first-pass output, trusting that someone
250     else up the line will take care of it later.  */
251#define SEC_LINKER_CREATED           0x100000
252
253  /* This section contains a section ID to distinguish different
254     sections with the same section name.  */
255#define SEC_ASSEMBLER_SECTION_ID     0x100000
256
257  /* This section should not be subject to garbage collection.
258     Also set to inform the linker that this section should not be
259     listed in the link map as discarded.  */
260#define SEC_KEEP                     0x200000
261
262  /* This section contains "short" data, and should be placed
263     "near" the GP.  */
264#define SEC_SMALL_DATA               0x400000
265
266  /* Attempt to merge identical entities in the section.
267     Entity size is given in the entsize field.  */
268#define SEC_MERGE                    0x800000
269
270  /* If given with SEC_MERGE, entities to merge are zero terminated
271     strings where entsize specifies character size instead of fixed
272     size entries.  */
273#define SEC_STRINGS                 0x1000000
274
275  /* This section contains data about section groups.  */
276#define SEC_GROUP                   0x2000000
277
278  /* The section is a COFF shared library section.  This flag is
279     only for the linker.  If this type of section appears in
280     the input file, the linker must copy it to the output file
281     without changing the vma or size.  FIXME: Although this
282     was originally intended to be general, it really is COFF
283     specific (and the flag was renamed to indicate this).  It
284     might be cleaner to have some more general mechanism to
285     allow the back end to control what the linker does with
286     sections.  */
287#define SEC_COFF_SHARED_LIBRARY     0x4000000
288
289  /* This input section should be copied to output in reverse order
290     as an array of pointers.  This is for ELF linker internal use
291     only.  */
292#define SEC_ELF_REVERSE_COPY        0x4000000
293
294  /* This section contains data which may be shared with other
295     executables or shared objects. This is for COFF only.  */
296#define SEC_COFF_SHARED             0x8000000
297
298  /* This section should be compressed.  This is for ELF linker
299     internal use only.  */
300#define SEC_ELF_COMPRESS            0x8000000
301
302  /* When a section with this flag is being linked, then if the size of
303     the input section is less than a page, it should not cross a page
304     boundary.  If the size of the input section is one page or more,
305     it should be aligned on a page boundary.  This is for TI
306     TMS320C54X only.  */
307#define SEC_TIC54X_BLOCK           0x10000000
308
309  /* This section should be renamed.  This is for ELF linker
310     internal use only.  */
311#define SEC_ELF_RENAME             0x10000000
312
313  /* Conditionally link this section; do not link if there are no
314     references found to any symbol in the section.  This is for TI
315     TMS320C54X only.  */
316#define SEC_TIC54X_CLINK           0x20000000
317
318  /* This section contains vliw code.  This is for Toshiba MeP only.  */
319#define SEC_MEP_VLIW               0x20000000
320
321  /* All symbols, sizes and relocations in this section are octets
322     instead of bytes.  Required for DWARF debug sections as DWARF
323     information is organized in octets, not bytes.  */
324#define SEC_ELF_OCTETS             0x40000000
325
326  /* Indicate that section has the no read flag set. This happens
327     when memory read flag isn't set. */
328#define SEC_COFF_NOREAD            0x40000000
329
330  /* Indicate that section has the purecode flag set.  */
331#define SEC_ELF_PURECODE           0x80000000
332
333  /*  End of section flags.  */
334
335  /* Some internal packed boolean fields.  */
336
337  /* See the vma field.  */
338  unsigned int user_set_vma : 1;
339
340  /* A mark flag used by some of the linker backends.  */
341  unsigned int linker_mark : 1;
342
343  /* Another mark flag used by some of the linker backends.  Set for
344     output sections that have an input section.  */
345  unsigned int linker_has_input : 1;
346
347  /* Mark flag used by some linker backends for garbage collection.  */
348  unsigned int gc_mark : 1;
349
350  /* Section compression status.  */
351  unsigned int compress_status : 2;
352#define COMPRESS_SECTION_NONE    0
353#define COMPRESS_SECTION_DONE    1
354#define DECOMPRESS_SECTION_SIZED 2
355
356  /* The following flags are used by the ELF linker. */
357
358  /* Mark sections which have been allocated to segments.  */
359  unsigned int segment_mark : 1;
360
361  /* Type of sec_info information.  */
362  unsigned int sec_info_type:3;
363#define SEC_INFO_TYPE_NONE      0
364#define SEC_INFO_TYPE_STABS     1
365#define SEC_INFO_TYPE_MERGE     2
366#define SEC_INFO_TYPE_EH_FRAME  3
367#define SEC_INFO_TYPE_JUST_SYMS 4
368#define SEC_INFO_TYPE_TARGET    5
369#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6
370
371  /* Nonzero if this section uses RELA relocations, rather than REL.  */
372  unsigned int use_rela_p:1;
373
374  /* Bits used by various backends.  The generic code doesn't touch
375     these fields.  */
376
377  unsigned int sec_flg0:1;
378  unsigned int sec_flg1:1;
379  unsigned int sec_flg2:1;
380  unsigned int sec_flg3:1;
381  unsigned int sec_flg4:1;
382  unsigned int sec_flg5:1;
383
384  /* End of internal packed boolean fields.  */
385
386  /*  The virtual memory address of the section - where it will be
387      at run time.  The symbols are relocated against this.  The
388      user_set_vma flag is maintained by bfd; if it's not set, the
389      backend can assign addresses (for example, in @code{a.out}, where
390      the default address for @code{.data} is dependent on the specific
391      target and various flags).  */
392  bfd_vma vma;
393
394  /*  The load address of the section - where it would be in a
395      rom image; really only used for writing section header
396      information.  */
397  bfd_vma lma;
398
399  /* The size of the section in *octets*, as it will be output.
400     Contains a value even if the section has no contents (e.g., the
401     size of @code{.bss}).  */
402  bfd_size_type size;
403
404  /* For input sections, the original size on disk of the section, in
405     octets.  This field should be set for any section whose size is
406     changed by linker relaxation.  It is required for sections where
407     the linker relaxation scheme doesn't cache altered section and
408     reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing
409     targets), and thus the original size needs to be kept to read the
410     section multiple times.  For output sections, rawsize holds the
411     section size calculated on a previous linker relaxation pass.  */
412  bfd_size_type rawsize;
413
414  /* The compressed size of the section in octets.  */
415  bfd_size_type compressed_size;
416
417  /* Relaxation table. */
418  struct relax_table *relax;
419
420  /* Count of used relaxation table entries. */
421  int relax_count;
422
423
424  /* If this section is going to be output, then this value is the
425     offset in *bytes* into the output section of the first byte in the
426     input section (byte ==> smallest addressable unit on the
427     target).  In most cases, if this was going to start at the
428     100th octet (8-bit quantity) in the output section, this value
429     would be 100.  However, if the target byte size is 16 bits
430     (bfd_octets_per_byte is "2"), this value would be 50.  */
431  bfd_vma output_offset;
432
433  /* The output section through which to map on output.  */
434  struct bfd_section *output_section;
435
436  /* The alignment requirement of the section, as an exponent of 2 -
437     e.g., 3 aligns to 2^3 (or 8).  */
438  unsigned int alignment_power;
439
440  /* If an input section, a pointer to a vector of relocation
441     records for the data in this section.  */
442  struct reloc_cache_entry *relocation;
443
444  /* If an output section, a pointer to a vector of pointers to
445     relocation records for the data in this section.  */
446  struct reloc_cache_entry **orelocation;
447
448  /* The number of relocation records in one of the above.  */
449  unsigned reloc_count;
450
451  /* Information below is back end specific - and not always used
452     or updated.  */
453
454  /* File position of section data.  */
455  file_ptr filepos;
456
457  /* File position of relocation info.  */
458  file_ptr rel_filepos;
459
460  /* File position of line data.  */
461  file_ptr line_filepos;
462
463  /* Pointer to data for applications.  */
464  void *userdata;
465
466  /* If the SEC_IN_MEMORY flag is set, this points to the actual
467     contents.  */
468  unsigned char *contents;
469
470  /* Attached line number information.  */
471  alent *lineno;
472
473  /* Number of line number records.  */
474  unsigned int lineno_count;
475
476  /* Entity size for merging purposes.  */
477  unsigned int entsize;
478
479  /* Points to the kept section if this section is a link-once section,
480     and is discarded.  */
481  struct bfd_section *kept_section;
482
483  /* When a section is being output, this value changes as more
484     linenumbers are written out.  */
485  file_ptr moving_line_filepos;
486
487  /* What the section number is in the target world.  */
488  int target_index;
489
490  void *used_by_bfd;
491
492  /* If this is a constructor section then here is a list of the
493     relocations created to relocate items within it.  */
494  struct relent_chain *constructor_chain;
495
496  /* The BFD which owns the section.  */
497  bfd *owner;
498
499  /* A symbol which points at this section only.  */
500  struct bfd_symbol *symbol;
501  struct bfd_symbol **symbol_ptr_ptr;
502
503  /* Early in the link process, map_head and map_tail are used to build
504     a list of input sections attached to an output section.  Later,
505     output sections use these fields for a list of bfd_link_order
506     structs.  The linked_to_symbol_name field is for ELF assembler
507     internal use.  */
508  union @{
509    struct bfd_link_order *link_order;
510    struct bfd_section *s;
511    const char *linked_to_symbol_name;
512  @} map_head, map_tail;
513 /* Points to the output section this section is already assigned to, if any.
514    This is used when support for non-contiguous memory regions is enabled.  */
515 struct bfd_section *already_assigned;
516
517@} asection;
518
519/* Relax table contains information about instructions which can
520   be removed by relaxation -- replacing a long address with a
521   short address.  */
522struct relax_table @{
523  /* Address where bytes may be deleted. */
524  bfd_vma addr;
525
526  /* Number of bytes to be deleted.  */
527  int size;
528@};
529
530static inline const char *
531bfd_section_name (const asection *sec)
532@{
533  return sec->name;
534@}
535
536static inline bfd_size_type
537bfd_section_size (const asection *sec)
538@{
539  return sec->size;
540@}
541
542static inline bfd_vma
543bfd_section_vma (const asection *sec)
544@{
545  return sec->vma;
546@}
547
548static inline bfd_vma
549bfd_section_lma (const asection *sec)
550@{
551  return sec->lma;
552@}
553
554static inline unsigned int
555bfd_section_alignment (const asection *sec)
556@{
557  return sec->alignment_power;
558@}
559
560static inline flagword
561bfd_section_flags (const asection *sec)
562@{
563  return sec->flags;
564@}
565
566static inline void *
567bfd_section_userdata (const asection *sec)
568@{
569  return sec->userdata;
570@}
571static inline bool
572bfd_is_com_section (const asection *sec)
573@{
574  return (sec->flags & SEC_IS_COMMON) != 0;
575@}
576
577/* Note: the following are provided as inline functions rather than macros
578   because not all callers use the return value.  A macro implementation
579   would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some
580   compilers will complain about comma expressions that have no effect.  */
581static inline bool
582bfd_set_section_userdata (asection *sec, void *val)
583@{
584  sec->userdata = val;
585  return true;
586@}
587
588static inline bool
589bfd_set_section_vma (asection *sec, bfd_vma val)
590@{
591  sec->vma = sec->lma = val;
592  sec->user_set_vma = true;
593  return true;
594@}
595
596static inline bool
597bfd_set_section_lma (asection *sec, bfd_vma val)
598@{
599  sec->lma = val;
600  return true;
601@}
602
603static inline bool
604bfd_set_section_alignment (asection *sec, unsigned int val)
605@{
606  sec->alignment_power = val;
607  return true;
608@}
609
610/* These sections are global, and are managed by BFD.  The application
611   and target back end are not permitted to change the values in
612   these sections.  */
613extern asection _bfd_std_section[4];
614
615#define BFD_ABS_SECTION_NAME "*ABS*"
616#define BFD_UND_SECTION_NAME "*UND*"
617#define BFD_COM_SECTION_NAME "*COM*"
618#define BFD_IND_SECTION_NAME "*IND*"
619
620/* Pointer to the common section.  */
621#define bfd_com_section_ptr (&_bfd_std_section[0])
622/* Pointer to the undefined section.  */
623#define bfd_und_section_ptr (&_bfd_std_section[1])
624/* Pointer to the absolute section.  */
625#define bfd_abs_section_ptr (&_bfd_std_section[2])
626/* Pointer to the indirect section.  */
627#define bfd_ind_section_ptr (&_bfd_std_section[3])
628
629static inline bool
630bfd_is_und_section (const asection *sec)
631@{
632  return sec == bfd_und_section_ptr;
633@}
634
635static inline bool
636bfd_is_abs_section (const asection *sec)
637@{
638  return sec == bfd_abs_section_ptr;
639@}
640
641static inline bool
642bfd_is_ind_section (const asection *sec)
643@{
644  return sec == bfd_ind_section_ptr;
645@}
646
647static inline bool
648bfd_is_const_section (const asection *sec)
649@{
650  return (sec >= _bfd_std_section
651          && sec < _bfd_std_section + (sizeof (_bfd_std_section)
652                                       / sizeof (_bfd_std_section[0])));
653@}
654
655/* Return TRUE if input section SEC has been discarded.  */
656static inline bool
657discarded_section (const asection *sec)
658@{
659  return (!bfd_is_abs_section (sec)
660          && bfd_is_abs_section (sec->output_section)
661          && sec->sec_info_type != SEC_INFO_TYPE_MERGE
662          && sec->sec_info_type != SEC_INFO_TYPE_JUST_SYMS);
663@}
664
665#define BFD_FAKE_SECTION(SEC, SYM, NAME, IDX, FLAGS)                   \
666  /* name, id,  section_id, index, next, prev, flags, user_set_vma, */ \
667  @{  NAME, IDX, 0,          0,     NULL, NULL, FLAGS, 0,               \
668                                                                       \
669  /* linker_mark, linker_has_input, gc_mark, decompress_status,     */ \
670     0,           0,                1,       0,                        \
671                                                                       \
672  /* segment_mark, sec_info_type, use_rela_p,                       */ \
673     0,            0,             0,                                   \
674                                                                       \
675  /* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5,    */ \
676     0,        0,        0,        0,        0,        0,              \
677                                                                       \
678  /* vma, lma, size, rawsize, compressed_size, relax, relax_count,  */ \
679     0,   0,   0,    0,       0,               0,     0,               \
680                                                                       \
681  /* output_offset, output_section, alignment_power,                */ \
682     0,             &SEC,           0,                                 \
683                                                                       \
684  /* relocation, orelocation, reloc_count, filepos, rel_filepos,    */ \
685     NULL,       NULL,        0,           0,       0,                 \
686                                                                       \
687  /* line_filepos, userdata, contents, lineno, lineno_count,        */ \
688     0,            NULL,     NULL,     NULL,   0,                      \
689                                                                       \
690  /* entsize, kept_section, moving_line_filepos,                    */ \
691     0,       NULL,         0,                                         \
692                                                                       \
693  /* target_index, used_by_bfd, constructor_chain, owner,           */ \
694     0,            NULL,        NULL,              NULL,               \
695                                                                       \
696  /* symbol,                    symbol_ptr_ptr,                     */ \
697     (struct bfd_symbol *) SYM, &SEC.symbol,                           \
698                                                                       \
699  /* map_head, map_tail, already_assigned                           */ \
700     @{ NULL @}, @{ NULL @}, NULL                                          \
701                                                                       \
702    @}
703
704/* We use a macro to initialize the static asymbol structures because
705   traditional C does not permit us to initialize a union member while
706   gcc warns if we don't initialize it.
707   the_bfd, name, value, attr, section [, udata]  */
708#ifdef __STDC__
709#define GLOBAL_SYM_INIT(NAME, SECTION) \
710  @{ 0, NAME, 0, BSF_SECTION_SYM, SECTION, @{ 0 @}@}
711#else
712#define GLOBAL_SYM_INIT(NAME, SECTION) \
713  @{ 0, NAME, 0, BSF_SECTION_SYM, SECTION @}
714#endif
715
716@end example
717
718@node section prototypes,  , typedef asection, Sections
719@subsection Section prototypes
720These are the functions exported by the section handling part of BFD.
721
722@findex bfd_section_list_clear
723@subsubsection @code{bfd_section_list_clear}
724@strong{Synopsis}
725@example
726void bfd_section_list_clear (bfd *);
727@end example
728@strong{Description}@*
729Clears the section list, and also resets the section count and
730hash table entries.
731
732@findex bfd_get_section_by_name
733@subsubsection @code{bfd_get_section_by_name}
734@strong{Synopsis}
735@example
736asection *bfd_get_section_by_name (bfd *abfd, const char *name);
737@end example
738@strong{Description}@*
739Return the most recently created section attached to @var{abfd}
740named @var{name}.  Return NULL if no such section exists.
741
742@findex bfd_get_next_section_by_name
743@subsubsection @code{bfd_get_next_section_by_name}
744@strong{Synopsis}
745@example
746asection *bfd_get_next_section_by_name (bfd *ibfd, asection *sec);
747@end example
748@strong{Description}@*
749Given @var{sec} is a section returned by @code{bfd_get_section_by_name},
750return the next most recently created section attached to the same
751BFD with the same name, or if no such section exists in the same BFD and
752IBFD is non-NULL, the next section with the same name in any input
753BFD following IBFD.  Return NULL on finding no section.
754
755@findex bfd_get_linker_section
756@subsubsection @code{bfd_get_linker_section}
757@strong{Synopsis}
758@example
759asection *bfd_get_linker_section (bfd *abfd, const char *name);
760@end example
761@strong{Description}@*
762Return the linker created section attached to @var{abfd}
763named @var{name}.  Return NULL if no such section exists.
764
765@findex bfd_get_section_by_name_if
766@subsubsection @code{bfd_get_section_by_name_if}
767@strong{Synopsis}
768@example
769asection *bfd_get_section_by_name_if
770   (bfd *abfd,
771    const char *name,
772    bool (*func) (bfd *abfd, asection *sect, void *obj),
773    void *obj);
774@end example
775@strong{Description}@*
776Call the provided function @var{func} for each section
777attached to the BFD @var{abfd} whose name matches @var{name},
778passing @var{obj} as an argument. The function will be called
779as if by
780
781@example
782       func (abfd, the_section, obj);
783@end example
784
785It returns the first section for which @var{func} returns true,
786otherwise @code{NULL}.
787
788@findex bfd_get_unique_section_name
789@subsubsection @code{bfd_get_unique_section_name}
790@strong{Synopsis}
791@example
792char *bfd_get_unique_section_name
793   (bfd *abfd, const char *templat, int *count);
794@end example
795@strong{Description}@*
796Invent a section name that is unique in @var{abfd} by tacking
797a dot and a digit suffix onto the original @var{templat}.  If
798@var{count} is non-NULL, then it specifies the first number
799tried as a suffix to generate a unique name.  The value
800pointed to by @var{count} will be incremented in this case.
801
802@findex bfd_make_section_old_way
803@subsubsection @code{bfd_make_section_old_way}
804@strong{Synopsis}
805@example
806asection *bfd_make_section_old_way (bfd *abfd, const char *name);
807@end example
808@strong{Description}@*
809Create a new empty section called @var{name}
810and attach it to the end of the chain of sections for the
811BFD @var{abfd}. An attempt to create a section with a name which
812is already in use returns its pointer without changing the
813section chain.
814
815It has the funny name since this is the way it used to be
816before it was rewritten....
817
818Possible errors are:
819@itemize @bullet
820
821@item
822@code{bfd_error_invalid_operation} -
823If output has already started for this BFD.
824@item
825@code{bfd_error_no_memory} -
826If memory allocation fails.
827@end itemize
828
829@findex bfd_make_section_anyway_with_flags
830@subsubsection @code{bfd_make_section_anyway_with_flags}
831@strong{Synopsis}
832@example
833asection *bfd_make_section_anyway_with_flags
834   (bfd *abfd, const char *name, flagword flags);
835@end example
836@strong{Description}@*
837Create a new empty section called @var{name} and attach it to the end of
838the chain of sections for @var{abfd}.  Create a new section even if there
839is already a section with that name.  Also set the attributes of the
840new section to the value @var{flags}.
841
842Return @code{NULL} and set @code{bfd_error} on error; possible errors are:
843@itemize @bullet
844
845@item
846@code{bfd_error_invalid_operation} - If output has already started for @var{abfd}.
847@item
848@code{bfd_error_no_memory} - If memory allocation fails.
849@end itemize
850
851@findex bfd_make_section_anyway
852@subsubsection @code{bfd_make_section_anyway}
853@strong{Synopsis}
854@example
855asection *bfd_make_section_anyway (bfd *abfd, const char *name);
856@end example
857@strong{Description}@*
858Create a new empty section called @var{name} and attach it to the end of
859the chain of sections for @var{abfd}.  Create a new section even if there
860is already a section with that name.
861
862Return @code{NULL} and set @code{bfd_error} on error; possible errors are:
863@itemize @bullet
864
865@item
866@code{bfd_error_invalid_operation} - If output has already started for @var{abfd}.
867@item
868@code{bfd_error_no_memory} - If memory allocation fails.
869@end itemize
870
871@findex bfd_make_section_with_flags
872@subsubsection @code{bfd_make_section_with_flags}
873@strong{Synopsis}
874@example
875asection *bfd_make_section_with_flags
876   (bfd *, const char *name, flagword flags);
877@end example
878@strong{Description}@*
879Like @code{bfd_make_section_anyway}, but return @code{NULL} (without calling
880bfd_set_error ()) without changing the section chain if there is already a
881section named @var{name}.  Also set the attributes of the new section to
882the value @var{flags}.  If there is an error, return @code{NULL} and set
883@code{bfd_error}.
884
885@findex bfd_make_section
886@subsubsection @code{bfd_make_section}
887@strong{Synopsis}
888@example
889asection *bfd_make_section (bfd *, const char *name);
890@end example
891@strong{Description}@*
892Like @code{bfd_make_section_anyway}, but return @code{NULL} (without calling
893bfd_set_error ()) without changing the section chain if there is already a
894section named @var{name}.  If there is an error, return @code{NULL} and set
895@code{bfd_error}.
896
897@findex bfd_set_section_flags
898@subsubsection @code{bfd_set_section_flags}
899@strong{Synopsis}
900@example
901bool bfd_set_section_flags (asection *sec, flagword flags);
902@end example
903@strong{Description}@*
904Set the attributes of the section @var{sec} to the value @var{flags}.
905Return @code{TRUE} on success, @code{FALSE} on error.  Possible error
906returns are:
907
908@itemize @bullet
909
910@item
911@code{bfd_error_invalid_operation} -
912The section cannot have one or more of the attributes
913requested. For example, a .bss section in @code{a.out} may not
914have the @code{SEC_HAS_CONTENTS} field set.
915@end itemize
916
917@findex bfd_rename_section
918@subsubsection @code{bfd_rename_section}
919@strong{Synopsis}
920@example
921void bfd_rename_section
922   (asection *sec, const char *newname);
923@end example
924@strong{Description}@*
925Rename section @var{sec} to @var{newname}.
926
927@findex bfd_map_over_sections
928@subsubsection @code{bfd_map_over_sections}
929@strong{Synopsis}
930@example
931void bfd_map_over_sections
932   (bfd *abfd,
933    void (*func) (bfd *abfd, asection *sect, void *obj),
934    void *obj);
935@end example
936@strong{Description}@*
937Call the provided function @var{func} for each section
938attached to the BFD @var{abfd}, passing @var{obj} as an
939argument. The function will be called as if by
940
941@example
942       func (abfd, the_section, obj);
943@end example
944
945This is the preferred method for iterating over sections; an
946alternative would be to use a loop:
947
948@example
949          asection *p;
950          for (p = abfd->sections; p != NULL; p = p->next)
951             func (abfd, p, ...)
952@end example
953
954@findex bfd_sections_find_if
955@subsubsection @code{bfd_sections_find_if}
956@strong{Synopsis}
957@example
958asection *bfd_sections_find_if
959   (bfd *abfd,
960    bool (*operation) (bfd *abfd, asection *sect, void *obj),
961    void *obj);
962@end example
963@strong{Description}@*
964Call the provided function @var{operation} for each section
965attached to the BFD @var{abfd}, passing @var{obj} as an
966argument. The function will be called as if by
967
968@example
969       operation (abfd, the_section, obj);
970@end example
971
972It returns the first section for which @var{operation} returns true.
973
974@findex bfd_set_section_size
975@subsubsection @code{bfd_set_section_size}
976@strong{Synopsis}
977@example
978bool bfd_set_section_size (asection *sec, bfd_size_type val);
979@end example
980@strong{Description}@*
981Set @var{sec} to the size @var{val}. If the operation is
982ok, then @code{TRUE} is returned, else @code{FALSE}.
983
984Possible error returns:
985@itemize @bullet
986
987@item
988@code{bfd_error_invalid_operation} -
989Writing has started to the BFD, so setting the size is invalid.
990@end itemize
991
992@findex bfd_set_section_contents
993@subsubsection @code{bfd_set_section_contents}
994@strong{Synopsis}
995@example
996bool bfd_set_section_contents
997   (bfd *abfd, asection *section, const void *data,
998    file_ptr offset, bfd_size_type count);
999@end example
1000@strong{Description}@*
1001Sets the contents of the section @var{section} in BFD
1002@var{abfd} to the data starting in memory at @var{location}.
1003The data is written to the output section starting at offset
1004@var{offset} for @var{count} octets.
1005
1006Normally @code{TRUE} is returned, but @code{FALSE} is returned if
1007there was an error.  Possible error returns are:
1008@itemize @bullet
1009
1010@item
1011@code{bfd_error_no_contents} -
1012The output section does not have the @code{SEC_HAS_CONTENTS}
1013attribute, so nothing can be written to it.
1014@item
1015@code{bfd_error_bad_value} -
1016The section is unable to contain all of the data.
1017@item
1018@code{bfd_error_invalid_operation} -
1019The BFD is not writeable.
1020@item
1021and some more too.
1022@end itemize
1023This routine is front end to the back end function
1024@code{_bfd_set_section_contents}.
1025
1026@findex bfd_get_section_contents
1027@subsubsection @code{bfd_get_section_contents}
1028@strong{Synopsis}
1029@example
1030bool bfd_get_section_contents
1031   (bfd *abfd, asection *section, void *location, file_ptr offset,
1032    bfd_size_type count);
1033@end example
1034@strong{Description}@*
1035Read data from @var{section} in BFD @var{abfd}
1036into memory starting at @var{location}. The data is read at an
1037offset of @var{offset} from the start of the input section,
1038and is read for @var{count} bytes.
1039
1040If the contents of a constructor with the @code{SEC_CONSTRUCTOR}
1041flag set are requested or if the section does not have the
1042@code{SEC_HAS_CONTENTS} flag set, then the @var{location} is filled
1043with zeroes. If no errors occur, @code{TRUE} is returned, else
1044@code{FALSE}.
1045
1046@findex bfd_malloc_and_get_section
1047@subsubsection @code{bfd_malloc_and_get_section}
1048@strong{Synopsis}
1049@example
1050bool bfd_malloc_and_get_section
1051   (bfd *abfd, asection *section, bfd_byte **buf);
1052@end example
1053@strong{Description}@*
1054Read all data from @var{section} in BFD @var{abfd}
1055into a buffer, *@var{buf}, malloc'd by this function.
1056
1057@findex bfd_copy_private_section_data
1058@subsubsection @code{bfd_copy_private_section_data}
1059@strong{Synopsis}
1060@example
1061bool bfd_copy_private_section_data
1062   (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1063@end example
1064@strong{Description}@*
1065Copy private section information from @var{isec} in the BFD
1066@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1067Return @code{TRUE} on success, @code{FALSE} on error.  Possible error
1068returns are:
1069
1070@itemize @bullet
1071
1072@item
1073@code{bfd_error_no_memory} -
1074Not enough memory exists to create private data for @var{osec}.
1075@end itemize
1076@example
1077#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1078       BFD_SEND (obfd, _bfd_copy_private_section_data, \
1079                 (ibfd, isection, obfd, osection))
1080@end example
1081
1082@findex bfd_generic_is_group_section
1083@subsubsection @code{bfd_generic_is_group_section}
1084@strong{Synopsis}
1085@example
1086bool bfd_generic_is_group_section (bfd *, const asection *sec);
1087@end example
1088@strong{Description}@*
1089Returns TRUE if @var{sec} is a member of a group.
1090
1091@findex bfd_generic_group_name
1092@subsubsection @code{bfd_generic_group_name}
1093@strong{Synopsis}
1094@example
1095const char *bfd_generic_group_name (bfd *, const asection *sec);
1096@end example
1097@strong{Description}@*
1098Returns group name if @var{sec} is a member of a group.
1099
1100@findex bfd_generic_discard_group
1101@subsubsection @code{bfd_generic_discard_group}
1102@strong{Synopsis}
1103@example
1104bool bfd_generic_discard_group (bfd *abfd, asection *group);
1105@end example
1106@strong{Description}@*
1107Remove all members of @var{group} from the output.
1108
1109