1 /* atof_vax.c - turn a Flonum into a VAX floating point number
2    Copyright (C) 1987-2021 Free Software Foundation, Inc.
3 
4    This file is part of GAS, the GNU Assembler.
5 
6    GAS is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GAS is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GAS; see the file COPYING.  If not, write to the Free
18    Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 
21 #include "as.h"
22 
23 /* Precision in LittleNums.  */
24 #define MAX_PRECISION	8
25 #define H_PRECISION	8
26 #define G_PRECISION	4
27 #define D_PRECISION	4
28 #define F_PRECISION	2
29 
30 /* Length in LittleNums of guard bits.  */
31 #define GUARD		2
32 
33 int flonum_gen2vax (int, FLONUM_TYPE *, LITTLENUM_TYPE *);
34 
35 /* Number of chars in flonum type 'letter'.  */
36 
37 static unsigned int
atof_vax_sizeof(int letter)38 atof_vax_sizeof (int letter)
39 {
40   int return_value;
41 
42   /* Permitting uppercase letters is probably a bad idea.
43      Please use only lower-cased letters in case the upper-cased
44      ones become unsupported!  */
45   switch (letter)
46     {
47     case 'f':
48     case 'F':
49       return_value = 4;
50       break;
51 
52     case 'd':
53     case 'D':
54     case 'g':
55     case 'G':
56       return_value = 8;
57       break;
58 
59     case 'h':
60     case 'H':
61       return_value = 16;
62       break;
63 
64     default:
65       return_value = 0;
66       break;
67     }
68 
69   return return_value;
70 }
71 
72 static const long mask[] =
73 {
74   0x00000000,
75   0x00000001,
76   0x00000003,
77   0x00000007,
78   0x0000000f,
79   0x0000001f,
80   0x0000003f,
81   0x0000007f,
82   0x000000ff,
83   0x000001ff,
84   0x000003ff,
85   0x000007ff,
86   0x00000fff,
87   0x00001fff,
88   0x00003fff,
89   0x00007fff,
90   0x0000ffff,
91   0x0001ffff,
92   0x0003ffff,
93   0x0007ffff,
94   0x000fffff,
95   0x001fffff,
96   0x003fffff,
97   0x007fffff,
98   0x00ffffff,
99   0x01ffffff,
100   0x03ffffff,
101   0x07ffffff,
102   0x0fffffff,
103   0x1fffffff,
104   0x3fffffff,
105   0x7fffffff,
106   0xffffffff
107 };
108 
109 
110 /* Shared between flonum_gen2vax and next_bits.  */
111 static int bits_left_in_littlenum;
112 static LITTLENUM_TYPE *littlenum_pointer;
113 static LITTLENUM_TYPE *littlenum_end;
114 
115 static int
next_bits(int number_of_bits)116 next_bits (int number_of_bits)
117 {
118   int return_value;
119 
120   if (littlenum_pointer < littlenum_end)
121     return 0;
122   if (number_of_bits >= bits_left_in_littlenum)
123     {
124       return_value = mask[bits_left_in_littlenum] & *littlenum_pointer;
125       number_of_bits -= bits_left_in_littlenum;
126       return_value <<= number_of_bits;
127       bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits;
128       littlenum_pointer--;
129       if (littlenum_pointer >= littlenum_end)
130 	return_value |= ((*littlenum_pointer) >> (bits_left_in_littlenum)) & mask[number_of_bits];
131     }
132   else
133     {
134       bits_left_in_littlenum -= number_of_bits;
135       return_value = mask[number_of_bits] & ((*littlenum_pointer) >> bits_left_in_littlenum);
136     }
137   return return_value;
138 }
139 
140 static void
make_invalid_floating_point_number(LITTLENUM_TYPE * words)141 make_invalid_floating_point_number (LITTLENUM_TYPE *words)
142 {
143   *words = 0x8000;		/* Floating Reserved Operand Code.  */
144 }
145 
146 
147 static int			/* 0 means letter is OK.  */
what_kind_of_float(int letter,int * precisionP,long * exponent_bitsP)148 what_kind_of_float (int letter,			/* In: lowercase please. What kind of float?  */
149 		    int *precisionP,		/* Number of 16-bit words in the float.  */
150 		    long *exponent_bitsP)	/* Number of exponent bits.  */
151 {
152   int retval;
153 
154   retval = 0;
155   switch (letter)
156     {
157     case 'f':
158       *precisionP = F_PRECISION;
159       *exponent_bitsP = 8;
160       break;
161 
162     case 'd':
163       *precisionP = D_PRECISION;
164       *exponent_bitsP = 8;
165       break;
166 
167     case 'g':
168       *precisionP = G_PRECISION;
169       *exponent_bitsP = 11;
170       break;
171 
172     case 'h':
173       *precisionP = H_PRECISION;
174       *exponent_bitsP = 15;
175       break;
176 
177     default:
178       retval = 69;
179       break;
180     }
181   return retval;
182 }
183 
184 /* Warning: this returns 16-bit LITTLENUMs, because that is
185    what the VAX thinks in. It is up to the caller to figure
186    out any alignment problems and to conspire for the bytes/word
187    to be emitted in the right order. Bigendians beware!  */
188 
189 static char *
atof_vax(char * str,int what_kind,LITTLENUM_TYPE * words)190 atof_vax (char *str,			/* Text to convert to binary.  */
191 	  int what_kind,		/* 'd', 'f', 'g', 'h'  */
192 	  LITTLENUM_TYPE *words)	/* Build the binary here.  */
193 {
194   FLONUM_TYPE f;
195   LITTLENUM_TYPE bits[MAX_PRECISION + MAX_PRECISION + GUARD];
196   /* Extra bits for zeroed low-order bits.
197      The 1st MAX_PRECISION are zeroed,
198      the last contain flonum bits.  */
199   char *return_value;
200   int precision;		/* Number of 16-bit words in the format.  */
201   long exponent_bits;
202 
203   return_value = str;
204   f.low = bits + MAX_PRECISION;
205   f.high = NULL;
206   f.leader = NULL;
207   f.exponent = 0;
208   f.sign = '\0';
209 
210   if (what_kind_of_float (what_kind, &precision, &exponent_bits))
211     {
212       return_value = NULL;
213       make_invalid_floating_point_number (words);
214     }
215 
216   if (return_value)
217     {
218       memset (bits, '\0', sizeof (LITTLENUM_TYPE) * MAX_PRECISION);
219 
220       /* Use more LittleNums than seems
221          necessary: the highest flonum may have
222          15 leading 0 bits, so could be useless.  */
223       f.high = f.low + precision - 1 + GUARD;
224 
225       if (atof_generic (&return_value, ".", "eE", &f))
226 	{
227 	  make_invalid_floating_point_number (words);
228 	  return_value = NULL;
229 	}
230       else if (flonum_gen2vax (what_kind, &f, words))
231 	return_value = NULL;
232     }
233 
234   return return_value;
235 }
236 
237 /* In: a flonum, a vax floating point format.
238    Out: a vax floating-point bit pattern.  */
239 
240 int
flonum_gen2vax(int format_letter,FLONUM_TYPE * f,LITTLENUM_TYPE * words)241 flonum_gen2vax (int format_letter,	/* One of 'd' 'f' 'g' 'h'.  */
242 		FLONUM_TYPE *f,
243 		LITTLENUM_TYPE *words)	/* Deliver answer here.  */
244 {
245   LITTLENUM_TYPE *lp;
246   int precision;
247   long exponent_bits;
248   int return_value;		/* 0 == OK.  */
249 
250   return_value = what_kind_of_float (format_letter, &precision, &exponent_bits);
251 
252   if (return_value != 0)
253     make_invalid_floating_point_number (words);
254 
255   else
256     {
257       if (f->low > f->leader)
258 	/* 0.0e0 seen.  */
259 	memset (words, '\0', sizeof (LITTLENUM_TYPE) * precision);
260 
261       else
262 	{
263 	  long exponent_1;
264 	  long exponent_2;
265 	  long exponent_3;
266 	  long exponent_4;
267 	  int exponent_skippage;
268 	  LITTLENUM_TYPE word1;
269 
270 	  /* JF: Deal with new Nan, +Inf and -Inf codes.  */
271 	  if (f->sign != '-' && f->sign != '+')
272 	    {
273 	      make_invalid_floating_point_number (words);
274 	      return return_value;
275 	    }
276 
277 	  /* All vaxen floating_point formats (so far) have:
278 	     Bit 15 is sign bit.
279 	     Bits 14:n are excess-whatever exponent.
280 	     Bits n-1:0 (if any) are most significant bits of fraction.
281 	     Bits 15:0 of the next word are the next most significant bits.
282 	     And so on for each other word.
283 
284 	     All this to be compatible with a KF11?? (Which is still faster
285 	     than lots of vaxen I can think of, but it also has higher
286 	     maintenance costs ... sigh).
287 
288 	     So we need: number of bits of exponent, number of bits of
289 	     mantissa.  */
290 
291 	  bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
292 	  littlenum_pointer = f->leader;
293 	  littlenum_end = f->low;
294 	  /* Seek (and forget) 1st significant bit.  */
295 	  for (exponent_skippage = 0;
296 	       !next_bits (1);
297 	       exponent_skippage++);
298 
299 	  exponent_1 = f->exponent + f->leader + 1 - f->low;
300 	  /* Radix LITTLENUM_RADIX, point just higher than f->leader.  */
301 	  exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
302 	  /* Radix 2.  */
303 	  exponent_3 = exponent_2 - exponent_skippage;
304 	  /* Forget leading zeros, forget 1st bit.  */
305 	  exponent_4 = exponent_3 + (1 << (exponent_bits - 1));
306 	  /* Offset exponent.  */
307 
308 	  if (exponent_4 & ~mask[exponent_bits])
309 	    {
310 	      /* Exponent overflow. Lose immediately.  */
311 	      make_invalid_floating_point_number (words);
312 
313 	      /* We leave return_value alone: admit we read the
314 	         number, but return a floating exception
315 	         because we can't encode the number.  */
316 	    }
317 	  else
318 	    {
319 	      lp = words;
320 
321 	      /* Word 1. Sign, exponent and perhaps high bits.
322 	         Assume 2's complement integers.  */
323 	      word1 = (((exponent_4 & mask[exponent_bits]) << (15 - exponent_bits))
324 		       | ((f->sign == '+') ? 0 : 0x8000)
325 		       | next_bits (15 - exponent_bits));
326 	      *lp++ = word1;
327 
328 	      /* The rest of the words are just mantissa bits.  */
329 	      for (; lp < words + precision; lp++)
330 		*lp = next_bits (LITTLENUM_NUMBER_OF_BITS);
331 
332 	      if (next_bits (1))
333 		{
334 		  /* Since the NEXT bit is a 1, round UP the mantissa.
335 		     The cunning design of these hidden-1 floats permits
336 		     us to let the mantissa overflow into the exponent, and
337 		     it 'does the right thing'. However, we lose if the
338 		     highest-order bit of the lowest-order word flips.
339 		     Is that clear?  */
340 		  unsigned long carry;
341 
342 		  /*
343 		    #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
344 		    Please allow at least 1 more bit in carry than is in a LITTLENUM.
345 		    We need that extra bit to hold a carry during a LITTLENUM carry
346 		    propagation. Another extra bit (kept 0) will assure us that we
347 		    don't get a sticky sign bit after shifting right, and that
348 		    permits us to propagate the carry without any masking of bits.
349 		    #endif   */
350 		  for (carry = 1, lp--;
351 		       carry && (lp >= words);
352 		       lp--)
353 		    {
354 		      carry = *lp + carry;
355 		      *lp = carry;
356 		      carry >>= LITTLENUM_NUMBER_OF_BITS;
357 		    }
358 
359 		  if ((word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)))
360 		    {
361 		      make_invalid_floating_point_number (words);
362 		      /* We leave return_value alone: admit we read the
363 		         number, but return a floating exception
364 		         because we can't encode the number.  */
365 		    }
366 		}
367 	    }
368 	}
369     }
370   return return_value;
371 }
372 
373 /* JF this used to be in vax.c but this looks like a better place for it.  */
374 
375 /* In:	input_line_pointer->the 1st character of a floating-point
376   		number.
377   	1 letter denoting the type of statement that wants a
378   		binary floating point number returned.
379   	Address of where to build floating point literal.
380   		Assumed to be 'big enough'.
381   	Address of where to return size of literal (in chars).
382 
383    Out:	Input_line_pointer->of next char after floating number.
384   	Error message, or 0.
385   	Floating point literal.
386   	Number of chars we used for the literal.  */
387 
388 #define MAXIMUM_NUMBER_OF_LITTLENUMS  8 	/* For .hfloats.  */
389 
390 const char *
vax_md_atof(int what_statement_type,char * literalP,int * sizeP)391 vax_md_atof (int what_statement_type,
392 	     char *literalP,
393 	     int *sizeP)
394 {
395   LITTLENUM_TYPE words[MAXIMUM_NUMBER_OF_LITTLENUMS];
396   char kind_of_float;
397   unsigned int number_of_chars;
398   LITTLENUM_TYPE *littlenumP;
399 
400   switch (what_statement_type)
401     {
402     case 'F':
403     case 'f':
404       kind_of_float = 'f';
405       break;
406 
407     case 'D':
408     case 'd':
409       kind_of_float = 'd';
410       break;
411 
412     case 'g':
413       kind_of_float = 'g';
414       break;
415 
416     case 'h':
417       kind_of_float = 'h';
418       break;
419 
420     default:
421       kind_of_float = 0;
422       break;
423     };
424 
425   if (kind_of_float)
426     {
427       LITTLENUM_TYPE *limit;
428 
429       input_line_pointer = atof_vax (input_line_pointer,
430 				     kind_of_float,
431 				     words);
432       /* The atof_vax() builds up 16-bit numbers.
433          Since the assembler may not be running on
434          a little-endian machine, be very careful about
435          converting words to chars.  */
436       number_of_chars = atof_vax_sizeof (kind_of_float);
437       know (number_of_chars <= MAXIMUM_NUMBER_OF_LITTLENUMS * sizeof (LITTLENUM_TYPE));
438       limit = words + (number_of_chars / sizeof (LITTLENUM_TYPE));
439       for (littlenumP = words; littlenumP < limit; littlenumP++)
440 	{
441 	  md_number_to_chars (literalP, *littlenumP, sizeof (LITTLENUM_TYPE));
442 	  literalP += sizeof (LITTLENUM_TYPE);
443 	};
444     }
445   else
446     number_of_chars = 0;
447 
448   *sizeP = number_of_chars;
449   return kind_of_float ? NULL : _("Unrecognized or unsupported floating point constant");
450 }
451