1 #include "btMultiBodyConstraint.h"
2 #include "BulletDynamics/Dynamics/btRigidBody.h"
3 #include "btMultiBodyPoint2Point.h"  //for testing (BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST macro)
4 
btMultiBodyConstraint(btMultiBody * bodyA,btMultiBody * bodyB,int linkA,int linkB,int numRows,bool isUnilateral)5 btMultiBodyConstraint::btMultiBodyConstraint(btMultiBody* bodyA, btMultiBody* bodyB, int linkA, int linkB, int numRows, bool isUnilateral)
6 	: m_bodyA(bodyA),
7 	  m_bodyB(bodyB),
8 	  m_linkA(linkA),
9 	  m_linkB(linkB),
10 	  m_numRows(numRows),
11 	  m_jacSizeA(0),
12 	  m_jacSizeBoth(0),
13 	  m_isUnilateral(isUnilateral),
14 	  m_numDofsFinalized(-1),
15 	  m_maxAppliedImpulse(100)
16 {
17 }
18 
updateJacobianSizes()19 void btMultiBodyConstraint::updateJacobianSizes()
20 {
21 	if (m_bodyA)
22 	{
23 		m_jacSizeA = (6 + m_bodyA->getNumDofs());
24 	}
25 
26 	if (m_bodyB)
27 	{
28 		m_jacSizeBoth = m_jacSizeA + 6 + m_bodyB->getNumDofs();
29 	}
30 	else
31 		m_jacSizeBoth = m_jacSizeA;
32 }
33 
allocateJacobiansMultiDof()34 void btMultiBodyConstraint::allocateJacobiansMultiDof()
35 {
36 	updateJacobianSizes();
37 
38 	m_posOffset = ((1 + m_jacSizeBoth) * m_numRows);
39 	m_data.resize((2 + m_jacSizeBoth) * m_numRows);
40 }
41 
~btMultiBodyConstraint()42 btMultiBodyConstraint::~btMultiBodyConstraint()
43 {
44 }
45 
applyDeltaVee(btMultiBodyJacobianData & data,btScalar * delta_vee,btScalar impulse,int velocityIndex,int ndof)46 void btMultiBodyConstraint::applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
47 {
48 	for (int i = 0; i < ndof; ++i)
49 		data.m_deltaVelocities[velocityIndex + i] += delta_vee[i] * impulse;
50 }
51 
fillMultiBodyConstraint(btMultiBodySolverConstraint & solverConstraint,btMultiBodyJacobianData & data,btScalar * jacOrgA,btScalar * jacOrgB,const btVector3 & constraintNormalAng,const btVector3 & constraintNormalLin,const btVector3 & posAworld,const btVector3 & posBworld,btScalar posError,const btContactSolverInfo & infoGlobal,btScalar lowerLimit,btScalar upperLimit,bool angConstraint,btScalar relaxation,bool isFriction,btScalar desiredVelocity,btScalar cfmSlip)52 btScalar btMultiBodyConstraint::fillMultiBodyConstraint(btMultiBodySolverConstraint& solverConstraint,
53 														btMultiBodyJacobianData& data,
54 														btScalar* jacOrgA, btScalar* jacOrgB,
55 														const btVector3& constraintNormalAng,
56 														const btVector3& constraintNormalLin,
57 														const btVector3& posAworld, const btVector3& posBworld,
58 														btScalar posError,
59 														const btContactSolverInfo& infoGlobal,
60 														btScalar lowerLimit, btScalar upperLimit,
61 														bool angConstraint,
62 														btScalar relaxation,
63 														bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
64 {
65 	solverConstraint.m_multiBodyA = m_bodyA;
66 	solverConstraint.m_multiBodyB = m_bodyB;
67 	solverConstraint.m_linkA = m_linkA;
68 	solverConstraint.m_linkB = m_linkB;
69 
70 	btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
71 	btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
72 
73 	btSolverBody* bodyA = multiBodyA ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdA);
74 	btSolverBody* bodyB = multiBodyB ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdB);
75 
76 	btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
77 	btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
78 
79 	btVector3 rel_pos1, rel_pos2;  //these two used to be inited to posAworld and posBworld (respectively) but it does not seem necessary
80 	if (bodyA)
81 		rel_pos1 = posAworld - bodyA->getWorldTransform().getOrigin();
82 	if (bodyB)
83 		rel_pos2 = posBworld - bodyB->getWorldTransform().getOrigin();
84 
85 	if (multiBodyA)
86 	{
87 		if (solverConstraint.m_linkA < 0)
88 		{
89 			rel_pos1 = posAworld - multiBodyA->getBasePos();
90 		}
91 		else
92 		{
93 			rel_pos1 = posAworld - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
94 		}
95 
96 		const int ndofA = multiBodyA->getNumDofs() + 6;
97 
98 		solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
99 
100 		if (solverConstraint.m_deltaVelAindex < 0)
101 		{
102 			solverConstraint.m_deltaVelAindex = data.m_deltaVelocities.size();
103 			multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
104 			data.m_deltaVelocities.resize(data.m_deltaVelocities.size() + ndofA);
105 		}
106 		else
107 		{
108 			btAssert(data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex + ndofA);
109 		}
110 
111 		//determine jacobian of this 1D constraint in terms of multibodyA's degrees of freedom
112 		//resize..
113 		solverConstraint.m_jacAindex = data.m_jacobians.size();
114 		data.m_jacobians.resize(data.m_jacobians.size() + ndofA);
115 		//copy/determine
116 		if (jacOrgA)
117 		{
118 			for (int i = 0; i < ndofA; i++)
119 				data.m_jacobians[solverConstraint.m_jacAindex + i] = jacOrgA[i];
120 		}
121 		else
122 		{
123 			btScalar* jac1 = &data.m_jacobians[solverConstraint.m_jacAindex];
124 			//multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
125 			multiBodyA->fillConstraintJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalAng, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
126 		}
127 
128 		//determine the velocity response of multibodyA to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
129 		//resize..
130 		data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size() + ndofA);  //=> each constraint row has the constrained tree dofs allocated in m_deltaVelocitiesUnitImpulse
131 		btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
132 		btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
133 		//determine..
134 		multiBodyA->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacAindex], delta, data.scratch_r, data.scratch_v);
135 
136 		btVector3 torqueAxis0;
137 		if (angConstraint)
138 		{
139 			torqueAxis0 = constraintNormalAng;
140 		}
141 		else
142 		{
143 			torqueAxis0 = rel_pos1.cross(constraintNormalLin);
144 		}
145 		solverConstraint.m_relpos1CrossNormal = torqueAxis0;
146 		solverConstraint.m_contactNormal1 = constraintNormalLin;
147 	}
148 	else  //if(rb0)
149 	{
150 		btVector3 torqueAxis0;
151 		if (angConstraint)
152 		{
153 			torqueAxis0 = constraintNormalAng;
154 		}
155 		else
156 		{
157 			torqueAxis0 = rel_pos1.cross(constraintNormalLin);
158 		}
159 		solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld() * torqueAxis0 * rb0->getAngularFactor() : btVector3(0, 0, 0);
160 		solverConstraint.m_relpos1CrossNormal = torqueAxis0;
161 		solverConstraint.m_contactNormal1 = constraintNormalLin;
162 	}
163 
164 	if (multiBodyB)
165 	{
166 		if (solverConstraint.m_linkB < 0)
167 		{
168 			rel_pos2 = posBworld - multiBodyB->getBasePos();
169 		}
170 		else
171 		{
172 			rel_pos2 = posBworld - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
173 		}
174 
175 		const int ndofB = multiBodyB->getNumDofs() + 6;
176 
177 		solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
178 		if (solverConstraint.m_deltaVelBindex < 0)
179 		{
180 			solverConstraint.m_deltaVelBindex = data.m_deltaVelocities.size();
181 			multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
182 			data.m_deltaVelocities.resize(data.m_deltaVelocities.size() + ndofB);
183 		}
184 
185 		//determine jacobian of this 1D constraint in terms of multibodyB's degrees of freedom
186 		//resize..
187 		solverConstraint.m_jacBindex = data.m_jacobians.size();
188 		data.m_jacobians.resize(data.m_jacobians.size() + ndofB);
189 		//copy/determine..
190 		if (jacOrgB)
191 		{
192 			for (int i = 0; i < ndofB; i++)
193 				data.m_jacobians[solverConstraint.m_jacBindex + i] = jacOrgB[i];
194 		}
195 		else
196 		{
197 			//multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
198 			multiBodyB->fillConstraintJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalAng, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
199 		}
200 
201 		//determine velocity response of multibodyB to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
202 		//resize..
203 		data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size() + ndofB);
204 		btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
205 		btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
206 		//determine..
207 		multiBodyB->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacBindex], delta, data.scratch_r, data.scratch_v);
208 
209 		btVector3 torqueAxis1;
210 		if (angConstraint)
211 		{
212 			torqueAxis1 = constraintNormalAng;
213 		}
214 		else
215 		{
216 			torqueAxis1 = rel_pos2.cross(constraintNormalLin);
217 		}
218 		solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
219 		solverConstraint.m_contactNormal2 = -constraintNormalLin;
220 	}
221 	else  //if(rb1)
222 	{
223 		btVector3 torqueAxis1;
224 		if (angConstraint)
225 		{
226 			torqueAxis1 = constraintNormalAng;
227 		}
228 		else
229 		{
230 			torqueAxis1 = rel_pos2.cross(constraintNormalLin);
231 		}
232 		solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld() * -torqueAxis1 * rb1->getAngularFactor() : btVector3(0, 0, 0);
233 		solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
234 		solverConstraint.m_contactNormal2 = -constraintNormalLin;
235 	}
236 	{
237 		btVector3 vec;
238 		btScalar denom0 = 0.f;
239 		btScalar denom1 = 0.f;
240 		btScalar* jacB = 0;
241 		btScalar* jacA = 0;
242 		btScalar* deltaVelA = 0;
243 		btScalar* deltaVelB = 0;
244 		int ndofA = 0;
245 		//determine the "effective mass" of the constrained multibodyA with respect to this 1D constraint (i.e. 1/A[i,i])
246 		if (multiBodyA)
247 		{
248 			ndofA = multiBodyA->getNumDofs() + 6;
249 			jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
250 			deltaVelA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
251 			for (int i = 0; i < ndofA; ++i)
252 			{
253 				btScalar j = jacA[i];
254 				btScalar l = deltaVelA[i];
255 				denom0 += j * l;
256 			}
257 		}
258 		else if (rb0)
259 		{
260 			vec = (solverConstraint.m_angularComponentA).cross(rel_pos1);
261 			if (angConstraint)
262 			{
263 				denom0 = constraintNormalAng.dot(solverConstraint.m_angularComponentA);
264 			}
265 			else
266 			{
267 				denom0 = rb0->getInvMass() + constraintNormalLin.dot(vec);
268 			}
269 		}
270 		//
271 		if (multiBodyB)
272 		{
273 			const int ndofB = multiBodyB->getNumDofs() + 6;
274 			jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
275 			deltaVelB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
276 			for (int i = 0; i < ndofB; ++i)
277 			{
278 				btScalar j = jacB[i];
279 				btScalar l = deltaVelB[i];
280 				denom1 += j * l;
281 			}
282 		}
283 		else if (rb1)
284 		{
285 			vec = (-solverConstraint.m_angularComponentB).cross(rel_pos2);
286 			if (angConstraint)
287 			{
288 				denom1 = constraintNormalAng.dot(-solverConstraint.m_angularComponentB);
289 			}
290 			else
291 			{
292 				denom1 = rb1->getInvMass() + constraintNormalLin.dot(vec);
293 			}
294 		}
295 
296 		//
297 		btScalar d = denom0 + denom1;
298 		if (d > SIMD_EPSILON)
299 		{
300 			solverConstraint.m_jacDiagABInv = relaxation / (d);
301 		}
302 		else
303 		{
304 			//disable the constraint row to handle singularity/redundant constraint
305 			solverConstraint.m_jacDiagABInv = 0.f;
306 		}
307 	}
308 
309 	//compute rhs and remaining solverConstraint fields
310 	btScalar penetration = isFriction ? 0 : posError;
311 
312 	btScalar rel_vel = 0.f;
313 	int ndofA = 0;
314 	int ndofB = 0;
315 	{
316 		btVector3 vel1, vel2;
317 		if (multiBodyA)
318 		{
319 			ndofA = multiBodyA->getNumDofs() + 6;
320 			btScalar* jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
321 			for (int i = 0; i < ndofA; ++i)
322 				rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
323 		}
324 		else if (rb0)
325 		{
326 			rel_vel += rb0->getLinearVelocity().dot(solverConstraint.m_contactNormal1);
327 			rel_vel += rb0->getAngularVelocity().dot(solverConstraint.m_relpos1CrossNormal);
328 		}
329 		if (multiBodyB)
330 		{
331 			ndofB = multiBodyB->getNumDofs() + 6;
332 			btScalar* jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
333 			for (int i = 0; i < ndofB; ++i)
334 				rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
335 		}
336 		else if (rb1)
337 		{
338 			rel_vel += rb1->getLinearVelocity().dot(solverConstraint.m_contactNormal2);
339 			rel_vel += rb1->getAngularVelocity().dot(solverConstraint.m_relpos2CrossNormal);
340 		}
341 
342 		solverConstraint.m_friction = 0.f;  //cp.m_combinedFriction;
343 	}
344 
345 	solverConstraint.m_appliedImpulse = 0.f;
346 	solverConstraint.m_appliedPushImpulse = 0.f;
347 
348 	{
349 		btScalar positionalError = 0.f;
350 		btScalar velocityError = desiredVelocity - rel_vel;  // * damping;
351 
352 		btScalar erp = infoGlobal.m_erp2;
353 
354 		//split impulse is not implemented yet for btMultiBody*
355 		//if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
356 		{
357 			erp = infoGlobal.m_erp;
358 		}
359 
360 		positionalError = -penetration * erp / infoGlobal.m_timeStep;
361 
362 		btScalar penetrationImpulse = positionalError * solverConstraint.m_jacDiagABInv;
363 		btScalar velocityImpulse = velocityError * solverConstraint.m_jacDiagABInv;
364 
365 		//split impulse is not implemented yet for btMultiBody*
366 
367 		//  if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
368 		{
369 			//combine position and velocity into rhs
370 			solverConstraint.m_rhs = penetrationImpulse + velocityImpulse;
371 			solverConstraint.m_rhsPenetration = 0.f;
372 		}
373 		/*else
374         {
375             //split position and velocity into rhs and m_rhsPenetration
376             solverConstraint.m_rhs = velocityImpulse;
377             solverConstraint.m_rhsPenetration = penetrationImpulse;
378         }
379         */
380 
381 		solverConstraint.m_cfm = 0.f;
382 		solverConstraint.m_lowerLimit = lowerLimit;
383 		solverConstraint.m_upperLimit = upperLimit;
384 	}
385 
386 	return rel_vel;
387 }
388