1 #include "jpake.h"
2 
3 #include <openssl/crypto.h>
4 #include <openssl/sha.h>
5 #include <openssl/err.h>
6 #include <memory.h>
7 #include <string.h>
8 
9 /*
10  * In the definition, (xa, xb, xc, xd) are Alice's (x1, x2, x3, x4) or
11  * Bob's (x3, x4, x1, x2). If you see what I mean.
12  */
13 
14 typedef struct {
15     char *name;                 /* Must be unique */
16     char *peer_name;
17     BIGNUM *p;
18     BIGNUM *g;
19     BIGNUM *q;
20     BIGNUM *gxc;                /* Alice's g^{x3} or Bob's g^{x1} */
21     BIGNUM *gxd;                /* Alice's g^{x4} or Bob's g^{x2} */
22 } JPAKE_CTX_PUBLIC;
23 
24 struct JPAKE_CTX {
25     JPAKE_CTX_PUBLIC p;
26     BIGNUM *secret;             /* The shared secret */
27     BN_CTX *ctx;
28     BIGNUM *xa;                 /* Alice's x1 or Bob's x3 */
29     BIGNUM *xb;                 /* Alice's x2 or Bob's x4 */
30     BIGNUM *key;                /* The calculated (shared) key */
31 };
32 
JPAKE_ZKP_init(JPAKE_ZKP * zkp)33 static void JPAKE_ZKP_init(JPAKE_ZKP *zkp)
34 {
35     zkp->gr = BN_new();
36     zkp->b = BN_new();
37 }
38 
JPAKE_ZKP_release(JPAKE_ZKP * zkp)39 static void JPAKE_ZKP_release(JPAKE_ZKP *zkp)
40 {
41     BN_free(zkp->b);
42     BN_free(zkp->gr);
43 }
44 
45 /* Two birds with one stone - make the global name as expected */
46 #define JPAKE_STEP_PART_init    JPAKE_STEP2_init
47 #define JPAKE_STEP_PART_release JPAKE_STEP2_release
48 
JPAKE_STEP_PART_init(JPAKE_STEP_PART * p)49 void JPAKE_STEP_PART_init(JPAKE_STEP_PART *p)
50 {
51     p->gx = BN_new();
52     JPAKE_ZKP_init(&p->zkpx);
53 }
54 
JPAKE_STEP_PART_release(JPAKE_STEP_PART * p)55 void JPAKE_STEP_PART_release(JPAKE_STEP_PART *p)
56 {
57     JPAKE_ZKP_release(&p->zkpx);
58     BN_free(p->gx);
59 }
60 
JPAKE_STEP1_init(JPAKE_STEP1 * s1)61 void JPAKE_STEP1_init(JPAKE_STEP1 *s1)
62 {
63     JPAKE_STEP_PART_init(&s1->p1);
64     JPAKE_STEP_PART_init(&s1->p2);
65 }
66 
JPAKE_STEP1_release(JPAKE_STEP1 * s1)67 void JPAKE_STEP1_release(JPAKE_STEP1 *s1)
68 {
69     JPAKE_STEP_PART_release(&s1->p2);
70     JPAKE_STEP_PART_release(&s1->p1);
71 }
72 
JPAKE_CTX_init(JPAKE_CTX * ctx,const char * name,const char * peer_name,const BIGNUM * p,const BIGNUM * g,const BIGNUM * q,const BIGNUM * secret)73 static void JPAKE_CTX_init(JPAKE_CTX *ctx, const char *name,
74                            const char *peer_name, const BIGNUM *p,
75                            const BIGNUM *g, const BIGNUM *q,
76                            const BIGNUM *secret)
77 {
78     ctx->p.name = OPENSSL_strdup(name);
79     ctx->p.peer_name = OPENSSL_strdup(peer_name);
80     ctx->p.p = BN_dup(p);
81     ctx->p.g = BN_dup(g);
82     ctx->p.q = BN_dup(q);
83     ctx->secret = BN_dup(secret);
84 
85     ctx->p.gxc = BN_new();
86     ctx->p.gxd = BN_new();
87 
88     ctx->xa = BN_new();
89     ctx->xb = BN_new();
90     ctx->key = BN_new();
91     ctx->ctx = BN_CTX_new();
92 }
93 
JPAKE_CTX_release(JPAKE_CTX * ctx)94 static void JPAKE_CTX_release(JPAKE_CTX *ctx)
95 {
96     BN_CTX_free(ctx->ctx);
97     BN_clear_free(ctx->key);
98     BN_clear_free(ctx->xb);
99     BN_clear_free(ctx->xa);
100 
101     BN_free(ctx->p.gxd);
102     BN_free(ctx->p.gxc);
103 
104     BN_clear_free(ctx->secret);
105     BN_free(ctx->p.q);
106     BN_free(ctx->p.g);
107     BN_free(ctx->p.p);
108     OPENSSL_free(ctx->p.peer_name);
109     OPENSSL_free(ctx->p.name);
110 
111     memset(ctx, '\0', sizeof(*ctx));
112 }
113 
JPAKE_CTX_new(const char * name,const char * peer_name,const BIGNUM * p,const BIGNUM * g,const BIGNUM * q,const BIGNUM * secret)114 JPAKE_CTX *JPAKE_CTX_new(const char *name, const char *peer_name,
115                          const BIGNUM *p, const BIGNUM *g, const BIGNUM *q,
116                          const BIGNUM *secret)
117 {
118     JPAKE_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
119     if (ctx == NULL)
120         return NULL;
121 
122     JPAKE_CTX_init(ctx, name, peer_name, p, g, q, secret);
123 
124     return ctx;
125 }
126 
JPAKE_CTX_free(JPAKE_CTX * ctx)127 void JPAKE_CTX_free(JPAKE_CTX *ctx)
128 {
129     JPAKE_CTX_release(ctx);
130     OPENSSL_free(ctx);
131 }
132 
hashlength(SHA_CTX * sha,size_t l)133 static void hashlength(SHA_CTX *sha, size_t l)
134 {
135     unsigned char b[2];
136 
137     OPENSSL_assert(l <= 0xffff);
138     b[0] = l >> 8;
139     b[1] = l & 0xff;
140     SHA1_Update(sha, b, 2);
141 }
142 
hashstring(SHA_CTX * sha,const char * string)143 static void hashstring(SHA_CTX *sha, const char *string)
144 {
145     size_t l = strlen(string);
146 
147     hashlength(sha, l);
148     SHA1_Update(sha, string, l);
149 }
150 
hashbn(SHA_CTX * sha,const BIGNUM * bn)151 static void hashbn(SHA_CTX *sha, const BIGNUM *bn)
152 {
153     size_t l = BN_num_bytes(bn);
154     unsigned char *bin = OPENSSL_malloc(l);
155 
156     if (bin == NULL)
157         return;
158     hashlength(sha, l);
159     BN_bn2bin(bn, bin);
160     SHA1_Update(sha, bin, l);
161     OPENSSL_free(bin);
162 }
163 
164 /* h=hash(g, g^r, g^x, name) */
zkp_hash(BIGNUM * h,const BIGNUM * zkpg,const JPAKE_STEP_PART * p,const char * proof_name)165 static void zkp_hash(BIGNUM *h, const BIGNUM *zkpg, const JPAKE_STEP_PART *p,
166                      const char *proof_name)
167 {
168     unsigned char md[SHA_DIGEST_LENGTH];
169     SHA_CTX sha;
170 
171     /*
172      * XXX: hash should not allow moving of the boundaries - Java code
173      * is flawed in this respect. Length encoding seems simplest.
174      */
175     SHA1_Init(&sha);
176     hashbn(&sha, zkpg);
177     OPENSSL_assert(!BN_is_zero(p->zkpx.gr));
178     hashbn(&sha, p->zkpx.gr);
179     hashbn(&sha, p->gx);
180     hashstring(&sha, proof_name);
181     SHA1_Final(md, &sha);
182     BN_bin2bn(md, SHA_DIGEST_LENGTH, h);
183 }
184 
185 /*
186  * Prove knowledge of x
187  * Note that p->gx has already been calculated
188  */
generate_zkp(JPAKE_STEP_PART * p,const BIGNUM * x,const BIGNUM * zkpg,JPAKE_CTX * ctx)189 static void generate_zkp(JPAKE_STEP_PART *p, const BIGNUM *x,
190                          const BIGNUM *zkpg, JPAKE_CTX *ctx)
191 {
192     BIGNUM *r = BN_new();
193     BIGNUM *h = BN_new();
194     BIGNUM *t = BN_new();
195 
196    /*-
197     * r in [0,q)
198     * XXX: Java chooses r in [0, 2^160) - i.e. distribution not uniform
199     */
200     BN_rand_range(r, ctx->p.q);
201     /* g^r */
202     BN_mod_exp(p->zkpx.gr, zkpg, r, ctx->p.p, ctx->ctx);
203 
204     /* h=hash... */
205     zkp_hash(h, zkpg, p, ctx->p.name);
206 
207     /* b = r - x*h */
208     BN_mod_mul(t, x, h, ctx->p.q, ctx->ctx);
209     BN_mod_sub(p->zkpx.b, r, t, ctx->p.q, ctx->ctx);
210 
211     /* cleanup */
212     BN_free(t);
213     BN_free(h);
214     BN_free(r);
215 }
216 
verify_zkp(const JPAKE_STEP_PART * p,const BIGNUM * zkpg,JPAKE_CTX * ctx)217 static int verify_zkp(const JPAKE_STEP_PART *p, const BIGNUM *zkpg,
218                       JPAKE_CTX *ctx)
219 {
220     BIGNUM *h = BN_new();
221     BIGNUM *t1 = BN_new();
222     BIGNUM *t2 = BN_new();
223     BIGNUM *t3 = BN_new();
224     int ret = 0;
225 
226     if (h == NULL || t1 == NULL || t2 == NULL || t3 == NULL)
227         goto end;
228 
229     zkp_hash(h, zkpg, p, ctx->p.peer_name);
230 
231     /* t1 = g^b */
232     BN_mod_exp(t1, zkpg, p->zkpx.b, ctx->p.p, ctx->ctx);
233     /* t2 = (g^x)^h = g^{hx} */
234     BN_mod_exp(t2, p->gx, h, ctx->p.p, ctx->ctx);
235     /* t3 = t1 * t2 = g^{hx} * g^b = g^{hx+b} = g^r (allegedly) */
236     BN_mod_mul(t3, t1, t2, ctx->p.p, ctx->ctx);
237 
238     /* verify t3 == g^r */
239     if (BN_cmp(t3, p->zkpx.gr) == 0)
240         ret = 1;
241     else
242         JPAKEerr(JPAKE_F_VERIFY_ZKP, JPAKE_R_ZKP_VERIFY_FAILED);
243 
244 end:
245     /* cleanup */
246     BN_free(t3);
247     BN_free(t2);
248     BN_free(t1);
249     BN_free(h);
250 
251     return ret;
252 }
253 
generate_step_part(JPAKE_STEP_PART * p,const BIGNUM * x,const BIGNUM * g,JPAKE_CTX * ctx)254 static void generate_step_part(JPAKE_STEP_PART *p, const BIGNUM *x,
255                                const BIGNUM *g, JPAKE_CTX *ctx)
256 {
257     BN_mod_exp(p->gx, g, x, ctx->p.p, ctx->ctx);
258     generate_zkp(p, x, g, ctx);
259 }
260 
261 /* Generate each party's random numbers. xa is in [0, q), xb is in [1, q). */
genrand(JPAKE_CTX * ctx)262 static void genrand(JPAKE_CTX *ctx)
263 {
264     BIGNUM *qm1;
265 
266     /* xa in [0, q) */
267     BN_rand_range(ctx->xa, ctx->p.q);
268 
269     /* q-1 */
270     qm1 = BN_new();
271     BN_copy(qm1, ctx->p.q);
272     BN_sub_word(qm1, 1);
273 
274     /* ... and xb in [0, q-1) */
275     BN_rand_range(ctx->xb, qm1);
276     /* [1, q) */
277     BN_add_word(ctx->xb, 1);
278 
279     /* cleanup */
280     BN_free(qm1);
281 }
282 
JPAKE_STEP1_generate(JPAKE_STEP1 * send,JPAKE_CTX * ctx)283 int JPAKE_STEP1_generate(JPAKE_STEP1 *send, JPAKE_CTX *ctx)
284 {
285     genrand(ctx);
286     generate_step_part(&send->p1, ctx->xa, ctx->p.g, ctx);
287     generate_step_part(&send->p2, ctx->xb, ctx->p.g, ctx);
288 
289     return 1;
290 }
291 
292 /* g^x is a legal value */
is_legal(const BIGNUM * gx,const JPAKE_CTX * ctx)293 static int is_legal(const BIGNUM *gx, const JPAKE_CTX *ctx)
294 {
295     BIGNUM *t;
296     int res;
297 
298     if (BN_is_negative(gx) || BN_is_zero(gx) || BN_cmp(gx, ctx->p.p) >= 0)
299         return 0;
300 
301     t = BN_new();
302     BN_mod_exp(t, gx, ctx->p.q, ctx->p.p, ctx->ctx);
303     res = BN_is_one(t);
304     BN_free(t);
305 
306     return res;
307 }
308 
JPAKE_STEP1_process(JPAKE_CTX * ctx,const JPAKE_STEP1 * received)309 int JPAKE_STEP1_process(JPAKE_CTX *ctx, const JPAKE_STEP1 *received)
310 {
311     if (!is_legal(received->p1.gx, ctx)) {
312         JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS,
313                  JPAKE_R_G_TO_THE_X3_IS_NOT_LEGAL);
314         return 0;
315     }
316 
317     if (!is_legal(received->p2.gx, ctx)) {
318         JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS,
319                  JPAKE_R_G_TO_THE_X4_IS_NOT_LEGAL);
320         return 0;
321     }
322 
323     /* verify their ZKP(xc) */
324     if (!verify_zkp(&received->p1, ctx->p.g, ctx)) {
325         JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X3_FAILED);
326         return 0;
327     }
328 
329     /* verify their ZKP(xd) */
330     if (!verify_zkp(&received->p2, ctx->p.g, ctx)) {
331         JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_VERIFY_X4_FAILED);
332         return 0;
333     }
334 
335     /* g^xd != 1 */
336     if (BN_is_one(received->p2.gx)) {
337         JPAKEerr(JPAKE_F_JPAKE_STEP1_PROCESS, JPAKE_R_G_TO_THE_X4_IS_ONE);
338         return 0;
339     }
340 
341     /* Save the bits we need for later */
342     BN_copy(ctx->p.gxc, received->p1.gx);
343     BN_copy(ctx->p.gxd, received->p2.gx);
344 
345     return 1;
346 }
347 
JPAKE_STEP2_generate(JPAKE_STEP2 * send,JPAKE_CTX * ctx)348 int JPAKE_STEP2_generate(JPAKE_STEP2 *send, JPAKE_CTX *ctx)
349 {
350     BIGNUM *t1 = BN_new();
351     BIGNUM *t2 = BN_new();
352 
353    /*-
354     * X = g^{(xa + xc + xd) * xb * s}
355     * t1 = g^xa
356     */
357     BN_mod_exp(t1, ctx->p.g, ctx->xa, ctx->p.p, ctx->ctx);
358     /* t2 = t1 * g^{xc} = g^{xa} * g^{xc} = g^{xa + xc} */
359     BN_mod_mul(t2, t1, ctx->p.gxc, ctx->p.p, ctx->ctx);
360     /* t1 = t2 * g^{xd} = g^{xa + xc + xd} */
361     BN_mod_mul(t1, t2, ctx->p.gxd, ctx->p.p, ctx->ctx);
362     /* t2 = xb * s */
363     BN_mod_mul(t2, ctx->xb, ctx->secret, ctx->p.q, ctx->ctx);
364 
365    /*-
366     * ZKP(xb * s)
367     * XXX: this is kinda funky, because we're using
368     *
369     * g' = g^{xa + xc + xd}
370     *
371     * as the generator, which means X is g'^{xb * s}
372     * X = t1^{t2} = t1^{xb * s} = g^{(xa + xc + xd) * xb * s}
373     */
374     generate_step_part(send, t2, t1, ctx);
375 
376     /* cleanup */
377     BN_free(t1);
378     BN_free(t2);
379 
380     return 1;
381 }
382 
383 /* gx = g^{xc + xa + xb} * xd * s */
compute_key(JPAKE_CTX * ctx,const BIGNUM * gx)384 static int compute_key(JPAKE_CTX *ctx, const BIGNUM *gx)
385 {
386     BIGNUM *t1 = BN_new();
387     BIGNUM *t2 = BN_new();
388     BIGNUM *t3 = BN_new();
389 
390    /*-
391     * K = (gx/g^{xb * xd * s})^{xb}
392     *   = (g^{(xc + xa + xb) * xd * s - xb * xd *s})^{xb}
393     *   = (g^{(xa + xc) * xd * s})^{xb}
394     *   = g^{(xa + xc) * xb * xd * s}
395     * [which is the same regardless of who calculates it]
396     */
397 
398     /* t1 = (g^{xd})^{xb} = g^{xb * xd} */
399     BN_mod_exp(t1, ctx->p.gxd, ctx->xb, ctx->p.p, ctx->ctx);
400     /* t2 = -s = q-s */
401     BN_sub(t2, ctx->p.q, ctx->secret);
402     /* t3 = t1^t2 = g^{-xb * xd * s} */
403     BN_mod_exp(t3, t1, t2, ctx->p.p, ctx->ctx);
404     /* t1 = gx * t3 = X/g^{xb * xd * s} */
405     BN_mod_mul(t1, gx, t3, ctx->p.p, ctx->ctx);
406     /* K = t1^{xb} */
407     BN_mod_exp(ctx->key, t1, ctx->xb, ctx->p.p, ctx->ctx);
408 
409     /* cleanup */
410     BN_free(t3);
411     BN_free(t2);
412     BN_free(t1);
413 
414     return 1;
415 }
416 
JPAKE_STEP2_process(JPAKE_CTX * ctx,const JPAKE_STEP2 * received)417 int JPAKE_STEP2_process(JPAKE_CTX *ctx, const JPAKE_STEP2 *received)
418 {
419     BIGNUM *t1 = BN_new();
420     BIGNUM *t2 = BN_new();
421     int ret = 0;
422 
423    /*-
424     * g' = g^{xc + xa + xb} [from our POV]
425     * t1 = xa + xb
426     */
427     BN_mod_add(t1, ctx->xa, ctx->xb, ctx->p.q, ctx->ctx);
428     /* t2 = g^{t1} = g^{xa+xb} */
429     BN_mod_exp(t2, ctx->p.g, t1, ctx->p.p, ctx->ctx);
430     /* t1 = g^{xc} * t2 = g^{xc + xa + xb} */
431     BN_mod_mul(t1, ctx->p.gxc, t2, ctx->p.p, ctx->ctx);
432 
433     if (verify_zkp(received, t1, ctx))
434         ret = 1;
435     else
436         JPAKEerr(JPAKE_F_JPAKE_STEP2_PROCESS, JPAKE_R_VERIFY_B_FAILED);
437 
438     compute_key(ctx, received->gx);
439 
440     /* cleanup */
441     BN_free(t2);
442     BN_free(t1);
443 
444     return ret;
445 }
446 
quickhashbn(unsigned char * md,const BIGNUM * bn)447 static void quickhashbn(unsigned char *md, const BIGNUM *bn)
448 {
449     SHA_CTX sha;
450 
451     SHA1_Init(&sha);
452     hashbn(&sha, bn);
453     SHA1_Final(md, &sha);
454 }
455 
JPAKE_STEP3A_init(JPAKE_STEP3A * s3a)456 void JPAKE_STEP3A_init(JPAKE_STEP3A *s3a)
457 {
458 }
459 
JPAKE_STEP3A_generate(JPAKE_STEP3A * send,JPAKE_CTX * ctx)460 int JPAKE_STEP3A_generate(JPAKE_STEP3A *send, JPAKE_CTX *ctx)
461 {
462     quickhashbn(send->hhk, ctx->key);
463     SHA1(send->hhk, sizeof(send->hhk), send->hhk);
464 
465     return 1;
466 }
467 
JPAKE_STEP3A_process(JPAKE_CTX * ctx,const JPAKE_STEP3A * received)468 int JPAKE_STEP3A_process(JPAKE_CTX *ctx, const JPAKE_STEP3A *received)
469 {
470     unsigned char hhk[SHA_DIGEST_LENGTH];
471 
472     quickhashbn(hhk, ctx->key);
473     SHA1(hhk, sizeof(hhk), hhk);
474     if (memcmp(hhk, received->hhk, sizeof(hhk))) {
475         JPAKEerr(JPAKE_F_JPAKE_STEP3A_PROCESS,
476                  JPAKE_R_HASH_OF_HASH_OF_KEY_MISMATCH);
477         return 0;
478     }
479     return 1;
480 }
481 
JPAKE_STEP3A_release(JPAKE_STEP3A * s3a)482 void JPAKE_STEP3A_release(JPAKE_STEP3A *s3a)
483 {
484 }
485 
JPAKE_STEP3B_init(JPAKE_STEP3B * s3b)486 void JPAKE_STEP3B_init(JPAKE_STEP3B *s3b)
487 {
488 }
489 
JPAKE_STEP3B_generate(JPAKE_STEP3B * send,JPAKE_CTX * ctx)490 int JPAKE_STEP3B_generate(JPAKE_STEP3B *send, JPAKE_CTX *ctx)
491 {
492     quickhashbn(send->hk, ctx->key);
493 
494     return 1;
495 }
496 
JPAKE_STEP3B_process(JPAKE_CTX * ctx,const JPAKE_STEP3B * received)497 int JPAKE_STEP3B_process(JPAKE_CTX *ctx, const JPAKE_STEP3B *received)
498 {
499     unsigned char hk[SHA_DIGEST_LENGTH];
500 
501     quickhashbn(hk, ctx->key);
502     if (memcmp(hk, received->hk, sizeof(hk))) {
503         JPAKEerr(JPAKE_F_JPAKE_STEP3B_PROCESS, JPAKE_R_HASH_OF_KEY_MISMATCH);
504         return 0;
505     }
506     return 1;
507 }
508 
JPAKE_STEP3B_release(JPAKE_STEP3B * s3b)509 void JPAKE_STEP3B_release(JPAKE_STEP3B *s3b)
510 {
511 }
512 
JPAKE_get_shared_key(JPAKE_CTX * ctx)513 const BIGNUM *JPAKE_get_shared_key(JPAKE_CTX *ctx)
514 {
515     return ctx->key;
516 }
517