1 //  (C) Copyright John Maddock 2006.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_EXPM1_INCLUDED
7 #define BOOST_MATH_EXPM1_INCLUDED
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12 
13 #include <boost/config/no_tr1/cmath.hpp>
14 #include <math.h> // platform's ::expm1
15 #include <boost/limits.hpp>
16 #include <boost/math/tools/config.hpp>
17 #include <boost/math/tools/series.hpp>
18 #include <boost/math/tools/precision.hpp>
19 #include <boost/math/tools/big_constant.hpp>
20 #include <boost/math/policies/error_handling.hpp>
21 #include <boost/math/tools/rational.hpp>
22 #include <boost/math/special_functions/math_fwd.hpp>
23 #include <boost/mpl/less_equal.hpp>
24 
25 #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
26 #  include <boost/static_assert.hpp>
27 #else
28 #  include <boost/assert.hpp>
29 #endif
30 
31 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
32 //
33 // This is the only way we can avoid
34 // warning: non-standard suffix on floating constant [-Wpedantic]
35 // when building with -Wall -pedantic.  Neither __extension__
36 // nor #pragma diagnostic ignored work :(
37 //
38 #pragma GCC system_header
39 #endif
40 
41 namespace boost{ namespace math{
42 
43 namespace detail
44 {
45   // Functor expm1_series returns the next term in the Taylor series
46   // x^k / k!
47   // each time that operator() is invoked.
48   //
49   template <class T>
50   struct expm1_series
51   {
52      typedef T result_type;
53 
expm1_seriesboost::math::detail::expm1_series54      expm1_series(T x)
55         : k(0), m_x(x), m_term(1) {}
56 
operator ()boost::math::detail::expm1_series57      T operator()()
58      {
59         ++k;
60         m_term *= m_x;
61         m_term /= k;
62         return m_term;
63      }
64 
countboost::math::detail::expm1_series65      int count()const
66      {
67         return k;
68      }
69 
70   private:
71      int k;
72      const T m_x;
73      T m_term;
74      expm1_series(const expm1_series&);
75      expm1_series& operator=(const expm1_series&);
76   };
77 
78 template <class T, class Policy, class tag>
79 struct expm1_initializer
80 {
81    struct init
82    {
initboost::math::detail::expm1_initializer::init83       init()
84       {
85          do_init(tag());
86       }
87       template <int N>
do_initboost::math::detail::expm1_initializer::init88       static void do_init(const boost::integral_constant<int, N>&){}
do_initboost::math::detail::expm1_initializer::init89       static void do_init(const boost::integral_constant<int, 64>&)
90       {
91          expm1(T(0.5));
92       }
do_initboost::math::detail::expm1_initializer::init93       static void do_init(const boost::integral_constant<int, 113>&)
94       {
95          expm1(T(0.5));
96       }
force_instantiateboost::math::detail::expm1_initializer::init97       void force_instantiate()const{}
98    };
99    static const init initializer;
force_instantiateboost::math::detail::expm1_initializer100    static void force_instantiate()
101    {
102       initializer.force_instantiate();
103    }
104 };
105 
106 template <class T, class Policy, class tag>
107 const typename expm1_initializer<T, Policy, tag>::init expm1_initializer<T, Policy, tag>::initializer;
108 
109 //
110 // Algorithm expm1 is part of C99, but is not yet provided by many compilers.
111 //
112 // This version uses a Taylor series expansion for 0.5 > |x| > epsilon.
113 //
114 template <class T, class Policy>
115 T expm1_imp(T x, const boost::integral_constant<int, 0>&, const Policy& pol)
116 {
117    BOOST_MATH_STD_USING
118 
119    T a = fabs(x);
120    if((boost::math::isnan)(a))
121    {
122       return policies::raise_domain_error<T>("boost::math::expm1<%1%>(%1%)", "expm1 requires a finite argument, but got %1%", a, pol);
123    }
124    if(a > T(0.5f))
125    {
126       if(a >= tools::log_max_value<T>())
127       {
128          if(x > 0)
129             return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
130          return -1;
131       }
132       return exp(x) - T(1);
133    }
134    if(a < tools::epsilon<T>())
135       return x;
136    detail::expm1_series<T> s(x);
137    boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
138 #if !BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x582)) && !BOOST_WORKAROUND(__EDG_VERSION__, <= 245)
139    T result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter);
140 #else
141    T zero = 0;
142    T result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, zero);
143 #endif
144    policies::check_series_iterations<T>("boost::math::expm1<%1%>(%1%)", max_iter, pol);
145    return result;
146 }
147 
148 template <class T, class P>
149 T expm1_imp(T x, const boost::integral_constant<int, 53>&, const P& pol)
150 {
151    BOOST_MATH_STD_USING
152 
153    T a = fabs(x);
154    if(a > T(0.5L))
155    {
156       if(a >= tools::log_max_value<T>())
157       {
158          if(x > 0)
159             return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
160          return -1;
161       }
162       return exp(x) - T(1);
163    }
164    if(a < tools::epsilon<T>())
165       return x;
166 
167    static const float Y = 0.10281276702880859e1f;
168    static const T n[] = { static_cast<T>(-0.28127670288085937e-1), static_cast<T>(0.51278186299064534e0), static_cast<T>(-0.6310029069350198e-1), static_cast<T>(0.11638457975729296e-1), static_cast<T>(-0.52143390687521003e-3), static_cast<T>(0.21491399776965688e-4) };
169    static const T d[] = { 1, static_cast<T>(-0.45442309511354755e0), static_cast<T>(0.90850389570911714e-1), static_cast<T>(-0.10088963629815502e-1), static_cast<T>(0.63003407478692265e-3), static_cast<T>(-0.17976570003654402e-4) };
170 
171    T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
172    return result;
173 }
174 
175 template <class T, class P>
176 T expm1_imp(T x, const boost::integral_constant<int, 64>&, const P& pol)
177 {
178    BOOST_MATH_STD_USING
179 
180    T a = fabs(x);
181    if(a > T(0.5L))
182    {
183       if(a >= tools::log_max_value<T>())
184       {
185          if(x > 0)
186             return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
187          return -1;
188       }
189       return exp(x) - T(1);
190    }
191    if(a < tools::epsilon<T>())
192       return x;
193 
194    static const float Y = 0.10281276702880859375e1f;
195    static const T n[] = {
196       BOOST_MATH_BIG_CONSTANT(T, 64, -0.281276702880859375e-1),
197        BOOST_MATH_BIG_CONSTANT(T, 64, 0.512980290285154286358e0),
198        BOOST_MATH_BIG_CONSTANT(T, 64, -0.667758794592881019644e-1),
199        BOOST_MATH_BIG_CONSTANT(T, 64, 0.131432469658444745835e-1),
200        BOOST_MATH_BIG_CONSTANT(T, 64, -0.72303795326880286965e-3),
201        BOOST_MATH_BIG_CONSTANT(T, 64, 0.447441185192951335042e-4),
202        BOOST_MATH_BIG_CONSTANT(T, 64, -0.714539134024984593011e-6)
203    };
204    static const T d[] = {
205       BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
206       BOOST_MATH_BIG_CONSTANT(T, 64, -0.461477618025562520389e0),
207       BOOST_MATH_BIG_CONSTANT(T, 64, 0.961237488025708540713e-1),
208       BOOST_MATH_BIG_CONSTANT(T, 64, -0.116483957658204450739e-1),
209       BOOST_MATH_BIG_CONSTANT(T, 64, 0.873308008461557544458e-3),
210       BOOST_MATH_BIG_CONSTANT(T, 64, -0.387922804997682392562e-4),
211       BOOST_MATH_BIG_CONSTANT(T, 64, 0.807473180049193557294e-6)
212    };
213 
214    T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
215    return result;
216 }
217 
218 template <class T, class P>
219 T expm1_imp(T x, const boost::integral_constant<int, 113>&, const P& pol)
220 {
221    BOOST_MATH_STD_USING
222 
223    T a = fabs(x);
224    if(a > T(0.5L))
225    {
226       if(a >= tools::log_max_value<T>())
227       {
228          if(x > 0)
229             return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
230          return -1;
231       }
232       return exp(x) - T(1);
233    }
234    if(a < tools::epsilon<T>())
235       return x;
236 
237    static const float Y = 0.10281276702880859375e1f;
238    static const T n[] = {
239       BOOST_MATH_BIG_CONSTANT(T, 113, -0.28127670288085937499999999999999999854e-1),
240       BOOST_MATH_BIG_CONSTANT(T, 113, 0.51278156911210477556524452177540792214e0),
241       BOOST_MATH_BIG_CONSTANT(T, 113, -0.63263178520747096729500254678819588223e-1),
242       BOOST_MATH_BIG_CONSTANT(T, 113, 0.14703285606874250425508446801230572252e-1),
243       BOOST_MATH_BIG_CONSTANT(T, 113, -0.8675686051689527802425310407898459386e-3),
244       BOOST_MATH_BIG_CONSTANT(T, 113, 0.88126359618291165384647080266133492399e-4),
245       BOOST_MATH_BIG_CONSTANT(T, 113, -0.25963087867706310844432390015463138953e-5),
246       BOOST_MATH_BIG_CONSTANT(T, 113, 0.14226691087800461778631773363204081194e-6),
247       BOOST_MATH_BIG_CONSTANT(T, 113, -0.15995603306536496772374181066765665596e-8),
248       BOOST_MATH_BIG_CONSTANT(T, 113, 0.45261820069007790520447958280473183582e-10)
249    };
250    static const T d[] = {
251       BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
252       BOOST_MATH_BIG_CONSTANT(T, 113, -0.45441264709074310514348137469214538853e0),
253       BOOST_MATH_BIG_CONSTANT(T, 113, 0.96827131936192217313133611655555298106e-1),
254       BOOST_MATH_BIG_CONSTANT(T, 113, -0.12745248725908178612540554584374876219e-1),
255       BOOST_MATH_BIG_CONSTANT(T, 113, 0.11473613871583259821612766907781095472e-2),
256       BOOST_MATH_BIG_CONSTANT(T, 113, -0.73704168477258911962046591907690764416e-4),
257       BOOST_MATH_BIG_CONSTANT(T, 113, 0.34087499397791555759285503797256103259e-5),
258       BOOST_MATH_BIG_CONSTANT(T, 113, -0.11114024704296196166272091230695179724e-6),
259       BOOST_MATH_BIG_CONSTANT(T, 113, 0.23987051614110848595909588343223896577e-8),
260       BOOST_MATH_BIG_CONSTANT(T, 113, -0.29477341859111589208776402638429026517e-10),
261       BOOST_MATH_BIG_CONSTANT(T, 113, 0.13222065991022301420255904060628100924e-12)
262    };
263 
264    T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
265    return result;
266 }
267 
268 } // namespace detail
269 
270 template <class T, class Policy>
expm1(T x,const Policy &)271 inline typename tools::promote_args<T>::type expm1(T x, const Policy& /* pol */)
272 {
273    typedef typename tools::promote_args<T>::type result_type;
274    typedef typename policies::evaluation<result_type, Policy>::type value_type;
275    typedef typename policies::precision<result_type, Policy>::type precision_type;
276    typedef typename policies::normalise<
277       Policy,
278       policies::promote_float<false>,
279       policies::promote_double<false>,
280       policies::discrete_quantile<>,
281       policies::assert_undefined<> >::type forwarding_policy;
282 
283    typedef boost::integral_constant<int,
284       precision_type::value <= 0 ? 0 :
285       precision_type::value <= 53 ? 53 :
286       precision_type::value <= 64 ? 64 :
287       precision_type::value <= 113 ? 113 : 0
288    > tag_type;
289 
290    detail::expm1_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
291 
292    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expm1_imp(
293       static_cast<value_type>(x),
294       tag_type(), forwarding_policy()), "boost::math::expm1<%1%>(%1%)");
295 }
296 
297 #ifdef expm1
298 #  ifndef BOOST_HAS_expm1
299 #     define BOOST_HAS_expm1
300 #  endif
301 #  undef expm1
302 #endif
303 
304 #if defined(BOOST_HAS_EXPM1) && !(defined(__osf__) && defined(__DECCXX_VER))
305 #  ifdef BOOST_MATH_USE_C99
expm1(float x,const policies::policy<> &)306 inline float expm1(float x, const policies::policy<>&){ return ::expm1f(x); }
307 #     ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
expm1(long double x,const policies::policy<> &)308 inline long double expm1(long double x, const policies::policy<>&){ return ::expm1l(x); }
309 #     endif
310 #  else
expm1(float x,const policies::policy<> &)311 inline float expm1(float x, const policies::policy<>&){ return static_cast<float>(::expm1(x)); }
312 #  endif
expm1(double x,const policies::policy<> &)313 inline double expm1(double x, const policies::policy<>&){ return ::expm1(x); }
314 #endif
315 
316 template <class T>
expm1(T x)317 inline typename tools::promote_args<T>::type expm1(T x)
318 {
319    return expm1(x, policies::policy<>());
320 }
321 
322 #if BOOST_WORKAROUND(BOOST_BORLANDC, BOOST_TESTED_AT(0x564))
expm1(float z)323 inline float expm1(float z)
324 {
325    return expm1<float>(z);
326 }
expm1(double z)327 inline double expm1(double z)
328 {
329    return expm1<double>(z);
330 }
331 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
expm1(long double z)332 inline long double expm1(long double z)
333 {
334    return expm1<long double>(z);
335 }
336 #endif
337 #endif
338 
339 } // namespace math
340 } // namespace boost
341 
342 #endif // BOOST_MATH_HYPOT_INCLUDED
343 
344 
345 
346 
347