1 // Copyright Christopher Kormanyos 2013.
2 // Copyright Paul A. Bristow 2013.
3 // Copyright John Maddock 2013.
4 
5 // Distributed under the Boost Software License, Version 1.0.
6 // (See accompanying file LICENSE_1_0.txt or
7 // copy at http://www.boost.org/LICENSE_1_0.txt).
8 
9 #ifdef _MSC_VER
10 #  pragma warning (disable : 4512) // assignment operator could not be generated.
11 #  pragma warning (disable : 4996) // assignment operator could not be generated.
12 #endif
13 
14 #include <iostream>
15 #include <limits>
16 #include <vector>
17 #include <algorithm>
18 #include <iomanip>
19 #include <iterator>
20 
21 // Weisstein, Eric W. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource.
22 // http://mathworld.wolfram.com/BesselFunctionZeros.html
23 // Test values can be calculated using [@wolframalpha.com WolframAplha]
24 // See also http://dlmf.nist.gov/10.21
25 
26 //[bessel_zero_example_1
27 
28 /*`This example demonstrates calculating zeros of the Bessel, Neumann and Airy functions.
29 It also shows how Boost.Math and Boost.Multiprecision can be combined to provide
30 a many decimal digit precision. For 50 decimal digit precision we need to include
31 */
32 
33   #include <boost/multiprecision/cpp_dec_float.hpp>
34 
35 /*`and a `typedef` for `float_type` may be convenient
36 (allowing a quick switch to re-compute at built-in `double` or other precision)
37 */
38   typedef boost::multiprecision::cpp_dec_float_50 float_type;
39 
40 //`To use the functions for finding zeros of the functions we need
41 
42   #include <boost/math/special_functions/bessel.hpp>
43 
44 //`This file includes the forward declaration signatures for the zero-finding functions:
45 
46 //  #include <boost/math/special_functions/math_fwd.hpp>
47 
48 /*`but more details are in the full documentation, for example at
49 [@http://www.boost.org/doc/libs/1_53_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/bessel_over.html Boost.Math Bessel functions]
50 */
51 
52 /*`This example shows obtaining both a single zero of the Bessel function,
53 and then placing multiple zeros into a container like `std::vector` by providing an iterator.
54 The signature of the single value function is:
55 
56   template <class T>
57   inline typename detail::bessel_traits<T, T, policies::policy<> >::result_type
58     cyl_bessel_j_zero(T v,  // Floating-point value for Jv.
59     int m); // start index.
60 
61 The result type is controlled by the floating-point type of parameter `v`
62 (but subject to the usual __precision_policy and __promotion_policy).
63 
64 The signature of multiple zeros function is:
65 
66   template <class T, class OutputIterator>
67   inline OutputIterator cyl_bessel_j_zero(T v, // Floating-point value for Jv.
68                                 int start_index, // 1-based start index.
69                                 unsigned number_of_zeros,
70                                 OutputIterator out_it); // iterator into container for zeros.
71 
72 There is also a version which allows control of the __policy_section for error handling and precision.
73 
74   template <class T, class OutputIterator, class Policy>
75   inline OutputIterator cyl_bessel_j_zero(T v, // Floating-point value for Jv.
76                                 int start_index, // 1-based start index.
77                                 unsigned number_of_zeros,
78                                 OutputIterator out_it,
79                                 const Policy& pol); // iterator into container for zeros.
80 
81 */
82 //]  [/bessel_zero_example_1]
83 
84 //[bessel_zero_example_iterator_1]
85 /*`We use the `cyl_bessel_j_zero` output iterator parameter `out_it`
86 to create a sum of 1/zeros[super 2] by defining a custom output iterator:
87 */
88 
89 template <class T>
90 struct output_summation_iterator
91 {
output_summation_iteratoroutput_summation_iterator92    output_summation_iterator(T* p) : p_sum(p)
93    {}
operator *output_summation_iterator94    output_summation_iterator& operator*()
95    { return *this; }
operator ++output_summation_iterator96     output_summation_iterator& operator++()
97    { return *this; }
operator ++output_summation_iterator98    output_summation_iterator& operator++(int)
99    { return *this; }
operator =output_summation_iterator100    output_summation_iterator& operator = (T const& val)
101    {
102      *p_sum += 1./ (val * val); // Summing 1/zero^2.
103      return *this;
104    }
105 private:
106    T* p_sum;
107 };
108 
109 
110 //] [/bessel_zero_example_iterator_1]
111 
main()112 int main()
113 {
114   try
115   {
116 //[bessel_zero_example_2]
117 
118 /*`[tip It is always wise to place code using Boost.Math inside try'n'catch blocks;
119 this will ensure that helpful error messages can be shown when exceptional conditions arise.]
120 
121 First, evaluate a single Bessel zero.
122 
123 The precision is controlled by the float-point type of template parameter `T` of `v`
124 so this example has `double` precision, at least 15 but up to 17 decimal digits (for the common 64-bit double).
125 */
126     double root = boost::math::cyl_bessel_j_zero(0.0, 1);
127     // Displaying with default precision of 6 decimal digits:
128     std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40483
129     // And with all the guaranteed (15) digits:
130     std::cout.precision(std::numeric_limits<double>::digits10);
131     std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40482555769577
132 /*`But note that because the parameter `v` controls the precision of the result,
133 `v` [*must be a floating-point type].
134 So if you provide an integer type, say 0, rather than 0.0, then it will fail to compile thus:
135 ``
136     root = boost::math::cyl_bessel_j_zero(0, 1);
137 ``
138 with this error message
139 ``
140   error C2338: Order must be a floating-point type.
141 ``
142 
143 Optionally, we can use a policy to ignore errors, C-style, returning some value
144 perhaps infinity or NaN, or the best that can be done. (See __user_error_handling).
145 
146 To create a (possibly unwise!) policy that ignores all errors:
147 */
148 
149   typedef boost::math::policies::policy
150     <
151       boost::math::policies::domain_error<boost::math::policies::ignore_error>,
152       boost::math::policies::overflow_error<boost::math::policies::ignore_error>,
153       boost::math::policies::underflow_error<boost::math::policies::ignore_error>,
154       boost::math::policies::denorm_error<boost::math::policies::ignore_error>,
155       boost::math::policies::pole_error<boost::math::policies::ignore_error>,
156       boost::math::policies::evaluation_error<boost::math::policies::ignore_error>
157     > ignore_all_policy;
158 
159     double inf = std::numeric_limits<double>::infinity();
160     double nan = std::numeric_limits<double>::quiet_NaN();
161 
162     std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 0) " << std::endl;
163     double dodgy_root = boost::math::cyl_bessel_j_zero(-1.0, 0, ignore_all_policy());
164     std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 1) " << dodgy_root << std::endl; // 1.#QNAN
165     double inf_root = boost::math::cyl_bessel_j_zero(inf, 1, ignore_all_policy());
166     std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl; // 1.#QNAN
167     double nan_root = boost::math::cyl_bessel_j_zero(nan, 1, ignore_all_policy());
168     std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl; // 1.#QNAN
169 
170 /*`Another version of `cyl_bessel_j_zero` allows calculation of multiple zeros with one call,
171 placing the results in a container, often `std::vector`.
172 For example, generate five `double` roots of J[sub v] for integral order 2.
173 
174 showing the same results as column J[sub 2](x) in table 1 of
175 [@ http://mathworld.wolfram.com/BesselFunctionZeros.html Wolfram Bessel Function Zeros].
176 
177 */
178     unsigned int n_roots = 5U;
179     std::vector<double> roots;
180     boost::math::cyl_bessel_j_zero(2.0, 1, n_roots, std::back_inserter(roots));
181     std::copy(roots.begin(),
182               roots.end(),
183               std::ostream_iterator<double>(std::cout, "\n"));
184 
185 /*`Or generate 50 decimal digit roots of J[sub v] for non-integral order `v = 71/19`.
186 
187 We set the precision of the output stream and show trailing zeros to display a fixed 50 decimal digits.
188 */
189     std::cout.precision(std::numeric_limits<float_type>::digits10); // 50 decimal digits.
190     std::cout << std::showpoint << std::endl; // Show trailing zeros.
191 
192     float_type x = float_type(71) / 19;
193     float_type r = boost::math::cyl_bessel_j_zero(x, 1); // 1st root.
194     std::cout << "x = " << x << ", r = " << r << std::endl;
195 
196     r = boost::math::cyl_bessel_j_zero(x, 20U); // 20th root.
197     std::cout << "x = " << x << ", r = " << r << std::endl;
198 
199     std::vector<float_type> zeros;
200     boost::math::cyl_bessel_j_zero(x, 1, 3, std::back_inserter(zeros));
201 
202     std::cout << "cyl_bessel_j_zeros" << std::endl;
203     // Print the roots to the output stream.
204     std::copy(zeros.begin(), zeros.end(),
205               std::ostream_iterator<float_type>(std::cout, "\n"));
206 
207 /*`The Neumann function zeros are evaluated very similarly:
208 */
209     using boost::math::cyl_neumann_zero;
210 
211     double zn = cyl_neumann_zero(2., 1);
212 
213     std::cout << "cyl_neumann_zero(2., 1) = " << std::endl;
214     //double zn0 = zn;
215     //    std::cout << "zn0 = " << std::endl;
216     //    std::cout << zn0 << std::endl;
217     //
218     std::cout << zn << std::endl;
219     //  std::cout << cyl_neumann_zero(2., 1) << std::endl;
220 
221     std::vector<float> nzeros(3); // Space for 3 zeros.
222     cyl_neumann_zero<float>(2.F, 1, nzeros.size(), nzeros.begin());
223 
224     std::cout << "cyl_neumann_zero<float>(2.F, 1, " << std::endl;
225     // Print the zeros to the output stream.
226     std::copy(nzeros.begin(), nzeros.end(),
227               std::ostream_iterator<float>(std::cout, "\n"));
228 
229     std::cout << cyl_neumann_zero(static_cast<float_type>(220)/100, 1) << std::endl;
230     // 3.6154383428745996706772556069431792744372398748422
231 
232 /*`Finally we show how the output iterator can be used to compute a sum of zeros.
233 
234 (See [@https://doi.org/10.1017/S2040618500034067 Ian N. Sneddon, Infinite Sums of Bessel Zeros],
235 page 150 equation 40).
236 */
237 //] [/bessel_zero_example_2]
238 
239     {
240 //[bessel_zero_example_iterator_2]
241 /*`The sum is calculated for many values, converging on the analytical exact value of `1/8`.
242 */
243     using boost::math::cyl_bessel_j_zero;
244     double nu = 1.;
245     double sum = 0;
246     output_summation_iterator<double> it(&sum);  // sum of 1/zeros^2
247     cyl_bessel_j_zero(nu, 1, 10000, it);
248 
249     double s = 1/(4 * (nu + 1)); // 0.125 = 1/8 is exact analytical solution.
250     std::cout << std::setprecision(6) << "nu = " << nu << ", sum = " << sum
251       << ", exact = " << s << std::endl;
252     // nu = 1.00000, sum = 0.124990, exact = 0.125000
253 //] [/bessel_zero_example_iterator_2]
254     }
255   }
256   catch (std::exception& ex)
257   {
258     std::cout << "Thrown exception " << ex.what() << std::endl;
259   }
260 
261 //[bessel_zero_example_iterator_3]
262 
263 /*`Examples below show effect of 'bad' arguments that throw a `domain_error` exception.
264 */
265   try
266   { // Try a negative rank m.
267     std::cout << "boost::math::cyl_bessel_j_zero(-1.F, -1) " << std::endl;
268     float dodgy_root = boost::math::cyl_bessel_j_zero(-1.F, -1);
269     std::cout << "boost::math::cyl_bessel_j_zero(-1.F, -1) " << dodgy_root << std::endl;
270     // Throw exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int):
271     // Order argument is -1, but must be >= 0 !
272   }
273   catch (std::exception& ex)
274   {
275     std::cout << "Throw exception " << ex.what() << std::endl;
276   }
277 
278 /*`[note The type shown is the type [*after promotion],
279 using __precision_policy and __promotion_policy, from `float` to `double` in this case.]
280 
281 In this example the promotion goes:
282 
283 # Arguments are `float` and `int`.
284 # Treat `int` "as if" it were a `double`, so arguments are `float` and `double`.
285 # Common type is `double` - so that's the precision we want (and the type that will be returned).
286 # Evaluate internally as `long double` for full `double` precision.
287 
288 See full code for other examples that promote from `double` to `long double`.
289 
290 */
291 
292 //] [/bessel_zero_example_iterator_3]
293     try
294   { // order v = inf
295      std::cout << "boost::math::cyl_bessel_j_zero(infF, 1) " << std::endl;
296      float infF = std::numeric_limits<float>::infinity();
297      float inf_root = boost::math::cyl_bessel_j_zero(infF, 1);
298       std::cout << "boost::math::cyl_bessel_j_zero(infF, 1) " << inf_root << std::endl;
299      //  boost::math::cyl_bessel_j_zero(-1.F, -1)
300      //Thrown exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int):
301      // Requested the -1'th zero, but the rank must be positive !
302   }
303   catch (std::exception& ex)
304   {
305     std::cout << "Thrown exception " << ex.what() << std::endl;
306   }
307   try
308   { // order v = inf
309      double inf = std::numeric_limits<double>::infinity();
310      double inf_root = boost::math::cyl_bessel_j_zero(inf, 1);
311      std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl;
312      // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, unsigned):
313      // Order argument is 1.#INF, but must be finite >= 0 !
314   }
315   catch (std::exception& ex)
316   {
317     std::cout << "Thrown exception " << ex.what() << std::endl;
318   }
319 
320   try
321   { // order v = NaN
322      double nan = std::numeric_limits<double>::quiet_NaN();
323      double nan_root = boost::math::cyl_bessel_j_zero(nan, 1);
324      std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl;
325      // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, unsigned):
326      // Order argument is 1.#QNAN, but must be finite >= 0 !
327   }
328   catch (std::exception& ex)
329   {
330     std::cout << "Thrown exception " << ex.what() << std::endl;
331   }
332 
333   try
334   {   // Try a negative m.
335     double dodgy_root = boost::math::cyl_bessel_j_zero(0.0, -1);
336     //  warning C4146: unary minus operator applied to unsigned type, result still unsigned.
337     std::cout << "boost::math::cyl_bessel_j_zero(0.0, -1) " << dodgy_root << std::endl;
338     //  boost::math::cyl_bessel_j_zero(0.0, -1) 6.74652e+009
339     // This *should* fail because m is unreasonably large.
340 
341   }
342   catch (std::exception& ex)
343   {
344     std::cout << "Thrown exception " << ex.what() << std::endl;
345   }
346 
347   try
348   { // m = inf
349      double inf = std::numeric_limits<double>::infinity();
350      double inf_root = boost::math::cyl_bessel_j_zero(0.0, inf);
351      // warning C4244: 'argument' : conversion from 'double' to 'int', possible loss of data.
352      std::cout << "boost::math::cyl_bessel_j_zero(0.0, inf) " << inf_root << std::endl;
353      // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int):
354      // Requested the 0'th zero, but must be > 0 !
355 
356   }
357   catch (std::exception& ex)
358   {
359     std::cout << "Thrown exception " << ex.what() << std::endl;
360   }
361 
362   try
363   { // m = NaN
364      std::cout << "boost::math::cyl_bessel_j_zero(0.0, nan) " << std::endl ;
365      double nan = std::numeric_limits<double>::quiet_NaN();
366      double nan_root = boost::math::cyl_bessel_j_zero(0.0, nan);
367      // warning C4244: 'argument' : conversion from 'double' to 'int', possible loss of data.
368      std::cout << nan_root << std::endl;
369      // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int):
370      // Requested the 0'th zero, but must be > 0 !
371   }
372   catch (std::exception& ex)
373   {
374     std::cout << "Thrown exception " << ex.what() << std::endl;
375   }
376 
377  } // int main()
378 
379 /*
380 Mathematica: Table[N[BesselJZero[71/19, n], 50], {n, 1, 20, 1}]
381 
382 7.2731751938316489503185694262290765588963196701623
383 10.724858308883141732536172745851416647110749599085
384 14.018504599452388106120459558042660282427471931581
385 17.25249845917041718216248716654977734919590383861
386 20.456678874044517595180234083894285885460502077814
387 23.64363089714234522494551422714731959985405172504
388 26.819671140255087745421311470965019261522390519297
389 29.988343117423674742679141796661432043878868194142
390 33.151796897690520871250862469973445265444791966114
391 36.3114160002162074157243540350393860813165201842
392 39.468132467505236587945197808083337887765967032029
393 42.622597801391236474855034831297954018844433480227
394 45.775281464536847753390206207806726581495950012439
395 48.926530489173566198367766817478553992471739894799
396 52.076607045343002794279746041878924876873478063472
397 55.225712944912571393594224327817265689059002890192
398 58.374006101538886436775188150439025201735151418932
399 61.521611873000965273726742659353136266390944103571
400 64.66863105379093036834648221487366079456596628716
401 67.815145619696290925556791375555951165111460585458
402 
403 Mathematica: Table[N[BesselKZero[2, n], 50], {n, 1, 5, 1}]
404 n |
405 1 | 3.3842417671495934727014260185379031127323883259329
406 2 | 6.7938075132682675382911671098369487124493222183854
407 3 | 10.023477979360037978505391792081418280789658279097
408 
409 
410 */
411 
412  /*
413 [bessel_zero_output]
414 
415   boost::math::cyl_bessel_j_zero(0.0, 1) 2.40483
416   boost::math::cyl_bessel_j_zero(0.0, 1) 2.40482555769577
417   boost::math::cyl_bessel_j_zero(-1.0, 1) 1.#QNAN
418   boost::math::cyl_bessel_j_zero(inf, 1) 1.#QNAN
419   boost::math::cyl_bessel_j_zero(nan, 1) 1.#QNAN
420   5.13562230184068
421   8.41724414039986
422   11.6198411721491
423   14.7959517823513
424   17.9598194949878
425 
426   x = 3.7368421052631578947368421052631578947368421052632, r = 7.2731751938316489503185694262290765588963196701623
427   x = 3.7368421052631578947368421052631578947368421052632, r = 67.815145619696290925556791375555951165111460585458
428   7.2731751938316489503185694262290765588963196701623
429   10.724858308883141732536172745851416647110749599085
430   14.018504599452388106120459558042660282427471931581
431   cyl_neumann_zero(2., 1) = 3.3842417671495935000000000000000000000000000000000
432   3.3842418193817139000000000000000000000000000000000
433   6.7938075065612793000000000000000000000000000000000
434   10.023477554321289000000000000000000000000000000000
435   3.6154383428745996706772556069431792744372398748422
436   nu = 1.00000, sum = 0.124990, exact = 0.125000
437   Throw exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int): Order argument is -1, but must be >= 0 !
438   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Order argument is 1.#INF, but must be finite >= 0 !
439   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Order argument is 1.#QNAN, but must be finite >= 0 !
440   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -1'th zero, but must be > 0 !
441   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -2147483648'th zero, but must be > 0 !
442   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -2147483648'th zero, but must be > 0 !
443 
444 
445 ] [/bessel_zero_output]
446 */
447 
448