1 /*========================== begin_copyright_notice ============================
2 
3 Copyright (C) 2018-2021 Intel Corporation
4 
5 SPDX-License-Identifier: MIT
6 
7 ============================= end_copyright_notice ===========================*/
8 
9 /*========================== begin_copyright_notice ============================
10 
11 This file is distributed under the University of Illinois Open Source License.
12 See LICENSE.TXT for details.
13 
14 ============================= end_copyright_notice ===========================*/
15 
16 // This file implements the visit functions for cast operations.
17 
18 #include "common/LLVMWarningsPush.hpp"
19 #include "InstCombineInternal.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DIBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "Probe/Assertion.h"
28 
29 using namespace llvm;
30 using namespace PatternMatch;
31 using namespace IGCombiner;
32 
33 #define DEBUG_TYPE "instcombine"
34 
35 /// Analyze 'Val', seeing if it is a simple linear expression.
36 /// If so, decompose it, returning some value X, such that Val is
37 /// X*Scale+Offset.
38 ///
decomposeSimpleLinearExpr(Value * Val,unsigned & Scale,uint64_t & Offset)39 static Value* decomposeSimpleLinearExpr(Value* Val, unsigned& Scale,
40     uint64_t& Offset) {
41     if (ConstantInt * CI = dyn_cast<ConstantInt>(Val)) {
42         Offset = CI->getZExtValue();
43         Scale = 0;
44         return ConstantInt::get(Val->getType(), 0);
45     }
46 
47     if (BinaryOperator * I = dyn_cast<BinaryOperator>(Val)) {
48         // Cannot look past anything that might overflow.
49         OverflowingBinaryOperator* OBI = dyn_cast<OverflowingBinaryOperator>(Val);
50         if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
51             Scale = 1;
52             Offset = 0;
53             return Val;
54         }
55 
56         if (ConstantInt * RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
57             if (I->getOpcode() == Instruction::Shl) {
58                 // This is a value scaled by '1 << the shift amt'.
59                 Scale = UINT64_C(1) << RHS->getZExtValue();
60                 Offset = 0;
61                 return I->getOperand(0);
62             }
63 
64             if (I->getOpcode() == Instruction::Mul) {
65                 // This value is scaled by 'RHS'.
66                 Scale = RHS->getZExtValue();
67                 Offset = 0;
68                 return I->getOperand(0);
69             }
70 
71             if (I->getOpcode() == Instruction::Add) {
72                 // We have X+C.  Check to see if we really have (X*C2)+C1,
73                 // where C1 is divisible by C2.
74                 unsigned SubScale;
75                 Value* SubVal =
76                     decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
77                 Offset += RHS->getZExtValue();
78                 Scale = SubScale;
79                 return SubVal;
80             }
81         }
82     }
83 
84     // Otherwise, we can't look past this.
85     Scale = 1;
86     Offset = 0;
87     return Val;
88 }
89 
90 /// If we find a cast of an allocation instruction, try to eliminate the cast by
91 /// moving the type information into the alloc.
PromoteCastOfAllocation(BitCastInst & CI,AllocaInst & AI)92 Instruction* InstCombiner::PromoteCastOfAllocation(BitCastInst& CI,
93     AllocaInst& AI) {
94     PointerType* PTy = cast<PointerType>(CI.getType());
95 
96     BuilderTy AllocaBuilder(Builder);
97     AllocaBuilder.SetInsertPoint(&AI);
98 
99     // Get the type really allocated and the type casted to.
100     Type* AllocElTy = AI.getAllocatedType();
101     Type* CastElTy = PTy->getElementType();
102     if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
103 
104     unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
105     unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
106     if (CastElTyAlign < AllocElTyAlign) return nullptr;
107 
108     // If the allocation has multiple uses, only promote it if we are strictly
109     // increasing the alignment of the resultant allocation.  If we keep it the
110     // same, we open the door to infinite loops of various kinds.
111     if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
112 
113     uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
114     uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
115     if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
116 
117     // If the allocation has multiple uses, only promote it if we're not
118     // shrinking the amount of memory being allocated.
119     uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
120     uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
121     if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
122 
123     // See if we can satisfy the modulus by pulling a scale out of the array
124     // size argument.
125     unsigned ArraySizeScale;
126     uint64_t ArrayOffset;
127     Value* NumElements = // See if the array size is a decomposable linear expr.
128         decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
129 
130     // If we can now satisfy the modulus, by using a non-1 scale, we really can
131     // do the xform.
132     if ((AllocElTySize * ArraySizeScale) % CastElTySize != 0 ||
133         (AllocElTySize * ArrayOffset) % CastElTySize != 0) return nullptr;
134 
135     unsigned Scale = (AllocElTySize * ArraySizeScale) / CastElTySize;
136     Value* Amt = nullptr;
137     if (Scale == 1) {
138         Amt = NumElements;
139     }
140     else {
141         Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
142         // Insert before the alloca, not before the cast.
143         Amt = AllocaBuilder.CreateMul(Amt, NumElements);
144     }
145 
146     if (uint64_t Offset = (AllocElTySize * ArrayOffset) / CastElTySize) {
147         Value* Off = ConstantInt::get(AI.getArraySize()->getType(),
148             Offset, true);
149         Amt = AllocaBuilder.CreateAdd(Amt, Off);
150     }
151 
152     AllocaInst* New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
153     New->setAlignment(AI.getAlignment());
154     New->takeName(&AI);
155     New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
156 
157     // If the allocation has multiple real uses, insert a cast and change all
158     // things that used it to use the new cast.  This will also hack on CI, but it
159     // will die soon.
160     if (!AI.hasOneUse()) {
161         // New is the allocation instruction, pointer typed. AI is the original
162         // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
163         Value* NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
164         replaceInstUsesWith(AI, NewCast);
165     }
166     return replaceInstUsesWith(CI, New);
167 }
168 
169 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
170 /// true for, actually insert the code to evaluate the expression.
EvaluateInDifferentType(Value * V,Type * Ty,bool isSigned)171 Value* InstCombiner::EvaluateInDifferentType(Value* V, Type* Ty,
172     bool isSigned) {
173     if (Constant * C = dyn_cast<Constant>(V)) {
174         C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
175         // If we got a constantexpr back, try to simplify it with DL info.
176         if (Constant * FoldedC = ConstantFoldConstant(C, DL, &TLI))
177             C = FoldedC;
178         return C;
179     }
180 
181     // Otherwise, it must be an instruction.
182     Instruction* I = cast<Instruction>(V);
183     Instruction* Res = nullptr;
184     unsigned Opc = I->getOpcode();
185     switch (Opc) {
186     case Instruction::Add:
187     case Instruction::Sub:
188     case Instruction::Mul:
189     case Instruction::And:
190     case Instruction::Or:
191     case Instruction::Xor:
192     case Instruction::AShr:
193     case Instruction::LShr:
194     case Instruction::Shl:
195     case Instruction::UDiv:
196     case Instruction::URem: {
197         Value* LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
198         Value* RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
199         Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
200         break;
201     }
202     case Instruction::Trunc:
203     case Instruction::ZExt:
204     case Instruction::SExt:
205         // If the source type of the cast is the type we're trying for then we can
206         // just return the source.  There's no need to insert it because it is not
207         // new.
208         if (I->getOperand(0)->getType() == Ty)
209             return I->getOperand(0);
210 
211         // Otherwise, must be the same type of cast, so just reinsert a new one.
212         // This also handles the case of zext(trunc(x)) -> zext(x).
213         Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
214             Opc == Instruction::SExt);
215         break;
216     case Instruction::Select: {
217         Value* True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
218         Value* False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
219         Res = SelectInst::Create(I->getOperand(0), True, False);
220         break;
221     }
222     case Instruction::PHI: {
223         PHINode* OPN = cast<PHINode>(I);
224         PHINode* NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
225         for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
226             Value* V =
227                 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
228             NPN->addIncoming(V, OPN->getIncomingBlock(i));
229         }
230         Res = NPN;
231         break;
232     }
233     default:
234         // TODO: Can handle more cases here.
235         IGC_ASSERT_EXIT_MESSAGE(0, "Unreachable!");
236     }
237 
238     Res->takeName(I);
239     return InsertNewInstWith(Res, *I);
240 }
241 
isEliminableCastPair(const CastInst * CI1,const CastInst * CI2)242 Instruction::CastOps InstCombiner::isEliminableCastPair(const CastInst* CI1,
243     const CastInst* CI2) {
244     Type* SrcTy = CI1->getSrcTy();
245     Type* MidTy = CI1->getDestTy();
246     Type* DstTy = CI2->getDestTy();
247 
248     Instruction::CastOps firstOp = CI1->getOpcode();
249     Instruction::CastOps secondOp = CI2->getOpcode();
250     Type* SrcIntPtrTy =
251         SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
252     Type* MidIntPtrTy =
253         MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
254     Type* DstIntPtrTy =
255         DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
256     unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
257         DstTy, SrcIntPtrTy, MidIntPtrTy,
258         DstIntPtrTy);
259 
260     // We don't want to form an inttoptr or ptrtoint that converts to an integer
261     // type that differs from the pointer size.
262     if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
263         (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
264         Res = 0;
265 
266     return Instruction::CastOps(Res);
267 }
268 
269 /// Implement the transforms common to all CastInst visitors.
commonCastTransforms(CastInst & CI)270 Instruction* InstCombiner::commonCastTransforms(CastInst& CI) {
271     Value* Src = CI.getOperand(0);
272 
273     // Try to eliminate a cast of a cast.
274     if (auto * CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
275         if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
276             // The first cast (CSrc) is eliminable so we need to fix up or replace
277             // the second cast (CI). CSrc will then have a good chance of being dead.
278             auto* Ty = CI.getType();
279             auto* Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
280             // Point debug users of the dying cast to the new one.
281             if (CSrc->hasOneUse())
282                 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
283             return Res;
284         }
285     }
286 
287     if (auto * Sel = dyn_cast<SelectInst>(Src)) {
288         // We are casting a select. Try to fold the cast into the select, but only
289         // if the select does not have a compare instruction with matching operand
290         // types. Creating a select with operands that are different sizes than its
291         // condition may inhibit other folds and lead to worse codegen.
292         auto* Cmp = dyn_cast<CmpInst>(Sel->getCondition());
293         if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType())
294             if (Instruction * NV = FoldOpIntoSelect(CI, Sel)) {
295                 replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
296                 return NV;
297             }
298     }
299 
300     // If we are casting a PHI, then fold the cast into the PHI.
301     if (auto * PN = dyn_cast<PHINode>(Src)) {
302         // Don't do this if it would create a PHI node with an illegal type from a
303         // legal type.
304         if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
305             shouldChangeType(CI.getType(), Src->getType()))
306             if (Instruction * NV = foldOpIntoPhi(CI, PN))
307                 return NV;
308     }
309 
310     return nullptr;
311 }
312 
313 /// Constants and extensions/truncates from the destination type are always
314 /// free to be evaluated in that type. This is a helper for canEvaluate*.
canAlwaysEvaluateInType(Value * V,Type * Ty)315 static bool canAlwaysEvaluateInType(Value* V, Type* Ty) {
316     if (isa<Constant>(V))
317         return true;
318     Value* X;
319     if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
320         X->getType() == Ty)
321         return true;
322 
323     return false;
324 }
325 
326 /// Filter out values that we can not evaluate in the destination type for free.
327 /// This is a helper for canEvaluate*.
canNotEvaluateInType(Value * V,Type * Ty)328 static bool canNotEvaluateInType(Value* V, Type* Ty) {
329     IGC_ASSERT_MESSAGE(!isa<Constant>(V), "Constant should already be handled.");
330     if (!isa<Instruction>(V))
331         return true;
332     // We don't extend or shrink something that has multiple uses --  doing so
333     // would require duplicating the instruction which isn't profitable.
334     if (!V->hasOneUse())
335         return true;
336 
337     return false;
338 }
339 
340 /// Return true if we can evaluate the specified expression tree as type Ty
341 /// instead of its larger type, and arrive with the same value.
342 /// This is used by code that tries to eliminate truncates.
343 ///
344 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
345 /// can be computed by computing V in the smaller type.  If V is an instruction,
346 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
347 /// makes sense if x and y can be efficiently truncated.
348 ///
349 /// This function works on both vectors and scalars.
350 ///
canEvaluateTruncated(Value * V,Type * Ty,InstCombiner & IC,Instruction * CxtI)351 static bool canEvaluateTruncated(Value* V, Type* Ty, InstCombiner& IC,
352     Instruction* CxtI) {
353     if (canAlwaysEvaluateInType(V, Ty))
354         return true;
355     if (canNotEvaluateInType(V, Ty))
356         return false;
357 
358     auto* I = cast<Instruction>(V);
359     Type* OrigTy = V->getType();
360     switch (I->getOpcode()) {
361     case Instruction::Add:
362     case Instruction::Sub:
363     case Instruction::Mul:
364     case Instruction::And:
365     case Instruction::Or:
366     case Instruction::Xor:
367         // These operators can all arbitrarily be extended or truncated.
368         return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
369             canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
370 
371     case Instruction::UDiv:
372     case Instruction::URem: {
373         // UDiv and URem can be truncated if all the truncated bits are zero.
374         uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
375         uint32_t BitWidth = Ty->getScalarSizeInBits();
376         IGC_ASSERT_MESSAGE(BitWidth < OrigBitWidth, "Unexpected bitwidths!");
377         APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
378         if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
379             IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
380             return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
381                 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
382         }
383         break;
384     }
385     case Instruction::Shl: {
386         // If we are truncating the result of this SHL, and if it's a shift of a
387         // constant amount, we can always perform a SHL in a smaller type.
388         const APInt* Amt;
389         if (match(I->getOperand(1), m_APInt(Amt))) {
390             uint32_t BitWidth = Ty->getScalarSizeInBits();
391             if (Amt->getLimitedValue(BitWidth) < BitWidth)
392                 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
393         }
394         break;
395     }
396     case Instruction::LShr: {
397         // If this is a truncate of a logical shr, we can truncate it to a smaller
398         // lshr iff we know that the bits we would otherwise be shifting in are
399         // already zeros.
400         const APInt* Amt;
401         if (match(I->getOperand(1), m_APInt(Amt))) {
402             uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
403             uint32_t BitWidth = Ty->getScalarSizeInBits();
404             if (Amt->getLimitedValue(BitWidth) < BitWidth &&
405                 IC.MaskedValueIsZero(I->getOperand(0),
406                     APInt::getBitsSetFrom(OrigBitWidth, BitWidth), 0, CxtI)) {
407                 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
408             }
409         }
410         break;
411     }
412     case Instruction::AShr: {
413         // If this is a truncate of an arithmetic shr, we can truncate it to a
414         // smaller ashr iff we know that all the bits from the sign bit of the
415         // original type and the sign bit of the truncate type are similar.
416         // TODO: It is enough to check that the bits we would be shifting in are
417         //       similar to sign bit of the truncate type.
418         const APInt* Amt;
419         if (match(I->getOperand(1), m_APInt(Amt))) {
420             uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
421             uint32_t BitWidth = Ty->getScalarSizeInBits();
422             if (Amt->getLimitedValue(BitWidth) < BitWidth &&
423                 OrigBitWidth - BitWidth <
424                 IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
425                 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
426         }
427         break;
428     }
429     case Instruction::Trunc:
430         // trunc(trunc(x)) -> trunc(x)
431         return true;
432     case Instruction::ZExt:
433     case Instruction::SExt:
434         // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
435         // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
436         return true;
437     case Instruction::Select: {
438         SelectInst* SI = cast<SelectInst>(I);
439         return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
440             canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
441     }
442     case Instruction::PHI: {
443         // We can change a phi if we can change all operands.  Note that we never
444         // get into trouble with cyclic PHIs here because we only consider
445         // instructions with a single use.
446         PHINode* PN = cast<PHINode>(I);
447         for (Value* IncValue : PN->incoming_values())
448             if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
449                 return false;
450         return true;
451     }
452     default:
453         // TODO: Can handle more cases here.
454         break;
455     }
456 
457     return false;
458 }
459 
460 /// Given a vector that is bitcast to an integer, optionally logically
461 /// right-shifted, and truncated, convert it to an extractelement.
462 /// Example (big endian):
463 ///   trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
464 ///   --->
465 ///   extractelement <4 x i32> %X, 1
foldVecTruncToExtElt(TruncInst & Trunc,InstCombiner & IC)466 static Instruction* foldVecTruncToExtElt(TruncInst& Trunc, InstCombiner& IC) {
467     Value* TruncOp = Trunc.getOperand(0);
468     Type* DestType = Trunc.getType();
469     if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
470         return nullptr;
471 
472     Value* VecInput = nullptr;
473     ConstantInt* ShiftVal = nullptr;
474     if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
475         m_LShr(m_BitCast(m_Value(VecInput)),
476             m_ConstantInt(ShiftVal)))) ||
477         !isa<VectorType>(VecInput->getType()))
478         return nullptr;
479 
480     VectorType* VecType = cast<VectorType>(VecInput->getType());
481     unsigned VecWidth = VecType->getPrimitiveSizeInBits();
482     unsigned DestWidth = DestType->getPrimitiveSizeInBits();
483     unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
484 
485     if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
486         return nullptr;
487 
488     // If the element type of the vector doesn't match the result type,
489     // bitcast it to a vector type that we can extract from.
490     unsigned NumVecElts = VecWidth / DestWidth;
491     if (VecType->getElementType() != DestType) {
492         VecType = VectorType::get(DestType, NumVecElts);
493         VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
494     }
495 
496     unsigned Elt = ShiftAmount / DestWidth;
497     if (IC.getDataLayout().isBigEndian())
498         Elt = NumVecElts - 1 - Elt;
499 
500     return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
501 }
502 
503 /// Rotate left/right may occur in a wider type than necessary because of type
504 /// promotion rules. Try to narrow all of the component instructions.
narrowRotate(TruncInst & Trunc)505 Instruction* InstCombiner::narrowRotate(TruncInst& Trunc) {
506     IGC_ASSERT_MESSAGE((isa<VectorType>(Trunc.getSrcTy()) || shouldChangeType(Trunc.getSrcTy(), Trunc.getType())), "Don't narrow to an illegal scalar type");
507 
508     // First, find an or'd pair of opposite shifts with the same shifted operand:
509     // trunc (or (lshr ShVal, ShAmt0), (shl ShVal, ShAmt1))
510     Value* Or0, * Or1;
511     if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
512         return nullptr;
513 
514     Value* ShVal, * ShAmt0, * ShAmt1;
515     if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal), m_Value(ShAmt0)))) ||
516         !match(Or1, m_OneUse(m_LogicalShift(m_Specific(ShVal), m_Value(ShAmt1)))))
517         return nullptr;
518 
519     auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
520     auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
521     if (ShiftOpcode0 == ShiftOpcode1)
522         return nullptr;
523 
524     // The shift amounts must add up to the narrow bit width.
525     Value* ShAmt;
526     bool SubIsOnLHS;
527     Type* DestTy = Trunc.getType();
528     unsigned NarrowWidth = DestTy->getScalarSizeInBits();
529     if (match(ShAmt0,
530         m_OneUse(m_Sub(m_SpecificInt(NarrowWidth), m_Specific(ShAmt1))))) {
531         ShAmt = ShAmt1;
532         SubIsOnLHS = true;
533     }
534     else if (match(ShAmt1, m_OneUse(m_Sub(m_SpecificInt(NarrowWidth),
535         m_Specific(ShAmt0))))) {
536         ShAmt = ShAmt0;
537         SubIsOnLHS = false;
538     }
539     else {
540         return nullptr;
541     }
542 
543     // The shifted value must have high zeros in the wide type. Typically, this
544     // will be a zext, but it could also be the result of an 'and' or 'shift'.
545     unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
546     APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
547     if (!MaskedValueIsZero(ShVal, HiBitMask, 0, &Trunc))
548         return nullptr;
549 
550     // We have an unnecessarily wide rotate!
551     // trunc (or (lshr ShVal, ShAmt), (shl ShVal, BitWidth - ShAmt))
552     // Narrow it down to eliminate the zext/trunc:
553     // or (lshr trunc(ShVal), ShAmt0'), (shl trunc(ShVal), ShAmt1')
554     Value* NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
555     Value* NegShAmt = Builder.CreateNeg(NarrowShAmt);
556 
557     // Mask both shift amounts to ensure there's no UB from oversized shifts.
558     Constant* MaskC = ConstantInt::get(DestTy, NarrowWidth - 1);
559     Value* MaskedShAmt = Builder.CreateAnd(NarrowShAmt, MaskC);
560     Value* MaskedNegShAmt = Builder.CreateAnd(NegShAmt, MaskC);
561 
562     // Truncate the original value and use narrow ops.
563     Value* X = Builder.CreateTrunc(ShVal, DestTy);
564     Value* NarrowShAmt0 = SubIsOnLHS ? MaskedNegShAmt : MaskedShAmt;
565     Value* NarrowShAmt1 = SubIsOnLHS ? MaskedShAmt : MaskedNegShAmt;
566     Value* NarrowSh0 = Builder.CreateBinOp(ShiftOpcode0, X, NarrowShAmt0);
567     Value* NarrowSh1 = Builder.CreateBinOp(ShiftOpcode1, X, NarrowShAmt1);
568     return BinaryOperator::CreateOr(NarrowSh0, NarrowSh1);
569 }
570 
571 /// Try to narrow the width of math or bitwise logic instructions by pulling a
572 /// truncate ahead of binary operators.
573 /// TODO: Transforms for truncated shifts should be moved into here.
narrowBinOp(TruncInst & Trunc)574 Instruction* InstCombiner::narrowBinOp(TruncInst& Trunc) {
575     Type* SrcTy = Trunc.getSrcTy();
576     Type* DestTy = Trunc.getType();
577     if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
578         return nullptr;
579 
580     BinaryOperator* BinOp;
581     if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
582         return nullptr;
583 
584     Value* BinOp0 = BinOp->getOperand(0);
585     Value* BinOp1 = BinOp->getOperand(1);
586     switch (BinOp->getOpcode()) {
587     case Instruction::And:
588     case Instruction::Or:
589     case Instruction::Xor:
590     case Instruction::Add:
591     case Instruction::Sub:
592     case Instruction::Mul: {
593         Constant* C;
594         if (match(BinOp0, m_Constant(C))) {
595             // trunc (binop C, X) --> binop (trunc C', X)
596             Constant* NarrowC = ConstantExpr::getTrunc(C, DestTy);
597             Value* TruncX = Builder.CreateTrunc(BinOp1, DestTy);
598             return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
599         }
600         if (match(BinOp1, m_Constant(C))) {
601             // trunc (binop X, C) --> binop (trunc X, C')
602             Constant* NarrowC = ConstantExpr::getTrunc(C, DestTy);
603             Value* TruncX = Builder.CreateTrunc(BinOp0, DestTy);
604             return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
605         }
606         Value* X;
607         if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
608             // trunc (binop (ext X), Y) --> binop X, (trunc Y)
609             Value* NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
610             return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
611         }
612         if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
613             // trunc (binop Y, (ext X)) --> binop (trunc Y), X
614             Value* NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
615             return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
616         }
617         break;
618     }
619 
620     default: break;
621     }
622 
623     if (Instruction * NarrowOr = narrowRotate(Trunc))
624         return NarrowOr;
625 
626     return nullptr;
627 }
628 
629 /// Try to narrow the width of a splat shuffle. This could be generalized to any
630 /// shuffle with a constant operand, but we limit the transform to avoid
631 /// creating a shuffle type that targets may not be able to lower effectively.
shrinkSplatShuffle(TruncInst & Trunc,InstCombiner::BuilderTy & Builder)632 static Instruction* shrinkSplatShuffle(TruncInst& Trunc,
633     InstCombiner::BuilderTy& Builder) {
634     auto* Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
635     if (Shuf && Shuf->hasOneUse() && isa<UndefValue>(Shuf->getOperand(1)) &&
636         Shuf->getMask()->getSplatValue() &&
637         Shuf->getType() == Shuf->getOperand(0)->getType()) {
638         // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
639         Constant* NarrowUndef = UndefValue::get(Trunc.getType());
640         Value* NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
641         return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getMask());
642     }
643 
644     return nullptr;
645 }
646 
647 /// Try to narrow the width of an insert element. This could be generalized for
648 /// any vector constant, but we limit the transform to insertion into undef to
649 /// avoid potential backend problems from unsupported insertion widths. This
650 /// could also be extended to handle the case of inserting a scalar constant
651 /// into a vector variable.
shrinkInsertElt(CastInst & Trunc,InstCombiner::BuilderTy & Builder)652 static Instruction* shrinkInsertElt(CastInst& Trunc,
653     InstCombiner::BuilderTy& Builder) {
654     Instruction::CastOps Opcode = Trunc.getOpcode();
655     IGC_ASSERT_MESSAGE((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc), "Unexpected instruction for shrinking");
656 
657     auto* InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
658     if (!InsElt || !InsElt->hasOneUse())
659         return nullptr;
660 
661     Type* DestTy = Trunc.getType();
662     Type* DestScalarTy = DestTy->getScalarType();
663     Value* VecOp = InsElt->getOperand(0);
664     Value* ScalarOp = InsElt->getOperand(1);
665     Value* Index = InsElt->getOperand(2);
666 
667     if (isa<UndefValue>(VecOp)) {
668         // trunc   (inselt undef, X, Index) --> inselt undef,   (trunc X), Index
669         // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
670         UndefValue* NarrowUndef = UndefValue::get(DestTy);
671         Value* NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
672         return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
673     }
674 
675     return nullptr;
676 }
677 
visitTrunc(TruncInst & CI)678 Instruction* InstCombiner::visitTrunc(TruncInst& CI) {
679     if (Instruction * Result = commonCastTransforms(CI))
680         return Result;
681 
682     Value* Src = CI.getOperand(0);
683     Type* DestTy = CI.getType(), * SrcTy = Src->getType();
684 
685     // Attempt to truncate the entire input expression tree to the destination
686     // type.   Only do this if the dest type is a simple type, don't convert the
687     // expression tree to something weird like i93 unless the source is also
688     // strange.
689     if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
690         canEvaluateTruncated(Src, DestTy, *this, &CI)) {
691 
692         // If this cast is a truncate, evaluting in a different type always
693         // eliminates the cast, so it is always a win.
694         LLVM_DEBUG(
695             dbgs() << "ICE: EvaluateInDifferentType converting expression type"
696             " to avoid cast: "
697             << CI << '\n');
698         Value* Res = EvaluateInDifferentType(Src, DestTy, false);
699         IGC_ASSERT(Res->getType() == DestTy);
700         return replaceInstUsesWith(CI, Res);
701     }
702 
703     // Test if the trunc is the user of a select which is part of a
704     // minimum or maximum operation. If so, don't do any more simplification.
705     // Even simplifying demanded bits can break the canonical form of a
706     // min/max.
707     Value* LHS, * RHS;
708     if (SelectInst * SI = dyn_cast<SelectInst>(CI.getOperand(0)))
709         if (matchSelectPattern(SI, LHS, RHS).Flavor != SPF_UNKNOWN)
710             return nullptr;
711 
712     // See if we can simplify any instructions used by the input whose sole
713     // purpose is to compute bits we don't care about.
714     if (SimplifyDemandedInstructionBits(CI))
715         return &CI;
716 
717     // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
718     if (DestTy->getScalarSizeInBits() == 1) {
719         Constant* One = ConstantInt::get(SrcTy, 1);
720         Src = Builder.CreateAnd(Src, One);
721         Value* Zero = Constant::getNullValue(Src->getType());
722         return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
723     }
724 
725     // FIXME: Maybe combine the next two transforms to handle the no cast case
726     // more efficiently. Support vector types. Cleanup code by using m_OneUse.
727 
728     // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
729     Value* A = nullptr; ConstantInt* Cst = nullptr;
730     if (Src->hasOneUse() &&
731         match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
732         // We have three types to worry about here, the type of A, the source of
733         // the truncate (MidSize), and the destination of the truncate. We know that
734         // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
735         // between ASize and ResultSize.
736         unsigned ASize = A->getType()->getPrimitiveSizeInBits();
737 
738         // If the shift amount is larger than the size of A, then the result is
739         // known to be zero because all the input bits got shifted out.
740         if (Cst->getZExtValue() >= ASize)
741             return replaceInstUsesWith(CI, Constant::getNullValue(DestTy));
742 
743         // Since we're doing an lshr and a zero extend, and know that the shift
744         // amount is smaller than ASize, it is always safe to do the shift in A's
745         // type, then zero extend or truncate to the result.
746         Value* Shift = Builder.CreateLShr(A, Cst->getZExtValue());
747         Shift->takeName(Src);
748         return CastInst::CreateIntegerCast(Shift, DestTy, false);
749     }
750 
751     // FIXME: We should canonicalize to zext/trunc and remove this transform.
752     // Transform trunc(lshr (sext A), Cst) to ashr A, Cst to eliminate type
753     // conversion.
754     // It works because bits coming from sign extension have the same value as
755     // the sign bit of the original value; performing ashr instead of lshr
756     // generates bits of the same value as the sign bit.
757     if (Src->hasOneUse() &&
758         match(Src, m_LShr(m_SExt(m_Value(A)), m_ConstantInt(Cst)))) {
759         Value* SExt = cast<Instruction>(Src)->getOperand(0);
760         const unsigned SExtSize = SExt->getType()->getPrimitiveSizeInBits();
761         const unsigned ASize = A->getType()->getPrimitiveSizeInBits();
762         const unsigned CISize = CI.getType()->getPrimitiveSizeInBits();
763         const unsigned MaxAmt = SExtSize - std::max(CISize, ASize);
764         unsigned ShiftAmt = Cst->getZExtValue();
765 
766         // This optimization can be only performed when zero bits generated by
767         // the original lshr aren't pulled into the value after truncation, so we
768         // can only shift by values no larger than the number of extension bits.
769         // FIXME: Instead of bailing when the shift is too large, use and to clear
770         // the extra bits.
771         if (ShiftAmt <= MaxAmt) {
772             if (CISize == ASize)
773                 return BinaryOperator::CreateAShr(A, ConstantInt::get(CI.getType(),
774                     std::min(ShiftAmt, ASize - 1)));
775             if (SExt->hasOneUse()) {
776                 Value* Shift = Builder.CreateAShr(A, std::min(ShiftAmt, ASize - 1));
777                 Shift->takeName(Src);
778                 return CastInst::CreateIntegerCast(Shift, CI.getType(), true);
779             }
780         }
781     }
782 
783     if (Instruction * I = narrowBinOp(CI))
784         return I;
785 
786     if (Instruction * I = shrinkSplatShuffle(CI, Builder))
787         return I;
788 
789     if (Instruction * I = shrinkInsertElt(CI, Builder))
790         return I;
791 
792     if (Src->hasOneUse() && isa<IntegerType>(SrcTy) &&
793         shouldChangeType(SrcTy, DestTy)) {
794         // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
795         // dest type is native and cst < dest size.
796         if (match(Src, m_Shl(m_Value(A), m_ConstantInt(Cst))) &&
797             !match(A, m_Shr(m_Value(), m_Constant()))) {
798             // Skip shifts of shift by constants. It undoes a combine in
799             // FoldShiftByConstant and is the extend in reg pattern.
800             const unsigned DestSize = DestTy->getScalarSizeInBits();
801             if (Cst->getValue().ult(DestSize)) {
802                 Value* NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
803 
804                 return BinaryOperator::Create(
805                     Instruction::Shl, NewTrunc,
806                     ConstantInt::get(DestTy, Cst->getValue().trunc(DestSize)));
807             }
808         }
809     }
810 
811     if (Instruction * I = foldVecTruncToExtElt(CI, *this))
812         return I;
813 
814     return nullptr;
815 }
816 
transformZExtICmp(ICmpInst * ICI,ZExtInst & CI,bool DoTransform)817 Instruction* InstCombiner::transformZExtICmp(ICmpInst* ICI, ZExtInst& CI,
818     bool DoTransform) {
819     // If we are just checking for a icmp eq of a single bit and zext'ing it
820     // to an integer, then shift the bit to the appropriate place and then
821     // cast to integer to avoid the comparison.
822     const APInt* Op1CV;
823     if (match(ICI->getOperand(1), m_APInt(Op1CV))) {
824 
825         // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
826         // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
827         if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
828             (ICI->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
829             if (!DoTransform) return ICI;
830 
831             Value* In = ICI->getOperand(0);
832             Value* Sh = ConstantInt::get(In->getType(),
833                 In->getType()->getScalarSizeInBits() - 1);
834             In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
835             if (In->getType() != CI.getType())
836                 In = Builder.CreateIntCast(In, CI.getType(), false /*ZExt*/);
837 
838             if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
839                 Constant* One = ConstantInt::get(In->getType(), 1);
840                 In = Builder.CreateXor(In, One, In->getName() + ".not");
841             }
842 
843             return replaceInstUsesWith(CI, In);
844         }
845 
846         // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
847         // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
848         // zext (X == 1) to i32 --> X        iff X has only the low bit set.
849         // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
850         // zext (X != 0) to i32 --> X        iff X has only the low bit set.
851         // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
852         // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
853         // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
854         if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
855             // This only works for EQ and NE
856             ICI->isEquality()) {
857             // If Op1C some other power of two, convert:
858             KnownBits Known = computeKnownBits(ICI->getOperand(0), 0, &CI);
859 
860             APInt KnownZeroMask(~Known.Zero);
861             if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
862                 if (!DoTransform) return ICI;
863 
864                 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
865                 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
866                     // (X&4) == 2 --> false
867                     // (X&4) != 2 --> true
868                     Constant* Res = ConstantInt::get(CI.getType(), isNE);
869                     return replaceInstUsesWith(CI, Res);
870                 }
871 
872                 uint32_t ShAmt = KnownZeroMask.logBase2();
873                 Value* In = ICI->getOperand(0);
874                 if (ShAmt) {
875                     // Perform a logical shr by shiftamt.
876                     // Insert the shift to put the result in the low bit.
877                     In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
878                         In->getName() + ".lobit");
879                 }
880 
881                 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
882                     Constant* One = ConstantInt::get(In->getType(), 1);
883                     In = Builder.CreateXor(In, One);
884                 }
885 
886                 if (CI.getType() == In->getType())
887                     return replaceInstUsesWith(CI, In);
888 
889                 Value* IntCast = Builder.CreateIntCast(In, CI.getType(), false);
890                 return replaceInstUsesWith(CI, IntCast);
891             }
892         }
893     }
894 
895     // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
896     // It is also profitable to transform icmp eq into not(xor(A, B)) because that
897     // may lead to additional simplifications.
898     if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
899         if (IntegerType * ITy = dyn_cast<IntegerType>(CI.getType())) {
900             Value* LHS = ICI->getOperand(0);
901             Value* RHS = ICI->getOperand(1);
902 
903             KnownBits KnownLHS = computeKnownBits(LHS, 0, &CI);
904             KnownBits KnownRHS = computeKnownBits(RHS, 0, &CI);
905 
906             if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
907                 APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
908                 APInt UnknownBit = ~KnownBits;
909                 if (UnknownBit.countPopulation() == 1) {
910                     if (!DoTransform) return ICI;
911 
912                     Value* Result = Builder.CreateXor(LHS, RHS);
913 
914                     // Mask off any bits that are set and won't be shifted away.
915                     if (KnownLHS.One.uge(UnknownBit))
916                         Result = Builder.CreateAnd(Result,
917                             ConstantInt::get(ITy, UnknownBit));
918 
919                     // Shift the bit we're testing down to the lsb.
920                     Result = Builder.CreateLShr(
921                         Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
922 
923                     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
924                         Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
925                     Result->takeName(ICI);
926                     return replaceInstUsesWith(CI, Result);
927                 }
928             }
929         }
930     }
931 
932     return nullptr;
933 }
934 
935 /// Determine if the specified value can be computed in the specified wider type
936 /// and produce the same low bits. If not, return false.
937 ///
938 /// If this function returns true, it can also return a non-zero number of bits
939 /// (in BitsToClear) which indicates that the value it computes is correct for
940 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
941 /// out.  For example, to promote something like:
942 ///
943 ///   %B = trunc i64 %A to i32
944 ///   %C = lshr i32 %B, 8
945 ///   %E = zext i32 %C to i64
946 ///
947 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
948 /// set to 8 to indicate that the promoted value needs to have bits 24-31
949 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
950 /// clear the top bits anyway, doing this has no extra cost.
951 ///
952 /// This function works on both vectors and scalars.
canEvaluateZExtd(Value * V,Type * Ty,unsigned & BitsToClear,InstCombiner & IC,Instruction * CxtI)953 static bool canEvaluateZExtd(Value* V, Type* Ty, unsigned& BitsToClear,
954     InstCombiner& IC, Instruction* CxtI) {
955     BitsToClear = 0;
956     if (canAlwaysEvaluateInType(V, Ty))
957         return true;
958     if (canNotEvaluateInType(V, Ty))
959         return false;
960 
961     auto* I = cast<Instruction>(V);
962     unsigned Tmp;
963     switch (I->getOpcode()) {
964     case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
965     case Instruction::SExt:  // zext(sext(x)) -> sext(x).
966     case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
967         return true;
968     case Instruction::And:
969     case Instruction::Or:
970     case Instruction::Xor:
971     case Instruction::Add:
972     case Instruction::Sub:
973     case Instruction::Mul:
974         if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
975             !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
976             return false;
977         // These can all be promoted if neither operand has 'bits to clear'.
978         if (BitsToClear == 0 && Tmp == 0)
979             return true;
980 
981         // If the operation is an AND/OR/XOR and the bits to clear are zero in the
982         // other side, BitsToClear is ok.
983         if (Tmp == 0 && I->isBitwiseLogicOp()) {
984             // We use MaskedValueIsZero here for generality, but the case we care
985             // about the most is constant RHS.
986             unsigned VSize = V->getType()->getScalarSizeInBits();
987             if (IC.MaskedValueIsZero(I->getOperand(1),
988                 APInt::getHighBitsSet(VSize, BitsToClear),
989                 0, CxtI)) {
990                 // If this is an And instruction and all of the BitsToClear are
991                 // known to be zero we can reset BitsToClear.
992                 if (I->getOpcode() == Instruction::And)
993                     BitsToClear = 0;
994                 return true;
995             }
996         }
997 
998         // Otherwise, we don't know how to analyze this BitsToClear case yet.
999         return false;
1000 
1001     case Instruction::Shl: {
1002         // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
1003         // upper bits we can reduce BitsToClear by the shift amount.
1004         const APInt* Amt;
1005         if (match(I->getOperand(1), m_APInt(Amt))) {
1006             if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1007                 return false;
1008             uint64_t ShiftAmt = Amt->getZExtValue();
1009             BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1010             return true;
1011         }
1012         return false;
1013     }
1014     case Instruction::LShr: {
1015         // We can promote lshr(x, cst) if we can promote x.  This requires the
1016         // ultimate 'and' to clear out the high zero bits we're clearing out though.
1017         const APInt* Amt;
1018         if (match(I->getOperand(1), m_APInt(Amt))) {
1019             if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1020                 return false;
1021             BitsToClear += Amt->getZExtValue();
1022             if (BitsToClear > V->getType()->getScalarSizeInBits())
1023                 BitsToClear = V->getType()->getScalarSizeInBits();
1024             return true;
1025         }
1026         // Cannot promote variable LSHR.
1027         return false;
1028     }
1029     case Instruction::Select:
1030         if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1031             !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1032             // TODO: If important, we could handle the case when the BitsToClear are
1033             // known zero in the disagreeing side.
1034             Tmp != BitsToClear)
1035             return false;
1036         return true;
1037 
1038     case Instruction::PHI: {
1039         // We can change a phi if we can change all operands.  Note that we never
1040         // get into trouble with cyclic PHIs here because we only consider
1041         // instructions with a single use.
1042         PHINode* PN = cast<PHINode>(I);
1043         if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1044             return false;
1045         for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1046             if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1047                 // TODO: If important, we could handle the case when the BitsToClear
1048                 // are known zero in the disagreeing input.
1049                 Tmp != BitsToClear)
1050                 return false;
1051         return true;
1052     }
1053     default:
1054         // TODO: Can handle more cases here.
1055         return false;
1056     }
1057 }
1058 
visitZExt(ZExtInst & CI)1059 Instruction* InstCombiner::visitZExt(ZExtInst& CI) {
1060     // If this zero extend is only used by a truncate, let the truncate be
1061     // eliminated before we try to optimize this zext.
1062     if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1063         return nullptr;
1064 
1065     // If one of the common conversion will work, do it.
1066     if (Instruction * Result = commonCastTransforms(CI))
1067         return Result;
1068 
1069     Value* Src = CI.getOperand(0);
1070     Type* SrcTy = Src->getType(), * DestTy = CI.getType();
1071 
1072     // Attempt to extend the entire input expression tree to the destination
1073     // type.   Only do this if the dest type is a simple type, don't convert the
1074     // expression tree to something weird like i93 unless the source is also
1075     // strange.
1076     unsigned BitsToClear;
1077     if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1078         canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1079         IGC_ASSERT_MESSAGE(BitsToClear <= SrcTy->getScalarSizeInBits(), "Can't clear more bits than in SrcTy");
1080 
1081         // Okay, we can transform this!  Insert the new expression now.
1082         LLVM_DEBUG(
1083             dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1084             " to avoid zero extend: "
1085             << CI << '\n');
1086         Value* Res = EvaluateInDifferentType(Src, DestTy, false);
1087         IGC_ASSERT(Res->getType() == DestTy);
1088 
1089         // Preserve debug values referring to Src if the zext is its last use.
1090         if (auto * SrcOp = dyn_cast<Instruction>(Src))
1091             if (SrcOp->hasOneUse())
1092                 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1093 
1094         uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits() - BitsToClear;
1095         uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1096 
1097         // If the high bits are already filled with zeros, just replace this
1098         // cast with the result.
1099         if (MaskedValueIsZero(Res,
1100             APInt::getHighBitsSet(DestBitSize,
1101                 DestBitSize - SrcBitsKept),
1102             0, &CI))
1103             return replaceInstUsesWith(CI, Res);
1104 
1105         // We need to emit an AND to clear the high bits.
1106         Constant* C = ConstantInt::get(Res->getType(),
1107             APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1108         return BinaryOperator::CreateAnd(Res, C);
1109     }
1110 
1111     // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1112     // types and if the sizes are just right we can convert this into a logical
1113     // 'and' which will be much cheaper than the pair of casts.
1114     if (TruncInst * CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
1115       // TODO: Subsume this into EvaluateInDifferentType.
1116 
1117       // Get the sizes of the types involved.  We know that the intermediate type
1118       // will be smaller than A or C, but don't know the relation between A and C.
1119         Value* A = CSrc->getOperand(0);
1120         unsigned SrcSize = A->getType()->getScalarSizeInBits();
1121         unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1122         unsigned DstSize = CI.getType()->getScalarSizeInBits();
1123         // If we're actually extending zero bits, then if
1124         // SrcSize <  DstSize: zext(a & mask)
1125         // SrcSize == DstSize: a & mask
1126         // SrcSize  > DstSize: trunc(a) & mask
1127         if (SrcSize < DstSize) {
1128             APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1129             Constant* AndConst = ConstantInt::get(A->getType(), AndValue);
1130             Value* And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1131             return new ZExtInst(And, CI.getType());
1132         }
1133 
1134         if (SrcSize == DstSize) {
1135             APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1136             return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1137                 AndValue));
1138         }
1139         if (SrcSize > DstSize) {
1140             Value* Trunc = Builder.CreateTrunc(A, CI.getType());
1141             APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1142             return BinaryOperator::CreateAnd(Trunc,
1143                 ConstantInt::get(Trunc->getType(),
1144                     AndValue));
1145         }
1146     }
1147 
1148     if (ICmpInst * ICI = dyn_cast<ICmpInst>(Src))
1149         return transformZExtICmp(ICI, CI);
1150 
1151     BinaryOperator* SrcI = dyn_cast<BinaryOperator>(Src);
1152     if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1153         // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1154         // of the (zext icmp) can be eliminated. If so, immediately perform the
1155         // according elimination.
1156         ICmpInst* LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1157         ICmpInst* RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1158         if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1159             (transformZExtICmp(LHS, CI, false) ||
1160                 transformZExtICmp(RHS, CI, false))) {
1161             // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1162             Value* LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1163             Value* RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1164             BinaryOperator* Or = BinaryOperator::Create(Instruction::Or, LCast, RCast);
1165 
1166             // Perform the elimination.
1167             if (auto * LZExt = dyn_cast<ZExtInst>(LCast))
1168                 transformZExtICmp(LHS, *LZExt);
1169             if (auto * RZExt = dyn_cast<ZExtInst>(RCast))
1170                 transformZExtICmp(RHS, *RZExt);
1171 
1172             return Or;
1173         }
1174     }
1175 
1176     // zext(trunc(X) & C) -> (X & zext(C)).
1177     Constant* C;
1178     Value* X;
1179     if (SrcI &&
1180         match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1181         X->getType() == CI.getType())
1182         return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1183 
1184     // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1185     Value* And;
1186     if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1187         match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1188         X->getType() == CI.getType()) {
1189         Constant* ZC = ConstantExpr::getZExt(C, CI.getType());
1190         return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1191     }
1192 
1193     return nullptr;
1194 }
1195 
1196 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
transformSExtICmp(ICmpInst * ICI,Instruction & CI)1197 Instruction* InstCombiner::transformSExtICmp(ICmpInst* ICI, Instruction& CI) {
1198     Value* Op0 = ICI->getOperand(0), * Op1 = ICI->getOperand(1);
1199     ICmpInst::Predicate Pred = ICI->getPredicate();
1200 
1201     // Don't bother if Op1 isn't of vector or integer type.
1202     if (!Op1->getType()->isIntOrIntVectorTy())
1203         return nullptr;
1204 
1205     if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1206         (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1207         // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
1208         // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
1209         Value* Sh = ConstantInt::get(Op0->getType(),
1210             Op0->getType()->getScalarSizeInBits() - 1);
1211         Value* In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1212         if (In->getType() != CI.getType())
1213             In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1214 
1215         if (Pred == ICmpInst::ICMP_SGT)
1216             In = Builder.CreateNot(In, In->getName() + ".not");
1217         return replaceInstUsesWith(CI, In);
1218     }
1219 
1220     if (ConstantInt * Op1C = dyn_cast<ConstantInt>(Op1)) {
1221         // If we know that only one bit of the LHS of the icmp can be set and we
1222         // have an equality comparison with zero or a power of 2, we can transform
1223         // the icmp and sext into bitwise/integer operations.
1224         if (ICI->hasOneUse() &&
1225             ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())) {
1226             KnownBits Known = computeKnownBits(Op0, 0, &CI);
1227 
1228             APInt KnownZeroMask(~Known.Zero);
1229             if (KnownZeroMask.isPowerOf2()) {
1230                 Value* In = ICI->getOperand(0);
1231 
1232                 // If the icmp tests for a known zero bit we can constant fold it.
1233                 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1234                     Value* V = Pred == ICmpInst::ICMP_NE ?
1235                         ConstantInt::getAllOnesValue(CI.getType()) :
1236                         ConstantInt::getNullValue(CI.getType());
1237                     return replaceInstUsesWith(CI, V);
1238                 }
1239 
1240                 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1241                     // sext ((x & 2^n) == 0)   -> (x >> n) - 1
1242                     // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1243                     unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1244                     // Perform a right shift to place the desired bit in the LSB.
1245                     if (ShiftAmt)
1246                         In = Builder.CreateLShr(In,
1247                             ConstantInt::get(In->getType(), ShiftAmt));
1248 
1249                     // At this point "In" is either 1 or 0. Subtract 1 to turn
1250                     // {1, 0} -> {0, -1}.
1251                     In = Builder.CreateAdd(In,
1252                         ConstantInt::getAllOnesValue(In->getType()),
1253                         "sext");
1254                 }
1255                 else {
1256                     // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
1257                     // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1258                     unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1259                     // Perform a left shift to place the desired bit in the MSB.
1260                     if (ShiftAmt)
1261                         In = Builder.CreateShl(In,
1262                             ConstantInt::get(In->getType(), ShiftAmt));
1263 
1264                     // Distribute the bit over the whole bit width.
1265                     In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1266                         KnownZeroMask.getBitWidth() - 1), "sext");
1267                 }
1268 
1269                 if (CI.getType() == In->getType())
1270                     return replaceInstUsesWith(CI, In);
1271                 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1272             }
1273         }
1274     }
1275 
1276     return nullptr;
1277 }
1278 
1279 /// Return true if we can take the specified value and return it as type Ty
1280 /// without inserting any new casts and without changing the value of the common
1281 /// low bits.  This is used by code that tries to promote integer operations to
1282 /// a wider types will allow us to eliminate the extension.
1283 ///
1284 /// This function works on both vectors and scalars.
1285 ///
canEvaluateSExtd(Value * V,Type * Ty)1286 static bool canEvaluateSExtd(Value* V, Type* Ty) {
1287     IGC_ASSERT_MESSAGE(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits(), "Can't sign extend type to a smaller type");
1288     if (canAlwaysEvaluateInType(V, Ty))
1289         return true;
1290     if (canNotEvaluateInType(V, Ty))
1291         return false;
1292 
1293     auto* I = cast<Instruction>(V);
1294     switch (I->getOpcode()) {
1295     case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1296     case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1297     case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1298         return true;
1299     case Instruction::And:
1300     case Instruction::Or:
1301     case Instruction::Xor:
1302     case Instruction::Add:
1303     case Instruction::Sub:
1304     case Instruction::Mul:
1305         // These operators can all arbitrarily be extended if their inputs can.
1306         return canEvaluateSExtd(I->getOperand(0), Ty) &&
1307             canEvaluateSExtd(I->getOperand(1), Ty);
1308 
1309         //case Instruction::Shl:   TODO
1310         //case Instruction::LShr:  TODO
1311 
1312     case Instruction::Select:
1313         return canEvaluateSExtd(I->getOperand(1), Ty) &&
1314             canEvaluateSExtd(I->getOperand(2), Ty);
1315 
1316     case Instruction::PHI: {
1317         // We can change a phi if we can change all operands.  Note that we never
1318         // get into trouble with cyclic PHIs here because we only consider
1319         // instructions with a single use.
1320         PHINode* PN = cast<PHINode>(I);
1321         for (Value* IncValue : PN->incoming_values())
1322             if (!canEvaluateSExtd(IncValue, Ty)) return false;
1323         return true;
1324     }
1325     default:
1326         // TODO: Can handle more cases here.
1327         break;
1328     }
1329 
1330     return false;
1331 }
1332 
visitSExt(SExtInst & CI)1333 Instruction* InstCombiner::visitSExt(SExtInst& CI) {
1334     // If this sign extend is only used by a truncate, let the truncate be
1335     // eliminated before we try to optimize this sext.
1336     if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1337         return nullptr;
1338 
1339     if (Instruction * I = commonCastTransforms(CI))
1340         return I;
1341 
1342     Value* Src = CI.getOperand(0);
1343     Type* SrcTy = Src->getType(), * DestTy = CI.getType();
1344 
1345     // If we know that the value being extended is positive, we can use a zext
1346     // instead.
1347     KnownBits Known = computeKnownBits(Src, 0, &CI);
1348     if (Known.isNonNegative()) {
1349         Value* ZExt = Builder.CreateZExt(Src, DestTy);
1350         return replaceInstUsesWith(CI, ZExt);
1351     }
1352 
1353     // Attempt to extend the entire input expression tree to the destination
1354     // type.   Only do this if the dest type is a simple type, don't convert the
1355     // expression tree to something weird like i93 unless the source is also
1356     // strange.
1357     if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
1358         canEvaluateSExtd(Src, DestTy)) {
1359         // Okay, we can transform this!  Insert the new expression now.
1360         LLVM_DEBUG(
1361             dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1362             " to avoid sign extend: "
1363             << CI << '\n');
1364         Value* Res = EvaluateInDifferentType(Src, DestTy, true);
1365         IGC_ASSERT(Res->getType() == DestTy);
1366 
1367         uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1368         uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1369 
1370         // If the high bits are already filled with sign bit, just replace this
1371         // cast with the result.
1372         if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1373             return replaceInstUsesWith(CI, Res);
1374 
1375         // We need to emit a shl + ashr to do the sign extend.
1376         Value* ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1377         return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1378             ShAmt);
1379     }
1380 
1381     // If the input is a trunc from the destination type, then turn sext(trunc(x))
1382     // into shifts.
1383     Value* X;
1384     if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1385         // sext(trunc(X)) --> ashr(shl(X, C), C)
1386         unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1387         unsigned DestBitSize = DestTy->getScalarSizeInBits();
1388         Constant* ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1389         return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1390     }
1391 
1392     if (ICmpInst * ICI = dyn_cast<ICmpInst>(Src))
1393         return transformSExtICmp(ICI, CI);
1394 
1395     // If the input is a shl/ashr pair of a same constant, then this is a sign
1396     // extension from a smaller value.  If we could trust arbitrary bitwidth
1397     // integers, we could turn this into a truncate to the smaller bit and then
1398     // use a sext for the whole extension.  Since we don't, look deeper and check
1399     // for a truncate.  If the source and dest are the same type, eliminate the
1400     // trunc and extend and just do shifts.  For example, turn:
1401     //   %a = trunc i32 %i to i8
1402     //   %b = shl i8 %a, 6
1403     //   %c = ashr i8 %b, 6
1404     //   %d = sext i8 %c to i32
1405     // into:
1406     //   %a = shl i32 %i, 30
1407     //   %d = ashr i32 %a, 30
1408     Value* A = nullptr;
1409     // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1410     ConstantInt* BA = nullptr, * CA = nullptr;
1411     if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1412         m_ConstantInt(CA))) &&
1413         BA == CA && A->getType() == CI.getType()) {
1414         unsigned MidSize = Src->getType()->getScalarSizeInBits();
1415         unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1416         unsigned ShAmt = CA->getZExtValue() + SrcDstSize - MidSize;
1417         Constant* ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1418         A = Builder.CreateShl(A, ShAmtV, CI.getName());
1419         return BinaryOperator::CreateAShr(A, ShAmtV);
1420     }
1421 
1422     return nullptr;
1423 }
1424 
1425 
1426 /// Return a Constant* for the specified floating-point constant if it fits
1427 /// in the specified FP type without changing its value.
fitsInFPType(ConstantFP * CFP,const fltSemantics & Sem)1428 static bool fitsInFPType(ConstantFP* CFP, const fltSemantics& Sem) {
1429     bool losesInfo;
1430     APFloat F = CFP->getValueAPF();
1431     (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1432     return !losesInfo;
1433 }
1434 
shrinkFPConstant(ConstantFP * CFP)1435 static Type* shrinkFPConstant(ConstantFP* CFP) {
1436     if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1437         return nullptr;  // No constant folding of this.
1438       // See if the value can be truncated to half and then reextended.
1439     if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1440         return Type::getHalfTy(CFP->getContext());
1441     // See if the value can be truncated to float and then reextended.
1442     if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1443         return Type::getFloatTy(CFP->getContext());
1444     if (CFP->getType()->isDoubleTy())
1445         return nullptr;  // Won't shrink.
1446     if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1447         return Type::getDoubleTy(CFP->getContext());
1448     // Don't try to shrink to various long double types.
1449     return nullptr;
1450 }
1451 
1452 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1453 // type we can safely truncate all elements to.
1454 // TODO: Make these support undef elements.
shrinkFPConstantVector(Value * V)1455 static Type* shrinkFPConstantVector(Value* V) {
1456     auto* CV = dyn_cast<Constant>(V);
1457     if (!CV || !CV->getType()->isVectorTy())
1458         return nullptr;
1459 
1460     Type* MinType = nullptr;
1461 
1462     unsigned NumElts = CV->getType()->getVectorNumElements();
1463     for (unsigned i = 0; i != NumElts; ++i) {
1464         auto* CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1465         if (!CFP)
1466             return nullptr;
1467 
1468         Type* T = shrinkFPConstant(CFP);
1469         if (!T)
1470             return nullptr;
1471 
1472         // If we haven't found a type yet or this type has a larger mantissa than
1473         // our previous type, this is our new minimal type.
1474         if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1475             MinType = T;
1476     }
1477 
1478     // Make a vector type from the minimal type.
1479     return VectorType::get(MinType, NumElts);
1480 }
1481 
1482 /// Find the minimum FP type we can safely truncate to.
getMinimumFPType(Value * V)1483 static Type* getMinimumFPType(Value* V) {
1484     if (auto * FPExt = dyn_cast<FPExtInst>(V))
1485         return FPExt->getOperand(0)->getType();
1486 
1487     // If this value is a constant, return the constant in the smallest FP type
1488     // that can accurately represent it.  This allows us to turn
1489     // (float)((double)X+2.0) into x+2.0f.
1490     if (auto * CFP = dyn_cast<ConstantFP>(V))
1491         if (Type * T = shrinkFPConstant(CFP))
1492             return T;
1493 
1494     // Try to shrink a vector of FP constants.
1495     if (Type * T = shrinkFPConstantVector(V))
1496         return T;
1497 
1498     return V->getType();
1499 }
1500 
visitFPTrunc(FPTruncInst & FPT)1501 Instruction* InstCombiner::visitFPTrunc(FPTruncInst& FPT) {
1502     if (Instruction * I = commonCastTransforms(FPT))
1503         return I;
1504 
1505     // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1506     // simplify this expression to avoid one or more of the trunc/extend
1507     // operations if we can do so without changing the numerical results.
1508     //
1509     // The exact manner in which the widths of the operands interact to limit
1510     // what we can and cannot do safely varies from operation to operation, and
1511     // is explained below in the various case statements.
1512     Type* Ty = FPT.getType();
1513     BinaryOperator* OpI = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1514     if (OpI && OpI->hasOneUse()) {
1515         Type* LHSMinType = getMinimumFPType(OpI->getOperand(0));
1516         Type* RHSMinType = getMinimumFPType(OpI->getOperand(1));
1517         unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1518         unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1519         unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1520         unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1521         unsigned DstWidth = Ty->getFPMantissaWidth();
1522         switch (OpI->getOpcode()) {
1523         default: break;
1524         case Instruction::FAdd:
1525         case Instruction::FSub:
1526             // For addition and subtraction, the infinitely precise result can
1527             // essentially be arbitrarily wide; proving that double rounding
1528             // will not occur because the result of OpI is exact (as we will for
1529             // FMul, for example) is hopeless.  However, we *can* nonetheless
1530             // frequently know that double rounding cannot occur (or that it is
1531             // innocuous) by taking advantage of the specific structure of
1532             // infinitely-precise results that admit double rounding.
1533             //
1534             // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1535             // to represent both sources, we can guarantee that the double
1536             // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1537             // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1538             // for proof of this fact).
1539             //
1540             // Note: Figueroa does not consider the case where DstFormat !=
1541             // SrcFormat.  It's possible (likely even!) that this analysis
1542             // could be tightened for those cases, but they are rare (the main
1543             // case of interest here is (float)((double)float + float)).
1544             if (OpWidth >= 2 * DstWidth + 1 && DstWidth >= SrcWidth) {
1545                 Value* LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1546                 Value* RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1547                 Instruction* RI = BinaryOperator::Create(OpI->getOpcode(), LHS, RHS);
1548                 RI->copyFastMathFlags(OpI);
1549                 return RI;
1550             }
1551             break;
1552         case Instruction::FMul:
1553             // For multiplication, the infinitely precise result has at most
1554             // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1555             // that such a value can be exactly represented, then no double
1556             // rounding can possibly occur; we can safely perform the operation
1557             // in the destination format if it can represent both sources.
1558             if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1559                 Value* LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1560                 Value* RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1561                 return BinaryOperator::CreateFMulFMF(LHS, RHS, OpI);
1562             }
1563             break;
1564         case Instruction::FDiv:
1565             // For division, we use again use the bound from Figueroa's
1566             // dissertation.  I am entirely certain that this bound can be
1567             // tightened in the unbalanced operand case by an analysis based on
1568             // the diophantine rational approximation bound, but the well-known
1569             // condition used here is a good conservative first pass.
1570             // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1571             if (OpWidth >= 2 * DstWidth && DstWidth >= SrcWidth) {
1572                 Value* LHS = Builder.CreateFPTrunc(OpI->getOperand(0), Ty);
1573                 Value* RHS = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1574                 return BinaryOperator::CreateFDivFMF(LHS, RHS, OpI);
1575             }
1576             break;
1577         case Instruction::FRem: {
1578             // Remainder is straightforward.  Remainder is always exact, so the
1579             // type of OpI doesn't enter into things at all.  We simply evaluate
1580             // in whichever source type is larger, then convert to the
1581             // destination type.
1582             if (SrcWidth == OpWidth)
1583                 break;
1584             Value* LHS, * RHS;
1585             if (LHSWidth == SrcWidth) {
1586                 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), LHSMinType);
1587                 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), LHSMinType);
1588             }
1589             else {
1590                 LHS = Builder.CreateFPTrunc(OpI->getOperand(0), RHSMinType);
1591                 RHS = Builder.CreateFPTrunc(OpI->getOperand(1), RHSMinType);
1592             }
1593 
1594             Value* ExactResult = Builder.CreateFRemFMF(LHS, RHS, OpI);
1595             return CastInst::CreateFPCast(ExactResult, Ty);
1596         }
1597         }
1598 
1599         // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1600         if (BinaryOperator::isFNeg(OpI)) {
1601             Value* InnerTrunc = Builder.CreateFPTrunc(OpI->getOperand(1), Ty);
1602             return BinaryOperator::CreateFNegFMF(InnerTrunc, OpI);
1603         }
1604     }
1605 
1606     if (auto * II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1607         switch (II->getIntrinsicID()) {
1608         default: break;
1609         case Intrinsic::ceil:
1610         case Intrinsic::fabs:
1611         case Intrinsic::floor:
1612         case Intrinsic::nearbyint:
1613         case Intrinsic::rint:
1614         case Intrinsic::round:
1615         case Intrinsic::trunc: {
1616             Value* Src = II->getArgOperand(0);
1617             if (!Src->hasOneUse())
1618                 break;
1619 
1620             // Except for fabs, this transformation requires the input of the unary FP
1621             // operation to be itself an fpext from the type to which we're
1622             // truncating.
1623             if (II->getIntrinsicID() != Intrinsic::fabs) {
1624                 FPExtInst* FPExtSrc = dyn_cast<FPExtInst>(Src);
1625                 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1626                     break;
1627             }
1628 
1629             // Do unary FP operation on smaller type.
1630             // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1631             Value* InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1632             Function* Overload = Intrinsic::getDeclaration(FPT.getModule(),
1633                 II->getIntrinsicID(), Ty);
1634             SmallVector<OperandBundleDef, 1> OpBundles;
1635             II->getOperandBundlesAsDefs(OpBundles);
1636             CallInst* NewCI = CallInst::Create(Overload, { InnerTrunc }, OpBundles,
1637                 II->getName());
1638             NewCI->copyFastMathFlags(II);
1639             return NewCI;
1640         }
1641         }
1642     }
1643 
1644     if (Instruction * I = shrinkInsertElt(FPT, Builder))
1645         return I;
1646 
1647     return nullptr;
1648 }
1649 
visitFPExt(CastInst & CI)1650 Instruction* InstCombiner::visitFPExt(CastInst& CI) {
1651     return commonCastTransforms(CI);
1652 }
1653 
1654 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1655 // This is safe if the intermediate type has enough bits in its mantissa to
1656 // accurately represent all values of X.  For example, this won't work with
1657 // i64 -> float -> i64.
FoldItoFPtoI(Instruction & FI)1658 Instruction* InstCombiner::FoldItoFPtoI(Instruction& FI) {
1659     if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1660         return nullptr;
1661     Instruction* OpI = cast<Instruction>(FI.getOperand(0));
1662 
1663     Value* SrcI = OpI->getOperand(0);
1664     Type* FITy = FI.getType();
1665     Type* OpITy = OpI->getType();
1666     Type* SrcTy = SrcI->getType();
1667     bool IsInputSigned = isa<SIToFPInst>(OpI);
1668     bool IsOutputSigned = isa<FPToSIInst>(FI);
1669 
1670     // We can safely assume the conversion won't overflow the output range,
1671     // because (for example) (uint8_t)18293.f is undefined behavior.
1672 
1673     // Since we can assume the conversion won't overflow, our decision as to
1674     // whether the input will fit in the float should depend on the minimum
1675     // of the input range and output range.
1676 
1677     // This means this is also safe for a signed input and unsigned output, since
1678     // a negative input would lead to undefined behavior.
1679     int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1680     int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1681     int ActualSize = std::min(InputSize, OutputSize);
1682 
1683     if (ActualSize <= OpITy->getFPMantissaWidth()) {
1684         if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1685             if (IsInputSigned && IsOutputSigned)
1686                 return new SExtInst(SrcI, FITy);
1687             return new ZExtInst(SrcI, FITy);
1688         }
1689         if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1690             return new TruncInst(SrcI, FITy);
1691         if (SrcTy == FITy)
1692             return replaceInstUsesWith(FI, SrcI);
1693         return new BitCastInst(SrcI, FITy);
1694     }
1695     return nullptr;
1696 }
1697 
visitFPToUI(FPToUIInst & FI)1698 Instruction* InstCombiner::visitFPToUI(FPToUIInst& FI) {
1699     Instruction* OpI = dyn_cast<Instruction>(FI.getOperand(0));
1700     if (!OpI)
1701         return commonCastTransforms(FI);
1702 
1703     if (Instruction * I = FoldItoFPtoI(FI))
1704         return I;
1705 
1706     return commonCastTransforms(FI);
1707 }
1708 
visitFPToSI(FPToSIInst & FI)1709 Instruction* InstCombiner::visitFPToSI(FPToSIInst& FI) {
1710     Instruction* OpI = dyn_cast<Instruction>(FI.getOperand(0));
1711     if (!OpI)
1712         return commonCastTransforms(FI);
1713 
1714     if (Instruction * I = FoldItoFPtoI(FI))
1715         return I;
1716 
1717     return commonCastTransforms(FI);
1718 }
1719 
visitUIToFP(CastInst & CI)1720 Instruction* InstCombiner::visitUIToFP(CastInst& CI) {
1721     return commonCastTransforms(CI);
1722 }
1723 
visitSIToFP(CastInst & CI)1724 Instruction* InstCombiner::visitSIToFP(CastInst& CI) {
1725     return commonCastTransforms(CI);
1726 }
1727 
visitIntToPtr(IntToPtrInst & CI)1728 Instruction* InstCombiner::visitIntToPtr(IntToPtrInst& CI) {
1729     // If the source integer type is not the intptr_t type for this target, do a
1730     // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1731     // cast to be exposed to other transforms.
1732     unsigned AS = CI.getAddressSpace();
1733     if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1734         DL.getPointerSizeInBits(AS)) {
1735         Type* Ty = DL.getIntPtrType(CI.getContext(), AS);
1736         if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1737             Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1738 
1739         Value* P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1740         return new IntToPtrInst(P, CI.getType());
1741     }
1742 
1743     if (Instruction * I = commonCastTransforms(CI))
1744         return I;
1745 
1746     return nullptr;
1747 }
1748 
1749 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
commonPointerCastTransforms(CastInst & CI)1750 Instruction* InstCombiner::commonPointerCastTransforms(CastInst& CI) {
1751     Value* Src = CI.getOperand(0);
1752 
1753     if (GetElementPtrInst * GEP = dyn_cast<GetElementPtrInst>(Src)) {
1754         // If casting the result of a getelementptr instruction with no offset, turn
1755         // this into a cast of the original pointer!
1756         if (GEP->hasAllZeroIndices() &&
1757             // If CI is an addrspacecast and GEP changes the poiner type, merging
1758             // GEP into CI would undo canonicalizing addrspacecast with different
1759             // pointer types, causing infinite loops.
1760             (!isa<AddrSpaceCastInst>(CI) ||
1761                 GEP->getType() == GEP->getPointerOperandType())) {
1762             // Changing the cast operand is usually not a good idea but it is safe
1763             // here because the pointer operand is being replaced with another
1764             // pointer operand so the opcode doesn't need to change.
1765             Worklist.Add(GEP);
1766             CI.setOperand(0, GEP->getOperand(0));
1767             return &CI;
1768         }
1769     }
1770 
1771     return commonCastTransforms(CI);
1772 }
1773 
visitPtrToInt(PtrToIntInst & CI)1774 Instruction* InstCombiner::visitPtrToInt(PtrToIntInst& CI) {
1775     // If the destination integer type is not the intptr_t type for this target,
1776     // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1777     // to be exposed to other transforms.
1778 
1779     Type* Ty = CI.getType();
1780     unsigned AS = CI.getPointerAddressSpace();
1781 
1782     if (Ty->getScalarSizeInBits() == DL.getIndexSizeInBits(AS))
1783         return commonPointerCastTransforms(CI);
1784 
1785     Type* PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1786     if (Ty->isVectorTy()) // Handle vectors of pointers.
1787         PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1788 
1789     Value* P = Builder.CreatePtrToInt(CI.getOperand(0), PtrTy);
1790     return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1791 }
1792 
1793 /// This input value (which is known to have vector type) is being zero extended
1794 /// or truncated to the specified vector type.
1795 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
1796 ///
1797 /// The source and destination vector types may have different element types.
optimizeVectorResize(Value * InVal,VectorType * DestTy,InstCombiner & IC)1798 static Instruction* optimizeVectorResize(Value* InVal, VectorType* DestTy,
1799     InstCombiner& IC) {
1800     // We can only do this optimization if the output is a multiple of the input
1801     // element size, or the input is a multiple of the output element size.
1802     // Convert the input type to have the same element type as the output.
1803     VectorType* SrcTy = cast<VectorType>(InVal->getType());
1804 
1805     if (SrcTy->getElementType() != DestTy->getElementType()) {
1806         // The input types don't need to be identical, but for now they must be the
1807         // same size.  There is no specific reason we couldn't handle things like
1808         // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1809         // there yet.
1810         if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1811             DestTy->getElementType()->getPrimitiveSizeInBits())
1812             return nullptr;
1813 
1814         SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1815         InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
1816     }
1817 
1818     // Now that the element types match, get the shuffle mask and RHS of the
1819     // shuffle to use, which depends on whether we're increasing or decreasing the
1820     // size of the input.
1821     SmallVector<uint32_t, 16> ShuffleMask;
1822     Value* V2;
1823 
1824     if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1825         // If we're shrinking the number of elements, just shuffle in the low
1826         // elements from the input and use undef as the second shuffle input.
1827         V2 = UndefValue::get(SrcTy);
1828         for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1829             ShuffleMask.push_back(i);
1830 
1831     }
1832     else {
1833         // If we're increasing the number of elements, shuffle in all of the
1834         // elements from InVal and fill the rest of the result elements with zeros
1835         // from a constant zero.
1836         V2 = Constant::getNullValue(SrcTy);
1837         unsigned SrcElts = SrcTy->getNumElements();
1838         for (unsigned i = 0, e = SrcElts; i != e; ++i)
1839             ShuffleMask.push_back(i);
1840 
1841         // The excess elements reference the first element of the zero input.
1842         for (unsigned i = 0, e = DestTy->getNumElements() - SrcElts; i != e; ++i)
1843             ShuffleMask.push_back(SrcElts);
1844     }
1845 
1846     return new ShuffleVectorInst(InVal, V2,
1847         ConstantDataVector::get(V2->getContext(),
1848             ShuffleMask));
1849 }
1850 
isMultipleOfTypeSize(unsigned Value,Type * Ty)1851 static bool isMultipleOfTypeSize(unsigned Value, Type* Ty) {
1852     return Value % Ty->getPrimitiveSizeInBits() == 0;
1853 }
1854 
getTypeSizeIndex(unsigned Value,Type * Ty)1855 static unsigned getTypeSizeIndex(unsigned Value, Type* Ty) {
1856     return Value / Ty->getPrimitiveSizeInBits();
1857 }
1858 
1859 /// V is a value which is inserted into a vector of VecEltTy.
1860 /// Look through the value to see if we can decompose it into
1861 /// insertions into the vector.  See the example in the comment for
1862 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1863 /// The type of V is always a non-zero multiple of VecEltTy's size.
1864 /// Shift is the number of bits between the lsb of V and the lsb of
1865 /// the vector.
1866 ///
1867 /// This returns false if the pattern can't be matched or true if it can,
1868 /// filling in Elements with the elements found here.
collectInsertionElements(Value * V,unsigned Shift,SmallVectorImpl<Value * > & Elements,Type * VecEltTy,bool isBigEndian)1869 static bool collectInsertionElements(Value* V, unsigned Shift,
1870     SmallVectorImpl<Value*>& Elements,
1871     Type* VecEltTy, bool isBigEndian) {
1872     IGC_ASSERT_MESSAGE(isMultipleOfTypeSize(Shift, VecEltTy), "Shift should be a multiple of the element type size");
1873 
1874     // Undef values never contribute useful bits to the result.
1875     if (isa<UndefValue>(V)) return true;
1876 
1877     // If we got down to a value of the right type, we win, try inserting into the
1878     // right element.
1879     if (V->getType() == VecEltTy) {
1880         // Inserting null doesn't actually insert any elements.
1881         if (Constant * C = dyn_cast<Constant>(V))
1882             if (C->isNullValue())
1883                 return true;
1884 
1885         unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1886         if (isBigEndian)
1887             ElementIndex = Elements.size() - ElementIndex - 1;
1888 
1889         // Fail if multiple elements are inserted into this slot.
1890         if (Elements[ElementIndex])
1891             return false;
1892 
1893         Elements[ElementIndex] = V;
1894         return true;
1895     }
1896 
1897     if (Constant * C = dyn_cast<Constant>(V)) {
1898         // Figure out the # elements this provides, and bitcast it or slice it up
1899         // as required.
1900         unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1901             VecEltTy);
1902         // If the constant is the size of a vector element, we just need to bitcast
1903         // it to the right type so it gets properly inserted.
1904         if (NumElts == 1)
1905             return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1906                 Shift, Elements, VecEltTy, isBigEndian);
1907 
1908         // Okay, this is a constant that covers multiple elements.  Slice it up into
1909         // pieces and insert each element-sized piece into the vector.
1910         if (!isa<IntegerType>(C->getType()))
1911             C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1912                 C->getType()->getPrimitiveSizeInBits()));
1913         unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1914         Type* ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1915 
1916         for (unsigned i = 0; i != NumElts; ++i) {
1917             unsigned ShiftI = Shift + i * ElementSize;
1918             Constant* Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1919                 ShiftI));
1920             Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1921             if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1922                 isBigEndian))
1923                 return false;
1924         }
1925         return true;
1926     }
1927 
1928     if (!V->hasOneUse()) return false;
1929 
1930     Instruction* I = dyn_cast<Instruction>(V);
1931     if (!I) return false;
1932     switch (I->getOpcode()) {
1933     default: return false; // Unhandled case.
1934     case Instruction::BitCast:
1935         return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1936             isBigEndian);
1937     case Instruction::ZExt:
1938         if (!isMultipleOfTypeSize(
1939             I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1940             VecEltTy))
1941             return false;
1942         return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1943             isBigEndian);
1944     case Instruction::Or:
1945         return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1946             isBigEndian) &&
1947             collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1948                 isBigEndian);
1949     case Instruction::Shl: {
1950         // Must be shifting by a constant that is a multiple of the element size.
1951         ConstantInt* CI = dyn_cast<ConstantInt>(I->getOperand(1));
1952         if (!CI) return false;
1953         Shift += CI->getZExtValue();
1954         if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1955         return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1956             isBigEndian);
1957     }
1958 
1959     }
1960 }
1961 
1962 
1963 /// If the input is an 'or' instruction, we may be doing shifts and ors to
1964 /// assemble the elements of the vector manually.
1965 /// Try to rip the code out and replace it with insertelements.  This is to
1966 /// optimize code like this:
1967 ///
1968 ///    %tmp37 = bitcast float %inc to i32
1969 ///    %tmp38 = zext i32 %tmp37 to i64
1970 ///    %tmp31 = bitcast float %inc5 to i32
1971 ///    %tmp32 = zext i32 %tmp31 to i64
1972 ///    %tmp33 = shl i64 %tmp32, 32
1973 ///    %ins35 = or i64 %tmp33, %tmp38
1974 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1975 ///
1976 /// Into two insertelements that do "buildvector{%inc, %inc5}".
optimizeIntegerToVectorInsertions(BitCastInst & CI,InstCombiner & IC)1977 static Value* optimizeIntegerToVectorInsertions(BitCastInst& CI,
1978     InstCombiner& IC) {
1979     VectorType* DestVecTy = cast<VectorType>(CI.getType());
1980     Value* IntInput = CI.getOperand(0);
1981 
1982     SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1983     if (!collectInsertionElements(IntInput, 0, Elements,
1984         DestVecTy->getElementType(),
1985         IC.getDataLayout().isBigEndian()))
1986         return nullptr;
1987 
1988     // If we succeeded, we know that all of the element are specified by Elements
1989     // or are zero if Elements has a null entry.  Recast this as a set of
1990     // insertions.
1991     Value* Result = Constant::getNullValue(CI.getType());
1992     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1993         if (!Elements[i]) continue;  // Unset element.
1994 
1995         Result = IC.Builder.CreateInsertElement(Result, Elements[i],
1996             IC.Builder.getInt32(i));
1997     }
1998 
1999     return Result;
2000 }
2001 
2002 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2003 /// vector followed by extract element. The backend tends to handle bitcasts of
2004 /// vectors better than bitcasts of scalars because vector registers are
2005 /// usually not type-specific like scalar integer or scalar floating-point.
canonicalizeBitCastExtElt(BitCastInst & BitCast,InstCombiner & IC)2006 static Instruction* canonicalizeBitCastExtElt(BitCastInst& BitCast,
2007     InstCombiner& IC) {
2008     // TODO: Create and use a pattern matcher for ExtractElementInst.
2009     auto* ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2010     if (!ExtElt || !ExtElt->hasOneUse())
2011         return nullptr;
2012 
2013     // The bitcast must be to a vectorizable type, otherwise we can't make a new
2014     // type to extract from.
2015     Type* DestType = BitCast.getType();
2016     if (!VectorType::isValidElementType(DestType))
2017         return nullptr;
2018 
2019     unsigned NumElts = ExtElt->getVectorOperandType()->getNumElements();
2020     auto* NewVecType = VectorType::get(DestType, NumElts);
2021     auto* NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2022         NewVecType, "bc");
2023     return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2024 }
2025 
2026 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
foldBitCastBitwiseLogic(BitCastInst & BitCast,InstCombiner::BuilderTy & Builder)2027 static Instruction* foldBitCastBitwiseLogic(BitCastInst& BitCast,
2028     InstCombiner::BuilderTy& Builder) {
2029     Type* DestTy = BitCast.getType();
2030     BinaryOperator* BO;
2031     if (!DestTy->isIntOrIntVectorTy() ||
2032         !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2033         !BO->isBitwiseLogicOp())
2034         return nullptr;
2035 
2036     // FIXME: This transform is restricted to vector types to avoid backend
2037     // problems caused by creating potentially illegal operations. If a fix-up is
2038     // added to handle that situation, we can remove this check.
2039     if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2040         return nullptr;
2041 
2042     Value* X;
2043     if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2044         X->getType() == DestTy && !isa<Constant>(X)) {
2045         // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2046         Value* CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2047         return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2048     }
2049 
2050     if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2051         X->getType() == DestTy && !isa<Constant>(X)) {
2052         // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2053         Value* CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2054         return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2055     }
2056 
2057     // Canonicalize vector bitcasts to come before vector bitwise logic with a
2058     // constant. This eases recognition of special constants for later ops.
2059     // Example:
2060     // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2061     Constant* C;
2062     if (match(BO->getOperand(1), m_Constant(C))) {
2063         // bitcast (logic X, C) --> logic (bitcast X, C')
2064         Value* CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2065         Value* CastedC = ConstantExpr::getBitCast(C, DestTy);
2066         return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2067     }
2068 
2069     return nullptr;
2070 }
2071 
2072 /// Change the type of a select if we can eliminate a bitcast.
foldBitCastSelect(BitCastInst & BitCast,InstCombiner::BuilderTy & Builder)2073 static Instruction* foldBitCastSelect(BitCastInst& BitCast,
2074     InstCombiner::BuilderTy& Builder) {
2075     Value* Cond, * TVal, * FVal;
2076     if (!match(BitCast.getOperand(0),
2077         m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2078         return nullptr;
2079 
2080     // A vector select must maintain the same number of elements in its operands.
2081     Type* CondTy = Cond->getType();
2082     Type* DestTy = BitCast.getType();
2083     if (CondTy->isVectorTy()) {
2084         if (!DestTy->isVectorTy())
2085             return nullptr;
2086         if (DestTy->getVectorNumElements() != CondTy->getVectorNumElements())
2087             return nullptr;
2088     }
2089 
2090     // FIXME: This transform is restricted from changing the select between
2091     // scalars and vectors to avoid backend problems caused by creating
2092     // potentially illegal operations. If a fix-up is added to handle that
2093     // situation, we can remove this check.
2094     if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2095         return nullptr;
2096 
2097     auto* Sel = cast<Instruction>(BitCast.getOperand(0));
2098     Value* X;
2099     if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2100         !isa<Constant>(X)) {
2101         // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2102         Value* CastedVal = Builder.CreateBitCast(FVal, DestTy);
2103         return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2104     }
2105 
2106     if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2107         !isa<Constant>(X)) {
2108         // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2109         Value* CastedVal = Builder.CreateBitCast(TVal, DestTy);
2110         return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2111     }
2112 
2113     return nullptr;
2114 }
2115 
2116 /// Check if all users of CI are StoreInsts.
hasStoreUsersOnly(CastInst & CI)2117 static bool hasStoreUsersOnly(CastInst& CI) {
2118     for (User* U : CI.users()) {
2119         if (!isa<StoreInst>(U))
2120             return false;
2121     }
2122     return true;
2123 }
2124 
2125 /// This function handles following case
2126 ///
2127 ///     A  ->  B    cast
2128 ///     PHI
2129 ///     B  ->  A    cast
2130 ///
2131 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2132 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
optimizeBitCastFromPhi(CastInst & CI,PHINode * PN)2133 Instruction* InstCombiner::optimizeBitCastFromPhi(CastInst& CI, PHINode* PN) {
2134     // Temporarily disable optimization of bitcasts through phi as it creates
2135     // significant amount of PHI nodes under certain patterns. As IGC has no
2136     // general register coalescing, these PHI nodes won't be coalesced. It
2137     // results in huge register pressure and slowdown lots of benchmarks
2138     // significantly.
2139     return nullptr;
2140     // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2141     if (hasStoreUsersOnly(CI))
2142         return nullptr;
2143 
2144     Value* Src = CI.getOperand(0);
2145     Type* SrcTy = Src->getType();         // Type B
2146     Type* DestTy = CI.getType();          // Type A
2147 
2148     SmallVector<PHINode*, 4> PhiWorklist;
2149     SmallSetVector<PHINode*, 4> OldPhiNodes;
2150 
2151     // Find all of the A->B casts and PHI nodes.
2152     // We need to inpect all related PHI nodes, but PHIs can be cyclic, so
2153     // OldPhiNodes is used to track all known PHI nodes, before adding a new
2154     // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2155     PhiWorklist.push_back(PN);
2156     OldPhiNodes.insert(PN);
2157     while (!PhiWorklist.empty()) {
2158         auto* OldPN = PhiWorklist.pop_back_val();
2159         for (Value* IncValue : OldPN->incoming_values()) {
2160             if (isa<Constant>(IncValue))
2161                 continue;
2162 
2163             if (auto * LI = dyn_cast<LoadInst>(IncValue)) {
2164                 // If there is a sequence of one or more load instructions, each loaded
2165                 // value is used as address of later load instruction, bitcast is
2166                 // necessary to change the value type, don't optimize it. For
2167                 // simplicity we give up if the load address comes from another load.
2168                 Value* Addr = LI->getOperand(0);
2169                 if (Addr == &CI || isa<LoadInst>(Addr))
2170                     return nullptr;
2171                 if (LI->hasOneUse() && LI->isSimple())
2172                     continue;
2173                 // If a LoadInst has more than one use, changing the type of loaded
2174                 // value may create another bitcast.
2175                 return nullptr;
2176             }
2177 
2178             if (auto * PNode = dyn_cast<PHINode>(IncValue)) {
2179                 if (OldPhiNodes.insert(PNode))
2180                     PhiWorklist.push_back(PNode);
2181                 continue;
2182             }
2183 
2184             auto* BCI = dyn_cast<BitCastInst>(IncValue);
2185             // We can't handle other instructions.
2186             if (!BCI)
2187                 return nullptr;
2188 
2189             // Verify it's a A->B cast.
2190             Type* TyA = BCI->getOperand(0)->getType();
2191             Type* TyB = BCI->getType();
2192             if (TyA != DestTy || TyB != SrcTy)
2193                 return nullptr;
2194         }
2195     }
2196 
2197     // For each old PHI node, create a corresponding new PHI node with a type A.
2198     SmallDenseMap<PHINode*, PHINode*> NewPNodes;
2199     for (auto* OldPN : OldPhiNodes) {
2200         Builder.SetInsertPoint(OldPN);
2201         PHINode* NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2202         NewPNodes[OldPN] = NewPN;
2203     }
2204 
2205     // Fill in the operands of new PHI nodes.
2206     for (auto* OldPN : OldPhiNodes) {
2207         PHINode* NewPN = NewPNodes[OldPN];
2208         for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2209             Value* V = OldPN->getOperand(j);
2210             Value* NewV = nullptr;
2211             if (auto * C = dyn_cast<Constant>(V)) {
2212                 NewV = ConstantExpr::getBitCast(C, DestTy);
2213             }
2214             else if (auto * LI = dyn_cast<LoadInst>(V)) {
2215                 Builder.SetInsertPoint(LI->getNextNode());
2216                 NewV = Builder.CreateBitCast(LI, DestTy);
2217                 Worklist.Add(LI);
2218             }
2219             else if (auto * BCI = dyn_cast<BitCastInst>(V)) {
2220                 NewV = BCI->getOperand(0);
2221             }
2222             else if (auto * PrevPN = dyn_cast<PHINode>(V)) {
2223                 NewV = NewPNodes[PrevPN];
2224             }
2225             IGC_ASSERT(NewV);
2226             NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2227         }
2228     }
2229 
2230     // If there is a store with type B, change it to type A.
2231     for (User* U : PN->users()) {
2232         auto* SI = dyn_cast<StoreInst>(U);
2233         if (SI && SI->isSimple() && SI->getOperand(0) == PN) {
2234             Builder.SetInsertPoint(SI);
2235             auto* NewBC =
2236                 cast<BitCastInst>(Builder.CreateBitCast(NewPNodes[PN], SrcTy));
2237             SI->setOperand(0, NewBC);
2238             Worklist.Add(SI);
2239             IGC_ASSERT(hasStoreUsersOnly(*NewBC));
2240         }
2241     }
2242 
2243     return replaceInstUsesWith(CI, NewPNodes[PN]);
2244 }
2245 
visitBitCast(BitCastInst & CI)2246 Instruction* InstCombiner::visitBitCast(BitCastInst& CI) {
2247     // If the operands are integer typed then apply the integer transforms,
2248     // otherwise just apply the common ones.
2249     Value* Src = CI.getOperand(0);
2250     Type* SrcTy = Src->getType();
2251     Type* DestTy = CI.getType();
2252 
2253     // Get rid of casts from one type to the same type. These are useless and can
2254     // be replaced by the operand.
2255     if (DestTy == Src->getType())
2256         return replaceInstUsesWith(CI, Src);
2257 
2258     if (PointerType * DstPTy = dyn_cast<PointerType>(DestTy)) {
2259         PointerType* SrcPTy = cast<PointerType>(SrcTy);
2260         Type* DstElTy = DstPTy->getElementType();
2261         Type* SrcElTy = SrcPTy->getElementType();
2262 
2263         // Casting pointers between the same type, but with different address spaces
2264         // is an addrspace cast rather than a bitcast.
2265         if ((DstElTy == SrcElTy) &&
2266             (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
2267             return new AddrSpaceCastInst(Src, DestTy);
2268 
2269         // If we are casting a alloca to a pointer to a type of the same
2270         // size, rewrite the allocation instruction to allocate the "right" type.
2271         // There is no need to modify malloc calls because it is their bitcast that
2272         // needs to be cleaned up.
2273         if (AllocaInst * AI = dyn_cast<AllocaInst>(Src))
2274             if (Instruction * V = PromoteCastOfAllocation(CI, *AI))
2275                 return V;
2276 
2277         // When the type pointed to is not sized the cast cannot be
2278         // turned into a gep.
2279         Type* PointeeType =
2280             cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2281         if (!PointeeType->isSized())
2282             return nullptr;
2283 
2284         // If the source and destination are pointers, and this cast is equivalent
2285         // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
2286         // This can enhance SROA and other transforms that want type-safe pointers.
2287         unsigned NumZeros = 0;
2288         while (SrcElTy != DstElTy &&
2289             isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
2290             SrcElTy->getNumContainedTypes() /* not "{}" */) {
2291             SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
2292             ++NumZeros;
2293         }
2294 
2295         // If we found a path from the src to dest, create the getelementptr now.
2296         if (SrcElTy == DstElTy) {
2297             SmallVector<Value*, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2298             return GetElementPtrInst::CreateInBounds(Src, Idxs);
2299         }
2300     }
2301 
2302     if (VectorType * DestVTy = dyn_cast<VectorType>(DestTy)) {
2303         if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
2304             Value* Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2305             return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2306                 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2307             // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
2308         }
2309 
2310         if (isa<IntegerType>(SrcTy)) {
2311             // If this is a cast from an integer to vector, check to see if the input
2312             // is a trunc or zext of a bitcast from vector.  If so, we can replace all
2313             // the casts with a shuffle and (potentially) a bitcast.
2314             if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2315                 CastInst* SrcCast = cast<CastInst>(Src);
2316                 if (BitCastInst * BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2317                     if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2318                         if (Instruction * I = optimizeVectorResize(BCIn->getOperand(0),
2319                             cast<VectorType>(DestTy), *this))
2320                             return I;
2321             }
2322 
2323             // If the input is an 'or' instruction, we may be doing shifts and ors to
2324             // assemble the elements of the vector manually.  Try to rip the code out
2325             // and replace it with insertelements.
2326             if (Value * V = optimizeIntegerToVectorInsertions(CI, *this))
2327                 return replaceInstUsesWith(CI, V);
2328         }
2329     }
2330 
2331     if (VectorType * SrcVTy = dyn_cast<VectorType>(SrcTy)) {
2332         if (SrcVTy->getNumElements() == 1) {
2333             // If our destination is not a vector, then make this a straight
2334             // scalar-scalar cast.
2335             if (!DestTy->isVectorTy()) {
2336                 Value* Elem =
2337                     Builder.CreateExtractElement(Src,
2338                         Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2339                 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2340             }
2341 
2342             // Otherwise, see if our source is an insert. If so, then use the scalar
2343             // component directly.
2344             if (InsertElementInst * IEI =
2345                 dyn_cast<InsertElementInst>(CI.getOperand(0)))
2346                 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
2347                     DestTy);
2348         }
2349     }
2350 
2351     if (ShuffleVectorInst * SVI = dyn_cast<ShuffleVectorInst>(Src)) {
2352         // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
2353         // a bitcast to a vector with the same # elts.
2354         if (SVI->hasOneUse() && DestTy->isVectorTy() &&
2355             DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
2356             SVI->getType()->getNumElements() ==
2357             SVI->getOperand(0)->getType()->getVectorNumElements()) {
2358             BitCastInst* Tmp;
2359             // If either of the operands is a cast from CI.getType(), then
2360             // evaluating the shuffle in the casted destination's type will allow
2361             // us to eliminate at least one cast.
2362             if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
2363                 Tmp->getOperand(0)->getType() == DestTy) ||
2364                 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
2365                     Tmp->getOperand(0)->getType() == DestTy)) {
2366                 Value* LHS = Builder.CreateBitCast(SVI->getOperand(0), DestTy);
2367                 Value* RHS = Builder.CreateBitCast(SVI->getOperand(1), DestTy);
2368                 // Return a new shuffle vector.  Use the same element ID's, as we
2369                 // know the vector types match #elts.
2370                 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
2371             }
2372         }
2373     }
2374 
2375     // Handle the A->B->A cast, and there is an intervening PHI node.
2376     if (PHINode * PN = dyn_cast<PHINode>(Src))
2377         if (Instruction * I = optimizeBitCastFromPhi(CI, PN))
2378             return I;
2379 
2380     if (Instruction * I = canonicalizeBitCastExtElt(CI, *this))
2381         return I;
2382 
2383     if (Instruction * I = foldBitCastBitwiseLogic(CI, Builder))
2384         return I;
2385 
2386     if (Instruction * I = foldBitCastSelect(CI, Builder))
2387         return I;
2388 
2389     if (SrcTy->isPointerTy())
2390         return commonPointerCastTransforms(CI);
2391     return commonCastTransforms(CI);
2392 }
2393 
visitAddrSpaceCast(AddrSpaceCastInst & CI)2394 Instruction* InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst& CI) {
2395     // If the destination pointer element type is not the same as the source's
2396     // first do a bitcast to the destination type, and then the addrspacecast.
2397     // This allows the cast to be exposed to other transforms.
2398     Value* Src = CI.getOperand(0);
2399     PointerType* SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2400     PointerType* DestTy = cast<PointerType>(CI.getType()->getScalarType());
2401 
2402     Type* DestElemTy = DestTy->getElementType();
2403     if (SrcTy->getElementType() != DestElemTy) {
2404         Type* MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2405         if (VectorType * VT = dyn_cast<VectorType>(CI.getType())) {
2406             // Handle vectors of pointers.
2407             MidTy = VectorType::get(MidTy, VT->getNumElements());
2408         }
2409 
2410         Value* NewBitCast = Builder.CreateBitCast(Src, MidTy);
2411         return new AddrSpaceCastInst(NewBitCast, CI.getType());
2412     }
2413 
2414     return commonPointerCastTransforms(CI);
2415 }
2416 #include "common/LLVMWarningsPop.hpp"
2417