1 /*========================== begin_copyright_notice ============================
2
3 Copyright (C) 2018-2021 Intel Corporation
4
5 SPDX-License-Identifier: MIT
6
7 ============================= end_copyright_notice ===========================*/
8
9 /*========================== begin_copyright_notice ============================
10
11 This file is distributed under the University of Illinois Open Source License.
12 See LICENSE.TXT for details.
13
14 ============================= end_copyright_notice ===========================*/
15
16 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
17 // srem, urem, frem.
18
19 #include "common/LLVMWarningsPush.hpp"
20 #include "InstCombineInternal.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
40 #include "llvm/Transforms/Utils/BuildLibCalls.h"
41 #include "common/LLVMWarningsPop.hpp"
42 #include <cstddef>
43 #include <cstdint>
44 #include <utility>
45 #include "Probe/Assertion.h"
46
47 using namespace llvm;
48 using namespace PatternMatch;
49 using namespace IGCombiner;
50
51 #define DEBUG_TYPE "instcombine"
52
53 /// The specific integer value is used in a context where it is known to be
54 /// non-zero. If this allows us to simplify the computation, do so and return
55 /// the new operand, otherwise return null.
simplifyValueKnownNonZero(Value * V,InstCombiner & IC,Instruction & CxtI)56 static Value* simplifyValueKnownNonZero(Value* V, InstCombiner& IC,
57 Instruction& CxtI) {
58 // If V has multiple uses, then we would have to do more analysis to determine
59 // if this is safe. For example, the use could be in dynamically unreached
60 // code.
61 if (!V->hasOneUse()) return nullptr;
62
63 bool MadeChange = false;
64
65 // ((1 << A) >>u B) --> (1 << (A-B))
66 // Because V cannot be zero, we know that B is less than A.
67 Value* A = nullptr, * B = nullptr, * One = nullptr;
68 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
69 match(One, m_One())) {
70 A = IC.Builder.CreateSub(A, B);
71 return IC.Builder.CreateShl(One, A);
72 }
73
74 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
75 // inexact. Similarly for <<.
76 BinaryOperator* I = dyn_cast<BinaryOperator>(V);
77 if (I && I->isLogicalShift() &&
78 IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
79 // We know that this is an exact/nuw shift and that the input is a
80 // non-zero context as well.
81 if (Value * V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
82 I->setOperand(0, V2);
83 MadeChange = true;
84 }
85
86 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
87 I->setIsExact();
88 MadeChange = true;
89 }
90
91 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
92 I->setHasNoUnsignedWrap();
93 MadeChange = true;
94 }
95 }
96
97 // TODO: Lots more we could do here:
98 // If V is a phi node, we can call this on each of its operands.
99 // "select cond, X, 0" can simplify to "X".
100
101 return MadeChange ? V : nullptr;
102 }
103
104 /// A helper routine of InstCombiner::visitMul().
105 ///
106 /// If C is a scalar/vector of known powers of 2, then this function returns
107 /// a new scalar/vector obtained from logBase2 of C.
108 /// Return a null pointer otherwise.
getLogBase2(Type * Ty,Constant * C)109 static Constant* getLogBase2(Type* Ty, Constant* C) {
110 const APInt* IVal;
111 if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
112 return ConstantInt::get(Ty, IVal->logBase2());
113
114 if (!Ty->isVectorTy())
115 return nullptr;
116
117 SmallVector<Constant*, 4> Elts;
118 for (unsigned I = 0, E = Ty->getVectorNumElements(); I != E; ++I) {
119 Constant* Elt = C->getAggregateElement(I);
120 if (!Elt)
121 return nullptr;
122 if (isa<UndefValue>(Elt)) {
123 Elts.push_back(UndefValue::get(Ty->getScalarType()));
124 continue;
125 }
126 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
127 return nullptr;
128 Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
129 }
130
131 return ConstantVector::get(Elts);
132 }
133
visitMul(BinaryOperator & I)134 Instruction* InstCombiner::visitMul(BinaryOperator& I) {
135 if (Value * V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
136 SQ.getWithInstruction(&I)))
137 return replaceInstUsesWith(I, V);
138
139 if (SimplifyAssociativeOrCommutative(I))
140 return &I;
141
142 if (Instruction * X = foldShuffledBinop(I))
143 return X;
144
145 if (Value * V = SimplifyUsingDistributiveLaws(I))
146 return replaceInstUsesWith(I, V);
147
148 // X * -1 == 0 - X
149 Value* Op0 = I.getOperand(0), * Op1 = I.getOperand(1);
150 if (match(Op1, m_AllOnes())) {
151 BinaryOperator* BO = BinaryOperator::CreateNeg(Op0, I.getName());
152 if (I.hasNoSignedWrap())
153 BO->setHasNoSignedWrap();
154 return BO;
155 }
156
157 // Also allow combining multiply instructions on vectors.
158 {
159 Value* NewOp;
160 Constant* C1, * C2;
161 const APInt* IVal;
162 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
163 m_Constant(C1))) &&
164 match(C1, m_APInt(IVal))) {
165 // ((X << C2)*C1) == (X * (C1 << C2))
166 Constant* Shl = ConstantExpr::getShl(C1, C2);
167 BinaryOperator* Mul = cast<BinaryOperator>(I.getOperand(0));
168 BinaryOperator* BO = BinaryOperator::CreateMul(NewOp, Shl);
169 if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
170 BO->setHasNoUnsignedWrap();
171 if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
172 Shl->isNotMinSignedValue())
173 BO->setHasNoSignedWrap();
174 return BO;
175 }
176
177 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
178 // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
179 if (Constant * NewCst = getLogBase2(NewOp->getType(), C1)) {
180 unsigned Width = NewCst->getType()->getPrimitiveSizeInBits();
181 BinaryOperator* Shl = BinaryOperator::CreateShl(NewOp, NewCst);
182
183 if (I.hasNoUnsignedWrap())
184 Shl->setHasNoUnsignedWrap();
185 if (I.hasNoSignedWrap()) {
186 const APInt* V;
187 if (match(NewCst, m_APInt(V)) && *V != Width - 1)
188 Shl->setHasNoSignedWrap();
189 }
190
191 return Shl;
192 }
193 }
194 }
195
196 if (ConstantInt * CI = dyn_cast<ConstantInt>(Op1)) {
197 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
198 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
199 // The "* (2**n)" thus becomes a potential shifting opportunity.
200 {
201 const APInt& Val = CI->getValue();
202 const APInt& PosVal = Val.abs();
203 if (Val.isNegative() && PosVal.isPowerOf2()) {
204 Value* X = nullptr, * Y = nullptr;
205 if (Op0->hasOneUse()) {
206 ConstantInt* C1;
207 Value* Sub = nullptr;
208 if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
209 Sub = Builder.CreateSub(X, Y, "suba");
210 else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
211 Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc");
212 if (Sub)
213 return
214 BinaryOperator::CreateMul(Sub,
215 ConstantInt::get(Y->getType(), PosVal));
216 }
217 }
218 }
219 }
220
221 if (Instruction * FoldedMul = foldBinOpIntoSelectOrPhi(I))
222 return FoldedMul;
223
224 // Simplify mul instructions with a constant RHS.
225 if (isa<Constant>(Op1)) {
226 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
227 Value* X;
228 Constant* C1;
229 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
230 Value* Mul = Builder.CreateMul(C1, Op1);
231 // Only go forward with the transform if C1*CI simplifies to a tidier
232 // constant.
233 if (!match(Mul, m_Mul(m_Value(), m_Value())))
234 return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
235 }
236 }
237
238 // -X * C --> X * -C
239 Value* X, * Y;
240 Constant* Op1C;
241 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
242 return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
243
244 // -X * -Y --> X * Y
245 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
246 auto* NewMul = BinaryOperator::CreateMul(X, Y);
247 if (I.hasNoSignedWrap() &&
248 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
249 cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
250 NewMul->setHasNoSignedWrap();
251 return NewMul;
252 }
253
254 // (X / Y) * Y = X - (X % Y)
255 // (X / Y) * -Y = (X % Y) - X
256 {
257 Value* Y = Op1;
258 BinaryOperator* Div = dyn_cast<BinaryOperator>(Op0);
259 if (!Div || (Div->getOpcode() != Instruction::UDiv &&
260 Div->getOpcode() != Instruction::SDiv)) {
261 Y = Op0;
262 Div = dyn_cast<BinaryOperator>(Op1);
263 }
264 Value* Neg = dyn_castNegVal(Y);
265 if (Div && Div->hasOneUse() &&
266 (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
267 (Div->getOpcode() == Instruction::UDiv ||
268 Div->getOpcode() == Instruction::SDiv)) {
269 Value* X = Div->getOperand(0), * DivOp1 = Div->getOperand(1);
270
271 // If the division is exact, X % Y is zero, so we end up with X or -X.
272 if (Div->isExact()) {
273 if (DivOp1 == Y)
274 return replaceInstUsesWith(I, X);
275 return BinaryOperator::CreateNeg(X);
276 }
277
278 auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
279 : Instruction::SRem;
280 Value* Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
281 if (DivOp1 == Y)
282 return BinaryOperator::CreateSub(X, Rem);
283 return BinaryOperator::CreateSub(Rem, X);
284 }
285 }
286
287 /// i1 mul -> i1 and.
288 if (I.getType()->isIntOrIntVectorTy(1))
289 return BinaryOperator::CreateAnd(Op0, Op1);
290
291 // X*(1 << Y) --> X << Y
292 // (1 << Y)*X --> X << Y
293 {
294 Value* Y;
295 BinaryOperator* BO = nullptr;
296 bool ShlNSW = false;
297 if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
298 BO = BinaryOperator::CreateShl(Op1, Y);
299 ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
300 }
301 else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
302 BO = BinaryOperator::CreateShl(Op0, Y);
303 ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
304 }
305 if (BO) {
306 if (I.hasNoUnsignedWrap())
307 BO->setHasNoUnsignedWrap();
308 if (I.hasNoSignedWrap() && ShlNSW)
309 BO->setHasNoSignedWrap();
310 return BO;
311 }
312 }
313
314 // (bool X) * Y --> X ? Y : 0
315 // Y * (bool X) --> X ? Y : 0
316 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
317 return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
318 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
319 return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
320
321 // (lshr X, 31) * Y --> (ashr X, 31) & Y
322 // Y * (lshr X, 31) --> (ashr X, 31) & Y
323 // TODO: We are not checking one-use because the elimination of the multiply
324 // is better for analysis?
325 // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
326 // more similar to what we're doing above.
327 const APInt* C;
328 if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
329 return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
330 if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
331 return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
332
333 // Check for (mul (sext x), y), see if we can merge this into an
334 // integer mul followed by a sext.
335 if (SExtInst * Op0Conv = dyn_cast<SExtInst>(Op0)) {
336 // (mul (sext x), cst) --> (sext (mul x, cst'))
337 if (ConstantInt * Op1C = dyn_cast<ConstantInt>(Op1)) {
338 if (Op0Conv->hasOneUse()) {
339 Constant* CI =
340 ConstantExpr::getTrunc(Op1C, Op0Conv->getOperand(0)->getType());
341 if (ConstantExpr::getSExt(CI, I.getType()) == Op1C &&
342 willNotOverflowSignedMul(Op0Conv->getOperand(0), CI, I)) {
343 // Insert the new, smaller mul.
344 Value* NewMul =
345 Builder.CreateNSWMul(Op0Conv->getOperand(0), CI, "mulconv");
346 return new SExtInst(NewMul, I.getType());
347 }
348 }
349 }
350
351 // (mul (sext x), (sext y)) --> (sext (mul int x, y))
352 if (SExtInst * Op1Conv = dyn_cast<SExtInst>(Op1)) {
353 // Only do this if x/y have the same type, if at last one of them has a
354 // single use (so we don't increase the number of sexts), and if the
355 // integer mul will not overflow.
356 if (Op0Conv->getOperand(0)->getType() ==
357 Op1Conv->getOperand(0)->getType() &&
358 (Op0Conv->hasOneUse() || Op1Conv->hasOneUse()) &&
359 willNotOverflowSignedMul(Op0Conv->getOperand(0),
360 Op1Conv->getOperand(0), I)) {
361 // Insert the new integer mul.
362 Value* NewMul = Builder.CreateNSWMul(
363 Op0Conv->getOperand(0), Op1Conv->getOperand(0), "mulconv");
364 return new SExtInst(NewMul, I.getType());
365 }
366 }
367 }
368
369 // Check for (mul (zext x), y), see if we can merge this into an
370 // integer mul followed by a zext.
371 if (auto * Op0Conv = dyn_cast<ZExtInst>(Op0)) {
372 // (mul (zext x), cst) --> (zext (mul x, cst'))
373 if (ConstantInt * Op1C = dyn_cast<ConstantInt>(Op1)) {
374 if (Op0Conv->hasOneUse()) {
375 Constant* CI =
376 ConstantExpr::getTrunc(Op1C, Op0Conv->getOperand(0)->getType());
377 if (ConstantExpr::getZExt(CI, I.getType()) == Op1C &&
378 willNotOverflowUnsignedMul(Op0Conv->getOperand(0), CI, I)) {
379 // Insert the new, smaller mul.
380 Value* NewMul =
381 Builder.CreateNUWMul(Op0Conv->getOperand(0), CI, "mulconv");
382 return new ZExtInst(NewMul, I.getType());
383 }
384 }
385 }
386
387 // (mul (zext x), (zext y)) --> (zext (mul int x, y))
388 if (auto * Op1Conv = dyn_cast<ZExtInst>(Op1)) {
389 // Only do this if x/y have the same type, if at last one of them has a
390 // single use (so we don't increase the number of zexts), and if the
391 // integer mul will not overflow.
392 if (Op0Conv->getOperand(0)->getType() ==
393 Op1Conv->getOperand(0)->getType() &&
394 (Op0Conv->hasOneUse() || Op1Conv->hasOneUse()) &&
395 willNotOverflowUnsignedMul(Op0Conv->getOperand(0),
396 Op1Conv->getOperand(0), I)) {
397 // Insert the new integer mul.
398 Value* NewMul = Builder.CreateNUWMul(
399 Op0Conv->getOperand(0), Op1Conv->getOperand(0), "mulconv");
400 return new ZExtInst(NewMul, I.getType());
401 }
402 }
403 }
404
405 bool Changed = false;
406 if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
407 Changed = true;
408 I.setHasNoSignedWrap(true);
409 }
410
411 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
412 Changed = true;
413 I.setHasNoUnsignedWrap(true);
414 }
415
416 return Changed ? &I : nullptr;
417 }
418
visitFMul(BinaryOperator & I)419 Instruction* InstCombiner::visitFMul(BinaryOperator& I) {
420 if (Value * V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
421 I.getFastMathFlags(),
422 SQ.getWithInstruction(&I)))
423 return replaceInstUsesWith(I, V);
424
425 if (SimplifyAssociativeOrCommutative(I))
426 return &I;
427
428 if (Instruction * X = foldShuffledBinop(I))
429 return X;
430
431 if (Instruction * FoldedMul = foldBinOpIntoSelectOrPhi(I))
432 return FoldedMul;
433
434 // X * -1.0 --> -X
435 Value* Op0 = I.getOperand(0), * Op1 = I.getOperand(1);
436 if (match(Op1, m_SpecificFP(-1.0)))
437 return BinaryOperator::CreateFNegFMF(Op0, &I);
438
439 // -X * -Y --> X * Y
440 Value* X, * Y;
441 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
442 return BinaryOperator::CreateFMulFMF(X, Y, &I);
443
444 // -X * C --> X * -C
445 Constant* C;
446 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
447 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
448
449 // Sink negation: -X * Y --> -(X * Y)
450 if (match(Op0, m_OneUse(m_FNeg(m_Value(X)))))
451 return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op1, &I), &I);
452
453 // Sink negation: Y * -X --> -(X * Y)
454 if (match(Op1, m_OneUse(m_FNeg(m_Value(X)))))
455 return BinaryOperator::CreateFNegFMF(Builder.CreateFMulFMF(X, Op0, &I), &I);
456
457 // fabs(X) * fabs(X) -> X * X
458 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))))
459 return BinaryOperator::CreateFMulFMF(X, X, &I);
460
461 // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
462 if (Value * V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
463 return replaceInstUsesWith(I, V);
464
465 if (I.hasAllowReassoc()) {
466 // Reassociate constant RHS with another constant to form constant
467 // expression.
468 if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
469 Constant* C1;
470 if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
471 // (C1 / X) * C --> (C * C1) / X
472 Constant* CC1 = ConstantExpr::getFMul(C, C1);
473 if (CC1->isNormalFP())
474 return BinaryOperator::CreateFDivFMF(CC1, X, &I);
475 }
476 if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
477 // (X / C1) * C --> X * (C / C1)
478 Constant* CDivC1 = ConstantExpr::getFDiv(C, C1);
479 if (CDivC1->isNormalFP())
480 return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
481
482 // If the constant was a denormal, try reassociating differently.
483 // (X / C1) * C --> X / (C1 / C)
484 Constant* C1DivC = ConstantExpr::getFDiv(C1, C);
485 if (Op0->hasOneUse() && C1DivC->isNormalFP())
486 return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
487 }
488
489 // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
490 // canonicalized to 'fadd X, C'. Distributing the multiply may allow
491 // further folds and (X * C) + C2 is 'fma'.
492 if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
493 // (X + C1) * C --> (X * C) + (C * C1)
494 Constant* CC1 = ConstantExpr::getFMul(C, C1);
495 Value* XC = Builder.CreateFMulFMF(X, C, &I);
496 return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
497 }
498 if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
499 // (C1 - X) * C --> (C * C1) - (X * C)
500 Constant* CC1 = ConstantExpr::getFMul(C, C1);
501 Value* XC = Builder.CreateFMulFMF(X, C, &I);
502 return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
503 }
504 }
505
506 // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
507 // nnan disallows the possibility of returning a number if both operands are
508 // negative (in that case, we should return NaN).
509 if (I.hasNoNaNs() &&
510 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
511 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
512 Value* XY = Builder.CreateFMulFMF(X, Y, &I);
513 Value* Sqrt = Builder.CreateIntrinsic(Intrinsic::sqrt, { XY }, &I);
514 return replaceInstUsesWith(I, Sqrt);
515 }
516
517 // (X*Y) * X => (X*X) * Y where Y != X
518 // The purpose is two-fold:
519 // 1) to form a power expression (of X).
520 // 2) potentially shorten the critical path: After transformation, the
521 // latency of the instruction Y is amortized by the expression of X*X,
522 // and therefore Y is in a "less critical" position compared to what it
523 // was before the transformation.
524 if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
525 Op1 != Y) {
526 Value* XX = Builder.CreateFMulFMF(Op1, Op1, &I);
527 return BinaryOperator::CreateFMulFMF(XX, Y, &I);
528 }
529 if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
530 Op0 != Y) {
531 Value* XX = Builder.CreateFMulFMF(Op0, Op0, &I);
532 return BinaryOperator::CreateFMulFMF(XX, Y, &I);
533 }
534 }
535
536 // log2(X * 0.5) * Y = log2(X) * Y - Y
537 if (I.isFast()) {
538 IntrinsicInst* Log2 = nullptr;
539 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
540 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
541 Log2 = cast<IntrinsicInst>(Op0);
542 Y = Op1;
543 }
544 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
545 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
546 Log2 = cast<IntrinsicInst>(Op1);
547 Y = Op0;
548 }
549 if (Log2) {
550 Log2->setArgOperand(0, X);
551 Log2->copyFastMathFlags(&I);
552 Value* LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
553 return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
554 }
555 }
556
557 return nullptr;
558 }
559
560 /// Fold a divide or remainder with a select instruction divisor when one of the
561 /// select operands is zero. In that case, we can use the other select operand
562 /// because div/rem by zero is undefined.
simplifyDivRemOfSelectWithZeroOp(BinaryOperator & I)563 bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator& I) {
564 SelectInst* SI = dyn_cast<SelectInst>(I.getOperand(1));
565 if (!SI)
566 return false;
567
568 int NonNullOperand;
569 if (match(SI->getTrueValue(), m_Zero()))
570 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
571 NonNullOperand = 2;
572 else if (match(SI->getFalseValue(), m_Zero()))
573 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
574 NonNullOperand = 1;
575 else
576 return false;
577
578 // Change the div/rem to use 'Y' instead of the select.
579 I.setOperand(1, SI->getOperand(NonNullOperand));
580
581 // Okay, we know we replace the operand of the div/rem with 'Y' with no
582 // problem. However, the select, or the condition of the select may have
583 // multiple uses. Based on our knowledge that the operand must be non-zero,
584 // propagate the known value for the select into other uses of it, and
585 // propagate a known value of the condition into its other users.
586
587 // If the select and condition only have a single use, don't bother with this,
588 // early exit.
589 Value* SelectCond = SI->getCondition();
590 if (SI->use_empty() && SelectCond->hasOneUse())
591 return true;
592
593 // Scan the current block backward, looking for other uses of SI.
594 BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
595 Type* CondTy = SelectCond->getType();
596 while (BBI != BBFront) {
597 --BBI;
598 // If we found an instruction that we can't assume will return, so
599 // information from below it cannot be propagated above it.
600 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
601 break;
602
603 // Replace uses of the select or its condition with the known values.
604 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
605 I != E; ++I) {
606 if (*I == SI) {
607 *I = SI->getOperand(NonNullOperand);
608 Worklist.Add(&*BBI);
609 }
610 else if (*I == SelectCond) {
611 *I = NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
612 : ConstantInt::getFalse(CondTy);
613 Worklist.Add(&*BBI);
614 }
615 }
616
617 // If we past the instruction, quit looking for it.
618 if (&*BBI == SI)
619 SI = nullptr;
620 if (&*BBI == SelectCond)
621 SelectCond = nullptr;
622
623 // If we ran out of things to eliminate, break out of the loop.
624 if (!SelectCond && !SI)
625 break;
626
627 }
628 return true;
629 }
630
631 /// True if the multiply can not be expressed in an int this size.
multiplyOverflows(const APInt & C1,const APInt & C2,APInt & Product,bool IsSigned)632 static bool multiplyOverflows(const APInt& C1, const APInt& C2, APInt& Product,
633 bool IsSigned) {
634 bool Overflow;
635 Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
636 return Overflow;
637 }
638
639 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
isMultiple(const APInt & C1,const APInt & C2,APInt & Quotient,bool IsSigned)640 static bool isMultiple(const APInt& C1, const APInt& C2, APInt& Quotient,
641 bool IsSigned) {
642 IGC_ASSERT_MESSAGE(C1.getBitWidth() == C2.getBitWidth(), "Constant widths not equal");
643
644 // Bail if we will divide by zero.
645 if (C2.isNullValue())
646 return false;
647
648 // Bail if we would divide INT_MIN by -1.
649 if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
650 return false;
651
652 APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
653 if (IsSigned)
654 APInt::sdivrem(C1, C2, Quotient, Remainder);
655 else
656 APInt::udivrem(C1, C2, Quotient, Remainder);
657
658 return Remainder.isMinValue();
659 }
660
661 /// This function implements the transforms common to both integer division
662 /// instructions (udiv and sdiv). It is called by the visitors to those integer
663 /// division instructions.
664 /// Common integer divide transforms
commonIDivTransforms(BinaryOperator & I)665 Instruction* InstCombiner::commonIDivTransforms(BinaryOperator& I) {
666 Value* Op0 = I.getOperand(0), * Op1 = I.getOperand(1);
667 bool IsSigned = I.getOpcode() == Instruction::SDiv;
668 Type* Ty = I.getType();
669
670 // The RHS is known non-zero.
671 if (Value * V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
672 I.setOperand(1, V);
673 return &I;
674 }
675
676 // Handle cases involving: [su]div X, (select Cond, Y, Z)
677 // This does not apply for fdiv.
678 if (simplifyDivRemOfSelectWithZeroOp(I))
679 return &I;
680
681 const APInt* C2;
682 if (match(Op1, m_APInt(C2))) {
683 Value* X;
684 const APInt* C1;
685
686 // (X / C1) / C2 -> X / (C1*C2)
687 if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
688 (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
689 APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
690 if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
691 return BinaryOperator::Create(I.getOpcode(), X,
692 ConstantInt::get(Ty, Product));
693 }
694
695 if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
696 (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
697 APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
698
699 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
700 if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
701 auto* NewDiv = BinaryOperator::Create(I.getOpcode(), X,
702 ConstantInt::get(Ty, Quotient));
703 NewDiv->setIsExact(I.isExact());
704 return NewDiv;
705 }
706
707 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
708 if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
709 auto* Mul = BinaryOperator::Create(Instruction::Mul, X,
710 ConstantInt::get(Ty, Quotient));
711 auto* OBO = cast<OverflowingBinaryOperator>(Op0);
712 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
713 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
714 return Mul;
715 }
716 }
717
718 if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
719 *C1 != C1->getBitWidth() - 1) ||
720 (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
721 APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
722 APInt C1Shifted = APInt::getOneBitSet(
723 C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
724
725 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
726 if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
727 auto* BO = BinaryOperator::Create(I.getOpcode(), X,
728 ConstantInt::get(Ty, Quotient));
729 BO->setIsExact(I.isExact());
730 return BO;
731 }
732
733 // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
734 if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
735 auto* Mul = BinaryOperator::Create(Instruction::Mul, X,
736 ConstantInt::get(Ty, Quotient));
737 auto* OBO = cast<OverflowingBinaryOperator>(Op0);
738 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
739 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
740 return Mul;
741 }
742 }
743
744 if (!C2->isNullValue()) // avoid X udiv 0
745 if (Instruction * FoldedDiv = foldBinOpIntoSelectOrPhi(I))
746 return FoldedDiv;
747 }
748
749 if (match(Op0, m_One())) {
750 IGC_ASSERT_MESSAGE(!Ty->isIntOrIntVectorTy(1), "i1 divide not removed?");
751 if (IsSigned) {
752 // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
753 // result is one, if Op1 is -1 then the result is minus one, otherwise
754 // it's zero.
755 Value* Inc = Builder.CreateAdd(Op1, Op0);
756 Value* Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
757 return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
758 }
759 else {
760 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
761 // result is one, otherwise it's zero.
762 return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
763 }
764 }
765
766 // See if we can fold away this div instruction.
767 if (SimplifyDemandedInstructionBits(I))
768 return &I;
769
770 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
771 Value* X, * Z;
772 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
773 if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
774 (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
775 return BinaryOperator::Create(I.getOpcode(), X, Op1);
776
777 // (X << Y) / X -> 1 << Y
778 Value* Y;
779 if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
780 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
781 if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
782 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
783
784 // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
785 if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
786 bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
787 bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
788 if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
789 I.setOperand(0, ConstantInt::get(Ty, 1));
790 I.setOperand(1, Y);
791 return &I;
792 }
793 }
794
795 return nullptr;
796 }
797
798 static const unsigned MaxDepth = 6;
799
800 namespace {
801
802 using FoldUDivOperandCb = Instruction * (*)(Value* Op0, Value* Op1,
803 const BinaryOperator& I,
804 InstCombiner& IC);
805
806 /// Used to maintain state for visitUDivOperand().
807 struct UDivFoldAction {
808 /// Informs visitUDiv() how to fold this operand. This can be zero if this
809 /// action joins two actions together.
810 FoldUDivOperandCb FoldAction;
811
812 /// Which operand to fold.
813 Value* OperandToFold;
814
815 union {
816 /// The instruction returned when FoldAction is invoked.
817 Instruction* FoldResult;
818
819 /// Stores the LHS action index if this action joins two actions together.
820 size_t SelectLHSIdx;
821 };
822
UDivFoldAction__anon7caf39df0111::UDivFoldAction823 UDivFoldAction(FoldUDivOperandCb FA, Value* InputOperand)
824 : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
UDivFoldAction__anon7caf39df0111::UDivFoldAction825 UDivFoldAction(FoldUDivOperandCb FA, Value* InputOperand, size_t SLHS)
826 : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
827 };
828
829 } // end anonymous namespace
830
831 // X udiv 2^C -> X >> C
foldUDivPow2Cst(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombiner & IC)832 static Instruction* foldUDivPow2Cst(Value* Op0, Value* Op1,
833 const BinaryOperator& I, InstCombiner& IC) {
834 Constant* C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1));
835 IGC_ASSERT_EXIT_MESSAGE(nullptr != C1, "Failed to constant fold udiv -> logbase2");
836 BinaryOperator* LShr = BinaryOperator::CreateLShr(Op0, C1);
837 if (I.isExact())
838 LShr->setIsExact();
839 return LShr;
840 }
841
842 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
843 // X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2)
foldUDivShl(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombiner & IC)844 static Instruction* foldUDivShl(Value* Op0, Value* Op1, const BinaryOperator& I,
845 InstCombiner& IC) {
846 Value* ShiftLeft;
847 if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
848 ShiftLeft = Op1;
849
850 Constant* CI;
851 Value* N = nullptr;
852 IGC_ASSERT_EXIT_MESSAGE(match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))), "match should never fail here!");
853 Constant* Log2Base = getLogBase2(N->getType(), CI);
854 IGC_ASSERT_EXIT_MESSAGE(nullptr != Log2Base, "getLogBase2 should never fail here!");
855 N = IC.Builder.CreateAdd(N, Log2Base);
856 if (Op1 != ShiftLeft)
857 N = IC.Builder.CreateZExt(N, Op1->getType());
858 BinaryOperator* LShr = BinaryOperator::CreateLShr(Op0, N);
859 if (I.isExact())
860 LShr->setIsExact();
861 return LShr;
862 }
863
864 // Recursively visits the possible right hand operands of a udiv
865 // instruction, seeing through select instructions, to determine if we can
866 // replace the udiv with something simpler. If we find that an operand is not
867 // able to simplify the udiv, we abort the entire transformation.
visitUDivOperand(Value * Op0,Value * Op1,const BinaryOperator & I,SmallVectorImpl<UDivFoldAction> & Actions,unsigned Depth=0)868 static size_t visitUDivOperand(Value* Op0, Value* Op1, const BinaryOperator& I,
869 SmallVectorImpl<UDivFoldAction>& Actions,
870 unsigned Depth = 0) {
871 // Check to see if this is an unsigned division with an exact power of 2,
872 // if so, convert to a right shift.
873 if (match(Op1, m_Power2())) {
874 Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
875 return Actions.size();
876 }
877
878 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
879 if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
880 match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
881 Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
882 return Actions.size();
883 }
884
885 // The remaining tests are all recursive, so bail out if we hit the limit.
886 if (Depth++ == MaxDepth)
887 return 0;
888
889 if (SelectInst * SI = dyn_cast<SelectInst>(Op1))
890 if (size_t LHSIdx =
891 visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
892 if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
893 Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
894 return Actions.size();
895 }
896
897 return 0;
898 }
899
900 /// If we have zero-extended operands of an unsigned div or rem, we may be able
901 /// to narrow the operation (sink the zext below the math).
narrowUDivURem(BinaryOperator & I,InstCombiner::BuilderTy & Builder)902 static Instruction* narrowUDivURem(BinaryOperator& I,
903 InstCombiner::BuilderTy& Builder) {
904 Instruction::BinaryOps Opcode = I.getOpcode();
905 Value* N = I.getOperand(0);
906 Value* D = I.getOperand(1);
907 Type* Ty = I.getType();
908 Value* X, * Y;
909 if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
910 X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
911 // udiv (zext X), (zext Y) --> zext (udiv X, Y)
912 // urem (zext X), (zext Y) --> zext (urem X, Y)
913 Value* NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
914 return new ZExtInst(NarrowOp, Ty);
915 }
916
917 Constant* C;
918 if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
919 (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
920 // If the constant is the same in the smaller type, use the narrow version.
921 Constant* TruncC = ConstantExpr::getTrunc(C, X->getType());
922 if (ConstantExpr::getZExt(TruncC, Ty) != C)
923 return nullptr;
924
925 // udiv (zext X), C --> zext (udiv X, C')
926 // urem (zext X), C --> zext (urem X, C')
927 // udiv C, (zext X) --> zext (udiv C', X)
928 // urem C, (zext X) --> zext (urem C', X)
929 Value* NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
930 : Builder.CreateBinOp(Opcode, TruncC, X);
931 return new ZExtInst(NarrowOp, Ty);
932 }
933
934 return nullptr;
935 }
936
visitUDiv(BinaryOperator & I)937 Instruction* InstCombiner::visitUDiv(BinaryOperator& I) {
938 if (Value * V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
939 SQ.getWithInstruction(&I)))
940 return replaceInstUsesWith(I, V);
941
942 if (Instruction * X = foldShuffledBinop(I))
943 return X;
944
945 // Handle the integer div common cases
946 if (Instruction * Common = commonIDivTransforms(I))
947 return Common;
948
949 Value* Op0 = I.getOperand(0), * Op1 = I.getOperand(1);
950 Value* X;
951 const APInt* C1, * C2;
952 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
953 // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
954 bool Overflow;
955 APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
956 if (!Overflow) {
957 bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
958 BinaryOperator* BO = BinaryOperator::CreateUDiv(
959 X, ConstantInt::get(X->getType(), C2ShlC1));
960 if (IsExact)
961 BO->setIsExact();
962 return BO;
963 }
964 }
965
966 // Op0 / C where C is large (negative) --> zext (Op0 >= C)
967 // TODO: Could use isKnownNegative() to handle non-constant values.
968 Type* Ty = I.getType();
969 if (match(Op1, m_Negative())) {
970 Value* Cmp = Builder.CreateICmpUGE(Op0, Op1);
971 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
972 }
973 // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
974 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
975 Value* Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
976 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
977 }
978
979 if (Instruction * NarrowDiv = narrowUDivURem(I, Builder))
980 return NarrowDiv;
981
982 // If the udiv operands are non-overflowing multiplies with a common operand,
983 // then eliminate the common factor:
984 // (A * B) / (A * X) --> B / X (and commuted variants)
985 // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
986 // TODO: If -reassociation handled this generally, we could remove this.
987 Value* A, * B;
988 if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
989 if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
990 match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
991 return BinaryOperator::CreateUDiv(B, X);
992 if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
993 match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
994 return BinaryOperator::CreateUDiv(A, X);
995 }
996
997 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
998 SmallVector<UDivFoldAction, 6> UDivActions;
999 if (visitUDivOperand(Op0, Op1, I, UDivActions))
1000 for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1001 FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1002 Value* ActionOp1 = UDivActions[i].OperandToFold;
1003 Instruction* Inst;
1004 if (Action)
1005 Inst = Action(Op0, ActionOp1, I, *this);
1006 else {
1007 // This action joins two actions together. The RHS of this action is
1008 // simply the last action we processed, we saved the LHS action index in
1009 // the joining action.
1010 size_t SelectRHSIdx = i - 1;
1011 Value* SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1012 size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1013 Value* SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1014 Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1015 SelectLHS, SelectRHS);
1016 }
1017
1018 // If this is the last action to process, return it to the InstCombiner.
1019 // Otherwise, we insert it before the UDiv and record it so that we may
1020 // use it as part of a joining action (i.e., a SelectInst).
1021 if (e - i != 1) {
1022 Inst->insertBefore(&I);
1023 UDivActions[i].FoldResult = Inst;
1024 }
1025 else
1026 return Inst;
1027 }
1028
1029 return nullptr;
1030 }
1031
visitSDiv(BinaryOperator & I)1032 Instruction* InstCombiner::visitSDiv(BinaryOperator& I) {
1033 if (Value * V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1034 SQ.getWithInstruction(&I)))
1035 return replaceInstUsesWith(I, V);
1036
1037 if (Instruction * X = foldShuffledBinop(I))
1038 return X;
1039
1040 // Handle the integer div common cases
1041 if (Instruction * Common = commonIDivTransforms(I))
1042 return Common;
1043
1044 Value* Op0 = I.getOperand(0), * Op1 = I.getOperand(1);
1045 Value* X;
1046 // sdiv Op0, -1 --> -Op0
1047 // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1048 if (match(Op1, m_AllOnes()) ||
1049 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1050 return BinaryOperator::CreateNeg(Op0);
1051
1052 const APInt* Op1C;
1053 if (match(Op1, m_APInt(Op1C))) {
1054 // sdiv exact X, C --> ashr exact X, log2(C)
1055 if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
1056 Value* ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
1057 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
1058 }
1059
1060 // If the dividend is sign-extended and the constant divisor is small enough
1061 // to fit in the source type, shrink the division to the narrower type:
1062 // (sext X) sdiv C --> sext (X sdiv C)
1063 Value* Op0Src;
1064 if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1065 Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1066
1067 // In the general case, we need to make sure that the dividend is not the
1068 // minimum signed value because dividing that by -1 is UB. But here, we
1069 // know that the -1 divisor case is already handled above.
1070
1071 Constant* NarrowDivisor =
1072 ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1073 Value* NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1074 return new SExtInst(NarrowOp, Op0->getType());
1075 }
1076 }
1077
1078 if (Constant * RHS = dyn_cast<Constant>(Op1)) {
1079 // X/INT_MIN -> X == INT_MIN
1080 if (RHS->isMinSignedValue())
1081 return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType());
1082
1083 // -X/C --> X/-C provided the negation doesn't overflow.
1084 Value* X;
1085 if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1086 auto* BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS));
1087 BO->setIsExact(I.isExact());
1088 return BO;
1089 }
1090 }
1091
1092 // If the sign bits of both operands are zero (i.e. we can prove they are
1093 // unsigned inputs), turn this into a udiv.
1094 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1095 if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1096 if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1097 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1098 auto* BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1099 BO->setIsExact(I.isExact());
1100 return BO;
1101 }
1102
1103 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1104 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1105 // Safe because the only negative value (1 << Y) can take on is
1106 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1107 // the sign bit set.
1108 auto* BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1109 BO->setIsExact(I.isExact());
1110 return BO;
1111 }
1112 }
1113
1114 return nullptr;
1115 }
1116
1117 /// Remove negation and try to convert division into multiplication.
foldFDivConstantDivisor(BinaryOperator & I)1118 static Instruction* foldFDivConstantDivisor(BinaryOperator& I) {
1119 Constant* C;
1120 if (!match(I.getOperand(1), m_Constant(C)))
1121 return nullptr;
1122
1123 // -X / C --> X / -C
1124 Value* X;
1125 if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1126 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1127
1128 // If the constant divisor has an exact inverse, this is always safe. If not,
1129 // then we can still create a reciprocal if fast-math-flags allow it and the
1130 // constant is a regular number (not zero, infinite, or denormal).
1131 if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1132 return nullptr;
1133
1134 // Disallow denormal constants because we don't know what would happen
1135 // on all targets.
1136 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1137 // denorms are flushed?
1138 auto* RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1139 if (!RecipC->isNormalFP())
1140 return nullptr;
1141
1142 // X / C --> X * (1 / C)
1143 return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1144 }
1145
1146 /// Remove negation and try to reassociate constant math.
foldFDivConstantDividend(BinaryOperator & I)1147 static Instruction* foldFDivConstantDividend(BinaryOperator& I) {
1148 Constant* C;
1149 if (!match(I.getOperand(0), m_Constant(C)))
1150 return nullptr;
1151
1152 // C / -X --> -C / X
1153 Value* X;
1154 if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1155 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1156
1157 if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1158 return nullptr;
1159
1160 // Try to reassociate C / X expressions where X includes another constant.
1161 Constant* C2, * NewC = nullptr;
1162 if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1163 // C / (X * C2) --> (C / C2) / X
1164 NewC = ConstantExpr::getFDiv(C, C2);
1165 }
1166 else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1167 // C / (X / C2) --> (C * C2) / X
1168 NewC = ConstantExpr::getFMul(C, C2);
1169 }
1170 // Disallow denormal constants because we don't know what would happen
1171 // on all targets.
1172 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1173 // denorms are flushed?
1174 if (!NewC || !NewC->isNormalFP())
1175 return nullptr;
1176
1177 return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1178 }
1179
visitFDiv(BinaryOperator & I)1180 Instruction* InstCombiner::visitFDiv(BinaryOperator& I) {
1181 if (Value * V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1182 I.getFastMathFlags(),
1183 SQ.getWithInstruction(&I)))
1184 return replaceInstUsesWith(I, V);
1185
1186 if (Instruction * X = foldShuffledBinop(I))
1187 return X;
1188
1189 if (Instruction * R = foldFDivConstantDivisor(I))
1190 return R;
1191
1192 if (Instruction * R = foldFDivConstantDividend(I))
1193 return R;
1194
1195 Value* Op0 = I.getOperand(0), * Op1 = I.getOperand(1);
1196 if (isa<Constant>(Op0))
1197 if (SelectInst * SI = dyn_cast<SelectInst>(Op1))
1198 if (Instruction * R = FoldOpIntoSelect(I, SI))
1199 return R;
1200
1201 if (isa<Constant>(Op1))
1202 if (SelectInst * SI = dyn_cast<SelectInst>(Op0))
1203 if (Instruction * R = FoldOpIntoSelect(I, SI))
1204 return R;
1205
1206 if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1207 Value* X, * Y;
1208 if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1209 (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1210 // (X / Y) / Z => X / (Y * Z)
1211 Value* YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1212 return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1213 }
1214 if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1215 (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1216 // Z / (X / Y) => (Y * Z) / X
1217 Value* YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1218 return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1219 }
1220 }
1221
1222 if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1223 // sin(X) / cos(X) -> tan(X)
1224 // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1225 Value* X;
1226 bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1227 match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1228 bool IsCot =
1229 !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1230 match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1231
1232 if ((IsTan || IsCot) && hasUnaryFloatFn(&TLI, I.getType(), LibFunc_tan,
1233 LibFunc_tanf, LibFunc_tanl)) {
1234 IRBuilder<> B(&I);
1235 IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1236 B.setFastMathFlags(I.getFastMathFlags());
1237 AttributeList Attrs = CallSite(Op0).getCalledFunction()->getAttributes();
1238 Value* Res = emitUnaryFloatFnCall(X, TLI.getName(LibFunc_tan), B, Attrs);
1239 if (IsCot)
1240 Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1241 return replaceInstUsesWith(I, Res);
1242 }
1243 }
1244
1245 // -X / -Y -> X / Y
1246 Value* X, * Y;
1247 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) {
1248 I.setOperand(0, X);
1249 I.setOperand(1, Y);
1250 return &I;
1251 }
1252
1253 // X / (X * Y) --> 1.0 / Y
1254 // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1255 // We can ignore the possibility that X is infinity because INF/INF is NaN.
1256 if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1257 match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1258 I.setOperand(0, ConstantFP::get(I.getType(), 1.0));
1259 I.setOperand(1, Y);
1260 return &I;
1261 }
1262
1263 return nullptr;
1264 }
1265
1266 /// This function implements the transforms common to both integer remainder
1267 /// instructions (urem and srem). It is called by the visitors to those integer
1268 /// remainder instructions.
1269 /// Common integer remainder transforms
commonIRemTransforms(BinaryOperator & I)1270 Instruction* InstCombiner::commonIRemTransforms(BinaryOperator& I) {
1271 Value* Op0 = I.getOperand(0), * Op1 = I.getOperand(1);
1272
1273 // The RHS is known non-zero.
1274 if (Value * V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
1275 I.setOperand(1, V);
1276 return &I;
1277 }
1278
1279 // Handle cases involving: rem X, (select Cond, Y, Z)
1280 if (simplifyDivRemOfSelectWithZeroOp(I))
1281 return &I;
1282
1283 if (isa<Constant>(Op1)) {
1284 if (Instruction * Op0I = dyn_cast<Instruction>(Op0)) {
1285 if (SelectInst * SI = dyn_cast<SelectInst>(Op0I)) {
1286 if (Instruction * R = FoldOpIntoSelect(I, SI))
1287 return R;
1288 }
1289 else if (auto * PN = dyn_cast<PHINode>(Op0I)) {
1290 const APInt* Op1Int;
1291 if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1292 (I.getOpcode() == Instruction::URem ||
1293 !Op1Int->isMinSignedValue())) {
1294 // foldOpIntoPhi will speculate instructions to the end of the PHI's
1295 // predecessor blocks, so do this only if we know the srem or urem
1296 // will not fault.
1297 if (Instruction * NV = foldOpIntoPhi(I, PN))
1298 return NV;
1299 }
1300 }
1301
1302 // See if we can fold away this rem instruction.
1303 if (SimplifyDemandedInstructionBits(I))
1304 return &I;
1305 }
1306 }
1307
1308 return nullptr;
1309 }
1310
visitURem(BinaryOperator & I)1311 Instruction* InstCombiner::visitURem(BinaryOperator& I) {
1312 if (Value * V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1313 SQ.getWithInstruction(&I)))
1314 return replaceInstUsesWith(I, V);
1315
1316 if (Instruction * X = foldShuffledBinop(I))
1317 return X;
1318
1319 if (Instruction * common = commonIRemTransforms(I))
1320 return common;
1321
1322 if (Instruction * NarrowRem = narrowUDivURem(I, Builder))
1323 return NarrowRem;
1324
1325 // X urem Y -> X and Y-1, where Y is a power of 2,
1326 Value* Op0 = I.getOperand(0), * Op1 = I.getOperand(1);
1327 Type* Ty = I.getType();
1328 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1329 Constant* N1 = Constant::getAllOnesValue(Ty);
1330 Value* Add = Builder.CreateAdd(Op1, N1);
1331 return BinaryOperator::CreateAnd(Op0, Add);
1332 }
1333
1334 // 1 urem X -> zext(X != 1)
1335 if (match(Op0, m_One()))
1336 return CastInst::CreateZExtOrBitCast(Builder.CreateICmpNE(Op1, Op0), Ty);
1337
1338 // X urem C -> X < C ? X : X - C, where C >= signbit.
1339 if (match(Op1, m_Negative())) {
1340 Value* Cmp = Builder.CreateICmpULT(Op0, Op1);
1341 Value* Sub = Builder.CreateSub(Op0, Op1);
1342 return SelectInst::Create(Cmp, Op0, Sub);
1343 }
1344
1345 // If the divisor is a sext of a boolean, then the divisor must be max
1346 // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1347 // max unsigned value. In that case, the remainder is 0:
1348 // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1349 Value* X;
1350 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1351 Value* Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1352 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1353 }
1354
1355 return nullptr;
1356 }
1357
visitSRem(BinaryOperator & I)1358 Instruction* InstCombiner::visitSRem(BinaryOperator& I) {
1359 if (Value * V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1360 SQ.getWithInstruction(&I)))
1361 return replaceInstUsesWith(I, V);
1362
1363 if (Instruction * X = foldShuffledBinop(I))
1364 return X;
1365
1366 // Handle the integer rem common cases
1367 if (Instruction * Common = commonIRemTransforms(I))
1368 return Common;
1369
1370 Value* Op0 = I.getOperand(0), * Op1 = I.getOperand(1);
1371 {
1372 const APInt* Y;
1373 // X % -Y -> X % Y
1374 if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) {
1375 Worklist.AddValue(I.getOperand(1));
1376 I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
1377 return &I;
1378 }
1379 }
1380
1381 // If the sign bits of both operands are zero (i.e. we can prove they are
1382 // unsigned inputs), turn this into a urem.
1383 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1384 if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1385 MaskedValueIsZero(Op0, Mask, 0, &I)) {
1386 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1387 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1388 }
1389
1390 // If it's a constant vector, flip any negative values positive.
1391 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1392 Constant* C = cast<Constant>(Op1);
1393 unsigned VWidth = C->getType()->getVectorNumElements();
1394
1395 bool hasNegative = false;
1396 bool hasMissing = false;
1397 for (unsigned i = 0; i != VWidth; ++i) {
1398 Constant* Elt = C->getAggregateElement(i);
1399 if (!Elt) {
1400 hasMissing = true;
1401 break;
1402 }
1403
1404 if (ConstantInt * RHS = dyn_cast<ConstantInt>(Elt))
1405 if (RHS->isNegative())
1406 hasNegative = true;
1407 }
1408
1409 if (hasNegative && !hasMissing) {
1410 SmallVector<Constant*, 16> Elts(VWidth);
1411 for (unsigned i = 0; i != VWidth; ++i) {
1412 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
1413 if (ConstantInt * RHS = dyn_cast<ConstantInt>(Elts[i])) {
1414 if (RHS->isNegative())
1415 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1416 }
1417 }
1418
1419 Constant* NewRHSV = ConstantVector::get(Elts);
1420 if (NewRHSV != C) { // Don't loop on -MININT
1421 Worklist.AddValue(I.getOperand(1));
1422 I.setOperand(1, NewRHSV);
1423 return &I;
1424 }
1425 }
1426 }
1427
1428 return nullptr;
1429 }
1430
visitFRem(BinaryOperator & I)1431 Instruction* InstCombiner::visitFRem(BinaryOperator& I) {
1432 if (Value * V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1433 I.getFastMathFlags(),
1434 SQ.getWithInstruction(&I)))
1435 return replaceInstUsesWith(I, V);
1436
1437 if (Instruction * X = foldShuffledBinop(I))
1438 return X;
1439
1440 return nullptr;
1441 }
1442