1 /*
2  *  LibXDiff by Davide Libenzi ( File Differential Library )
3  *  Copyright (C) 2003-2016 Davide Libenzi, Johannes E. Schindelin
4  *
5  *  This library is free software; you can redistribute it and/or
6  *  modify it under the terms of the GNU Lesser General Public
7  *  License as published by the Free Software Foundation; either
8  *  version 2.1 of the License, or (at your option) any later version.
9  *
10  *  This library is distributed in the hope that it will be useful,
11  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  *  Lesser General Public License for more details.
14  *
15  *  You should have received a copy of the GNU Lesser General Public
16  *  License along with this library; if not, see
17  *  <http://www.gnu.org/licenses/>.
18  *
19  *  Davide Libenzi <davidel@xmailserver.org>
20  *
21  */
22 #include "xinclude.h"
23 #include "xtypes.h"
24 #include "xdiff.h"
25 
26 /*
27  * The basic idea of patience diff is to find lines that are unique in
28  * both files.  These are intuitively the ones that we want to see as
29  * common lines.
30  *
31  * The maximal ordered sequence of such line pairs (where ordered means
32  * that the order in the sequence agrees with the order of the lines in
33  * both files) naturally defines an initial set of common lines.
34  *
35  * Now, the algorithm tries to extend the set of common lines by growing
36  * the line ranges where the files have identical lines.
37  *
38  * Between those common lines, the patience diff algorithm is applied
39  * recursively, until no unique line pairs can be found; these line ranges
40  * are handled by the well-known Myers algorithm.
41  */
42 
43 #define NON_UNIQUE ULONG_MAX
44 
45 /*
46  * This is a hash mapping from line hash to line numbers in the first and
47  * second file.
48  */
49 struct hashmap {
50 	int nr, alloc;
51 	struct entry {
52 		unsigned long hash;
53 		/*
54 		 * 0 = unused entry, 1 = first line, 2 = second, etc.
55 		 * line2 is NON_UNIQUE if the line is not unique
56 		 * in either the first or the second file.
57 		 */
58 		unsigned long line1, line2;
59 		/*
60 		 * "next" & "previous" are used for the longest common
61 		 * sequence;
62 		 * initially, "next" reflects only the order in file1.
63 		 */
64 		struct entry *next, *previous;
65 
66 		/*
67 		 * If 1, this entry can serve as an anchor. See
68 		 * Documentation/diff-options.txt for more information.
69 		 */
70 		unsigned anchor : 1;
71 	} *entries, *first, *last;
72 	/* were common records found? */
73 	unsigned long has_matches;
74 	mmfile_t *file1, *file2;
75 	xdfenv_t *env;
76 	xpparam_t const *xpp;
77 };
78 
is_anchor(xpparam_t const * xpp,const char * line)79 static int is_anchor(xpparam_t const *xpp, const char *line)
80 {
81 	unsigned long i;
82 	for (i = 0; i < xpp->anchors_nr; i++) {
83 		if (!strncmp(line, xpp->anchors[i], strlen(xpp->anchors[i])))
84 			return 1;
85 	}
86 	return 0;
87 }
88 
89 /* The argument "pass" is 1 for the first file, 2 for the second. */
insert_record(xpparam_t const * xpp,int line,struct hashmap * map,int pass)90 static void insert_record(xpparam_t const *xpp, int line, struct hashmap *map,
91 			  int pass)
92 {
93 	xrecord_t **records = pass == 1 ?
94 		map->env->xdf1.recs : map->env->xdf2.recs;
95 	xrecord_t *record = records[line - 1], *other;
96 	/*
97 	 * After xdl_prepare_env() (or more precisely, due to
98 	 * xdl_classify_record()), the "ha" member of the records (AKA lines)
99 	 * is _not_ the hash anymore, but a linearized version of it.  In
100 	 * other words, the "ha" member is guaranteed to start with 0 and
101 	 * the second record's ha can only be 0 or 1, etc.
102 	 *
103 	 * So we multiply ha by 2 in the hope that the hashing was
104 	 * "unique enough".
105 	 */
106 	int index = (int)((record->ha << 1) % map->alloc);
107 
108 	while (map->entries[index].line1) {
109 		other = map->env->xdf1.recs[map->entries[index].line1 - 1];
110 		if (map->entries[index].hash != record->ha ||
111 				!xdl_recmatch(record->ptr, record->size,
112 					other->ptr, other->size,
113 					map->xpp->flags)) {
114 			if (++index >= map->alloc)
115 				index = 0;
116 			continue;
117 		}
118 		if (pass == 2)
119 			map->has_matches = 1;
120 		if (pass == 1 || map->entries[index].line2)
121 			map->entries[index].line2 = NON_UNIQUE;
122 		else
123 			map->entries[index].line2 = line;
124 		return;
125 	}
126 	if (pass == 2)
127 		return;
128 	map->entries[index].line1 = line;
129 	map->entries[index].hash = record->ha;
130 	map->entries[index].anchor = is_anchor(xpp, map->env->xdf1.recs[line - 1]->ptr);
131 	if (!map->first)
132 		map->first = map->entries + index;
133 	if (map->last) {
134 		map->last->next = map->entries + index;
135 		map->entries[index].previous = map->last;
136 	}
137 	map->last = map->entries + index;
138 	map->nr++;
139 }
140 
141 /*
142  * This function has to be called for each recursion into the inter-hunk
143  * parts, as previously non-unique lines can become unique when being
144  * restricted to a smaller part of the files.
145  *
146  * It is assumed that env has been prepared using xdl_prepare().
147  */
fill_hashmap(mmfile_t * file1,mmfile_t * file2,xpparam_t const * xpp,xdfenv_t * env,struct hashmap * result,int line1,int count1,int line2,int count2)148 static int fill_hashmap(mmfile_t *file1, mmfile_t *file2,
149 		xpparam_t const *xpp, xdfenv_t *env,
150 		struct hashmap *result,
151 		int line1, int count1, int line2, int count2)
152 {
153 	result->file1 = file1;
154 	result->file2 = file2;
155 	result->xpp = xpp;
156 	result->env = env;
157 
158 	/* We know exactly how large we want the hash map */
159 	result->alloc = count1 * 2;
160 	result->entries = (struct entry *)
161 		xdl_malloc(result->alloc * sizeof(struct entry));
162 	if (!result->entries)
163 		return -1;
164 	memset(result->entries, 0, result->alloc * sizeof(struct entry));
165 
166 	/* First, fill with entries from the first file */
167 	while (count1--)
168 		insert_record(xpp, line1++, result, 1);
169 
170 	/* Then search for matches in the second file */
171 	while (count2--)
172 		insert_record(xpp, line2++, result, 2);
173 
174 	return 0;
175 }
176 
177 /*
178  * Find the longest sequence with a smaller last element (meaning a smaller
179  * line2, as we construct the sequence with entries ordered by line1).
180  */
binary_search(struct entry ** sequence,int longest,struct entry * entry)181 static int binary_search(struct entry **sequence, int longest,
182 		struct entry *entry)
183 {
184 	int left = -1, right = longest;
185 
186 	while (left + 1 < right) {
187 		int middle = left + (right - left) / 2;
188 		/* by construction, no two entries can be equal */
189 		if (sequence[middle]->line2 > entry->line2)
190 			right = middle;
191 		else
192 			left = middle;
193 	}
194 	/* return the index in "sequence", _not_ the sequence length */
195 	return left;
196 }
197 
198 /*
199  * The idea is to start with the list of common unique lines sorted by
200  * the order in file1.  For each of these pairs, the longest (partial)
201  * sequence whose last element's line2 is smaller is determined.
202  *
203  * For efficiency, the sequences are kept in a list containing exactly one
204  * item per sequence length: the sequence with the smallest last
205  * element (in terms of line2).
206  */
find_longest_common_sequence(struct hashmap * map)207 static struct entry *find_longest_common_sequence(struct hashmap *map)
208 {
209 	struct entry **sequence = xdl_malloc(map->nr * sizeof(struct entry *));
210 	int longest = 0, i;
211 	struct entry *entry;
212 
213 	/*
214 	 * If not -1, this entry in sequence must never be overridden.
215 	 * Therefore, overriding entries before this has no effect, so
216 	 * do not do that either.
217 	 */
218 	int anchor_i = -1;
219 
220 	if (!sequence)
221 		return NULL;
222 
223 	for (entry = map->first; entry; entry = entry->next) {
224 		if (!entry->line2 || entry->line2 == NON_UNIQUE)
225 			continue;
226 		i = binary_search(sequence, longest, entry);
227 		entry->previous = i < 0 ? NULL : sequence[i];
228 		++i;
229 		if (i <= anchor_i)
230 			continue;
231 		sequence[i] = entry;
232 		if (entry->anchor) {
233 			anchor_i = i;
234 			longest = anchor_i + 1;
235 		} else if (i == longest) {
236 			longest++;
237 		}
238 	}
239 
240 	/* No common unique lines were found */
241 	if (!longest) {
242 		xdl_free(sequence);
243 		return NULL;
244 	}
245 
246 	/* Iterate starting at the last element, adjusting the "next" members */
247 	entry = sequence[longest - 1];
248 	entry->next = NULL;
249 	while (entry->previous) {
250 		entry->previous->next = entry;
251 		entry = entry->previous;
252 	}
253 	xdl_free(sequence);
254 	return entry;
255 }
256 
match(struct hashmap * map,int line1,int line2)257 static int match(struct hashmap *map, int line1, int line2)
258 {
259 	xrecord_t *record1 = map->env->xdf1.recs[line1 - 1];
260 	xrecord_t *record2 = map->env->xdf2.recs[line2 - 1];
261 	return xdl_recmatch(record1->ptr, record1->size,
262 		record2->ptr, record2->size, map->xpp->flags);
263 }
264 
265 static int patience_diff(mmfile_t *file1, mmfile_t *file2,
266 		xpparam_t const *xpp, xdfenv_t *env,
267 		int line1, int count1, int line2, int count2);
268 
walk_common_sequence(struct hashmap * map,struct entry * first,int line1,int count1,int line2,int count2)269 static int walk_common_sequence(struct hashmap *map, struct entry *first,
270 		int line1, int count1, int line2, int count2)
271 {
272 	int end1 = line1 + count1, end2 = line2 + count2;
273 	int next1, next2;
274 
275 	for (;;) {
276 		/* Try to grow the line ranges of common lines */
277 		if (first) {
278 			next1 = first->line1;
279 			next2 = first->line2;
280 			while (next1 > line1 && next2 > line2 &&
281 					match(map, next1 - 1, next2 - 1)) {
282 				next1--;
283 				next2--;
284 			}
285 		} else {
286 			next1 = end1;
287 			next2 = end2;
288 		}
289 		while (line1 < next1 && line2 < next2 &&
290 				match(map, line1, line2)) {
291 			line1++;
292 			line2++;
293 		}
294 
295 		/* Recurse */
296 		if (next1 > line1 || next2 > line2) {
297 			struct hashmap submap;
298 
299 			memset(&submap, 0, sizeof(submap));
300 			if (patience_diff(map->file1, map->file2,
301 					map->xpp, map->env,
302 					line1, next1 - line1,
303 					line2, next2 - line2))
304 				return -1;
305 		}
306 
307 		if (!first)
308 			return 0;
309 
310 		while (first->next &&
311 				first->next->line1 == first->line1 + 1 &&
312 				first->next->line2 == first->line2 + 1)
313 			first = first->next;
314 
315 		line1 = first->line1 + 1;
316 		line2 = first->line2 + 1;
317 
318 		first = first->next;
319 	}
320 }
321 
fall_back_to_classic_diff(struct hashmap * map,int line1,int count1,int line2,int count2)322 static int fall_back_to_classic_diff(struct hashmap *map,
323 		int line1, int count1, int line2, int count2)
324 {
325 	xpparam_t xpp;
326 	xpp.flags = map->xpp->flags & ~XDF_DIFF_ALGORITHM_MASK;
327 
328 	return xdl_fall_back_diff(map->env, &xpp,
329 				  line1, count1, line2, count2);
330 }
331 
332 /*
333  * Recursively find the longest common sequence of unique lines,
334  * and if none was found, ask xdl_do_diff() to do the job.
335  *
336  * This function assumes that env was prepared with xdl_prepare_env().
337  */
patience_diff(mmfile_t * file1,mmfile_t * file2,xpparam_t const * xpp,xdfenv_t * env,int line1,int count1,int line2,int count2)338 static int patience_diff(mmfile_t *file1, mmfile_t *file2,
339 		xpparam_t const *xpp, xdfenv_t *env,
340 		int line1, int count1, int line2, int count2)
341 {
342 	struct hashmap map;
343 	struct entry *first;
344 	int result = 0;
345 
346 	/* trivial case: one side is empty */
347 	if (!count1) {
348 		while(count2--)
349 			env->xdf2.rchg[line2++ - 1] = 1;
350 		return 0;
351 	} else if (!count2) {
352 		while(count1--)
353 			env->xdf1.rchg[line1++ - 1] = 1;
354 		return 0;
355 	}
356 
357 	memset(&map, 0, sizeof(map));
358 	if (fill_hashmap(file1, file2, xpp, env, &map,
359 			line1, count1, line2, count2))
360 		return -1;
361 
362 	/* are there any matching lines at all? */
363 	if (!map.has_matches) {
364 		while(count1--)
365 			env->xdf1.rchg[line1++ - 1] = 1;
366 		while(count2--)
367 			env->xdf2.rchg[line2++ - 1] = 1;
368 		xdl_free(map.entries);
369 		return 0;
370 	}
371 
372 	first = find_longest_common_sequence(&map);
373 	if (first)
374 		result = walk_common_sequence(&map, first,
375 			line1, count1, line2, count2);
376 	else
377 		result = fall_back_to_classic_diff(&map,
378 			line1, count1, line2, count2);
379 
380 	xdl_free(map.entries);
381 	return result;
382 }
383 
xdl_do_patience_diff(mmfile_t * file1,mmfile_t * file2,xpparam_t const * xpp,xdfenv_t * env)384 int xdl_do_patience_diff(mmfile_t *file1, mmfile_t *file2,
385 		xpparam_t const *xpp, xdfenv_t *env)
386 {
387 	if (xdl_prepare_env(file1, file2, xpp, env) < 0)
388 		return -1;
389 
390 	/* environment is cleaned up in xdl_diff() */
391 	return patience_diff(file1, file2, xpp, env,
392 			1, env->xdf1.nrec, 1, env->xdf2.nrec);
393 }
394