1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/AST/RecordLayout.h"
10 #include "clang/AST/ASTContext.h"
11 #include "clang/AST/ASTDiagnostic.h"
12 #include "clang/AST/Attr.h"
13 #include "clang/AST/CXXInheritance.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclCXX.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/VTableBuilder.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
23
24 using namespace clang;
25
26 namespace {
27
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40 /// Class - The class for this base info.
41 const CXXRecordDecl *Class;
42
43 /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44 bool IsVirtual;
45
46 /// Bases - Information about the base subobjects.
47 SmallVector<BaseSubobjectInfo*, 4> Bases;
48
49 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50 /// of this base info (if one exists).
51 BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52
53 // FIXME: Document.
54 const BaseSubobjectInfo *Derived;
55 };
56
57 /// Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout {
ExternalLayout__anon0959a1030111::ExternalLayout61 ExternalLayout() : Size(0), Align(0) {}
62
63 /// Overall record size in bits.
64 uint64_t Size;
65
66 /// Overall record alignment in bits.
67 uint64_t Align;
68
69 /// Record field offsets in bits.
70 llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71
72 /// Direct, non-virtual base offsets.
73 llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74
75 /// Virtual base offsets.
76 llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77
78 /// Get the offset of the given field. The external source must provide
79 /// entries for all fields in the record.
getExternalFieldOffset__anon0959a1030111::ExternalLayout80 uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81 assert(FieldOffsets.count(FD) &&
82 "Field does not have an external offset");
83 return FieldOffsets[FD];
84 }
85
getExternalNVBaseOffset__anon0959a1030111::ExternalLayout86 bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87 auto Known = BaseOffsets.find(RD);
88 if (Known == BaseOffsets.end())
89 return false;
90 BaseOffset = Known->second;
91 return true;
92 }
93
getExternalVBaseOffset__anon0959a1030111::ExternalLayout94 bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95 auto Known = VirtualBaseOffsets.find(RD);
96 if (Known == VirtualBaseOffsets.end())
97 return false;
98 BaseOffset = Known->second;
99 return true;
100 }
101 };
102
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap {
106 const ASTContext &Context;
107 uint64_t CharWidth;
108
109 /// Class - The class whose empty entries we're keeping track of.
110 const CXXRecordDecl *Class;
111
112 /// EmptyClassOffsets - A map from offsets to empty record decls.
113 typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115 EmptyClassOffsetsMapTy EmptyClassOffsets;
116
117 /// MaxEmptyClassOffset - The highest offset known to contain an empty
118 /// base subobject.
119 CharUnits MaxEmptyClassOffset;
120
121 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122 /// member subobject that is empty.
123 void ComputeEmptySubobjectSizes();
124
125 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126
127 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128 CharUnits Offset, bool PlacingEmptyBase);
129
130 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131 const CXXRecordDecl *Class, CharUnits Offset,
132 bool PlacingOverlappingField);
133 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
134 bool PlacingOverlappingField);
135
136 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137 /// subobjects beyond the given offset.
AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const138 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139 return Offset <= MaxEmptyClassOffset;
140 }
141
142 CharUnits
getFieldOffset(const ASTRecordLayout & Layout,unsigned FieldNo) const143 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145 assert(FieldOffset % CharWidth == 0 &&
146 "Field offset not at char boundary!");
147
148 return Context.toCharUnitsFromBits(FieldOffset);
149 }
150
151 protected:
152 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153 CharUnits Offset) const;
154
155 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156 CharUnits Offset);
157
158 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159 const CXXRecordDecl *Class,
160 CharUnits Offset) const;
161 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162 CharUnits Offset) const;
163
164 public:
165 /// This holds the size of the largest empty subobject (either a base
166 /// or a member). Will be zero if the record being built doesn't contain
167 /// any empty classes.
168 CharUnits SizeOfLargestEmptySubobject;
169
EmptySubobjectMap(const ASTContext & Context,const CXXRecordDecl * Class)170 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172 ComputeEmptySubobjectSizes();
173 }
174
175 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176 /// at the given offset.
177 /// Returns false if placing the record will result in two components
178 /// (direct or indirect) of the same type having the same offset.
179 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180 CharUnits Offset);
181
182 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183 /// offset.
184 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
185 };
186
ComputeEmptySubobjectSizes()187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188 // Check the bases.
189 for (const CXXBaseSpecifier &Base : Class->bases()) {
190 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
191
192 CharUnits EmptySize;
193 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194 if (BaseDecl->isEmpty()) {
195 // If the class decl is empty, get its size.
196 EmptySize = Layout.getSize();
197 } else {
198 // Otherwise, we get the largest empty subobject for the decl.
199 EmptySize = Layout.getSizeOfLargestEmptySubobject();
200 }
201
202 if (EmptySize > SizeOfLargestEmptySubobject)
203 SizeOfLargestEmptySubobject = EmptySize;
204 }
205
206 // Check the fields.
207 for (const FieldDecl *FD : Class->fields()) {
208 const RecordType *RT =
209 Context.getBaseElementType(FD->getType())->getAs<RecordType>();
210
211 // We only care about record types.
212 if (!RT)
213 continue;
214
215 CharUnits EmptySize;
216 const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218 if (MemberDecl->isEmpty()) {
219 // If the class decl is empty, get its size.
220 EmptySize = Layout.getSize();
221 } else {
222 // Otherwise, we get the largest empty subobject for the decl.
223 EmptySize = Layout.getSizeOfLargestEmptySubobject();
224 }
225
226 if (EmptySize > SizeOfLargestEmptySubobject)
227 SizeOfLargestEmptySubobject = EmptySize;
228 }
229 }
230
231 bool
CanPlaceSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset) const232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233 CharUnits Offset) const {
234 // We only need to check empty bases.
235 if (!RD->isEmpty())
236 return true;
237
238 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239 if (I == EmptyClassOffsets.end())
240 return true;
241
242 const ClassVectorTy &Classes = I->second;
243 if (llvm::find(Classes, RD) == Classes.end())
244 return true;
245
246 // There is already an empty class of the same type at this offset.
247 return false;
248 }
249
AddSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset)250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251 CharUnits Offset) {
252 // We only care about empty bases.
253 if (!RD->isEmpty())
254 return;
255
256 // If we have empty structures inside a union, we can assign both
257 // the same offset. Just avoid pushing them twice in the list.
258 ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259 if (llvm::is_contained(Classes, RD))
260 return;
261
262 Classes.push_back(RD);
263
264 // Update the empty class offset.
265 if (Offset > MaxEmptyClassOffset)
266 MaxEmptyClassOffset = Offset;
267 }
268
269 bool
CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271 CharUnits Offset) {
272 // We don't have to keep looking past the maximum offset that's known to
273 // contain an empty class.
274 if (!AnyEmptySubobjectsBeyondOffset(Offset))
275 return true;
276
277 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278 return false;
279
280 // Traverse all non-virtual bases.
281 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282 for (const BaseSubobjectInfo *Base : Info->Bases) {
283 if (Base->IsVirtual)
284 continue;
285
286 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
287
288 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289 return false;
290 }
291
292 if (Info->PrimaryVirtualBaseInfo) {
293 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
294
295 if (Info == PrimaryVirtualBaseInfo->Derived) {
296 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297 return false;
298 }
299 }
300
301 // Traverse all member variables.
302 unsigned FieldNo = 0;
303 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305 if (I->isBitField())
306 continue;
307
308 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310 return false;
311 }
312
313 return true;
314 }
315
UpdateEmptyBaseSubobjects(const BaseSubobjectInfo * Info,CharUnits Offset,bool PlacingEmptyBase)316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317 CharUnits Offset,
318 bool PlacingEmptyBase) {
319 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320 // We know that the only empty subobjects that can conflict with empty
321 // subobject of non-empty bases, are empty bases that can be placed at
322 // offset zero. Because of this, we only need to keep track of empty base
323 // subobjects with offsets less than the size of the largest empty
324 // subobject for our class.
325 return;
326 }
327
328 AddSubobjectAtOffset(Info->Class, Offset);
329
330 // Traverse all non-virtual bases.
331 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332 for (const BaseSubobjectInfo *Base : Info->Bases) {
333 if (Base->IsVirtual)
334 continue;
335
336 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
338 }
339
340 if (Info->PrimaryVirtualBaseInfo) {
341 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
342
343 if (Info == PrimaryVirtualBaseInfo->Derived)
344 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345 PlacingEmptyBase);
346 }
347
348 // Traverse all member variables.
349 unsigned FieldNo = 0;
350 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352 if (I->isBitField())
353 continue;
354
355 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
357 }
358 }
359
CanPlaceBaseAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361 CharUnits Offset) {
362 // If we know this class doesn't have any empty subobjects we don't need to
363 // bother checking.
364 if (SizeOfLargestEmptySubobject.isZero())
365 return true;
366
367 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368 return false;
369
370 // We are able to place the base at this offset. Make sure to update the
371 // empty base subobject map.
372 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373 return true;
374 }
375
376 bool
CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset) const377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378 const CXXRecordDecl *Class,
379 CharUnits Offset) const {
380 // We don't have to keep looking past the maximum offset that's known to
381 // contain an empty class.
382 if (!AnyEmptySubobjectsBeyondOffset(Offset))
383 return true;
384
385 if (!CanPlaceSubobjectAtOffset(RD, Offset))
386 return false;
387
388 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
389
390 // Traverse all non-virtual bases.
391 for (const CXXBaseSpecifier &Base : RD->bases()) {
392 if (Base.isVirtual())
393 continue;
394
395 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
396
397 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399 return false;
400 }
401
402 if (RD == Class) {
403 // This is the most derived class, traverse virtual bases as well.
404 for (const CXXBaseSpecifier &Base : RD->vbases()) {
405 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
406
407 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409 return false;
410 }
411 }
412
413 // Traverse all member variables.
414 unsigned FieldNo = 0;
415 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416 I != E; ++I, ++FieldNo) {
417 if (I->isBitField())
418 continue;
419
420 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
421
422 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423 return false;
424 }
425
426 return true;
427 }
428
429 bool
CanPlaceFieldSubobjectAtOffset(const FieldDecl * FD,CharUnits Offset) const430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431 CharUnits Offset) const {
432 // We don't have to keep looking past the maximum offset that's known to
433 // contain an empty class.
434 if (!AnyEmptySubobjectsBeyondOffset(Offset))
435 return true;
436
437 QualType T = FD->getType();
438 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
440
441 // If we have an array type we need to look at every element.
442 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443 QualType ElemTy = Context.getBaseElementType(AT);
444 const RecordType *RT = ElemTy->getAs<RecordType>();
445 if (!RT)
446 return true;
447
448 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
450
451 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452 CharUnits ElementOffset = Offset;
453 for (uint64_t I = 0; I != NumElements; ++I) {
454 // We don't have to keep looking past the maximum offset that's known to
455 // contain an empty class.
456 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457 return true;
458
459 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460 return false;
461
462 ElementOffset += Layout.getSize();
463 }
464 }
465
466 return true;
467 }
468
469 bool
CanPlaceFieldAtOffset(const FieldDecl * FD,CharUnits Offset)470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471 CharUnits Offset) {
472 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473 return false;
474
475 // We are able to place the member variable at this offset.
476 // Make sure to update the empty field subobject map.
477 UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
478 return true;
479 }
480
UpdateEmptyFieldSubobjects(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset,bool PlacingOverlappingField)481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482 const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
483 bool PlacingOverlappingField) {
484 // We know that the only empty subobjects that can conflict with empty
485 // field subobjects are subobjects of empty bases and potentially-overlapping
486 // fields that can be placed at offset zero. Because of this, we only need to
487 // keep track of empty field subobjects with offsets less than the size of
488 // the largest empty subobject for our class.
489 //
490 // (Proof: we will only consider placing a subobject at offset zero or at
491 // >= the current dsize. The only cases where the earlier subobject can be
492 // placed beyond the end of dsize is if it's an empty base or a
493 // potentially-overlapping field.)
494 if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
495 return;
496
497 AddSubobjectAtOffset(RD, Offset);
498
499 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
500
501 // Traverse all non-virtual bases.
502 for (const CXXBaseSpecifier &Base : RD->bases()) {
503 if (Base.isVirtual())
504 continue;
505
506 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
507
508 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
509 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
510 PlacingOverlappingField);
511 }
512
513 if (RD == Class) {
514 // This is the most derived class, traverse virtual bases as well.
515 for (const CXXBaseSpecifier &Base : RD->vbases()) {
516 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
517
518 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
519 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
520 PlacingOverlappingField);
521 }
522 }
523
524 // Traverse all member variables.
525 unsigned FieldNo = 0;
526 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
527 I != E; ++I, ++FieldNo) {
528 if (I->isBitField())
529 continue;
530
531 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
532
533 UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
534 }
535 }
536
UpdateEmptyFieldSubobjects(const FieldDecl * FD,CharUnits Offset,bool PlacingOverlappingField)537 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538 const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
539 QualType T = FD->getType();
540 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
541 UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
542 return;
543 }
544
545 // If we have an array type we need to update every element.
546 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
547 QualType ElemTy = Context.getBaseElementType(AT);
548 const RecordType *RT = ElemTy->getAs<RecordType>();
549 if (!RT)
550 return;
551
552 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
553 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
554
555 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
556 CharUnits ElementOffset = Offset;
557
558 for (uint64_t I = 0; I != NumElements; ++I) {
559 // We know that the only empty subobjects that can conflict with empty
560 // field subobjects are subobjects of empty bases that can be placed at
561 // offset zero. Because of this, we only need to keep track of empty field
562 // subobjects with offsets less than the size of the largest empty
563 // subobject for our class.
564 if (!PlacingOverlappingField &&
565 ElementOffset >= SizeOfLargestEmptySubobject)
566 return;
567
568 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
569 PlacingOverlappingField);
570 ElementOffset += Layout.getSize();
571 }
572 }
573 }
574
575 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
576
577 class ItaniumRecordLayoutBuilder {
578 protected:
579 // FIXME: Remove this and make the appropriate fields public.
580 friend class clang::ASTContext;
581
582 const ASTContext &Context;
583
584 EmptySubobjectMap *EmptySubobjects;
585
586 /// Size - The current size of the record layout.
587 uint64_t Size;
588
589 /// Alignment - The current alignment of the record layout.
590 CharUnits Alignment;
591
592 /// The alignment if attribute packed is not used.
593 CharUnits UnpackedAlignment;
594
595 /// \brief The maximum of the alignments of top-level members.
596 CharUnits UnadjustedAlignment;
597
598 SmallVector<uint64_t, 16> FieldOffsets;
599
600 /// Whether the external AST source has provided a layout for this
601 /// record.
602 unsigned UseExternalLayout : 1;
603
604 /// Whether we need to infer alignment, even when we have an
605 /// externally-provided layout.
606 unsigned InferAlignment : 1;
607
608 /// Packed - Whether the record is packed or not.
609 unsigned Packed : 1;
610
611 unsigned IsUnion : 1;
612
613 unsigned IsMac68kAlign : 1;
614
615 unsigned IsMsStruct : 1;
616
617 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
618 /// this contains the number of bits in the last unit that can be used for
619 /// an adjacent bitfield if necessary. The unit in question is usually
620 /// a byte, but larger units are used if IsMsStruct.
621 unsigned char UnfilledBitsInLastUnit;
622 /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
623 /// of the previous field if it was a bitfield.
624 unsigned char LastBitfieldTypeSize;
625
626 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
627 /// #pragma pack.
628 CharUnits MaxFieldAlignment;
629
630 /// DataSize - The data size of the record being laid out.
631 uint64_t DataSize;
632
633 CharUnits NonVirtualSize;
634 CharUnits NonVirtualAlignment;
635
636 /// If we've laid out a field but not included its tail padding in Size yet,
637 /// this is the size up to the end of that field.
638 CharUnits PaddedFieldSize;
639
640 /// PrimaryBase - the primary base class (if one exists) of the class
641 /// we're laying out.
642 const CXXRecordDecl *PrimaryBase;
643
644 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
645 /// out is virtual.
646 bool PrimaryBaseIsVirtual;
647
648 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
649 /// pointer, as opposed to inheriting one from a primary base class.
650 bool HasOwnVFPtr;
651
652 /// the flag of field offset changing due to packed attribute.
653 bool HasPackedField;
654
655 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
656
657 /// Bases - base classes and their offsets in the record.
658 BaseOffsetsMapTy Bases;
659
660 // VBases - virtual base classes and their offsets in the record.
661 ASTRecordLayout::VBaseOffsetsMapTy VBases;
662
663 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
664 /// primary base classes for some other direct or indirect base class.
665 CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
666
667 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
668 /// inheritance graph order. Used for determining the primary base class.
669 const CXXRecordDecl *FirstNearlyEmptyVBase;
670
671 /// VisitedVirtualBases - A set of all the visited virtual bases, used to
672 /// avoid visiting virtual bases more than once.
673 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
674
675 /// Valid if UseExternalLayout is true.
676 ExternalLayout External;
677
ItaniumRecordLayoutBuilder(const ASTContext & Context,EmptySubobjectMap * EmptySubobjects)678 ItaniumRecordLayoutBuilder(const ASTContext &Context,
679 EmptySubobjectMap *EmptySubobjects)
680 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
681 Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
682 UnadjustedAlignment(CharUnits::One()),
683 UseExternalLayout(false), InferAlignment(false), Packed(false),
684 IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
685 UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
686 MaxFieldAlignment(CharUnits::Zero()), DataSize(0),
687 NonVirtualSize(CharUnits::Zero()),
688 NonVirtualAlignment(CharUnits::One()),
689 PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
690 PrimaryBaseIsVirtual(false), HasOwnVFPtr(false),
691 HasPackedField(false), FirstNearlyEmptyVBase(nullptr) {}
692
693 void Layout(const RecordDecl *D);
694 void Layout(const CXXRecordDecl *D);
695 void Layout(const ObjCInterfaceDecl *D);
696
697 void LayoutFields(const RecordDecl *D);
698 void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
699 void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
700 bool FieldPacked, const FieldDecl *D);
701 void LayoutBitField(const FieldDecl *D);
702
getCXXABI() const703 TargetCXXABI getCXXABI() const {
704 return Context.getTargetInfo().getCXXABI();
705 }
706
707 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
708 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
709
710 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
711 BaseSubobjectInfoMapTy;
712
713 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
714 /// of the class we're laying out to their base subobject info.
715 BaseSubobjectInfoMapTy VirtualBaseInfo;
716
717 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
718 /// class we're laying out to their base subobject info.
719 BaseSubobjectInfoMapTy NonVirtualBaseInfo;
720
721 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
722 /// bases of the given class.
723 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
724
725 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
726 /// single class and all of its base classes.
727 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
728 bool IsVirtual,
729 BaseSubobjectInfo *Derived);
730
731 /// DeterminePrimaryBase - Determine the primary base of the given class.
732 void DeterminePrimaryBase(const CXXRecordDecl *RD);
733
734 void SelectPrimaryVBase(const CXXRecordDecl *RD);
735
736 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
737
738 /// LayoutNonVirtualBases - Determines the primary base class (if any) and
739 /// lays it out. Will then proceed to lay out all non-virtual base clasess.
740 void LayoutNonVirtualBases(const CXXRecordDecl *RD);
741
742 /// LayoutNonVirtualBase - Lays out a single non-virtual base.
743 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
744
745 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
746 CharUnits Offset);
747
748 /// LayoutVirtualBases - Lays out all the virtual bases.
749 void LayoutVirtualBases(const CXXRecordDecl *RD,
750 const CXXRecordDecl *MostDerivedClass);
751
752 /// LayoutVirtualBase - Lays out a single virtual base.
753 void LayoutVirtualBase(const BaseSubobjectInfo *Base);
754
755 /// LayoutBase - Will lay out a base and return the offset where it was
756 /// placed, in chars.
757 CharUnits LayoutBase(const BaseSubobjectInfo *Base);
758
759 /// InitializeLayout - Initialize record layout for the given record decl.
760 void InitializeLayout(const Decl *D);
761
762 /// FinishLayout - Finalize record layout. Adjust record size based on the
763 /// alignment.
764 void FinishLayout(const NamedDecl *D);
765
766 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
UpdateAlignment(CharUnits NewAlignment)767 void UpdateAlignment(CharUnits NewAlignment) {
768 UpdateAlignment(NewAlignment, NewAlignment);
769 }
770
771 /// Retrieve the externally-supplied field offset for the given
772 /// field.
773 ///
774 /// \param Field The field whose offset is being queried.
775 /// \param ComputedOffset The offset that we've computed for this field.
776 uint64_t updateExternalFieldOffset(const FieldDecl *Field,
777 uint64_t ComputedOffset);
778
779 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
780 uint64_t UnpackedOffset, unsigned UnpackedAlign,
781 bool isPacked, const FieldDecl *D);
782
783 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
784
getSize() const785 CharUnits getSize() const {
786 assert(Size % Context.getCharWidth() == 0);
787 return Context.toCharUnitsFromBits(Size);
788 }
getSizeInBits() const789 uint64_t getSizeInBits() const { return Size; }
790
setSize(CharUnits NewSize)791 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
setSize(uint64_t NewSize)792 void setSize(uint64_t NewSize) { Size = NewSize; }
793
getAligment() const794 CharUnits getAligment() const { return Alignment; }
795
getDataSize() const796 CharUnits getDataSize() const {
797 assert(DataSize % Context.getCharWidth() == 0);
798 return Context.toCharUnitsFromBits(DataSize);
799 }
getDataSizeInBits() const800 uint64_t getDataSizeInBits() const { return DataSize; }
801
setDataSize(CharUnits NewSize)802 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
setDataSize(uint64_t NewSize)803 void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
804
805 ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
806 void operator=(const ItaniumRecordLayoutBuilder &) = delete;
807 };
808 } // end anonymous namespace
809
SelectPrimaryVBase(const CXXRecordDecl * RD)810 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
811 for (const auto &I : RD->bases()) {
812 assert(!I.getType()->isDependentType() &&
813 "Cannot layout class with dependent bases.");
814
815 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
816
817 // Check if this is a nearly empty virtual base.
818 if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
819 // If it's not an indirect primary base, then we've found our primary
820 // base.
821 if (!IndirectPrimaryBases.count(Base)) {
822 PrimaryBase = Base;
823 PrimaryBaseIsVirtual = true;
824 return;
825 }
826
827 // Is this the first nearly empty virtual base?
828 if (!FirstNearlyEmptyVBase)
829 FirstNearlyEmptyVBase = Base;
830 }
831
832 SelectPrimaryVBase(Base);
833 if (PrimaryBase)
834 return;
835 }
836 }
837
838 /// DeterminePrimaryBase - Determine the primary base of the given class.
DeterminePrimaryBase(const CXXRecordDecl * RD)839 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
840 // If the class isn't dynamic, it won't have a primary base.
841 if (!RD->isDynamicClass())
842 return;
843
844 // Compute all the primary virtual bases for all of our direct and
845 // indirect bases, and record all their primary virtual base classes.
846 RD->getIndirectPrimaryBases(IndirectPrimaryBases);
847
848 // If the record has a dynamic base class, attempt to choose a primary base
849 // class. It is the first (in direct base class order) non-virtual dynamic
850 // base class, if one exists.
851 for (const auto &I : RD->bases()) {
852 // Ignore virtual bases.
853 if (I.isVirtual())
854 continue;
855
856 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
857
858 if (Base->isDynamicClass()) {
859 // We found it.
860 PrimaryBase = Base;
861 PrimaryBaseIsVirtual = false;
862 return;
863 }
864 }
865
866 // Under the Itanium ABI, if there is no non-virtual primary base class,
867 // try to compute the primary virtual base. The primary virtual base is
868 // the first nearly empty virtual base that is not an indirect primary
869 // virtual base class, if one exists.
870 if (RD->getNumVBases() != 0) {
871 SelectPrimaryVBase(RD);
872 if (PrimaryBase)
873 return;
874 }
875
876 // Otherwise, it is the first indirect primary base class, if one exists.
877 if (FirstNearlyEmptyVBase) {
878 PrimaryBase = FirstNearlyEmptyVBase;
879 PrimaryBaseIsVirtual = true;
880 return;
881 }
882
883 assert(!PrimaryBase && "Should not get here with a primary base!");
884 }
885
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD,bool IsVirtual,BaseSubobjectInfo * Derived)886 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
887 const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
888 BaseSubobjectInfo *Info;
889
890 if (IsVirtual) {
891 // Check if we already have info about this virtual base.
892 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
893 if (InfoSlot) {
894 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
895 return InfoSlot;
896 }
897
898 // We don't, create it.
899 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
900 Info = InfoSlot;
901 } else {
902 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
903 }
904
905 Info->Class = RD;
906 Info->IsVirtual = IsVirtual;
907 Info->Derived = nullptr;
908 Info->PrimaryVirtualBaseInfo = nullptr;
909
910 const CXXRecordDecl *PrimaryVirtualBase = nullptr;
911 BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
912
913 // Check if this base has a primary virtual base.
914 if (RD->getNumVBases()) {
915 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
916 if (Layout.isPrimaryBaseVirtual()) {
917 // This base does have a primary virtual base.
918 PrimaryVirtualBase = Layout.getPrimaryBase();
919 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
920
921 // Now check if we have base subobject info about this primary base.
922 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
923
924 if (PrimaryVirtualBaseInfo) {
925 if (PrimaryVirtualBaseInfo->Derived) {
926 // We did have info about this primary base, and it turns out that it
927 // has already been claimed as a primary virtual base for another
928 // base.
929 PrimaryVirtualBase = nullptr;
930 } else {
931 // We can claim this base as our primary base.
932 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
933 PrimaryVirtualBaseInfo->Derived = Info;
934 }
935 }
936 }
937 }
938
939 // Now go through all direct bases.
940 for (const auto &I : RD->bases()) {
941 bool IsVirtual = I.isVirtual();
942
943 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
944
945 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
946 }
947
948 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
949 // Traversing the bases must have created the base info for our primary
950 // virtual base.
951 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
952 assert(PrimaryVirtualBaseInfo &&
953 "Did not create a primary virtual base!");
954
955 // Claim the primary virtual base as our primary virtual base.
956 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
957 PrimaryVirtualBaseInfo->Derived = Info;
958 }
959
960 return Info;
961 }
962
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD)963 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
964 const CXXRecordDecl *RD) {
965 for (const auto &I : RD->bases()) {
966 bool IsVirtual = I.isVirtual();
967
968 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
969
970 // Compute the base subobject info for this base.
971 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
972 nullptr);
973
974 if (IsVirtual) {
975 // ComputeBaseInfo has already added this base for us.
976 assert(VirtualBaseInfo.count(BaseDecl) &&
977 "Did not add virtual base!");
978 } else {
979 // Add the base info to the map of non-virtual bases.
980 assert(!NonVirtualBaseInfo.count(BaseDecl) &&
981 "Non-virtual base already exists!");
982 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
983 }
984 }
985 }
986
EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign)987 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
988 CharUnits UnpackedBaseAlign) {
989 CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
990
991 // The maximum field alignment overrides base align.
992 if (!MaxFieldAlignment.isZero()) {
993 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
994 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
995 }
996
997 // Round up the current record size to pointer alignment.
998 setSize(getSize().alignTo(BaseAlign));
999
1000 // Update the alignment.
1001 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1002 }
1003
LayoutNonVirtualBases(const CXXRecordDecl * RD)1004 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1005 const CXXRecordDecl *RD) {
1006 // Then, determine the primary base class.
1007 DeterminePrimaryBase(RD);
1008
1009 // Compute base subobject info.
1010 ComputeBaseSubobjectInfo(RD);
1011
1012 // If we have a primary base class, lay it out.
1013 if (PrimaryBase) {
1014 if (PrimaryBaseIsVirtual) {
1015 // If the primary virtual base was a primary virtual base of some other
1016 // base class we'll have to steal it.
1017 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1018 PrimaryBaseInfo->Derived = nullptr;
1019
1020 // We have a virtual primary base, insert it as an indirect primary base.
1021 IndirectPrimaryBases.insert(PrimaryBase);
1022
1023 assert(!VisitedVirtualBases.count(PrimaryBase) &&
1024 "vbase already visited!");
1025 VisitedVirtualBases.insert(PrimaryBase);
1026
1027 LayoutVirtualBase(PrimaryBaseInfo);
1028 } else {
1029 BaseSubobjectInfo *PrimaryBaseInfo =
1030 NonVirtualBaseInfo.lookup(PrimaryBase);
1031 assert(PrimaryBaseInfo &&
1032 "Did not find base info for non-virtual primary base!");
1033
1034 LayoutNonVirtualBase(PrimaryBaseInfo);
1035 }
1036
1037 // If this class needs a vtable/vf-table and didn't get one from a
1038 // primary base, add it in now.
1039 } else if (RD->isDynamicClass()) {
1040 assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1041 CharUnits PtrWidth =
1042 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1043 CharUnits PtrAlign =
1044 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1045 EnsureVTablePointerAlignment(PtrAlign);
1046 HasOwnVFPtr = true;
1047 setSize(getSize() + PtrWidth);
1048 setDataSize(getSize());
1049 }
1050
1051 // Now lay out the non-virtual bases.
1052 for (const auto &I : RD->bases()) {
1053
1054 // Ignore virtual bases.
1055 if (I.isVirtual())
1056 continue;
1057
1058 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1059
1060 // Skip the primary base, because we've already laid it out. The
1061 // !PrimaryBaseIsVirtual check is required because we might have a
1062 // non-virtual base of the same type as a primary virtual base.
1063 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1064 continue;
1065
1066 // Lay out the base.
1067 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1068 assert(BaseInfo && "Did not find base info for non-virtual base!");
1069
1070 LayoutNonVirtualBase(BaseInfo);
1071 }
1072 }
1073
LayoutNonVirtualBase(const BaseSubobjectInfo * Base)1074 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1075 const BaseSubobjectInfo *Base) {
1076 // Layout the base.
1077 CharUnits Offset = LayoutBase(Base);
1078
1079 // Add its base class offset.
1080 assert(!Bases.count(Base->Class) && "base offset already exists!");
1081 Bases.insert(std::make_pair(Base->Class, Offset));
1082
1083 AddPrimaryVirtualBaseOffsets(Base, Offset);
1084 }
1085
AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo * Info,CharUnits Offset)1086 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1087 const BaseSubobjectInfo *Info, CharUnits Offset) {
1088 // This base isn't interesting, it has no virtual bases.
1089 if (!Info->Class->getNumVBases())
1090 return;
1091
1092 // First, check if we have a virtual primary base to add offsets for.
1093 if (Info->PrimaryVirtualBaseInfo) {
1094 assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1095 "Primary virtual base is not virtual!");
1096 if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1097 // Add the offset.
1098 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1099 "primary vbase offset already exists!");
1100 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1101 ASTRecordLayout::VBaseInfo(Offset, false)));
1102
1103 // Traverse the primary virtual base.
1104 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1105 }
1106 }
1107
1108 // Now go through all direct non-virtual bases.
1109 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1110 for (const BaseSubobjectInfo *Base : Info->Bases) {
1111 if (Base->IsVirtual)
1112 continue;
1113
1114 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1115 AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1116 }
1117 }
1118
LayoutVirtualBases(const CXXRecordDecl * RD,const CXXRecordDecl * MostDerivedClass)1119 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1120 const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1121 const CXXRecordDecl *PrimaryBase;
1122 bool PrimaryBaseIsVirtual;
1123
1124 if (MostDerivedClass == RD) {
1125 PrimaryBase = this->PrimaryBase;
1126 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1127 } else {
1128 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1129 PrimaryBase = Layout.getPrimaryBase();
1130 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1131 }
1132
1133 for (const CXXBaseSpecifier &Base : RD->bases()) {
1134 assert(!Base.getType()->isDependentType() &&
1135 "Cannot layout class with dependent bases.");
1136
1137 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1138
1139 if (Base.isVirtual()) {
1140 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1141 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1142
1143 // Only lay out the virtual base if it's not an indirect primary base.
1144 if (!IndirectPrimaryBase) {
1145 // Only visit virtual bases once.
1146 if (!VisitedVirtualBases.insert(BaseDecl).second)
1147 continue;
1148
1149 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1150 assert(BaseInfo && "Did not find virtual base info!");
1151 LayoutVirtualBase(BaseInfo);
1152 }
1153 }
1154 }
1155
1156 if (!BaseDecl->getNumVBases()) {
1157 // This base isn't interesting since it doesn't have any virtual bases.
1158 continue;
1159 }
1160
1161 LayoutVirtualBases(BaseDecl, MostDerivedClass);
1162 }
1163 }
1164
LayoutVirtualBase(const BaseSubobjectInfo * Base)1165 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1166 const BaseSubobjectInfo *Base) {
1167 assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1168
1169 // Layout the base.
1170 CharUnits Offset = LayoutBase(Base);
1171
1172 // Add its base class offset.
1173 assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1174 VBases.insert(std::make_pair(Base->Class,
1175 ASTRecordLayout::VBaseInfo(Offset, false)));
1176
1177 AddPrimaryVirtualBaseOffsets(Base, Offset);
1178 }
1179
1180 CharUnits
LayoutBase(const BaseSubobjectInfo * Base)1181 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1182 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1183
1184
1185 CharUnits Offset;
1186
1187 // Query the external layout to see if it provides an offset.
1188 bool HasExternalLayout = false;
1189 if (UseExternalLayout) {
1190 if (Base->IsVirtual)
1191 HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1192 else
1193 HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1194 }
1195
1196 // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1197 // Per GCC's documentation, it only applies to non-static data members.
1198 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1199 CharUnits BaseAlign =
1200 (Packed && ((Context.getLangOpts().getClangABICompat() <=
1201 LangOptions::ClangABI::Ver6) ||
1202 Context.getTargetInfo().getTriple().isPS4()))
1203 ? CharUnits::One()
1204 : UnpackedBaseAlign;
1205
1206 // If we have an empty base class, try to place it at offset 0.
1207 if (Base->Class->isEmpty() &&
1208 (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1209 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1210 setSize(std::max(getSize(), Layout.getSize()));
1211 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1212
1213 return CharUnits::Zero();
1214 }
1215
1216 // The maximum field alignment overrides base align.
1217 if (!MaxFieldAlignment.isZero()) {
1218 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1219 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1220 }
1221
1222 if (!HasExternalLayout) {
1223 // Round up the current record size to the base's alignment boundary.
1224 Offset = getDataSize().alignTo(BaseAlign);
1225
1226 // Try to place the base.
1227 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1228 Offset += BaseAlign;
1229 } else {
1230 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1231 (void)Allowed;
1232 assert(Allowed && "Base subobject externally placed at overlapping offset");
1233
1234 if (InferAlignment && Offset < getDataSize().alignTo(BaseAlign)) {
1235 // The externally-supplied base offset is before the base offset we
1236 // computed. Assume that the structure is packed.
1237 Alignment = CharUnits::One();
1238 InferAlignment = false;
1239 }
1240 }
1241
1242 if (!Base->Class->isEmpty()) {
1243 // Update the data size.
1244 setDataSize(Offset + Layout.getNonVirtualSize());
1245
1246 setSize(std::max(getSize(), getDataSize()));
1247 } else
1248 setSize(std::max(getSize(), Offset + Layout.getSize()));
1249
1250 // Remember max struct/class alignment.
1251 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1252
1253 return Offset;
1254 }
1255
InitializeLayout(const Decl * D)1256 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1257 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1258 IsUnion = RD->isUnion();
1259 IsMsStruct = RD->isMsStruct(Context);
1260 }
1261
1262 Packed = D->hasAttr<PackedAttr>();
1263
1264 // Honor the default struct packing maximum alignment flag.
1265 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1266 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1267 }
1268
1269 // mac68k alignment supersedes maximum field alignment and attribute aligned,
1270 // and forces all structures to have 2-byte alignment. The IBM docs on it
1271 // allude to additional (more complicated) semantics, especially with regard
1272 // to bit-fields, but gcc appears not to follow that.
1273 if (D->hasAttr<AlignMac68kAttr>()) {
1274 IsMac68kAlign = true;
1275 MaxFieldAlignment = CharUnits::fromQuantity(2);
1276 Alignment = CharUnits::fromQuantity(2);
1277 } else {
1278 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1279 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1280
1281 if (unsigned MaxAlign = D->getMaxAlignment())
1282 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1283 }
1284
1285 // If there is an external AST source, ask it for the various offsets.
1286 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1287 if (ExternalASTSource *Source = Context.getExternalSource()) {
1288 UseExternalLayout = Source->layoutRecordType(
1289 RD, External.Size, External.Align, External.FieldOffsets,
1290 External.BaseOffsets, External.VirtualBaseOffsets);
1291
1292 // Update based on external alignment.
1293 if (UseExternalLayout) {
1294 if (External.Align > 0) {
1295 Alignment = Context.toCharUnitsFromBits(External.Align);
1296 } else {
1297 // The external source didn't have alignment information; infer it.
1298 InferAlignment = true;
1299 }
1300 }
1301 }
1302 }
1303
Layout(const RecordDecl * D)1304 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1305 InitializeLayout(D);
1306 LayoutFields(D);
1307
1308 // Finally, round the size of the total struct up to the alignment of the
1309 // struct itself.
1310 FinishLayout(D);
1311 }
1312
Layout(const CXXRecordDecl * RD)1313 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1314 InitializeLayout(RD);
1315
1316 // Lay out the vtable and the non-virtual bases.
1317 LayoutNonVirtualBases(RD);
1318
1319 LayoutFields(RD);
1320
1321 NonVirtualSize = Context.toCharUnitsFromBits(
1322 llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1323 NonVirtualAlignment = Alignment;
1324
1325 // Lay out the virtual bases and add the primary virtual base offsets.
1326 LayoutVirtualBases(RD, RD);
1327
1328 // Finally, round the size of the total struct up to the alignment
1329 // of the struct itself.
1330 FinishLayout(RD);
1331
1332 #ifndef NDEBUG
1333 // Check that we have base offsets for all bases.
1334 for (const CXXBaseSpecifier &Base : RD->bases()) {
1335 if (Base.isVirtual())
1336 continue;
1337
1338 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1339
1340 assert(Bases.count(BaseDecl) && "Did not find base offset!");
1341 }
1342
1343 // And all virtual bases.
1344 for (const CXXBaseSpecifier &Base : RD->vbases()) {
1345 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1346
1347 assert(VBases.count(BaseDecl) && "Did not find base offset!");
1348 }
1349 #endif
1350 }
1351
Layout(const ObjCInterfaceDecl * D)1352 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1353 if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1354 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1355
1356 UpdateAlignment(SL.getAlignment());
1357
1358 // We start laying out ivars not at the end of the superclass
1359 // structure, but at the next byte following the last field.
1360 setDataSize(SL.getDataSize());
1361 setSize(getDataSize());
1362 }
1363
1364 InitializeLayout(D);
1365 // Layout each ivar sequentially.
1366 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1367 IVD = IVD->getNextIvar())
1368 LayoutField(IVD, false);
1369
1370 // Finally, round the size of the total struct up to the alignment of the
1371 // struct itself.
1372 FinishLayout(D);
1373 }
1374
LayoutFields(const RecordDecl * D)1375 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1376 // Layout each field, for now, just sequentially, respecting alignment. In
1377 // the future, this will need to be tweakable by targets.
1378 bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1379 bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1380 for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1381 auto Next(I);
1382 ++Next;
1383 LayoutField(*I,
1384 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1385 }
1386 }
1387
1388 // Rounds the specified size to have it a multiple of the char size.
1389 static uint64_t
roundUpSizeToCharAlignment(uint64_t Size,const ASTContext & Context)1390 roundUpSizeToCharAlignment(uint64_t Size,
1391 const ASTContext &Context) {
1392 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1393 return llvm::alignTo(Size, CharAlignment);
1394 }
1395
LayoutWideBitField(uint64_t FieldSize,uint64_t TypeSize,bool FieldPacked,const FieldDecl * D)1396 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1397 uint64_t TypeSize,
1398 bool FieldPacked,
1399 const FieldDecl *D) {
1400 assert(Context.getLangOpts().CPlusPlus &&
1401 "Can only have wide bit-fields in C++!");
1402
1403 // Itanium C++ ABI 2.4:
1404 // If sizeof(T)*8 < n, let T' be the largest integral POD type with
1405 // sizeof(T')*8 <= n.
1406
1407 QualType IntegralPODTypes[] = {
1408 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1409 Context.UnsignedLongTy, Context.UnsignedLongLongTy
1410 };
1411
1412 QualType Type;
1413 for (const QualType &QT : IntegralPODTypes) {
1414 uint64_t Size = Context.getTypeSize(QT);
1415
1416 if (Size > FieldSize)
1417 break;
1418
1419 Type = QT;
1420 }
1421 assert(!Type.isNull() && "Did not find a type!");
1422
1423 CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1424
1425 // We're not going to use any of the unfilled bits in the last byte.
1426 UnfilledBitsInLastUnit = 0;
1427 LastBitfieldTypeSize = 0;
1428
1429 uint64_t FieldOffset;
1430 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1431
1432 if (IsUnion) {
1433 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1434 Context);
1435 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1436 FieldOffset = 0;
1437 } else {
1438 // The bitfield is allocated starting at the next offset aligned
1439 // appropriately for T', with length n bits.
1440 FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1441
1442 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1443
1444 setDataSize(
1445 llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1446 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1447 }
1448
1449 // Place this field at the current location.
1450 FieldOffsets.push_back(FieldOffset);
1451
1452 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1453 Context.toBits(TypeAlign), FieldPacked, D);
1454
1455 // Update the size.
1456 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1457
1458 // Remember max struct/class alignment.
1459 UpdateAlignment(TypeAlign);
1460 }
1461
LayoutBitField(const FieldDecl * D)1462 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1463 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1464 uint64_t FieldSize = D->getBitWidthValue(Context);
1465 TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1466 uint64_t TypeSize = FieldInfo.Width;
1467 unsigned FieldAlign = FieldInfo.Align;
1468
1469 // UnfilledBitsInLastUnit is the difference between the end of the
1470 // last allocated bitfield (i.e. the first bit offset available for
1471 // bitfields) and the end of the current data size in bits (i.e. the
1472 // first bit offset available for non-bitfields). The current data
1473 // size in bits is always a multiple of the char size; additionally,
1474 // for ms_struct records it's also a multiple of the
1475 // LastBitfieldTypeSize (if set).
1476
1477 // The struct-layout algorithm is dictated by the platform ABI,
1478 // which in principle could use almost any rules it likes. In
1479 // practice, UNIXy targets tend to inherit the algorithm described
1480 // in the System V generic ABI. The basic bitfield layout rule in
1481 // System V is to place bitfields at the next available bit offset
1482 // where the entire bitfield would fit in an aligned storage unit of
1483 // the declared type; it's okay if an earlier or later non-bitfield
1484 // is allocated in the same storage unit. However, some targets
1485 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1486 // require this storage unit to be aligned, and therefore always put
1487 // the bitfield at the next available bit offset.
1488
1489 // ms_struct basically requests a complete replacement of the
1490 // platform ABI's struct-layout algorithm, with the high-level goal
1491 // of duplicating MSVC's layout. For non-bitfields, this follows
1492 // the standard algorithm. The basic bitfield layout rule is to
1493 // allocate an entire unit of the bitfield's declared type
1494 // (e.g. 'unsigned long'), then parcel it up among successive
1495 // bitfields whose declared types have the same size, making a new
1496 // unit as soon as the last can no longer store the whole value.
1497 // Since it completely replaces the platform ABI's algorithm,
1498 // settings like !useBitFieldTypeAlignment() do not apply.
1499
1500 // A zero-width bitfield forces the use of a new storage unit for
1501 // later bitfields. In general, this occurs by rounding up the
1502 // current size of the struct as if the algorithm were about to
1503 // place a non-bitfield of the field's formal type. Usually this
1504 // does not change the alignment of the struct itself, but it does
1505 // on some targets (those that useZeroLengthBitfieldAlignment(),
1506 // e.g. ARM). In ms_struct layout, zero-width bitfields are
1507 // ignored unless they follow a non-zero-width bitfield.
1508
1509 // A field alignment restriction (e.g. from #pragma pack) or
1510 // specification (e.g. from __attribute__((aligned))) changes the
1511 // formal alignment of the field. For System V, this alters the
1512 // required alignment of the notional storage unit that must contain
1513 // the bitfield. For ms_struct, this only affects the placement of
1514 // new storage units. In both cases, the effect of #pragma pack is
1515 // ignored on zero-width bitfields.
1516
1517 // On System V, a packed field (e.g. from #pragma pack or
1518 // __attribute__((packed))) always uses the next available bit
1519 // offset.
1520
1521 // In an ms_struct struct, the alignment of a fundamental type is
1522 // always equal to its size. This is necessary in order to mimic
1523 // the i386 alignment rules on targets which might not fully align
1524 // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1525
1526 // First, some simple bookkeeping to perform for ms_struct structs.
1527 if (IsMsStruct) {
1528 // The field alignment for integer types is always the size.
1529 FieldAlign = TypeSize;
1530
1531 // If the previous field was not a bitfield, or was a bitfield
1532 // with a different storage unit size, or if this field doesn't fit into
1533 // the current storage unit, we're done with that storage unit.
1534 if (LastBitfieldTypeSize != TypeSize ||
1535 UnfilledBitsInLastUnit < FieldSize) {
1536 // Also, ignore zero-length bitfields after non-bitfields.
1537 if (!LastBitfieldTypeSize && !FieldSize)
1538 FieldAlign = 1;
1539
1540 UnfilledBitsInLastUnit = 0;
1541 LastBitfieldTypeSize = 0;
1542 }
1543 }
1544
1545 // If the field is wider than its declared type, it follows
1546 // different rules in all cases.
1547 if (FieldSize > TypeSize) {
1548 LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
1549 return;
1550 }
1551
1552 // Compute the next available bit offset.
1553 uint64_t FieldOffset =
1554 IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1555
1556 // Handle targets that don't honor bitfield type alignment.
1557 if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1558 // Some such targets do honor it on zero-width bitfields.
1559 if (FieldSize == 0 &&
1560 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1561 // The alignment to round up to is the max of the field's natural
1562 // alignment and a target-specific fixed value (sometimes zero).
1563 unsigned ZeroLengthBitfieldBoundary =
1564 Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1565 FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1566
1567 // If that doesn't apply, just ignore the field alignment.
1568 } else {
1569 FieldAlign = 1;
1570 }
1571 }
1572
1573 // Remember the alignment we would have used if the field were not packed.
1574 unsigned UnpackedFieldAlign = FieldAlign;
1575
1576 // Ignore the field alignment if the field is packed unless it has zero-size.
1577 if (!IsMsStruct && FieldPacked && FieldSize != 0)
1578 FieldAlign = 1;
1579
1580 // But, if there's an 'aligned' attribute on the field, honor that.
1581 unsigned ExplicitFieldAlign = D->getMaxAlignment();
1582 if (ExplicitFieldAlign) {
1583 FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1584 UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1585 }
1586
1587 // But, if there's a #pragma pack in play, that takes precedent over
1588 // even the 'aligned' attribute, for non-zero-width bitfields.
1589 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1590 if (!MaxFieldAlignment.isZero() && FieldSize) {
1591 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1592 if (FieldPacked)
1593 FieldAlign = UnpackedFieldAlign;
1594 else
1595 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1596 }
1597
1598 // But, ms_struct just ignores all of that in unions, even explicit
1599 // alignment attributes.
1600 if (IsMsStruct && IsUnion) {
1601 FieldAlign = UnpackedFieldAlign = 1;
1602 }
1603
1604 // For purposes of diagnostics, we're going to simultaneously
1605 // compute the field offsets that we would have used if we weren't
1606 // adding any alignment padding or if the field weren't packed.
1607 uint64_t UnpaddedFieldOffset = FieldOffset;
1608 uint64_t UnpackedFieldOffset = FieldOffset;
1609
1610 // Check if we need to add padding to fit the bitfield within an
1611 // allocation unit with the right size and alignment. The rules are
1612 // somewhat different here for ms_struct structs.
1613 if (IsMsStruct) {
1614 // If it's not a zero-width bitfield, and we can fit the bitfield
1615 // into the active storage unit (and we haven't already decided to
1616 // start a new storage unit), just do so, regardless of any other
1617 // other consideration. Otherwise, round up to the right alignment.
1618 if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1619 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1620 UnpackedFieldOffset =
1621 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1622 UnfilledBitsInLastUnit = 0;
1623 }
1624
1625 } else {
1626 // #pragma pack, with any value, suppresses the insertion of padding.
1627 bool AllowPadding = MaxFieldAlignment.isZero();
1628
1629 // Compute the real offset.
1630 if (FieldSize == 0 ||
1631 (AllowPadding &&
1632 (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
1633 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1634 } else if (ExplicitFieldAlign &&
1635 (MaxFieldAlignmentInBits == 0 ||
1636 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1637 Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1638 // TODO: figure it out what needs to be done on targets that don't honor
1639 // bit-field type alignment like ARM APCS ABI.
1640 FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1641 }
1642
1643 // Repeat the computation for diagnostic purposes.
1644 if (FieldSize == 0 ||
1645 (AllowPadding &&
1646 (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
1647 UnpackedFieldOffset =
1648 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1649 else if (ExplicitFieldAlign &&
1650 (MaxFieldAlignmentInBits == 0 ||
1651 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1652 Context.getTargetInfo().useExplicitBitFieldAlignment())
1653 UnpackedFieldOffset =
1654 llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1655 }
1656
1657 // If we're using external layout, give the external layout a chance
1658 // to override this information.
1659 if (UseExternalLayout)
1660 FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1661
1662 // Okay, place the bitfield at the calculated offset.
1663 FieldOffsets.push_back(FieldOffset);
1664
1665 // Bookkeeping:
1666
1667 // Anonymous members don't affect the overall record alignment,
1668 // except on targets where they do.
1669 if (!IsMsStruct &&
1670 !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1671 !D->getIdentifier())
1672 FieldAlign = UnpackedFieldAlign = 1;
1673
1674 // Diagnose differences in layout due to padding or packing.
1675 if (!UseExternalLayout)
1676 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1677 UnpackedFieldAlign, FieldPacked, D);
1678
1679 // Update DataSize to include the last byte containing (part of) the bitfield.
1680
1681 // For unions, this is just a max operation, as usual.
1682 if (IsUnion) {
1683 // For ms_struct, allocate the entire storage unit --- unless this
1684 // is a zero-width bitfield, in which case just use a size of 1.
1685 uint64_t RoundedFieldSize;
1686 if (IsMsStruct) {
1687 RoundedFieldSize =
1688 (FieldSize ? TypeSize : Context.getTargetInfo().getCharWidth());
1689
1690 // Otherwise, allocate just the number of bytes required to store
1691 // the bitfield.
1692 } else {
1693 RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1694 }
1695 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1696
1697 // For non-zero-width bitfields in ms_struct structs, allocate a new
1698 // storage unit if necessary.
1699 } else if (IsMsStruct && FieldSize) {
1700 // We should have cleared UnfilledBitsInLastUnit in every case
1701 // where we changed storage units.
1702 if (!UnfilledBitsInLastUnit) {
1703 setDataSize(FieldOffset + TypeSize);
1704 UnfilledBitsInLastUnit = TypeSize;
1705 }
1706 UnfilledBitsInLastUnit -= FieldSize;
1707 LastBitfieldTypeSize = TypeSize;
1708
1709 // Otherwise, bump the data size up to include the bitfield,
1710 // including padding up to char alignment, and then remember how
1711 // bits we didn't use.
1712 } else {
1713 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1714 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1715 setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1716 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1717
1718 // The only time we can get here for an ms_struct is if this is a
1719 // zero-width bitfield, which doesn't count as anything for the
1720 // purposes of unfilled bits.
1721 LastBitfieldTypeSize = 0;
1722 }
1723
1724 // Update the size.
1725 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1726
1727 // Remember max struct/class alignment.
1728 UnadjustedAlignment =
1729 std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1730 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1731 Context.toCharUnitsFromBits(UnpackedFieldAlign));
1732 }
1733
LayoutField(const FieldDecl * D,bool InsertExtraPadding)1734 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1735 bool InsertExtraPadding) {
1736 if (D->isBitField()) {
1737 LayoutBitField(D);
1738 return;
1739 }
1740
1741 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1742
1743 // Reset the unfilled bits.
1744 UnfilledBitsInLastUnit = 0;
1745 LastBitfieldTypeSize = 0;
1746
1747 auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1748 bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
1749 bool IsOverlappingEmptyField = PotentiallyOverlapping && FieldClass->isEmpty();
1750 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1751
1752 CharUnits FieldOffset = (IsUnion || IsOverlappingEmptyField)
1753 ? CharUnits::Zero()
1754 : getDataSize();
1755 CharUnits FieldSize;
1756 CharUnits FieldAlign;
1757 // The amount of this class's dsize occupied by the field.
1758 // This is equal to FieldSize unless we're permitted to pack
1759 // into the field's tail padding.
1760 CharUnits EffectiveFieldSize;
1761
1762 if (D->getType()->isIncompleteArrayType()) {
1763 // This is a flexible array member; we can't directly
1764 // query getTypeInfo about these, so we figure it out here.
1765 // Flexible array members don't have any size, but they
1766 // have to be aligned appropriately for their element type.
1767 EffectiveFieldSize = FieldSize = CharUnits::Zero();
1768 const ArrayType* ATy = Context.getAsArrayType(D->getType());
1769 FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
1770 } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1771 const TargetInfo &TI = Context.getTargetInfo();
1772 unsigned AS =
1773 Context.getTargetAddressSpace(RT->getPointeeType().getAddressSpace());
1774 bool IsCHERICap =
1775 RT->isCHERICapabilityType(Context) || TI.areAllPointersCapabilities();
1776 EffectiveFieldSize = FieldSize = Context.toCharUnitsFromBits(
1777 IsCHERICap ? TI.getCHERICapabilityWidth() : TI.getPointerWidth(AS));
1778 FieldAlign = Context.toCharUnitsFromBits(
1779 IsCHERICap ? TI.getCHERICapabilityAlign() : TI.getPointerAlign(AS));
1780 } else {
1781 std::pair<CharUnits, CharUnits> FieldInfo =
1782 Context.getTypeInfoInChars(D->getType());
1783 EffectiveFieldSize = FieldSize = FieldInfo.first;
1784 FieldAlign = FieldInfo.second;
1785
1786 // A potentially-overlapping field occupies its dsize or nvsize, whichever
1787 // is larger.
1788 if (PotentiallyOverlapping) {
1789 const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1790 EffectiveFieldSize =
1791 std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1792 }
1793
1794 if (IsMsStruct) {
1795 // If MS bitfield layout is required, figure out what type is being
1796 // laid out and align the field to the width of that type.
1797
1798 // Resolve all typedefs down to their base type and round up the field
1799 // alignment if necessary.
1800 QualType T = Context.getBaseElementType(D->getType());
1801 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1802 CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1803
1804 if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1805 assert(
1806 !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1807 "Non PowerOf2 size in MSVC mode");
1808 // Base types with sizes that aren't a power of two don't work
1809 // with the layout rules for MS structs. This isn't an issue in
1810 // MSVC itself since there are no such base data types there.
1811 // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1812 // Any structs involving that data type obviously can't be ABI
1813 // compatible with MSVC regardless of how it is laid out.
1814
1815 // Since ms_struct can be mass enabled (via a pragma or via the
1816 // -mms-bitfields command line parameter), this can trigger for
1817 // structs that don't actually need MSVC compatibility, so we
1818 // need to be able to sidestep the ms_struct layout for these types.
1819
1820 // Since the combination of -mms-bitfields together with structs
1821 // like max_align_t (which contains a long double) for mingw is
1822 // quite comon (and GCC handles it silently), just handle it
1823 // silently there. For other targets that have ms_struct enabled
1824 // (most probably via a pragma or attribute), trigger a diagnostic
1825 // that defaults to an error.
1826 if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1827 Diag(D->getLocation(), diag::warn_npot_ms_struct);
1828 }
1829 if (TypeSize > FieldAlign &&
1830 llvm::isPowerOf2_64(TypeSize.getQuantity()))
1831 FieldAlign = TypeSize;
1832 }
1833 }
1834 }
1835
1836 // The align if the field is not packed. This is to check if the attribute
1837 // was unnecessary (-Wpacked).
1838 CharUnits UnpackedFieldAlign = FieldAlign;
1839 CharUnits UnpackedFieldOffset = FieldOffset;
1840
1841 if (FieldPacked)
1842 FieldAlign = CharUnits::One();
1843 CharUnits MaxAlignmentInChars =
1844 Context.toCharUnitsFromBits(D->getMaxAlignment());
1845 FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
1846 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
1847
1848 // The maximum field alignment overrides the aligned attribute.
1849 if (!MaxFieldAlignment.isZero()) {
1850 FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
1851 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
1852 }
1853
1854 // Round up the current record size to the field's alignment boundary.
1855 FieldOffset = FieldOffset.alignTo(FieldAlign);
1856 UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
1857
1858 if (UseExternalLayout) {
1859 FieldOffset = Context.toCharUnitsFromBits(
1860 updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
1861
1862 if (!IsUnion && EmptySubobjects) {
1863 // Record the fact that we're placing a field at this offset.
1864 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
1865 (void)Allowed;
1866 assert(Allowed && "Externally-placed field cannot be placed here");
1867 }
1868 } else {
1869 if (!IsUnion && EmptySubobjects) {
1870 // Check if we can place the field at this offset.
1871 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
1872 // We couldn't place the field at the offset. Try again at a new offset.
1873 // We try offset 0 (for an empty field) and then dsize(C) onwards.
1874 if (FieldOffset == CharUnits::Zero() &&
1875 getDataSize() != CharUnits::Zero())
1876 FieldOffset = getDataSize().alignTo(FieldAlign);
1877 else
1878 FieldOffset += FieldAlign;
1879 }
1880 }
1881 }
1882
1883 // Place this field at the current location.
1884 FieldOffsets.push_back(Context.toBits(FieldOffset));
1885
1886 if (!UseExternalLayout)
1887 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
1888 Context.toBits(UnpackedFieldOffset),
1889 Context.toBits(UnpackedFieldAlign), FieldPacked, D);
1890
1891 if (InsertExtraPadding) {
1892 CharUnits ASanAlignment = CharUnits::fromQuantity(8);
1893 CharUnits ExtraSizeForAsan = ASanAlignment;
1894 if (FieldSize % ASanAlignment)
1895 ExtraSizeForAsan +=
1896 ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
1897 EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
1898 }
1899
1900 // Reserve space for this field.
1901 if (!IsOverlappingEmptyField) {
1902 uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
1903 if (IsUnion)
1904 setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
1905 else
1906 setDataSize(FieldOffset + EffectiveFieldSize);
1907
1908 PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
1909 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1910 } else {
1911 setSize(std::max(getSizeInBits(),
1912 (uint64_t)Context.toBits(FieldOffset + FieldSize)));
1913 }
1914
1915 // Remember max struct/class alignment.
1916 UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
1917 UpdateAlignment(FieldAlign, UnpackedFieldAlign);
1918 }
1919
FinishLayout(const NamedDecl * D)1920 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
1921 // In C++, records cannot be of size 0.
1922 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
1923 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
1924 // Compatibility with gcc requires a class (pod or non-pod)
1925 // which is not empty but of size 0; such as having fields of
1926 // array of zero-length, remains of Size 0
1927 if (RD->isEmpty())
1928 setSize(CharUnits::One());
1929 }
1930 else
1931 setSize(CharUnits::One());
1932 }
1933
1934 // If we have any remaining field tail padding, include that in the overall
1935 // size.
1936 setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
1937
1938 // Finally, round the size of the record up to the alignment of the
1939 // record itself.
1940 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
1941 uint64_t UnpackedSizeInBits =
1942 llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
1943 uint64_t RoundedSize =
1944 llvm::alignTo(getSizeInBits(), Context.toBits(Alignment));
1945
1946 if (UseExternalLayout) {
1947 // If we're inferring alignment, and the external size is smaller than
1948 // our size after we've rounded up to alignment, conservatively set the
1949 // alignment to 1.
1950 if (InferAlignment && External.Size < RoundedSize) {
1951 Alignment = CharUnits::One();
1952 InferAlignment = false;
1953 }
1954 setSize(External.Size);
1955 return;
1956 }
1957
1958 // Set the size to the final size.
1959 setSize(RoundedSize);
1960
1961 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1962 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1963 // Warn if padding was introduced to the struct/class/union.
1964 if (getSizeInBits() > UnpaddedSize) {
1965 unsigned PadSize = getSizeInBits() - UnpaddedSize;
1966 bool InBits = true;
1967 if (PadSize % CharBitNum == 0) {
1968 PadSize = PadSize / CharBitNum;
1969 InBits = false;
1970 }
1971 Diag(RD->getLocation(), diag::warn_padded_struct_size)
1972 << Context.getTypeDeclType(RD)
1973 << PadSize
1974 << (InBits ? 1 : 0); // (byte|bit)
1975 }
1976
1977 // Warn if we packed it unnecessarily, when the unpacked alignment is not
1978 // greater than the one after packing, the size in bits doesn't change and
1979 // the offset of each field is identical.
1980 if (Packed && UnpackedAlignment <= Alignment &&
1981 UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
1982 Diag(D->getLocation(), diag::warn_unnecessary_packed)
1983 << Context.getTypeDeclType(RD);
1984 }
1985 }
1986
UpdateAlignment(CharUnits NewAlignment,CharUnits UnpackedNewAlignment)1987 void ItaniumRecordLayoutBuilder::UpdateAlignment(
1988 CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
1989 // The alignment is not modified when using 'mac68k' alignment or when
1990 // we have an externally-supplied layout that also provides overall alignment.
1991 if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
1992 return;
1993
1994 if (NewAlignment > Alignment) {
1995 assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
1996 "Alignment not a power of 2");
1997 Alignment = NewAlignment;
1998 }
1999
2000 if (UnpackedNewAlignment > UnpackedAlignment) {
2001 assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
2002 "Alignment not a power of 2");
2003 UnpackedAlignment = UnpackedNewAlignment;
2004 }
2005 }
2006
2007 uint64_t
updateExternalFieldOffset(const FieldDecl * Field,uint64_t ComputedOffset)2008 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2009 uint64_t ComputedOffset) {
2010 uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2011
2012 if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2013 // The externally-supplied field offset is before the field offset we
2014 // computed. Assume that the structure is packed.
2015 Alignment = CharUnits::One();
2016 InferAlignment = false;
2017 }
2018
2019 // Use the externally-supplied field offset.
2020 return ExternalFieldOffset;
2021 }
2022
2023 /// Get diagnostic %select index for tag kind for
2024 /// field padding diagnostic message.
2025 /// WARNING: Indexes apply to particular diagnostics only!
2026 ///
2027 /// \returns diagnostic %select index.
getPaddingDiagFromTagKind(TagTypeKind Tag)2028 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2029 switch (Tag) {
2030 case TTK_Struct: return 0;
2031 case TTK_Interface: return 1;
2032 case TTK_Class: return 2;
2033 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2034 }
2035 }
2036
CheckFieldPadding(uint64_t Offset,uint64_t UnpaddedOffset,uint64_t UnpackedOffset,unsigned UnpackedAlign,bool isPacked,const FieldDecl * D)2037 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2038 uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2039 unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2040 // We let objc ivars without warning, objc interfaces generally are not used
2041 // for padding tricks.
2042 if (isa<ObjCIvarDecl>(D))
2043 return;
2044
2045 // Don't warn about structs created without a SourceLocation. This can
2046 // be done by clients of the AST, such as codegen.
2047 if (D->getLocation().isInvalid())
2048 return;
2049
2050 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2051
2052 // Warn if padding was introduced to the struct/class.
2053 if (!IsUnion && Offset > UnpaddedOffset) {
2054 unsigned PadSize = Offset - UnpaddedOffset;
2055 bool InBits = true;
2056 if (PadSize % CharBitNum == 0) {
2057 PadSize = PadSize / CharBitNum;
2058 InBits = false;
2059 }
2060 if (D->getIdentifier())
2061 Diag(D->getLocation(), diag::warn_padded_struct_field)
2062 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2063 << Context.getTypeDeclType(D->getParent())
2064 << PadSize
2065 << (InBits ? 1 : 0) // (byte|bit)
2066 << D->getIdentifier();
2067 else
2068 Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2069 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2070 << Context.getTypeDeclType(D->getParent())
2071 << PadSize
2072 << (InBits ? 1 : 0); // (byte|bit)
2073 }
2074 if (isPacked && Offset != UnpackedOffset) {
2075 HasPackedField = true;
2076 }
2077 }
2078
computeKeyFunction(ASTContext & Context,const CXXRecordDecl * RD)2079 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2080 const CXXRecordDecl *RD) {
2081 // If a class isn't polymorphic it doesn't have a key function.
2082 if (!RD->isPolymorphic())
2083 return nullptr;
2084
2085 // A class that is not externally visible doesn't have a key function. (Or
2086 // at least, there's no point to assigning a key function to such a class;
2087 // this doesn't affect the ABI.)
2088 if (!RD->isExternallyVisible())
2089 return nullptr;
2090
2091 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2092 // Same behavior as GCC.
2093 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2094 if (TSK == TSK_ImplicitInstantiation ||
2095 TSK == TSK_ExplicitInstantiationDeclaration ||
2096 TSK == TSK_ExplicitInstantiationDefinition)
2097 return nullptr;
2098
2099 bool allowInlineFunctions =
2100 Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2101
2102 for (const CXXMethodDecl *MD : RD->methods()) {
2103 if (!MD->isVirtual())
2104 continue;
2105
2106 if (MD->isPure())
2107 continue;
2108
2109 // Ignore implicit member functions, they are always marked as inline, but
2110 // they don't have a body until they're defined.
2111 if (MD->isImplicit())
2112 continue;
2113
2114 if (MD->isInlineSpecified() || MD->isConstexpr())
2115 continue;
2116
2117 if (MD->hasInlineBody())
2118 continue;
2119
2120 // Ignore inline deleted or defaulted functions.
2121 if (!MD->isUserProvided())
2122 continue;
2123
2124 // In certain ABIs, ignore functions with out-of-line inline definitions.
2125 if (!allowInlineFunctions) {
2126 const FunctionDecl *Def;
2127 if (MD->hasBody(Def) && Def->isInlineSpecified())
2128 continue;
2129 }
2130
2131 if (Context.getLangOpts().CUDA) {
2132 // While compiler may see key method in this TU, during CUDA
2133 // compilation we should ignore methods that are not accessible
2134 // on this side of compilation.
2135 if (Context.getLangOpts().CUDAIsDevice) {
2136 // In device mode ignore methods without __device__ attribute.
2137 if (!MD->hasAttr<CUDADeviceAttr>())
2138 continue;
2139 } else {
2140 // In host mode ignore __device__-only methods.
2141 if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2142 continue;
2143 }
2144 }
2145
2146 // If the key function is dllimport but the class isn't, then the class has
2147 // no key function. The DLL that exports the key function won't export the
2148 // vtable in this case.
2149 if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>())
2150 return nullptr;
2151
2152 // We found it.
2153 return MD;
2154 }
2155
2156 return nullptr;
2157 }
2158
Diag(SourceLocation Loc,unsigned DiagID)2159 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2160 unsigned DiagID) {
2161 return Context.getDiagnostics().Report(Loc, DiagID);
2162 }
2163
2164 /// Does the target C++ ABI require us to skip over the tail-padding
2165 /// of the given class (considering it as a base class) when allocating
2166 /// objects?
mustSkipTailPadding(TargetCXXABI ABI,const CXXRecordDecl * RD)2167 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2168 switch (ABI.getTailPaddingUseRules()) {
2169 case TargetCXXABI::AlwaysUseTailPadding:
2170 return false;
2171
2172 case TargetCXXABI::UseTailPaddingUnlessPOD03:
2173 // FIXME: To the extent that this is meant to cover the Itanium ABI
2174 // rules, we should implement the restrictions about over-sized
2175 // bitfields:
2176 //
2177 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2178 // In general, a type is considered a POD for the purposes of
2179 // layout if it is a POD type (in the sense of ISO C++
2180 // [basic.types]). However, a POD-struct or POD-union (in the
2181 // sense of ISO C++ [class]) with a bitfield member whose
2182 // declared width is wider than the declared type of the
2183 // bitfield is not a POD for the purpose of layout. Similarly,
2184 // an array type is not a POD for the purpose of layout if the
2185 // element type of the array is not a POD for the purpose of
2186 // layout.
2187 //
2188 // Where references to the ISO C++ are made in this paragraph,
2189 // the Technical Corrigendum 1 version of the standard is
2190 // intended.
2191 return RD->isPOD();
2192
2193 case TargetCXXABI::UseTailPaddingUnlessPOD11:
2194 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2195 // but with a lot of abstraction penalty stripped off. This does
2196 // assume that these properties are set correctly even in C++98
2197 // mode; fortunately, that is true because we want to assign
2198 // consistently semantics to the type-traits intrinsics (or at
2199 // least as many of them as possible).
2200 return RD->isTrivial() && RD->isCXX11StandardLayout();
2201 }
2202
2203 llvm_unreachable("bad tail-padding use kind");
2204 }
2205
isMsLayout(const ASTContext & Context)2206 static bool isMsLayout(const ASTContext &Context) {
2207 return Context.getTargetInfo().getCXXABI().isMicrosoft();
2208 }
2209
2210 // This section contains an implementation of struct layout that is, up to the
2211 // included tests, compatible with cl.exe (2013). The layout produced is
2212 // significantly different than those produced by the Itanium ABI. Here we note
2213 // the most important differences.
2214 //
2215 // * The alignment of bitfields in unions is ignored when computing the
2216 // alignment of the union.
2217 // * The existence of zero-width bitfield that occurs after anything other than
2218 // a non-zero length bitfield is ignored.
2219 // * There is no explicit primary base for the purposes of layout. All bases
2220 // with vfptrs are laid out first, followed by all bases without vfptrs.
2221 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2222 // function pointer) and a vbptr (virtual base pointer). They can each be
2223 // shared with a, non-virtual bases. These bases need not be the same. vfptrs
2224 // always occur at offset 0. vbptrs can occur at an arbitrary offset and are
2225 // placed after the lexicographically last non-virtual base. This placement
2226 // is always before fields but can be in the middle of the non-virtual bases
2227 // due to the two-pass layout scheme for non-virtual-bases.
2228 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2229 // the virtual base and is used in conjunction with virtual overrides during
2230 // construction and destruction. This is always a 4 byte value and is used as
2231 // an alternative to constructor vtables.
2232 // * vtordisps are allocated in a block of memory with size and alignment equal
2233 // to the alignment of the completed structure (before applying __declspec(
2234 // align())). The vtordisp always occur at the end of the allocation block,
2235 // immediately prior to the virtual base.
2236 // * vfptrs are injected after all bases and fields have been laid out. In
2237 // order to guarantee proper alignment of all fields, the vfptr injection
2238 // pushes all bases and fields back by the alignment imposed by those bases
2239 // and fields. This can potentially add a significant amount of padding.
2240 // vfptrs are always injected at offset 0.
2241 // * vbptrs are injected after all bases and fields have been laid out. In
2242 // order to guarantee proper alignment of all fields, the vfptr injection
2243 // pushes all bases and fields back by the alignment imposed by those bases
2244 // and fields. This can potentially add a significant amount of padding.
2245 // vbptrs are injected immediately after the last non-virtual base as
2246 // lexicographically ordered in the code. If this site isn't pointer aligned
2247 // the vbptr is placed at the next properly aligned location. Enough padding
2248 // is added to guarantee a fit.
2249 // * The last zero sized non-virtual base can be placed at the end of the
2250 // struct (potentially aliasing another object), or may alias with the first
2251 // field, even if they are of the same type.
2252 // * The last zero size virtual base may be placed at the end of the struct
2253 // potentially aliasing another object.
2254 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2255 // between bases or vbases with specific properties. The criteria for
2256 // additional padding between two bases is that the first base is zero sized
2257 // or ends with a zero sized subobject and the second base is zero sized or
2258 // trails with a zero sized base or field (sharing of vfptrs can reorder the
2259 // layout of the so the leading base is not always the first one declared).
2260 // This rule does take into account fields that are not records, so padding
2261 // will occur even if the last field is, e.g. an int. The padding added for
2262 // bases is 1 byte. The padding added between vbases depends on the alignment
2263 // of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2264 // * There is no concept of non-virtual alignment, non-virtual alignment and
2265 // alignment are always identical.
2266 // * There is a distinction between alignment and required alignment.
2267 // __declspec(align) changes the required alignment of a struct. This
2268 // alignment is _always_ obeyed, even in the presence of #pragma pack. A
2269 // record inherits required alignment from all of its fields and bases.
2270 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2271 // alignment instead of its required alignment. This is the only known way
2272 // to make the alignment of a struct bigger than 8. Interestingly enough
2273 // this alignment is also immune to the effects of #pragma pack and can be
2274 // used to create structures with large alignment under #pragma pack.
2275 // However, because it does not impact required alignment, such a structure,
2276 // when used as a field or base, will not be aligned if #pragma pack is
2277 // still active at the time of use.
2278 //
2279 // Known incompatibilities:
2280 // * all: #pragma pack between fields in a record
2281 // * 2010 and back: If the last field in a record is a bitfield, every object
2282 // laid out after the record will have extra padding inserted before it. The
2283 // extra padding will have size equal to the size of the storage class of the
2284 // bitfield. 0 sized bitfields don't exhibit this behavior and the extra
2285 // padding can be avoided by adding a 0 sized bitfield after the non-zero-
2286 // sized bitfield.
2287 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2288 // greater due to __declspec(align()) then a second layout phase occurs after
2289 // The locations of the vf and vb pointers are known. This layout phase
2290 // suffers from the "last field is a bitfield" bug in 2010 and results in
2291 // _every_ field getting padding put in front of it, potentially including the
2292 // vfptr, leaving the vfprt at a non-zero location which results in a fault if
2293 // anything tries to read the vftbl. The second layout phase also treats
2294 // bitfields as separate entities and gives them each storage rather than
2295 // packing them. Additionally, because this phase appears to perform a
2296 // (an unstable) sort on the members before laying them out and because merged
2297 // bitfields have the same address, the bitfields end up in whatever order
2298 // the sort left them in, a behavior we could never hope to replicate.
2299
2300 namespace {
2301 struct MicrosoftRecordLayoutBuilder {
2302 struct ElementInfo {
2303 CharUnits Size;
2304 CharUnits Alignment;
2305 };
2306 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
MicrosoftRecordLayoutBuilder__anon0959a1030211::MicrosoftRecordLayoutBuilder2307 MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2308 private:
2309 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2310 void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2311 public:
2312 void layout(const RecordDecl *RD);
2313 void cxxLayout(const CXXRecordDecl *RD);
2314 /// Initializes size and alignment and honors some flags.
2315 void initializeLayout(const RecordDecl *RD);
2316 /// Initialized C++ layout, compute alignment and virtual alignment and
2317 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is
2318 /// laid out.
2319 void initializeCXXLayout(const CXXRecordDecl *RD);
2320 void layoutNonVirtualBases(const CXXRecordDecl *RD);
2321 void layoutNonVirtualBase(const CXXRecordDecl *RD,
2322 const CXXRecordDecl *BaseDecl,
2323 const ASTRecordLayout &BaseLayout,
2324 const ASTRecordLayout *&PreviousBaseLayout);
2325 void injectVFPtr(const CXXRecordDecl *RD);
2326 void injectVBPtr(const CXXRecordDecl *RD);
2327 /// Lays out the fields of the record. Also rounds size up to
2328 /// alignment.
2329 void layoutFields(const RecordDecl *RD);
2330 void layoutField(const FieldDecl *FD);
2331 void layoutBitField(const FieldDecl *FD);
2332 /// Lays out a single zero-width bit-field in the record and handles
2333 /// special cases associated with zero-width bit-fields.
2334 void layoutZeroWidthBitField(const FieldDecl *FD);
2335 void layoutVirtualBases(const CXXRecordDecl *RD);
2336 void finalizeLayout(const RecordDecl *RD);
2337 /// Gets the size and alignment of a base taking pragma pack and
2338 /// __declspec(align) into account.
2339 ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2340 /// Gets the size and alignment of a field taking pragma pack and
2341 /// __declspec(align) into account. It also updates RequiredAlignment as a
2342 /// side effect because it is most convenient to do so here.
2343 ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2344 /// Places a field at an offset in CharUnits.
placeFieldAtOffset__anon0959a1030211::MicrosoftRecordLayoutBuilder2345 void placeFieldAtOffset(CharUnits FieldOffset) {
2346 FieldOffsets.push_back(Context.toBits(FieldOffset));
2347 }
2348 /// Places a bitfield at a bit offset.
placeFieldAtBitOffset__anon0959a1030211::MicrosoftRecordLayoutBuilder2349 void placeFieldAtBitOffset(uint64_t FieldOffset) {
2350 FieldOffsets.push_back(FieldOffset);
2351 }
2352 /// Compute the set of virtual bases for which vtordisps are required.
2353 void computeVtorDispSet(
2354 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2355 const CXXRecordDecl *RD) const;
2356 const ASTContext &Context;
2357 /// The size of the record being laid out.
2358 CharUnits Size;
2359 /// The non-virtual size of the record layout.
2360 CharUnits NonVirtualSize;
2361 /// The data size of the record layout.
2362 CharUnits DataSize;
2363 /// The current alignment of the record layout.
2364 CharUnits Alignment;
2365 /// The maximum allowed field alignment. This is set by #pragma pack.
2366 CharUnits MaxFieldAlignment;
2367 /// The alignment that this record must obey. This is imposed by
2368 /// __declspec(align()) on the record itself or one of its fields or bases.
2369 CharUnits RequiredAlignment;
2370 /// The size of the allocation of the currently active bitfield.
2371 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2372 /// is true.
2373 CharUnits CurrentBitfieldSize;
2374 /// Offset to the virtual base table pointer (if one exists).
2375 CharUnits VBPtrOffset;
2376 /// Minimum record size possible.
2377 CharUnits MinEmptyStructSize;
2378 /// The size and alignment info of a pointer.
2379 ElementInfo PointerInfo;
2380 /// The primary base class (if one exists).
2381 const CXXRecordDecl *PrimaryBase;
2382 /// The class we share our vb-pointer with.
2383 const CXXRecordDecl *SharedVBPtrBase;
2384 /// The collection of field offsets.
2385 SmallVector<uint64_t, 16> FieldOffsets;
2386 /// Base classes and their offsets in the record.
2387 BaseOffsetsMapTy Bases;
2388 /// virtual base classes and their offsets in the record.
2389 ASTRecordLayout::VBaseOffsetsMapTy VBases;
2390 /// The number of remaining bits in our last bitfield allocation.
2391 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2392 /// true.
2393 unsigned RemainingBitsInField;
2394 bool IsUnion : 1;
2395 /// True if the last field laid out was a bitfield and was not 0
2396 /// width.
2397 bool LastFieldIsNonZeroWidthBitfield : 1;
2398 /// True if the class has its own vftable pointer.
2399 bool HasOwnVFPtr : 1;
2400 /// True if the class has a vbtable pointer.
2401 bool HasVBPtr : 1;
2402 /// True if the last sub-object within the type is zero sized or the
2403 /// object itself is zero sized. This *does not* count members that are not
2404 /// records. Only used for MS-ABI.
2405 bool EndsWithZeroSizedObject : 1;
2406 /// True if this class is zero sized or first base is zero sized or
2407 /// has this property. Only used for MS-ABI.
2408 bool LeadsWithZeroSizedBase : 1;
2409
2410 /// True if the external AST source provided a layout for this record.
2411 bool UseExternalLayout : 1;
2412
2413 /// The layout provided by the external AST source. Only active if
2414 /// UseExternalLayout is true.
2415 ExternalLayout External;
2416 };
2417 } // namespace
2418
2419 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const ASTRecordLayout & Layout)2420 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2421 const ASTRecordLayout &Layout) {
2422 ElementInfo Info;
2423 Info.Alignment = Layout.getAlignment();
2424 // Respect pragma pack.
2425 if (!MaxFieldAlignment.isZero())
2426 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2427 // Track zero-sized subobjects here where it's already available.
2428 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2429 // Respect required alignment, this is necessary because we may have adjusted
2430 // the alignment in the case of pragam pack. Note that the required alignment
2431 // doesn't actually apply to the struct alignment at this point.
2432 Alignment = std::max(Alignment, Info.Alignment);
2433 RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2434 Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2435 Info.Size = Layout.getNonVirtualSize();
2436 return Info;
2437 }
2438
2439 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const FieldDecl * FD)2440 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2441 const FieldDecl *FD) {
2442 // Get the alignment of the field type's natural alignment, ignore any
2443 // alignment attributes.
2444 ElementInfo Info;
2445 std::tie(Info.Size, Info.Alignment) =
2446 Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2447 // Respect align attributes on the field.
2448 CharUnits FieldRequiredAlignment =
2449 Context.toCharUnitsFromBits(FD->getMaxAlignment());
2450 // Respect align attributes on the type.
2451 if (Context.isAlignmentRequired(FD->getType()))
2452 FieldRequiredAlignment = std::max(
2453 Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2454 // Respect attributes applied to subobjects of the field.
2455 if (FD->isBitField())
2456 // For some reason __declspec align impacts alignment rather than required
2457 // alignment when it is applied to bitfields.
2458 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2459 else {
2460 if (auto RT =
2461 FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2462 auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2463 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2464 FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2465 Layout.getRequiredAlignment());
2466 }
2467 // Capture required alignment as a side-effect.
2468 RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2469 }
2470 // Respect pragma pack, attribute pack and declspec align
2471 if (!MaxFieldAlignment.isZero())
2472 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2473 if (FD->hasAttr<PackedAttr>())
2474 Info.Alignment = CharUnits::One();
2475 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2476 return Info;
2477 }
2478
layout(const RecordDecl * RD)2479 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2480 // For C record layout, zero-sized records always have size 4.
2481 MinEmptyStructSize = CharUnits::fromQuantity(4);
2482 initializeLayout(RD);
2483 layoutFields(RD);
2484 DataSize = Size = Size.alignTo(Alignment);
2485 RequiredAlignment = std::max(
2486 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2487 finalizeLayout(RD);
2488 }
2489
cxxLayout(const CXXRecordDecl * RD)2490 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2491 // The C++ standard says that empty structs have size 1.
2492 MinEmptyStructSize = CharUnits::One();
2493 initializeLayout(RD);
2494 initializeCXXLayout(RD);
2495 layoutNonVirtualBases(RD);
2496 layoutFields(RD);
2497 injectVBPtr(RD);
2498 injectVFPtr(RD);
2499 if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2500 Alignment = std::max(Alignment, PointerInfo.Alignment);
2501 auto RoundingAlignment = Alignment;
2502 if (!MaxFieldAlignment.isZero())
2503 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2504 if (!UseExternalLayout)
2505 Size = Size.alignTo(RoundingAlignment);
2506 NonVirtualSize = Size;
2507 RequiredAlignment = std::max(
2508 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2509 layoutVirtualBases(RD);
2510 finalizeLayout(RD);
2511 }
2512
initializeLayout(const RecordDecl * RD)2513 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2514 IsUnion = RD->isUnion();
2515 Size = CharUnits::Zero();
2516 Alignment = CharUnits::One();
2517 // In 64-bit mode we always perform an alignment step after laying out vbases.
2518 // In 32-bit mode we do not. The check to see if we need to perform alignment
2519 // checks the RequiredAlignment field and performs alignment if it isn't 0.
2520 RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2521 ? CharUnits::One()
2522 : CharUnits::Zero();
2523 // Compute the maximum field alignment.
2524 MaxFieldAlignment = CharUnits::Zero();
2525 // Honor the default struct packing maximum alignment flag.
2526 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2527 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2528 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger
2529 // than the pointer size.
2530 if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2531 unsigned PackedAlignment = MFAA->getAlignment();
2532 if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2533 MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2534 }
2535 // Packed attribute forces max field alignment to be 1.
2536 if (RD->hasAttr<PackedAttr>())
2537 MaxFieldAlignment = CharUnits::One();
2538
2539 // Try to respect the external layout if present.
2540 UseExternalLayout = false;
2541 if (ExternalASTSource *Source = Context.getExternalSource())
2542 UseExternalLayout = Source->layoutRecordType(
2543 RD, External.Size, External.Align, External.FieldOffsets,
2544 External.BaseOffsets, External.VirtualBaseOffsets);
2545 }
2546
2547 void
initializeCXXLayout(const CXXRecordDecl * RD)2548 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2549 EndsWithZeroSizedObject = false;
2550 LeadsWithZeroSizedBase = false;
2551 HasOwnVFPtr = false;
2552 HasVBPtr = false;
2553 PrimaryBase = nullptr;
2554 SharedVBPtrBase = nullptr;
2555 // Calculate pointer size and alignment. These are used for vfptr and vbprt
2556 // injection.
2557 PointerInfo.Size =
2558 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2559 PointerInfo.Alignment =
2560 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
2561 // Respect pragma pack.
2562 if (!MaxFieldAlignment.isZero())
2563 PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2564 }
2565
2566 void
layoutNonVirtualBases(const CXXRecordDecl * RD)2567 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2568 // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2569 // out any bases that do not contain vfptrs. We implement this as two passes
2570 // over the bases. This approach guarantees that the primary base is laid out
2571 // first. We use these passes to calculate some additional aggregated
2572 // information about the bases, such as required alignment and the presence of
2573 // zero sized members.
2574 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2575 bool HasPolymorphicBaseClass = false;
2576 // Iterate through the bases and lay out the non-virtual ones.
2577 for (const CXXBaseSpecifier &Base : RD->bases()) {
2578 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2579 HasPolymorphicBaseClass |= BaseDecl->isPolymorphic();
2580 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2581 // Mark and skip virtual bases.
2582 if (Base.isVirtual()) {
2583 HasVBPtr = true;
2584 continue;
2585 }
2586 // Check for a base to share a VBPtr with.
2587 if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2588 SharedVBPtrBase = BaseDecl;
2589 HasVBPtr = true;
2590 }
2591 // Only lay out bases with extendable VFPtrs on the first pass.
2592 if (!BaseLayout.hasExtendableVFPtr())
2593 continue;
2594 // If we don't have a primary base, this one qualifies.
2595 if (!PrimaryBase) {
2596 PrimaryBase = BaseDecl;
2597 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2598 }
2599 // Lay out the base.
2600 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2601 }
2602 // Figure out if we need a fresh VFPtr for this class.
2603 if (RD->isPolymorphic()) {
2604 if (!HasPolymorphicBaseClass)
2605 // This class introduces polymorphism, so we need a vftable to store the
2606 // RTTI information.
2607 HasOwnVFPtr = true;
2608 else if (!PrimaryBase) {
2609 // We have a polymorphic base class but can't extend its vftable. Add a
2610 // new vfptr if we would use any vftable slots.
2611 for (CXXMethodDecl *M : RD->methods()) {
2612 if (MicrosoftVTableContext::hasVtableSlot(M) &&
2613 M->size_overridden_methods() == 0) {
2614 HasOwnVFPtr = true;
2615 break;
2616 }
2617 }
2618 }
2619 }
2620 // If we don't have a primary base then we have a leading object that could
2621 // itself lead with a zero-sized object, something we track.
2622 bool CheckLeadingLayout = !PrimaryBase;
2623 // Iterate through the bases and lay out the non-virtual ones.
2624 for (const CXXBaseSpecifier &Base : RD->bases()) {
2625 if (Base.isVirtual())
2626 continue;
2627 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2628 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2629 // Only lay out bases without extendable VFPtrs on the second pass.
2630 if (BaseLayout.hasExtendableVFPtr()) {
2631 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2632 continue;
2633 }
2634 // If this is the first layout, check to see if it leads with a zero sized
2635 // object. If it does, so do we.
2636 if (CheckLeadingLayout) {
2637 CheckLeadingLayout = false;
2638 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2639 }
2640 // Lay out the base.
2641 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2642 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2643 }
2644 // Set our VBPtroffset if we know it at this point.
2645 if (!HasVBPtr)
2646 VBPtrOffset = CharUnits::fromQuantity(-1);
2647 else if (SharedVBPtrBase) {
2648 const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2649 VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2650 }
2651 }
2652
recordUsesEBO(const RecordDecl * RD)2653 static bool recordUsesEBO(const RecordDecl *RD) {
2654 if (!isa<CXXRecordDecl>(RD))
2655 return false;
2656 if (RD->hasAttr<EmptyBasesAttr>())
2657 return true;
2658 if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2659 // TODO: Double check with the next version of MSVC.
2660 if (LVA->getVersion() <= LangOptions::MSVC2015)
2661 return false;
2662 // TODO: Some later version of MSVC will change the default behavior of the
2663 // compiler to enable EBO by default. When this happens, we will need an
2664 // additional isCompatibleWithMSVC check.
2665 return false;
2666 }
2667
layoutNonVirtualBase(const CXXRecordDecl * RD,const CXXRecordDecl * BaseDecl,const ASTRecordLayout & BaseLayout,const ASTRecordLayout * & PreviousBaseLayout)2668 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2669 const CXXRecordDecl *RD,
2670 const CXXRecordDecl *BaseDecl,
2671 const ASTRecordLayout &BaseLayout,
2672 const ASTRecordLayout *&PreviousBaseLayout) {
2673 // Insert padding between two bases if the left first one is zero sized or
2674 // contains a zero sized subobject and the right is zero sized or one leads
2675 // with a zero sized base.
2676 bool MDCUsesEBO = recordUsesEBO(RD);
2677 if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2678 BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2679 Size++;
2680 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2681 CharUnits BaseOffset;
2682
2683 // Respect the external AST source base offset, if present.
2684 bool FoundBase = false;
2685 if (UseExternalLayout) {
2686 FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2687 if (FoundBase) {
2688 assert(BaseOffset >= Size && "base offset already allocated");
2689 Size = BaseOffset;
2690 }
2691 }
2692
2693 if (!FoundBase) {
2694 if (MDCUsesEBO && BaseDecl->isEmpty()) {
2695 assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
2696 BaseOffset = CharUnits::Zero();
2697 } else {
2698 // Otherwise, lay the base out at the end of the MDC.
2699 BaseOffset = Size = Size.alignTo(Info.Alignment);
2700 }
2701 }
2702 Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2703 Size += BaseLayout.getNonVirtualSize();
2704 PreviousBaseLayout = &BaseLayout;
2705 }
2706
layoutFields(const RecordDecl * RD)2707 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2708 LastFieldIsNonZeroWidthBitfield = false;
2709 for (const FieldDecl *Field : RD->fields())
2710 layoutField(Field);
2711 }
2712
layoutField(const FieldDecl * FD)2713 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2714 if (FD->isBitField()) {
2715 layoutBitField(FD);
2716 return;
2717 }
2718 LastFieldIsNonZeroWidthBitfield = false;
2719 ElementInfo Info = getAdjustedElementInfo(FD);
2720 Alignment = std::max(Alignment, Info.Alignment);
2721 CharUnits FieldOffset;
2722 if (UseExternalLayout)
2723 FieldOffset =
2724 Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2725 else if (IsUnion)
2726 FieldOffset = CharUnits::Zero();
2727 else
2728 FieldOffset = Size.alignTo(Info.Alignment);
2729 placeFieldAtOffset(FieldOffset);
2730 Size = std::max(Size, FieldOffset + Info.Size);
2731 }
2732
layoutBitField(const FieldDecl * FD)2733 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2734 unsigned Width = FD->getBitWidthValue(Context);
2735 if (Width == 0) {
2736 layoutZeroWidthBitField(FD);
2737 return;
2738 }
2739 ElementInfo Info = getAdjustedElementInfo(FD);
2740 // Clamp the bitfield to a containable size for the sake of being able
2741 // to lay them out. Sema will throw an error.
2742 if (Width > Context.toBits(Info.Size))
2743 Width = Context.toBits(Info.Size);
2744 // Check to see if this bitfield fits into an existing allocation. Note:
2745 // MSVC refuses to pack bitfields of formal types with different sizes
2746 // into the same allocation.
2747 if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
2748 CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2749 placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2750 RemainingBitsInField -= Width;
2751 return;
2752 }
2753 LastFieldIsNonZeroWidthBitfield = true;
2754 CurrentBitfieldSize = Info.Size;
2755 if (UseExternalLayout) {
2756 auto FieldBitOffset = External.getExternalFieldOffset(FD);
2757 placeFieldAtBitOffset(FieldBitOffset);
2758 auto NewSize = Context.toCharUnitsFromBits(
2759 llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
2760 Context.toBits(Info.Size));
2761 Size = std::max(Size, NewSize);
2762 Alignment = std::max(Alignment, Info.Alignment);
2763 } else if (IsUnion) {
2764 placeFieldAtOffset(CharUnits::Zero());
2765 Size = std::max(Size, Info.Size);
2766 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2767 } else {
2768 // Allocate a new block of memory and place the bitfield in it.
2769 CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2770 placeFieldAtOffset(FieldOffset);
2771 Size = FieldOffset + Info.Size;
2772 Alignment = std::max(Alignment, Info.Alignment);
2773 RemainingBitsInField = Context.toBits(Info.Size) - Width;
2774 }
2775 }
2776
2777 void
layoutZeroWidthBitField(const FieldDecl * FD)2778 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
2779 // Zero-width bitfields are ignored unless they follow a non-zero-width
2780 // bitfield.
2781 if (!LastFieldIsNonZeroWidthBitfield) {
2782 placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
2783 // TODO: Add a Sema warning that MS ignores alignment for zero
2784 // sized bitfields that occur after zero-size bitfields or non-bitfields.
2785 return;
2786 }
2787 LastFieldIsNonZeroWidthBitfield = false;
2788 ElementInfo Info = getAdjustedElementInfo(FD);
2789 if (IsUnion) {
2790 placeFieldAtOffset(CharUnits::Zero());
2791 Size = std::max(Size, Info.Size);
2792 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2793 } else {
2794 // Round up the current record size to the field's alignment boundary.
2795 CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2796 placeFieldAtOffset(FieldOffset);
2797 Size = FieldOffset;
2798 Alignment = std::max(Alignment, Info.Alignment);
2799 }
2800 }
2801
injectVBPtr(const CXXRecordDecl * RD)2802 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
2803 if (!HasVBPtr || SharedVBPtrBase)
2804 return;
2805 // Inject the VBPointer at the injection site.
2806 CharUnits InjectionSite = VBPtrOffset;
2807 // But before we do, make sure it's properly aligned.
2808 VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
2809 // Determine where the first field should be laid out after the vbptr.
2810 CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
2811 // Shift everything after the vbptr down, unless we're using an external
2812 // layout.
2813 if (UseExternalLayout) {
2814 // It is possible that there were no fields or bases located after vbptr,
2815 // so the size was not adjusted before.
2816 if (Size < FieldStart)
2817 Size = FieldStart;
2818 return;
2819 }
2820 // Make sure that the amount we push the fields back by is a multiple of the
2821 // alignment.
2822 CharUnits Offset = (FieldStart - InjectionSite)
2823 .alignTo(std::max(RequiredAlignment, Alignment));
2824 Size += Offset;
2825 for (uint64_t &FieldOffset : FieldOffsets)
2826 FieldOffset += Context.toBits(Offset);
2827 for (BaseOffsetsMapTy::value_type &Base : Bases)
2828 if (Base.second >= InjectionSite)
2829 Base.second += Offset;
2830 }
2831
injectVFPtr(const CXXRecordDecl * RD)2832 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
2833 if (!HasOwnVFPtr)
2834 return;
2835 // Make sure that the amount we push the struct back by is a multiple of the
2836 // alignment.
2837 CharUnits Offset =
2838 PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
2839 // Push back the vbptr, but increase the size of the object and push back
2840 // regular fields by the offset only if not using external record layout.
2841 if (HasVBPtr)
2842 VBPtrOffset += Offset;
2843
2844 if (UseExternalLayout) {
2845 // The class may have no bases or fields, but still have a vfptr
2846 // (e.g. it's an interface class). The size was not correctly set before
2847 // in this case.
2848 if (FieldOffsets.empty() && Bases.empty())
2849 Size += Offset;
2850 return;
2851 }
2852
2853 Size += Offset;
2854
2855 // If we're using an external layout, the fields offsets have already
2856 // accounted for this adjustment.
2857 for (uint64_t &FieldOffset : FieldOffsets)
2858 FieldOffset += Context.toBits(Offset);
2859 for (BaseOffsetsMapTy::value_type &Base : Bases)
2860 Base.second += Offset;
2861 }
2862
layoutVirtualBases(const CXXRecordDecl * RD)2863 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
2864 if (!HasVBPtr)
2865 return;
2866 // Vtordisps are always 4 bytes (even in 64-bit mode)
2867 CharUnits VtorDispSize = CharUnits::fromQuantity(4);
2868 CharUnits VtorDispAlignment = VtorDispSize;
2869 // vtordisps respect pragma pack.
2870 if (!MaxFieldAlignment.isZero())
2871 VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
2872 // The alignment of the vtordisp is at least the required alignment of the
2873 // entire record. This requirement may be present to support vtordisp
2874 // injection.
2875 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2876 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2877 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2878 RequiredAlignment =
2879 std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
2880 }
2881 VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
2882 // Compute the vtordisp set.
2883 llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
2884 computeVtorDispSet(HasVtorDispSet, RD);
2885 // Iterate through the virtual bases and lay them out.
2886 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2887 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2888 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2889 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2890 bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
2891 // Insert padding between two bases if the left first one is zero sized or
2892 // contains a zero sized subobject and the right is zero sized or one leads
2893 // with a zero sized base. The padding between virtual bases is 4
2894 // bytes (in both 32 and 64 bits modes) and always involves rounding up to
2895 // the required alignment, we don't know why.
2896 if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2897 BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
2898 HasVtordisp) {
2899 Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
2900 Alignment = std::max(VtorDispAlignment, Alignment);
2901 }
2902 // Insert the virtual base.
2903 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2904 CharUnits BaseOffset;
2905
2906 // Respect the external AST source base offset, if present.
2907 if (UseExternalLayout) {
2908 if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
2909 BaseOffset = Size;
2910 } else
2911 BaseOffset = Size.alignTo(Info.Alignment);
2912
2913 assert(BaseOffset >= Size && "base offset already allocated");
2914
2915 VBases.insert(std::make_pair(BaseDecl,
2916 ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
2917 Size = BaseOffset + BaseLayout.getNonVirtualSize();
2918 PreviousBaseLayout = &BaseLayout;
2919 }
2920 }
2921
finalizeLayout(const RecordDecl * RD)2922 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
2923 // Respect required alignment. Note that in 32-bit mode Required alignment
2924 // may be 0 and cause size not to be updated.
2925 DataSize = Size;
2926 if (!RequiredAlignment.isZero()) {
2927 Alignment = std::max(Alignment, RequiredAlignment);
2928 auto RoundingAlignment = Alignment;
2929 if (!MaxFieldAlignment.isZero())
2930 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2931 RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
2932 Size = Size.alignTo(RoundingAlignment);
2933 }
2934 if (Size.isZero()) {
2935 if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
2936 EndsWithZeroSizedObject = true;
2937 LeadsWithZeroSizedBase = true;
2938 }
2939 // Zero-sized structures have size equal to their alignment if a
2940 // __declspec(align) came into play.
2941 if (RequiredAlignment >= MinEmptyStructSize)
2942 Size = Alignment;
2943 else
2944 Size = MinEmptyStructSize;
2945 }
2946
2947 if (UseExternalLayout) {
2948 Size = Context.toCharUnitsFromBits(External.Size);
2949 if (External.Align)
2950 Alignment = Context.toCharUnitsFromBits(External.Align);
2951 }
2952 }
2953
2954 // Recursively walks the non-virtual bases of a class and determines if any of
2955 // them are in the bases with overridden methods set.
2956 static bool
RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl * > & BasesWithOverriddenMethods,const CXXRecordDecl * RD)2957 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
2958 BasesWithOverriddenMethods,
2959 const CXXRecordDecl *RD) {
2960 if (BasesWithOverriddenMethods.count(RD))
2961 return true;
2962 // If any of a virtual bases non-virtual bases (recursively) requires a
2963 // vtordisp than so does this virtual base.
2964 for (const CXXBaseSpecifier &Base : RD->bases())
2965 if (!Base.isVirtual() &&
2966 RequiresVtordisp(BasesWithOverriddenMethods,
2967 Base.getType()->getAsCXXRecordDecl()))
2968 return true;
2969 return false;
2970 }
2971
computeVtorDispSet(llvm::SmallPtrSetImpl<const CXXRecordDecl * > & HasVtordispSet,const CXXRecordDecl * RD) const2972 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
2973 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
2974 const CXXRecordDecl *RD) const {
2975 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
2976 // vftables.
2977 if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
2978 for (const CXXBaseSpecifier &Base : RD->vbases()) {
2979 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2980 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2981 if (Layout.hasExtendableVFPtr())
2982 HasVtordispSet.insert(BaseDecl);
2983 }
2984 return;
2985 }
2986
2987 // If any of our bases need a vtordisp for this type, so do we. Check our
2988 // direct bases for vtordisp requirements.
2989 for (const CXXBaseSpecifier &Base : RD->bases()) {
2990 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2991 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2992 for (const auto &bi : Layout.getVBaseOffsetsMap())
2993 if (bi.second.hasVtorDisp())
2994 HasVtordispSet.insert(bi.first);
2995 }
2996 // We don't introduce any additional vtordisps if either:
2997 // * A user declared constructor or destructor aren't declared.
2998 // * #pragma vtordisp(0) or the /vd0 flag are in use.
2999 if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
3000 RD->getMSVtorDispMode() == MSVtorDispMode::Never)
3001 return;
3002 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3003 // possible for a partially constructed object with virtual base overrides to
3004 // escape a non-trivial constructor.
3005 assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
3006 // Compute a set of base classes which define methods we override. A virtual
3007 // base in this set will require a vtordisp. A virtual base that transitively
3008 // contains one of these bases as a non-virtual base will also require a
3009 // vtordisp.
3010 llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
3011 llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
3012 // Seed the working set with our non-destructor, non-pure virtual methods.
3013 for (const CXXMethodDecl *MD : RD->methods())
3014 if (MicrosoftVTableContext::hasVtableSlot(MD) &&
3015 !isa<CXXDestructorDecl>(MD) && !MD->isPure())
3016 Work.insert(MD);
3017 while (!Work.empty()) {
3018 const CXXMethodDecl *MD = *Work.begin();
3019 auto MethodRange = MD->overridden_methods();
3020 // If a virtual method has no-overrides it lives in its parent's vtable.
3021 if (MethodRange.begin() == MethodRange.end())
3022 BasesWithOverriddenMethods.insert(MD->getParent());
3023 else
3024 Work.insert(MethodRange.begin(), MethodRange.end());
3025 // We've finished processing this element, remove it from the working set.
3026 Work.erase(MD);
3027 }
3028 // For each of our virtual bases, check if it is in the set of overridden
3029 // bases or if it transitively contains a non-virtual base that is.
3030 for (const CXXBaseSpecifier &Base : RD->vbases()) {
3031 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3032 if (!HasVtordispSet.count(BaseDecl) &&
3033 RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3034 HasVtordispSet.insert(BaseDecl);
3035 }
3036 }
3037
3038 /// getASTRecordLayout - Get or compute information about the layout of the
3039 /// specified record (struct/union/class), which indicates its size and field
3040 /// position information.
3041 const ASTRecordLayout &
getASTRecordLayout(const RecordDecl * D) const3042 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3043 // These asserts test different things. A record has a definition
3044 // as soon as we begin to parse the definition. That definition is
3045 // not a complete definition (which is what isDefinition() tests)
3046 // until we *finish* parsing the definition.
3047
3048 if (D->hasExternalLexicalStorage() && !D->getDefinition())
3049 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3050
3051 D = D->getDefinition();
3052 assert(D && "Cannot get layout of forward declarations!");
3053 assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
3054 assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
3055
3056 // Look up this layout, if already laid out, return what we have.
3057 // Note that we can't save a reference to the entry because this function
3058 // is recursive.
3059 const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3060 if (Entry) return *Entry;
3061
3062 const ASTRecordLayout *NewEntry = nullptr;
3063
3064 if (isMsLayout(*this)) {
3065 MicrosoftRecordLayoutBuilder Builder(*this);
3066 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3067 Builder.cxxLayout(RD);
3068 NewEntry = new (*this) ASTRecordLayout(
3069 *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3070 Builder.RequiredAlignment,
3071 Builder.HasOwnVFPtr, Builder.HasOwnVFPtr || Builder.PrimaryBase,
3072 Builder.VBPtrOffset, Builder.DataSize, Builder.FieldOffsets,
3073 Builder.NonVirtualSize, Builder.Alignment, CharUnits::Zero(),
3074 Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3075 Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3076 Builder.Bases, Builder.VBases);
3077 } else {
3078 Builder.layout(D);
3079 NewEntry = new (*this) ASTRecordLayout(
3080 *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3081 Builder.RequiredAlignment,
3082 Builder.Size, Builder.FieldOffsets);
3083 }
3084 } else {
3085 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3086 EmptySubobjectMap EmptySubobjects(*this, RD);
3087 ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3088 Builder.Layout(RD);
3089
3090 // In certain situations, we are allowed to lay out objects in the
3091 // tail-padding of base classes. This is ABI-dependent.
3092 // FIXME: this should be stored in the record layout.
3093 bool skipTailPadding =
3094 mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3095
3096 // FIXME: This should be done in FinalizeLayout.
3097 CharUnits DataSize =
3098 skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3099 CharUnits NonVirtualSize =
3100 skipTailPadding ? DataSize : Builder.NonVirtualSize;
3101 NewEntry = new (*this) ASTRecordLayout(
3102 *this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment,
3103 /*RequiredAlignment : used by MS-ABI)*/
3104 Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3105 CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3106 NonVirtualSize, Builder.NonVirtualAlignment,
3107 EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3108 Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3109 Builder.VBases);
3110 } else {
3111 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3112 Builder.Layout(D);
3113
3114 NewEntry = new (*this) ASTRecordLayout(
3115 *this, Builder.getSize(), Builder.Alignment, Builder.UnadjustedAlignment,
3116 /*RequiredAlignment : used by MS-ABI)*/
3117 Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3118 }
3119 }
3120
3121 ASTRecordLayouts[D] = NewEntry;
3122
3123 if (getLangOpts().DumpRecordLayouts) {
3124 llvm::outs() << "\n*** Dumping AST Record Layout\n";
3125 DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3126 }
3127
3128 return *NewEntry;
3129 }
3130
getCurrentKeyFunction(const CXXRecordDecl * RD)3131 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3132 if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3133 return nullptr;
3134
3135 assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3136 RD = RD->getDefinition();
3137
3138 // Beware:
3139 // 1) computing the key function might trigger deserialization, which might
3140 // invalidate iterators into KeyFunctions
3141 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and
3142 // invalidate the LazyDeclPtr within the map itself
3143 LazyDeclPtr Entry = KeyFunctions[RD];
3144 const Decl *Result =
3145 Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3146
3147 // Store it back if it changed.
3148 if (Entry.isOffset() || Entry.isValid() != bool(Result))
3149 KeyFunctions[RD] = const_cast<Decl*>(Result);
3150
3151 return cast_or_null<CXXMethodDecl>(Result);
3152 }
3153
setNonKeyFunction(const CXXMethodDecl * Method)3154 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3155 assert(Method == Method->getFirstDecl() &&
3156 "not working with method declaration from class definition");
3157
3158 // Look up the cache entry. Since we're working with the first
3159 // declaration, its parent must be the class definition, which is
3160 // the correct key for the KeyFunctions hash.
3161 const auto &Map = KeyFunctions;
3162 auto I = Map.find(Method->getParent());
3163
3164 // If it's not cached, there's nothing to do.
3165 if (I == Map.end()) return;
3166
3167 // If it is cached, check whether it's the target method, and if so,
3168 // remove it from the cache. Note, the call to 'get' might invalidate
3169 // the iterator and the LazyDeclPtr object within the map.
3170 LazyDeclPtr Ptr = I->second;
3171 if (Ptr.get(getExternalSource()) == Method) {
3172 // FIXME: remember that we did this for module / chained PCH state?
3173 KeyFunctions.erase(Method->getParent());
3174 }
3175 }
3176
getFieldOffset(const ASTContext & C,const FieldDecl * FD)3177 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3178 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3179 return Layout.getFieldOffset(FD->getFieldIndex());
3180 }
3181
getFieldOffset(const ValueDecl * VD) const3182 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3183 uint64_t OffsetInBits;
3184 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3185 OffsetInBits = ::getFieldOffset(*this, FD);
3186 } else {
3187 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3188
3189 OffsetInBits = 0;
3190 for (const NamedDecl *ND : IFD->chain())
3191 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3192 }
3193
3194 return OffsetInBits;
3195 }
3196
lookupFieldBitOffset(const ObjCInterfaceDecl * OID,const ObjCImplementationDecl * ID,const ObjCIvarDecl * Ivar) const3197 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3198 const ObjCImplementationDecl *ID,
3199 const ObjCIvarDecl *Ivar) const {
3200 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3201
3202 // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3203 // in here; it should never be necessary because that should be the lexical
3204 // decl context for the ivar.
3205
3206 // If we know have an implementation (and the ivar is in it) then
3207 // look up in the implementation layout.
3208 const ASTRecordLayout *RL;
3209 if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3210 RL = &getASTObjCImplementationLayout(ID);
3211 else
3212 RL = &getASTObjCInterfaceLayout(Container);
3213
3214 // Compute field index.
3215 //
3216 // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3217 // implemented. This should be fixed to get the information from the layout
3218 // directly.
3219 unsigned Index = 0;
3220
3221 for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3222 IVD; IVD = IVD->getNextIvar()) {
3223 if (Ivar == IVD)
3224 break;
3225 ++Index;
3226 }
3227 assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3228
3229 return RL->getFieldOffset(Index);
3230 }
3231
3232 /// getObjCLayout - Get or compute information about the layout of the
3233 /// given interface.
3234 ///
3235 /// \param Impl - If given, also include the layout of the interface's
3236 /// implementation. This may differ by including synthesized ivars.
3237 const ASTRecordLayout &
getObjCLayout(const ObjCInterfaceDecl * D,const ObjCImplementationDecl * Impl) const3238 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3239 const ObjCImplementationDecl *Impl) const {
3240 // Retrieve the definition
3241 if (D->hasExternalLexicalStorage() && !D->getDefinition())
3242 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3243 D = D->getDefinition();
3244 assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&
3245 "Invalid interface decl!");
3246
3247 // Look up this layout, if already laid out, return what we have.
3248 const ObjCContainerDecl *Key =
3249 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3250 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3251 return *Entry;
3252
3253 // Add in synthesized ivar count if laying out an implementation.
3254 if (Impl) {
3255 unsigned SynthCount = CountNonClassIvars(D);
3256 // If there aren't any synthesized ivars then reuse the interface
3257 // entry. Note we can't cache this because we simply free all
3258 // entries later; however we shouldn't look up implementations
3259 // frequently.
3260 if (SynthCount == 0)
3261 return getObjCLayout(D, nullptr);
3262 }
3263
3264 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3265 Builder.Layout(D);
3266
3267 const ASTRecordLayout *NewEntry =
3268 new (*this) ASTRecordLayout(*this, Builder.getSize(),
3269 Builder.Alignment,
3270 Builder.UnadjustedAlignment,
3271 /*RequiredAlignment : used by MS-ABI)*/
3272 Builder.Alignment,
3273 Builder.getDataSize(),
3274 Builder.FieldOffsets);
3275
3276 ObjCLayouts[Key] = NewEntry;
3277
3278 return *NewEntry;
3279 }
3280
PrintOffset(raw_ostream & OS,CharUnits Offset,unsigned IndentLevel)3281 static void PrintOffset(raw_ostream &OS,
3282 CharUnits Offset, unsigned IndentLevel) {
3283 OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3284 OS.indent(IndentLevel * 2);
3285 }
3286
PrintBitFieldOffset(raw_ostream & OS,CharUnits Offset,unsigned Begin,unsigned Width,unsigned IndentLevel)3287 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3288 unsigned Begin, unsigned Width,
3289 unsigned IndentLevel) {
3290 llvm::SmallString<10> Buffer;
3291 {
3292 llvm::raw_svector_ostream BufferOS(Buffer);
3293 BufferOS << Offset.getQuantity() << ':';
3294 if (Width == 0) {
3295 BufferOS << '-';
3296 } else {
3297 BufferOS << Begin << '-' << (Begin + Width - 1);
3298 }
3299 }
3300
3301 OS << llvm::right_justify(Buffer, 10) << " | ";
3302 OS.indent(IndentLevel * 2);
3303 }
3304
PrintIndentNoOffset(raw_ostream & OS,unsigned IndentLevel)3305 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3306 OS << " | ";
3307 OS.indent(IndentLevel * 2);
3308 }
3309
DumpRecordLayout(raw_ostream & OS,const RecordDecl * RD,const ASTContext & C,CharUnits Offset,unsigned IndentLevel,const char * Description,bool PrintSizeInfo,bool IncludeVirtualBases)3310 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3311 const ASTContext &C,
3312 CharUnits Offset,
3313 unsigned IndentLevel,
3314 const char* Description,
3315 bool PrintSizeInfo,
3316 bool IncludeVirtualBases) {
3317 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3318 auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3319
3320 PrintOffset(OS, Offset, IndentLevel);
3321 OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
3322 if (Description)
3323 OS << ' ' << Description;
3324 if (CXXRD && CXXRD->isEmpty())
3325 OS << " (empty)";
3326 OS << '\n';
3327
3328 IndentLevel++;
3329
3330 // Dump bases.
3331 if (CXXRD) {
3332 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3333 bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3334 bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3335
3336 // Vtable pointer.
3337 if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3338 PrintOffset(OS, Offset, IndentLevel);
3339 OS << '(' << *RD << " vtable pointer)\n";
3340 } else if (HasOwnVFPtr) {
3341 PrintOffset(OS, Offset, IndentLevel);
3342 // vfptr (for Microsoft C++ ABI)
3343 OS << '(' << *RD << " vftable pointer)\n";
3344 }
3345
3346 // Collect nvbases.
3347 SmallVector<const CXXRecordDecl *, 4> Bases;
3348 for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3349 assert(!Base.getType()->isDependentType() &&
3350 "Cannot layout class with dependent bases.");
3351 if (!Base.isVirtual())
3352 Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3353 }
3354
3355 // Sort nvbases by offset.
3356 llvm::stable_sort(
3357 Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3358 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3359 });
3360
3361 // Dump (non-virtual) bases
3362 for (const CXXRecordDecl *Base : Bases) {
3363 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3364 DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3365 Base == PrimaryBase ? "(primary base)" : "(base)",
3366 /*PrintSizeInfo=*/false,
3367 /*IncludeVirtualBases=*/false);
3368 }
3369
3370 // vbptr (for Microsoft C++ ABI)
3371 if (HasOwnVBPtr) {
3372 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3373 OS << '(' << *RD << " vbtable pointer)\n";
3374 }
3375 }
3376
3377 // Dump fields.
3378 uint64_t FieldNo = 0;
3379 for (RecordDecl::field_iterator I = RD->field_begin(),
3380 E = RD->field_end(); I != E; ++I, ++FieldNo) {
3381 const FieldDecl &Field = **I;
3382 uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3383 CharUnits FieldOffset =
3384 Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3385
3386 // Recursively dump fields of record type.
3387 if (auto RT = Field.getType()->getAs<RecordType>()) {
3388 DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3389 Field.getName().data(),
3390 /*PrintSizeInfo=*/false,
3391 /*IncludeVirtualBases=*/true);
3392 continue;
3393 }
3394
3395 if (Field.isBitField()) {
3396 uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3397 unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3398 unsigned Width = Field.getBitWidthValue(C);
3399 PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3400 } else {
3401 PrintOffset(OS, FieldOffset, IndentLevel);
3402 }
3403 OS << Field.getType().getAsString() << ' ' << Field << '\n';
3404 }
3405
3406 // Dump virtual bases.
3407 if (CXXRD && IncludeVirtualBases) {
3408 const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3409 Layout.getVBaseOffsetsMap();
3410
3411 for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3412 assert(Base.isVirtual() && "Found non-virtual class!");
3413 const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3414
3415 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3416
3417 if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3418 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3419 OS << "(vtordisp for vbase " << *VBase << ")\n";
3420 }
3421
3422 DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3423 VBase == Layout.getPrimaryBase() ?
3424 "(primary virtual base)" : "(virtual base)",
3425 /*PrintSizeInfo=*/false,
3426 /*IncludeVirtualBases=*/false);
3427 }
3428 }
3429
3430 if (!PrintSizeInfo) return;
3431
3432 PrintIndentNoOffset(OS, IndentLevel - 1);
3433 OS << "[sizeof=" << Layout.getSize().getQuantity();
3434 if (CXXRD && !isMsLayout(C))
3435 OS << ", dsize=" << Layout.getDataSize().getQuantity();
3436 OS << ", align=" << Layout.getAlignment().getQuantity();
3437
3438 if (CXXRD) {
3439 OS << ",\n";
3440 PrintIndentNoOffset(OS, IndentLevel - 1);
3441 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3442 OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3443 }
3444 OS << "]\n";
3445 }
3446
DumpRecordLayout(const RecordDecl * RD,raw_ostream & OS,bool Simple) const3447 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
3448 raw_ostream &OS,
3449 bool Simple) const {
3450 if (!Simple) {
3451 ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3452 /*PrintSizeInfo*/true,
3453 /*IncludeVirtualBases=*/true);
3454 return;
3455 }
3456
3457 // The "simple" format is designed to be parsed by the
3458 // layout-override testing code. There shouldn't be any external
3459 // uses of this format --- when LLDB overrides a layout, it sets up
3460 // the data structures directly --- so feel free to adjust this as
3461 // you like as long as you also update the rudimentary parser for it
3462 // in libFrontend.
3463
3464 const ASTRecordLayout &Info = getASTRecordLayout(RD);
3465 OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3466 OS << "\nLayout: ";
3467 OS << "<ASTRecordLayout\n";
3468 OS << " Size:" << toBits(Info.getSize()) << "\n";
3469 if (!isMsLayout(*this))
3470 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
3471 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
3472 OS << " FieldOffsets: [";
3473 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3474 if (i) OS << ", ";
3475 OS << Info.getFieldOffset(i);
3476 }
3477 OS << "]>\n";
3478 }
3479