1 /*
2  * Double-precision x^y function.
3  *
4  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5  * See https://llvm.org/LICENSE.txt for license information.
6  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7  */
8 
9 #include <float.h>
10 #include <math.h>
11 #include <stdint.h>
12 #include "math_config.h"
13 
14 /*
15 Worst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53)
16 relerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma)
17 ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma)
18 */
19 
20 #define T __pow_log_data.tab
21 #define A __pow_log_data.poly
22 #define Ln2hi __pow_log_data.ln2hi
23 #define Ln2lo __pow_log_data.ln2lo
24 #define N (1 << POW_LOG_TABLE_BITS)
25 #define OFF 0x3fe6955500000000
26 
27 /* Top 12 bits of a double (sign and exponent bits).  */
28 static inline uint32_t
top12(double x)29 top12 (double x)
30 {
31   return asuint64 (x) >> 52;
32 }
33 
34 /* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
35    additional 15 bits precision.  IX is the bit representation of x, but
36    normalized in the subnormal range using the sign bit for the exponent.  */
37 static inline double_t
log_inline(uint64_t ix,double_t * tail)38 log_inline (uint64_t ix, double_t *tail)
39 {
40   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
41   double_t z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p;
42   uint64_t iz, tmp;
43   int k, i;
44 
45   /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
46      The range is split into N subintervals.
47      The ith subinterval contains z and c is near its center.  */
48   tmp = ix - OFF;
49   i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N;
50   k = (int64_t) tmp >> 52; /* arithmetic shift */
51   iz = ix - (tmp & 0xfffULL << 52);
52   z = asdouble (iz);
53   kd = (double_t) k;
54 
55   /* log(x) = k*Ln2 + log(c) + log1p(z/c-1).  */
56   invc = T[i].invc;
57   logc = T[i].logc;
58   logctail = T[i].logctail;
59 
60   /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
61      |z/c - 1| < 1/N, so r = z/c - 1 is exactly representable.  */
62 #if HAVE_FAST_FMA
63   r = fma (z, invc, -1.0);
64 #else
65   /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|.  */
66   double_t zhi = asdouble ((iz + (1ULL << 31)) & (-1ULL << 32));
67   double_t zlo = z - zhi;
68   double_t rhi = zhi * invc - 1.0;
69   double_t rlo = zlo * invc;
70   r = rhi + rlo;
71 #endif
72 
73   /* k*Ln2 + log(c) + r.  */
74   t1 = kd * Ln2hi + logc;
75   t2 = t1 + r;
76   lo1 = kd * Ln2lo + logctail;
77   lo2 = t1 - t2 + r;
78 
79   /* Evaluation is optimized assuming superscalar pipelined execution.  */
80   double_t ar, ar2, ar3, lo3, lo4;
81   ar = A[0] * r; /* A[0] = -0.5.  */
82   ar2 = r * ar;
83   ar3 = r * ar2;
84   /* k*Ln2 + log(c) + r + A[0]*r*r.  */
85 #if HAVE_FAST_FMA
86   hi = t2 + ar2;
87   lo3 = fma (ar, r, -ar2);
88   lo4 = t2 - hi + ar2;
89 #else
90   double_t arhi = A[0] * rhi;
91   double_t arhi2 = rhi * arhi;
92   hi = t2 + arhi2;
93   lo3 = rlo * (ar + arhi);
94   lo4 = t2 - hi + arhi2;
95 #endif
96   /* p = log1p(r) - r - A[0]*r*r.  */
97 #if POW_LOG_POLY_ORDER == 8
98   p = (ar3
99        * (A[1] + r * A[2] + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6]))));
100 #endif
101   lo = lo1 + lo2 + lo3 + lo4 + p;
102   y = hi + lo;
103   *tail = hi - y + lo;
104   return y;
105 }
106 
107 #undef N
108 #undef T
109 #define N (1 << EXP_TABLE_BITS)
110 #define InvLn2N __exp_data.invln2N
111 #define NegLn2hiN __exp_data.negln2hiN
112 #define NegLn2loN __exp_data.negln2loN
113 #define Shift __exp_data.shift
114 #define T __exp_data.tab
115 #define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
116 #define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
117 #define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
118 #define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
119 #define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
120 
121 /* Handle cases that may overflow or underflow when computing the result that
122    is scale*(1+TMP) without intermediate rounding.  The bit representation of
123    scale is in SBITS, however it has a computed exponent that may have
124    overflown into the sign bit so that needs to be adjusted before using it as
125    a double.  (int32_t)KI is the k used in the argument reduction and exponent
126    adjustment of scale, positive k here means the result may overflow and
127    negative k means the result may underflow.  */
128 static inline double
specialcase(double_t tmp,uint64_t sbits,uint64_t ki)129 specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
130 {
131   double_t scale, y;
132 
133   if ((ki & 0x80000000) == 0)
134     {
135       /* k > 0, the exponent of scale might have overflowed by <= 460.  */
136       sbits -= 1009ull << 52;
137       scale = asdouble (sbits);
138       y = 0x1p1009 * (scale + scale * tmp);
139       return check_oflow (eval_as_double (y));
140     }
141   /* k < 0, need special care in the subnormal range.  */
142   sbits += 1022ull << 52;
143   /* Note: sbits is signed scale.  */
144   scale = asdouble (sbits);
145   y = scale + scale * tmp;
146   if (fabs (y) < 1.0)
147     {
148       /* Round y to the right precision before scaling it into the subnormal
149 	 range to avoid double rounding that can cause 0.5+E/2 ulp error where
150 	 E is the worst-case ulp error outside the subnormal range.  So this
151 	 is only useful if the goal is better than 1 ulp worst-case error.  */
152       double_t hi, lo, one = 1.0;
153       if (y < 0.0)
154 	one = -1.0;
155       lo = scale - y + scale * tmp;
156       hi = one + y;
157       lo = one - hi + y + lo;
158       y = eval_as_double (hi + lo) - one;
159       /* Fix the sign of 0.  */
160       if (y == 0.0)
161 	y = asdouble (sbits & 0x8000000000000000);
162       /* The underflow exception needs to be signaled explicitly.  */
163       force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
164     }
165   y = 0x1p-1022 * y;
166   return check_uflow (eval_as_double (y));
167 }
168 
169 #define SIGN_BIAS (0x800 << EXP_TABLE_BITS)
170 
171 /* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
172    The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1.  */
173 static inline double
exp_inline(double_t x,double_t xtail,uint32_t sign_bias)174 exp_inline (double_t x, double_t xtail, uint32_t sign_bias)
175 {
176   uint32_t abstop;
177   uint64_t ki, idx, top, sbits;
178   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
179   double_t kd, z, r, r2, scale, tail, tmp;
180 
181   abstop = top12 (x) & 0x7ff;
182   if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54)))
183     {
184       if (abstop - top12 (0x1p-54) >= 0x80000000)
185 	{
186 	  /* Avoid spurious underflow for tiny x.  */
187 	  /* Note: 0 is common input.  */
188 	  double_t one = WANT_ROUNDING ? 1.0 + x : 1.0;
189 	  return sign_bias ? -one : one;
190 	}
191       if (abstop >= top12 (1024.0))
192 	{
193 	  /* Note: inf and nan are already handled.  */
194 	  if (asuint64 (x) >> 63)
195 	    return __math_uflow (sign_bias);
196 	  else
197 	    return __math_oflow (sign_bias);
198 	}
199       /* Large x is special cased below.  */
200       abstop = 0;
201     }
202 
203   /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)].  */
204   /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N].  */
205   z = InvLn2N * x;
206 #if TOINT_INTRINSICS
207   kd = roundtoint (z);
208   ki = converttoint (z);
209 #elif EXP_USE_TOINT_NARROW
210   /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes.  */
211   kd = eval_as_double (z + Shift);
212   ki = asuint64 (kd) >> 16;
213   kd = (double_t) (int32_t) ki;
214 #else
215   /* z - kd is in [-1, 1] in non-nearest rounding modes.  */
216   kd = eval_as_double (z + Shift);
217   ki = asuint64 (kd);
218   kd -= Shift;
219 #endif
220   r = x + kd * NegLn2hiN + kd * NegLn2loN;
221   /* The code assumes 2^-200 < |xtail| < 2^-8/N.  */
222   r += xtail;
223   /* 2^(k/N) ~= scale * (1 + tail).  */
224   idx = 2 * (ki % N);
225   top = (ki + sign_bias) << (52 - EXP_TABLE_BITS);
226   tail = asdouble (T[idx]);
227   /* This is only a valid scale when -1023*N < k < 1024*N.  */
228   sbits = T[idx + 1] + top;
229   /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1).  */
230   /* Evaluation is optimized assuming superscalar pipelined execution.  */
231   r2 = r * r;
232   /* Without fma the worst case error is 0.25/N ulp larger.  */
233   /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp.  */
234 #if EXP_POLY_ORDER == 4
235   tmp = tail + r + r2 * C2 + r * r2 * (C3 + r * C4);
236 #elif EXP_POLY_ORDER == 5
237   tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
238 #elif EXP_POLY_ORDER == 6
239   tmp = tail + r + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6);
240 #endif
241   if (unlikely (abstop == 0))
242     return specialcase (tmp, sbits, ki);
243   scale = asdouble (sbits);
244   /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
245      is no spurious underflow here even without fma.  */
246   return eval_as_double (scale + scale * tmp);
247 }
248 
249 /* Returns 0 if not int, 1 if odd int, 2 if even int.  The argument is
250    the bit representation of a non-zero finite floating-point value.  */
251 static inline int
checkint(uint64_t iy)252 checkint (uint64_t iy)
253 {
254   int e = iy >> 52 & 0x7ff;
255   if (e < 0x3ff)
256     return 0;
257   if (e > 0x3ff + 52)
258     return 2;
259   if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
260     return 0;
261   if (iy & (1ULL << (0x3ff + 52 - e)))
262     return 1;
263   return 2;
264 }
265 
266 /* Returns 1 if input is the bit representation of 0, infinity or nan.  */
267 static inline int
zeroinfnan(uint64_t i)268 zeroinfnan (uint64_t i)
269 {
270   return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1;
271 }
272 
273 double
pow(double x,double y)274 pow (double x, double y)
275 {
276   uint32_t sign_bias = 0;
277   uint64_t ix, iy;
278   uint32_t topx, topy;
279 
280   ix = asuint64 (x);
281   iy = asuint64 (y);
282   topx = top12 (x);
283   topy = top12 (y);
284   if (unlikely (topx - 0x001 >= 0x7ff - 0x001
285 		|| (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be))
286     {
287       /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
288 	 and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1.  */
289       /* Special cases: (x < 0x1p-126 or inf or nan) or
290 	 (|y| < 0x1p-65 or |y| >= 0x1p63 or nan).  */
291       if (unlikely (zeroinfnan (iy)))
292 	{
293 	  if (2 * iy == 0)
294 	    return issignaling_inline (x) ? x + y : 1.0;
295 	  if (ix == asuint64 (1.0))
296 	    return issignaling_inline (y) ? x + y : 1.0;
297 	  if (2 * ix > 2 * asuint64 (INFINITY)
298 	      || 2 * iy > 2 * asuint64 (INFINITY))
299 	    return x + y;
300 	  if (2 * ix == 2 * asuint64 (1.0))
301 	    return 1.0;
302 	  if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63))
303 	    return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf.  */
304 	  return y * y;
305 	}
306       if (unlikely (zeroinfnan (ix)))
307 	{
308 	  double_t x2 = x * x;
309 	  if (ix >> 63 && checkint (iy) == 1)
310 	    {
311 	      x2 = -x2;
312 	      sign_bias = 1;
313 	    }
314 	  if (WANT_ERRNO && 2 * ix == 0 && iy >> 63)
315 	    return __math_divzero (sign_bias);
316 	  /* Without the barrier some versions of clang hoist the 1/x2 and
317 	     thus division by zero exception can be signaled spuriously.  */
318 	  return iy >> 63 ? opt_barrier_double (1 / x2) : x2;
319 	}
320       /* Here x and y are non-zero finite.  */
321       if (ix >> 63)
322 	{
323 	  /* Finite x < 0.  */
324 	  int yint = checkint (iy);
325 	  if (yint == 0)
326 	    return __math_invalid (x);
327 	  if (yint == 1)
328 	    sign_bias = SIGN_BIAS;
329 	  ix &= 0x7fffffffffffffff;
330 	  topx &= 0x7ff;
331 	}
332       if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be)
333 	{
334 	  /* Note: sign_bias == 0 here because y is not odd.  */
335 	  if (ix == asuint64 (1.0))
336 	    return 1.0;
337 	  if ((topy & 0x7ff) < 0x3be)
338 	    {
339 	      /* |y| < 2^-65, x^y ~= 1 + y*log(x).  */
340 	      if (WANT_ROUNDING)
341 		return ix > asuint64 (1.0) ? 1.0 + y : 1.0 - y;
342 	      else
343 		return 1.0;
344 	    }
345 	  return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0)
346 							 : __math_uflow (0);
347 	}
348       if (topx == 0)
349 	{
350 	  /* Normalize subnormal x so exponent becomes negative.  */
351 	  /* Without the barrier some versions of clang evaluate the mul
352 	     unconditionally causing spurious overflow exceptions.  */
353 	  ix = asuint64 (opt_barrier_double (x) * 0x1p52);
354 	  ix &= 0x7fffffffffffffff;
355 	  ix -= 52ULL << 52;
356 	}
357     }
358 
359   double_t lo;
360   double_t hi = log_inline (ix, &lo);
361   double_t ehi, elo;
362 #if HAVE_FAST_FMA
363   ehi = y * hi;
364   elo = y * lo + fma (y, hi, -ehi);
365 #else
366   double_t yhi = asdouble (iy & -1ULL << 27);
367   double_t ylo = y - yhi;
368   double_t lhi = asdouble (asuint64 (hi) & -1ULL << 27);
369   double_t llo = hi - lhi + lo;
370   ehi = yhi * lhi;
371   elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25.  */
372 #endif
373   return exp_inline (ehi, elo, sign_bias);
374 }
375 #if USE_GLIBC_ABI
strong_alias(pow,__pow_finite)376 strong_alias (pow, __pow_finite)
377 hidden_alias (pow, __ieee754_pow)
378 # if LDBL_MANT_DIG == 53
379 long double powl (long double x, long double y) { return pow (x, y); }
380 # endif
381 #endif
382