1 //==- llvm/ADT/IntrusiveRefCntPtr.h - Smart Refcounting Pointer --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RefCountedBase, ThreadSafeRefCountedBase, and
10 // IntrusiveRefCntPtr classes.
11 //
12 // IntrusiveRefCntPtr is a smart pointer to an object which maintains a
13 // reference count.  (ThreadSafe)RefCountedBase is a mixin class that adds a
14 // refcount member variable and methods for updating the refcount.  An object
15 // that inherits from (ThreadSafe)RefCountedBase deletes itself when its
16 // refcount hits zero.
17 //
18 // For example:
19 //
20 //   class MyClass : public RefCountedBase<MyClass> {};
21 //
22 //   void foo() {
23 //     // Constructing an IntrusiveRefCntPtr increases the pointee's refcount by
24 //     // 1 (from 0 in this case).
25 //     IntrusiveRefCntPtr<MyClass> Ptr1(new MyClass());
26 //
27 //     // Copying an IntrusiveRefCntPtr increases the pointee's refcount by 1.
28 //     IntrusiveRefCntPtr<MyClass> Ptr2(Ptr1);
29 //
30 //     // Constructing an IntrusiveRefCntPtr has no effect on the object's
31 //     // refcount.  After a move, the moved-from pointer is null.
32 //     IntrusiveRefCntPtr<MyClass> Ptr3(std::move(Ptr1));
33 //     assert(Ptr1 == nullptr);
34 //
35 //     // Clearing an IntrusiveRefCntPtr decreases the pointee's refcount by 1.
36 //     Ptr2.reset();
37 //
38 //     // The object deletes itself when we return from the function, because
39 //     // Ptr3's destructor decrements its refcount to 0.
40 //   }
41 //
42 // You can use IntrusiveRefCntPtr with isa<T>(), dyn_cast<T>(), etc.:
43 //
44 //   IntrusiveRefCntPtr<MyClass> Ptr(new MyClass());
45 //   OtherClass *Other = dyn_cast<OtherClass>(Ptr);  // Ptr.get() not required
46 //
47 // IntrusiveRefCntPtr works with any class that
48 //
49 //  - inherits from (ThreadSafe)RefCountedBase,
50 //  - has Retain() and Release() methods, or
51 //  - specializes IntrusiveRefCntPtrInfo.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #ifndef LLVM_ADT_INTRUSIVEREFCNTPTR_H
56 #define LLVM_ADT_INTRUSIVEREFCNTPTR_H
57 
58 #include <atomic>
59 #include <cassert>
60 #include <cstddef>
61 
62 namespace llvm {
63 
64 /// A CRTP mixin class that adds reference counting to a type.
65 ///
66 /// The lifetime of an object which inherits from RefCountedBase is managed by
67 /// calls to Release() and Retain(), which increment and decrement the object's
68 /// refcount, respectively.  When a Release() call decrements the refcount to 0,
69 /// the object deletes itself.
70 template <class Derived> class RefCountedBase {
71   mutable unsigned RefCount = 0;
72 
73 public:
74   RefCountedBase() = default;
RefCountedBase(const RefCountedBase &)75   RefCountedBase(const RefCountedBase &) {}
76 
Retain()77   void Retain() const { ++RefCount; }
78 
Release()79   void Release() const {
80     assert(RefCount > 0 && "Reference count is already zero.");
81     if (--RefCount == 0)
82       delete static_cast<const Derived *>(this);
83   }
84 };
85 
86 /// A thread-safe version of \c RefCountedBase.
87 template <class Derived> class ThreadSafeRefCountedBase {
88   mutable std::atomic<int> RefCount;
89 
90 protected:
ThreadSafeRefCountedBase()91   ThreadSafeRefCountedBase() : RefCount(0) {}
92 
93 public:
Retain()94   void Retain() const { RefCount.fetch_add(1, std::memory_order_relaxed); }
95 
Release()96   void Release() const {
97     int NewRefCount = RefCount.fetch_sub(1, std::memory_order_acq_rel) - 1;
98     assert(NewRefCount >= 0 && "Reference count was already zero.");
99     if (NewRefCount == 0)
100       delete static_cast<const Derived *>(this);
101   }
102 };
103 
104 /// Class you can specialize to provide custom retain/release functionality for
105 /// a type.
106 ///
107 /// Usually specializing this class is not necessary, as IntrusiveRefCntPtr
108 /// works with any type which defines Retain() and Release() functions -- you
109 /// can define those functions yourself if RefCountedBase doesn't work for you.
110 ///
111 /// One case when you might want to specialize this type is if you have
112 ///  - Foo.h defines type Foo and includes Bar.h, and
113 ///  - Bar.h uses IntrusiveRefCntPtr<Foo> in inline functions.
114 ///
115 /// Because Foo.h includes Bar.h, Bar.h can't include Foo.h in order to pull in
116 /// the declaration of Foo.  Without the declaration of Foo, normally Bar.h
117 /// wouldn't be able to use IntrusiveRefCntPtr<Foo>, which wants to call
118 /// T::Retain and T::Release.
119 ///
120 /// To resolve this, Bar.h could include a third header, FooFwd.h, which
121 /// forward-declares Foo and specializes IntrusiveRefCntPtrInfo<Foo>.  Then
122 /// Bar.h could use IntrusiveRefCntPtr<Foo>, although it still couldn't call any
123 /// functions on Foo itself, because Foo would be an incomplete type.
124 template <typename T> struct IntrusiveRefCntPtrInfo {
retainIntrusiveRefCntPtrInfo125   static void retain(T *obj) { obj->Retain(); }
releaseIntrusiveRefCntPtrInfo126   static void release(T *obj) { obj->Release(); }
127 };
128 
129 /// A smart pointer to a reference-counted object that inherits from
130 /// RefCountedBase or ThreadSafeRefCountedBase.
131 ///
132 /// This class increments its pointee's reference count when it is created, and
133 /// decrements its refcount when it's destroyed (or is changed to point to a
134 /// different object).
135 template <typename T> class IntrusiveRefCntPtr {
136   T *Obj = nullptr;
137 
138 public:
139   using element_type = T;
140 
141   explicit IntrusiveRefCntPtr() = default;
IntrusiveRefCntPtr(T * obj)142   IntrusiveRefCntPtr(T *obj) : Obj(obj) { retain(); }
IntrusiveRefCntPtr(const IntrusiveRefCntPtr & S)143   IntrusiveRefCntPtr(const IntrusiveRefCntPtr &S) : Obj(S.Obj) { retain(); }
IntrusiveRefCntPtr(IntrusiveRefCntPtr && S)144   IntrusiveRefCntPtr(IntrusiveRefCntPtr &&S) : Obj(S.Obj) { S.Obj = nullptr; }
145 
146   template <class X>
IntrusiveRefCntPtr(IntrusiveRefCntPtr<X> && S)147   IntrusiveRefCntPtr(IntrusiveRefCntPtr<X> &&S) : Obj(S.get()) {
148     S.Obj = nullptr;
149   }
150 
151   template <class X>
IntrusiveRefCntPtr(const IntrusiveRefCntPtr<X> & S)152   IntrusiveRefCntPtr(const IntrusiveRefCntPtr<X> &S) : Obj(S.get()) {
153     retain();
154   }
155 
~IntrusiveRefCntPtr()156   ~IntrusiveRefCntPtr() { release(); }
157 
158   IntrusiveRefCntPtr &operator=(IntrusiveRefCntPtr S) {
159     swap(S);
160     return *this;
161   }
162 
163   T &operator*() const { return *Obj; }
164   T *operator->() const { return Obj; }
get()165   T *get() const { return Obj; }
166   explicit operator bool() const { return Obj; }
167 
swap(IntrusiveRefCntPtr & other)168   void swap(IntrusiveRefCntPtr &other) {
169     T *tmp = other.Obj;
170     other.Obj = Obj;
171     Obj = tmp;
172   }
173 
reset()174   void reset() {
175     release();
176     Obj = nullptr;
177   }
178 
resetWithoutRelease()179   void resetWithoutRelease() { Obj = nullptr; }
180 
181 private:
retain()182   void retain() {
183     if (Obj)
184       IntrusiveRefCntPtrInfo<T>::retain(Obj);
185   }
186 
release()187   void release() {
188     if (Obj)
189       IntrusiveRefCntPtrInfo<T>::release(Obj);
190   }
191 
192   template <typename X> friend class IntrusiveRefCntPtr;
193 };
194 
195 template <class T, class U>
196 inline bool operator==(const IntrusiveRefCntPtr<T> &A,
197                        const IntrusiveRefCntPtr<U> &B) {
198   return A.get() == B.get();
199 }
200 
201 template <class T, class U>
202 inline bool operator!=(const IntrusiveRefCntPtr<T> &A,
203                        const IntrusiveRefCntPtr<U> &B) {
204   return A.get() != B.get();
205 }
206 
207 template <class T, class U>
208 inline bool operator==(const IntrusiveRefCntPtr<T> &A, U *B) {
209   return A.get() == B;
210 }
211 
212 template <class T, class U>
213 inline bool operator!=(const IntrusiveRefCntPtr<T> &A, U *B) {
214   return A.get() != B;
215 }
216 
217 template <class T, class U>
218 inline bool operator==(T *A, const IntrusiveRefCntPtr<U> &B) {
219   return A == B.get();
220 }
221 
222 template <class T, class U>
223 inline bool operator!=(T *A, const IntrusiveRefCntPtr<U> &B) {
224   return A != B.get();
225 }
226 
227 template <class T>
228 bool operator==(std::nullptr_t A, const IntrusiveRefCntPtr<T> &B) {
229   return !B;
230 }
231 
232 template <class T>
233 bool operator==(const IntrusiveRefCntPtr<T> &A, std::nullptr_t B) {
234   return B == A;
235 }
236 
237 template <class T>
238 bool operator!=(std::nullptr_t A, const IntrusiveRefCntPtr<T> &B) {
239   return !(A == B);
240 }
241 
242 template <class T>
243 bool operator!=(const IntrusiveRefCntPtr<T> &A, std::nullptr_t B) {
244   return !(A == B);
245 }
246 
247 // Make IntrusiveRefCntPtr work with dyn_cast, isa, and the other idioms from
248 // Casting.h.
249 template <typename From> struct simplify_type;
250 
251 template <class T> struct simplify_type<IntrusiveRefCntPtr<T>> {
252   using SimpleType = T *;
253 
254   static SimpleType getSimplifiedValue(IntrusiveRefCntPtr<T> &Val) {
255     return Val.get();
256   }
257 };
258 
259 template <class T> struct simplify_type<const IntrusiveRefCntPtr<T>> {
260   using SimpleType = /*const*/ T *;
261 
262   static SimpleType getSimplifiedValue(const IntrusiveRefCntPtr<T> &Val) {
263     return Val.get();
264   }
265 };
266 
267 } // end namespace llvm
268 
269 #endif // LLVM_ADT_INTRUSIVEREFCNTPTR_H
270