1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Shared implementation of BlockFrequency for IR and Machine Instructions.
10 // See the documentation below for BlockFrequencyInfoImpl for details.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
15 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/SparseBitVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/ValueHandle.h"
28 #include "llvm/Support/BlockFrequency.h"
29 #include "llvm/Support/BranchProbability.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/DOTGraphTraits.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/Format.h"
35 #include "llvm/Support/ScaledNumber.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstddef>
40 #include <cstdint>
41 #include <deque>
42 #include <iterator>
43 #include <limits>
44 #include <list>
45 #include <string>
46 #include <utility>
47 #include <vector>
48 
49 #define DEBUG_TYPE "block-freq"
50 
51 extern llvm::cl::opt<bool> CheckBFIUnknownBlockQueries;
52 
53 namespace llvm {
54 
55 class BranchProbabilityInfo;
56 class Function;
57 class Loop;
58 class LoopInfo;
59 class MachineBasicBlock;
60 class MachineBranchProbabilityInfo;
61 class MachineFunction;
62 class MachineLoop;
63 class MachineLoopInfo;
64 
65 namespace bfi_detail {
66 
67 struct IrreducibleGraph;
68 
69 // This is part of a workaround for a GCC 4.7 crash on lambdas.
70 template <class BT> struct BlockEdgesAdder;
71 
72 /// Mass of a block.
73 ///
74 /// This class implements a sort of fixed-point fraction always between 0.0 and
75 /// 1.0.  getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
76 /// 1.0.
77 ///
78 /// Masses can be added and subtracted.  Simple saturation arithmetic is used,
79 /// so arithmetic operations never overflow or underflow.
80 ///
81 /// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
82 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
83 /// quite, maximum precision).
84 ///
85 /// Masses can be scaled by \a BranchProbability at maximum precision.
86 class BlockMass {
87   uint64_t Mass = 0;
88 
89 public:
90   BlockMass() = default;
BlockMass(uint64_t Mass)91   explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
92 
getEmpty()93   static BlockMass getEmpty() { return BlockMass(); }
94 
getFull()95   static BlockMass getFull() {
96     return BlockMass(std::numeric_limits<uint64_t>::max());
97   }
98 
getMass()99   uint64_t getMass() const { return Mass; }
100 
isFull()101   bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
isEmpty()102   bool isEmpty() const { return !Mass; }
103 
104   bool operator!() const { return isEmpty(); }
105 
106   /// Add another mass.
107   ///
108   /// Adds another mass, saturating at \a isFull() rather than overflowing.
109   BlockMass &operator+=(BlockMass X) {
110     uint64_t Sum = Mass + X.Mass;
111     Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum;
112     return *this;
113   }
114 
115   /// Subtract another mass.
116   ///
117   /// Subtracts another mass, saturating at \a isEmpty() rather than
118   /// undeflowing.
119   BlockMass &operator-=(BlockMass X) {
120     uint64_t Diff = Mass - X.Mass;
121     Mass = Diff > Mass ? 0 : Diff;
122     return *this;
123   }
124 
125   BlockMass &operator*=(BranchProbability P) {
126     Mass = P.scale(Mass);
127     return *this;
128   }
129 
130   bool operator==(BlockMass X) const { return Mass == X.Mass; }
131   bool operator!=(BlockMass X) const { return Mass != X.Mass; }
132   bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
133   bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
134   bool operator<(BlockMass X) const { return Mass < X.Mass; }
135   bool operator>(BlockMass X) const { return Mass > X.Mass; }
136 
137   /// Convert to scaled number.
138   ///
139   /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
140   /// gives slightly above 0.0.
141   ScaledNumber<uint64_t> toScaled() const;
142 
143   void dump() const;
144   raw_ostream &print(raw_ostream &OS) const;
145 };
146 
147 inline BlockMass operator+(BlockMass L, BlockMass R) {
148   return BlockMass(L) += R;
149 }
150 inline BlockMass operator-(BlockMass L, BlockMass R) {
151   return BlockMass(L) -= R;
152 }
153 inline BlockMass operator*(BlockMass L, BranchProbability R) {
154   return BlockMass(L) *= R;
155 }
156 inline BlockMass operator*(BranchProbability L, BlockMass R) {
157   return BlockMass(R) *= L;
158 }
159 
160 inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
161   return X.print(OS);
162 }
163 
164 } // end namespace bfi_detail
165 
166 /// Base class for BlockFrequencyInfoImpl
167 ///
168 /// BlockFrequencyInfoImplBase has supporting data structures and some
169 /// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
170 /// the block type (or that call such algorithms) are skipped here.
171 ///
172 /// Nevertheless, the majority of the overall algorithm documention lives with
173 /// BlockFrequencyInfoImpl.  See there for details.
174 class BlockFrequencyInfoImplBase {
175 public:
176   using Scaled64 = ScaledNumber<uint64_t>;
177   using BlockMass = bfi_detail::BlockMass;
178 
179   /// Representative of a block.
180   ///
181   /// This is a simple wrapper around an index into the reverse-post-order
182   /// traversal of the blocks.
183   ///
184   /// Unlike a block pointer, its order has meaning (location in the
185   /// topological sort) and it's class is the same regardless of block type.
186   struct BlockNode {
187     using IndexType = uint32_t;
188 
189     IndexType Index;
190 
BlockNodeBlockNode191     BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {}
BlockNodeBlockNode192     BlockNode(IndexType Index) : Index(Index) {}
193 
194     bool operator==(const BlockNode &X) const { return Index == X.Index; }
195     bool operator!=(const BlockNode &X) const { return Index != X.Index; }
196     bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
197     bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
198     bool operator<(const BlockNode &X) const { return Index < X.Index; }
199     bool operator>(const BlockNode &X) const { return Index > X.Index; }
200 
isValidBlockNode201     bool isValid() const { return Index <= getMaxIndex(); }
202 
getMaxIndexBlockNode203     static size_t getMaxIndex() {
204        return std::numeric_limits<uint32_t>::max() - 1;
205     }
206   };
207 
208   /// Stats about a block itself.
209   struct FrequencyData {
210     Scaled64 Scaled;
211     uint64_t Integer;
212   };
213 
214   /// Data about a loop.
215   ///
216   /// Contains the data necessary to represent a loop as a pseudo-node once it's
217   /// packaged.
218   struct LoopData {
219     using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>;
220     using NodeList = SmallVector<BlockNode, 4>;
221     using HeaderMassList = SmallVector<BlockMass, 1>;
222 
223     LoopData *Parent;            ///< The parent loop.
224     bool IsPackaged = false;     ///< Whether this has been packaged.
225     uint32_t NumHeaders = 1;     ///< Number of headers.
226     ExitMap Exits;               ///< Successor edges (and weights).
227     NodeList Nodes;              ///< Header and the members of the loop.
228     HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
229     BlockMass Mass;
230     Scaled64 Scale;
231 
LoopDataLoopData232     LoopData(LoopData *Parent, const BlockNode &Header)
233       : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
234 
235     template <class It1, class It2>
LoopDataLoopData236     LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
237              It2 LastOther)
238         : Parent(Parent), Nodes(FirstHeader, LastHeader) {
239       NumHeaders = Nodes.size();
240       Nodes.insert(Nodes.end(), FirstOther, LastOther);
241       BackedgeMass.resize(NumHeaders);
242     }
243 
isHeaderLoopData244     bool isHeader(const BlockNode &Node) const {
245       if (isIrreducible())
246         return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
247                                   Node);
248       return Node == Nodes[0];
249     }
250 
getHeaderLoopData251     BlockNode getHeader() const { return Nodes[0]; }
isIrreducibleLoopData252     bool isIrreducible() const { return NumHeaders > 1; }
253 
getHeaderIndexLoopData254     HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
255       assert(isHeader(B) && "this is only valid on loop header blocks");
256       if (isIrreducible())
257         return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
258                Nodes.begin();
259       return 0;
260     }
261 
members_beginLoopData262     NodeList::const_iterator members_begin() const {
263       return Nodes.begin() + NumHeaders;
264     }
265 
members_endLoopData266     NodeList::const_iterator members_end() const { return Nodes.end(); }
membersLoopData267     iterator_range<NodeList::const_iterator> members() const {
268       return make_range(members_begin(), members_end());
269     }
270   };
271 
272   /// Index of loop information.
273   struct WorkingData {
274     BlockNode Node;           ///< This node.
275     LoopData *Loop = nullptr; ///< The loop this block is inside.
276     BlockMass Mass;           ///< Mass distribution from the entry block.
277 
WorkingDataWorkingData278     WorkingData(const BlockNode &Node) : Node(Node) {}
279 
isLoopHeaderWorkingData280     bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
281 
isDoubleLoopHeaderWorkingData282     bool isDoubleLoopHeader() const {
283       return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
284              Loop->Parent->isHeader(Node);
285     }
286 
getContainingLoopWorkingData287     LoopData *getContainingLoop() const {
288       if (!isLoopHeader())
289         return Loop;
290       if (!isDoubleLoopHeader())
291         return Loop->Parent;
292       return Loop->Parent->Parent;
293     }
294 
295     /// Resolve a node to its representative.
296     ///
297     /// Get the node currently representing Node, which could be a containing
298     /// loop.
299     ///
300     /// This function should only be called when distributing mass.  As long as
301     /// there are no irreducible edges to Node, then it will have complexity
302     /// O(1) in this context.
303     ///
304     /// In general, the complexity is O(L), where L is the number of loop
305     /// headers Node has been packaged into.  Since this method is called in
306     /// the context of distributing mass, L will be the number of loop headers
307     /// an early exit edge jumps out of.
getResolvedNodeWorkingData308     BlockNode getResolvedNode() const {
309       auto L = getPackagedLoop();
310       return L ? L->getHeader() : Node;
311     }
312 
getPackagedLoopWorkingData313     LoopData *getPackagedLoop() const {
314       if (!Loop || !Loop->IsPackaged)
315         return nullptr;
316       auto L = Loop;
317       while (L->Parent && L->Parent->IsPackaged)
318         L = L->Parent;
319       return L;
320     }
321 
322     /// Get the appropriate mass for a node.
323     ///
324     /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
325     /// has been packaged), returns the mass of its pseudo-node.  If it's a
326     /// node inside a packaged loop, it returns the loop's mass.
getMassWorkingData327     BlockMass &getMass() {
328       if (!isAPackage())
329         return Mass;
330       if (!isADoublePackage())
331         return Loop->Mass;
332       return Loop->Parent->Mass;
333     }
334 
335     /// Has ContainingLoop been packaged up?
isPackagedWorkingData336     bool isPackaged() const { return getResolvedNode() != Node; }
337 
338     /// Has Loop been packaged up?
isAPackageWorkingData339     bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
340 
341     /// Has Loop been packaged up twice?
isADoublePackageWorkingData342     bool isADoublePackage() const {
343       return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
344     }
345   };
346 
347   /// Unscaled probability weight.
348   ///
349   /// Probability weight for an edge in the graph (including the
350   /// successor/target node).
351   ///
352   /// All edges in the original function are 32-bit.  However, exit edges from
353   /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
354   /// space in general.
355   ///
356   /// In addition to the raw weight amount, Weight stores the type of the edge
357   /// in the current context (i.e., the context of the loop being processed).
358   /// Is this a local edge within the loop, an exit from the loop, or a
359   /// backedge to the loop header?
360   struct Weight {
361     enum DistType { Local, Exit, Backedge };
362     DistType Type = Local;
363     BlockNode TargetNode;
364     uint64_t Amount = 0;
365 
366     Weight() = default;
WeightWeight367     Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
368         : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
369   };
370 
371   /// Distribution of unscaled probability weight.
372   ///
373   /// Distribution of unscaled probability weight to a set of successors.
374   ///
375   /// This class collates the successor edge weights for later processing.
376   ///
377   /// \a DidOverflow indicates whether \a Total did overflow while adding to
378   /// the distribution.  It should never overflow twice.
379   struct Distribution {
380     using WeightList = SmallVector<Weight, 4>;
381 
382     WeightList Weights;       ///< Individual successor weights.
383     uint64_t Total = 0;       ///< Sum of all weights.
384     bool DidOverflow = false; ///< Whether \a Total did overflow.
385 
386     Distribution() = default;
387 
addLocalDistribution388     void addLocal(const BlockNode &Node, uint64_t Amount) {
389       add(Node, Amount, Weight::Local);
390     }
391 
addExitDistribution392     void addExit(const BlockNode &Node, uint64_t Amount) {
393       add(Node, Amount, Weight::Exit);
394     }
395 
addBackedgeDistribution396     void addBackedge(const BlockNode &Node, uint64_t Amount) {
397       add(Node, Amount, Weight::Backedge);
398     }
399 
400     /// Normalize the distribution.
401     ///
402     /// Combines multiple edges to the same \a Weight::TargetNode and scales
403     /// down so that \a Total fits into 32-bits.
404     ///
405     /// This is linear in the size of \a Weights.  For the vast majority of
406     /// cases, adjacent edge weights are combined by sorting WeightList and
407     /// combining adjacent weights.  However, for very large edge lists an
408     /// auxiliary hash table is used.
409     void normalize();
410 
411   private:
412     void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
413   };
414 
415   /// Data about each block.  This is used downstream.
416   std::vector<FrequencyData> Freqs;
417 
418   /// Whether each block is an irreducible loop header.
419   /// This is used downstream.
420   SparseBitVector<> IsIrrLoopHeader;
421 
422   /// Loop data: see initializeLoops().
423   std::vector<WorkingData> Working;
424 
425   /// Indexed information about loops.
426   std::list<LoopData> Loops;
427 
428   /// Virtual destructor.
429   ///
430   /// Need a virtual destructor to mask the compiler warning about
431   /// getBlockName().
432   virtual ~BlockFrequencyInfoImplBase() = default;
433 
434   /// Add all edges out of a packaged loop to the distribution.
435   ///
436   /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
437   /// successor edge.
438   ///
439   /// \return \c true unless there's an irreducible backedge.
440   bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
441                                Distribution &Dist);
442 
443   /// Add an edge to the distribution.
444   ///
445   /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
446   /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
447   /// every edge should be a local edge (since all the loops are packaged up).
448   ///
449   /// \return \c true unless aborted due to an irreducible backedge.
450   bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
451                  const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
452 
getLoopPackage(const BlockNode & Head)453   LoopData &getLoopPackage(const BlockNode &Head) {
454     assert(Head.Index < Working.size());
455     assert(Working[Head.Index].isLoopHeader());
456     return *Working[Head.Index].Loop;
457   }
458 
459   /// Analyze irreducible SCCs.
460   ///
461   /// Separate irreducible SCCs from \c G, which is an explict graph of \c
462   /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
463   /// Insert them into \a Loops before \c Insert.
464   ///
465   /// \return the \c LoopData nodes representing the irreducible SCCs.
466   iterator_range<std::list<LoopData>::iterator>
467   analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
468                      std::list<LoopData>::iterator Insert);
469 
470   /// Update a loop after packaging irreducible SCCs inside of it.
471   ///
472   /// Update \c OuterLoop.  Before finding irreducible control flow, it was
473   /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
474   /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
475   /// up need to be removed from \a OuterLoop::Nodes.
476   void updateLoopWithIrreducible(LoopData &OuterLoop);
477 
478   /// Distribute mass according to a distribution.
479   ///
480   /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
481   /// backedges and exits are stored in its entry in Loops.
482   ///
483   /// Mass is distributed in parallel from two copies of the source mass.
484   void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
485                       Distribution &Dist);
486 
487   /// Compute the loop scale for a loop.
488   void computeLoopScale(LoopData &Loop);
489 
490   /// Adjust the mass of all headers in an irreducible loop.
491   ///
492   /// Initially, irreducible loops are assumed to distribute their mass
493   /// equally among its headers. This can lead to wrong frequency estimates
494   /// since some headers may be executed more frequently than others.
495   ///
496   /// This adjusts header mass distribution so it matches the weights of
497   /// the backedges going into each of the loop headers.
498   void adjustLoopHeaderMass(LoopData &Loop);
499 
500   void distributeIrrLoopHeaderMass(Distribution &Dist);
501 
502   /// Package up a loop.
503   void packageLoop(LoopData &Loop);
504 
505   /// Unwrap loops.
506   void unwrapLoops();
507 
508   /// Finalize frequency metrics.
509   ///
510   /// Calculates final frequencies and cleans up no-longer-needed data
511   /// structures.
512   void finalizeMetrics();
513 
514   /// Clear all memory.
515   void clear();
516 
517   virtual std::string getBlockName(const BlockNode &Node) const;
518   std::string getLoopName(const LoopData &Loop) const;
519 
print(raw_ostream & OS)520   virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
dump()521   void dump() const { print(dbgs()); }
522 
523   Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
524 
525   BlockFrequency getBlockFreq(const BlockNode &Node) const;
526   Optional<uint64_t> getBlockProfileCount(const Function &F,
527                                           const BlockNode &Node,
528                                           bool AllowSynthetic = false) const;
529   Optional<uint64_t> getProfileCountFromFreq(const Function &F,
530                                              uint64_t Freq,
531                                              bool AllowSynthetic = false) const;
532   bool isIrrLoopHeader(const BlockNode &Node);
533 
534   void setBlockFreq(const BlockNode &Node, uint64_t Freq);
535 
536   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
537   raw_ostream &printBlockFreq(raw_ostream &OS,
538                               const BlockFrequency &Freq) const;
539 
getEntryFreq()540   uint64_t getEntryFreq() const {
541     assert(!Freqs.empty());
542     return Freqs[0].Integer;
543   }
544 };
545 
546 namespace bfi_detail {
547 
548 template <class BlockT> struct TypeMap {};
549 template <> struct TypeMap<BasicBlock> {
550   using BlockT = BasicBlock;
551   using BlockKeyT = AssertingVH<const BasicBlock>;
552   using FunctionT = Function;
553   using BranchProbabilityInfoT = BranchProbabilityInfo;
554   using LoopT = Loop;
555   using LoopInfoT = LoopInfo;
556 };
557 template <> struct TypeMap<MachineBasicBlock> {
558   using BlockT = MachineBasicBlock;
559   using BlockKeyT = const MachineBasicBlock *;
560   using FunctionT = MachineFunction;
561   using BranchProbabilityInfoT = MachineBranchProbabilityInfo;
562   using LoopT = MachineLoop;
563   using LoopInfoT = MachineLoopInfo;
564 };
565 
566 template <class BlockT, class BFIImplT>
567 class BFICallbackVH;
568 
569 /// Get the name of a MachineBasicBlock.
570 ///
571 /// Get the name of a MachineBasicBlock.  It's templated so that including from
572 /// CodeGen is unnecessary (that would be a layering issue).
573 ///
574 /// This is used mainly for debug output.  The name is similar to
575 /// MachineBasicBlock::getFullName(), but skips the name of the function.
576 template <class BlockT> std::string getBlockName(const BlockT *BB) {
577   assert(BB && "Unexpected nullptr");
578   auto MachineName = "BB" + Twine(BB->getNumber());
579   if (BB->getBasicBlock())
580     return (MachineName + "[" + BB->getName() + "]").str();
581   return MachineName.str();
582 }
583 /// Get the name of a BasicBlock.
584 template <> inline std::string getBlockName(const BasicBlock *BB) {
585   assert(BB && "Unexpected nullptr");
586   return BB->getName().str();
587 }
588 
589 /// Graph of irreducible control flow.
590 ///
591 /// This graph is used for determining the SCCs in a loop (or top-level
592 /// function) that has irreducible control flow.
593 ///
594 /// During the block frequency algorithm, the local graphs are defined in a
595 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
596 /// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
597 /// latter only has successor information.
598 ///
599 /// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
600 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
601 /// and it explicitly lists predecessors and successors.  The initialization
602 /// that relies on \c MachineBasicBlock is defined in the header.
603 struct IrreducibleGraph {
604   using BFIBase = BlockFrequencyInfoImplBase;
605 
606   BFIBase &BFI;
607 
608   using BlockNode = BFIBase::BlockNode;
609   struct IrrNode {
610     BlockNode Node;
611     unsigned NumIn = 0;
612     std::deque<const IrrNode *> Edges;
613 
614     IrrNode(const BlockNode &Node) : Node(Node) {}
615 
616     using iterator = std::deque<const IrrNode *>::const_iterator;
617 
618     iterator pred_begin() const { return Edges.begin(); }
619     iterator succ_begin() const { return Edges.begin() + NumIn; }
620     iterator pred_end() const { return succ_begin(); }
621     iterator succ_end() const { return Edges.end(); }
622   };
623   BlockNode Start;
624   const IrrNode *StartIrr = nullptr;
625   std::vector<IrrNode> Nodes;
626   SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
627 
628   /// Construct an explicit graph containing irreducible control flow.
629   ///
630   /// Construct an explicit graph of the control flow in \c OuterLoop (or the
631   /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
632   /// addBlockEdges to add block successors that have not been packaged into
633   /// loops.
634   ///
635   /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
636   /// user of this.
637   template <class BlockEdgesAdder>
638   IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
639                    BlockEdgesAdder addBlockEdges) : BFI(BFI) {
640     initialize(OuterLoop, addBlockEdges);
641   }
642 
643   template <class BlockEdgesAdder>
644   void initialize(const BFIBase::LoopData *OuterLoop,
645                   BlockEdgesAdder addBlockEdges);
646   void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
647   void addNodesInFunction();
648 
649   void addNode(const BlockNode &Node) {
650     Nodes.emplace_back(Node);
651     BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
652   }
653 
654   void indexNodes();
655   template <class BlockEdgesAdder>
656   void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
657                 BlockEdgesAdder addBlockEdges);
658   void addEdge(IrrNode &Irr, const BlockNode &Succ,
659                const BFIBase::LoopData *OuterLoop);
660 };
661 
662 template <class BlockEdgesAdder>
663 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
664                                   BlockEdgesAdder addBlockEdges) {
665   if (OuterLoop) {
666     addNodesInLoop(*OuterLoop);
667     for (auto N : OuterLoop->Nodes)
668       addEdges(N, OuterLoop, addBlockEdges);
669   } else {
670     addNodesInFunction();
671     for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
672       addEdges(Index, OuterLoop, addBlockEdges);
673   }
674   StartIrr = Lookup[Start.Index];
675 }
676 
677 template <class BlockEdgesAdder>
678 void IrreducibleGraph::addEdges(const BlockNode &Node,
679                                 const BFIBase::LoopData *OuterLoop,
680                                 BlockEdgesAdder addBlockEdges) {
681   auto L = Lookup.find(Node.Index);
682   if (L == Lookup.end())
683     return;
684   IrrNode &Irr = *L->second;
685   const auto &Working = BFI.Working[Node.Index];
686 
687   if (Working.isAPackage())
688     for (const auto &I : Working.Loop->Exits)
689       addEdge(Irr, I.first, OuterLoop);
690   else
691     addBlockEdges(*this, Irr, OuterLoop);
692 }
693 
694 } // end namespace bfi_detail
695 
696 /// Shared implementation for block frequency analysis.
697 ///
698 /// This is a shared implementation of BlockFrequencyInfo and
699 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
700 /// blocks.
701 ///
702 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
703 /// which is called the header.  A given loop, L, can have sub-loops, which are
704 /// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
705 /// consists of a single block that does not have a self-edge.)
706 ///
707 /// In addition to loops, this algorithm has limited support for irreducible
708 /// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
709 /// discovered on they fly, and modelled as loops with multiple headers.
710 ///
711 /// The headers of irreducible sub-SCCs consist of its entry blocks and all
712 /// nodes that are targets of a backedge within it (excluding backedges within
713 /// true sub-loops).  Block frequency calculations act as if a block is
714 /// inserted that intercepts all the edges to the headers.  All backedges and
715 /// entries point to this block.  Its successors are the headers, which split
716 /// the frequency evenly.
717 ///
718 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
719 /// separates mass distribution from loop scaling, and dithers to eliminate
720 /// probability mass loss.
721 ///
722 /// The implementation is split between BlockFrequencyInfoImpl, which knows the
723 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
724 /// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
725 /// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
726 /// reverse-post order.  This gives two advantages:  it's easy to compare the
727 /// relative ordering of two nodes, and maps keyed on BlockT can be represented
728 /// by vectors.
729 ///
730 /// This algorithm is O(V+E), unless there is irreducible control flow, in
731 /// which case it's O(V*E) in the worst case.
732 ///
733 /// These are the main stages:
734 ///
735 ///  0. Reverse post-order traversal (\a initializeRPOT()).
736 ///
737 ///     Run a single post-order traversal and save it (in reverse) in RPOT.
738 ///     All other stages make use of this ordering.  Save a lookup from BlockT
739 ///     to BlockNode (the index into RPOT) in Nodes.
740 ///
741 ///  1. Loop initialization (\a initializeLoops()).
742 ///
743 ///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
744 ///     the algorithm.  In particular, store the immediate members of each loop
745 ///     in reverse post-order.
746 ///
747 ///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
748 ///
749 ///     For each loop (bottom-up), distribute mass through the DAG resulting
750 ///     from ignoring backedges and treating sub-loops as a single pseudo-node.
751 ///     Track the backedge mass distributed to the loop header, and use it to
752 ///     calculate the loop scale (number of loop iterations).  Immediate
753 ///     members that represent sub-loops will already have been visited and
754 ///     packaged into a pseudo-node.
755 ///
756 ///     Distributing mass in a loop is a reverse-post-order traversal through
757 ///     the loop.  Start by assigning full mass to the Loop header.  For each
758 ///     node in the loop:
759 ///
760 ///         - Fetch and categorize the weight distribution for its successors.
761 ///           If this is a packaged-subloop, the weight distribution is stored
762 ///           in \a LoopData::Exits.  Otherwise, fetch it from
763 ///           BranchProbabilityInfo.
764 ///
765 ///         - Each successor is categorized as \a Weight::Local, a local edge
766 ///           within the current loop, \a Weight::Backedge, a backedge to the
767 ///           loop header, or \a Weight::Exit, any successor outside the loop.
768 ///           The weight, the successor, and its category are stored in \a
769 ///           Distribution.  There can be multiple edges to each successor.
770 ///
771 ///         - If there's a backedge to a non-header, there's an irreducible SCC.
772 ///           The usual flow is temporarily aborted.  \a
773 ///           computeIrreducibleMass() finds the irreducible SCCs within the
774 ///           loop, packages them up, and restarts the flow.
775 ///
776 ///         - Normalize the distribution:  scale weights down so that their sum
777 ///           is 32-bits, and coalesce multiple edges to the same node.
778 ///
779 ///         - Distribute the mass accordingly, dithering to minimize mass loss,
780 ///           as described in \a distributeMass().
781 ///
782 ///     In the case of irreducible loops, instead of a single loop header,
783 ///     there will be several. The computation of backedge masses is similar
784 ///     but instead of having a single backedge mass, there will be one
785 ///     backedge per loop header. In these cases, each backedge will carry
786 ///     a mass proportional to the edge weights along the corresponding
787 ///     path.
788 ///
789 ///     At the end of propagation, the full mass assigned to the loop will be
790 ///     distributed among the loop headers proportionally according to the
791 ///     mass flowing through their backedges.
792 ///
793 ///     Finally, calculate the loop scale from the accumulated backedge mass.
794 ///
795 ///  3. Distribute mass in the function (\a computeMassInFunction()).
796 ///
797 ///     Finally, distribute mass through the DAG resulting from packaging all
798 ///     loops in the function.  This uses the same algorithm as distributing
799 ///     mass in a loop, except that there are no exit or backedge edges.
800 ///
801 ///  4. Unpackage loops (\a unwrapLoops()).
802 ///
803 ///     Initialize each block's frequency to a floating point representation of
804 ///     its mass.
805 ///
806 ///     Visit loops top-down, scaling the frequencies of its immediate members
807 ///     by the loop's pseudo-node's frequency.
808 ///
809 ///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
810 ///
811 ///     Using the min and max frequencies as a guide, translate floating point
812 ///     frequencies to an appropriate range in uint64_t.
813 ///
814 /// It has some known flaws.
815 ///
816 ///   - The model of irreducible control flow is a rough approximation.
817 ///
818 ///     Modelling irreducible control flow exactly involves setting up and
819 ///     solving a group of infinite geometric series.  Such precision is
820 ///     unlikely to be worthwhile, since most of our algorithms give up on
821 ///     irreducible control flow anyway.
822 ///
823 ///     Nevertheless, we might find that we need to get closer.  Here's a sort
824 ///     of TODO list for the model with diminishing returns, to be completed as
825 ///     necessary.
826 ///
827 ///       - The headers for the \a LoopData representing an irreducible SCC
828 ///         include non-entry blocks.  When these extra blocks exist, they
829 ///         indicate a self-contained irreducible sub-SCC.  We could treat them
830 ///         as sub-loops, rather than arbitrarily shoving the problematic
831 ///         blocks into the headers of the main irreducible SCC.
832 ///
833 ///       - Entry frequencies are assumed to be evenly split between the
834 ///         headers of a given irreducible SCC, which is the only option if we
835 ///         need to compute mass in the SCC before its parent loop.  Instead,
836 ///         we could partially compute mass in the parent loop, and stop when
837 ///         we get to the SCC.  Here, we have the correct ratio of entry
838 ///         masses, which we can use to adjust their relative frequencies.
839 ///         Compute mass in the SCC, and then continue propagation in the
840 ///         parent.
841 ///
842 ///       - We can propagate mass iteratively through the SCC, for some fixed
843 ///         number of iterations.  Each iteration starts by assigning the entry
844 ///         blocks their backedge mass from the prior iteration.  The final
845 ///         mass for each block (and each exit, and the total backedge mass
846 ///         used for computing loop scale) is the sum of all iterations.
847 ///         (Running this until fixed point would "solve" the geometric
848 ///         series by simulation.)
849 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
850   // This is part of a workaround for a GCC 4.7 crash on lambdas.
851   friend struct bfi_detail::BlockEdgesAdder<BT>;
852 
853   using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
854   using BlockKeyT = typename bfi_detail::TypeMap<BT>::BlockKeyT;
855   using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
856   using BranchProbabilityInfoT =
857       typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT;
858   using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
859   using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
860   using Successor = GraphTraits<const BlockT *>;
861   using Predecessor = GraphTraits<Inverse<const BlockT *>>;
862   using BFICallbackVH =
863       bfi_detail::BFICallbackVH<BlockT, BlockFrequencyInfoImpl>;
864 
865   const BranchProbabilityInfoT *BPI = nullptr;
866   const LoopInfoT *LI = nullptr;
867   const FunctionT *F = nullptr;
868 
869   // All blocks in reverse postorder.
870   std::vector<const BlockT *> RPOT;
871   DenseMap<BlockKeyT, std::pair<BlockNode, BFICallbackVH>> Nodes;
872 
873   using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
874 
875   rpot_iterator rpot_begin() const { return RPOT.begin(); }
876   rpot_iterator rpot_end() const { return RPOT.end(); }
877 
878   size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
879 
880   BlockNode getNode(const rpot_iterator &I) const {
881     return BlockNode(getIndex(I));
882   }
883 
884   BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; }
885 
886   const BlockT *getBlock(const BlockNode &Node) const {
887     assert(Node.Index < RPOT.size());
888     return RPOT[Node.Index];
889   }
890 
891   /// Run (and save) a post-order traversal.
892   ///
893   /// Saves a reverse post-order traversal of all the nodes in \a F.
894   void initializeRPOT();
895 
896   /// Initialize loop data.
897   ///
898   /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
899   /// each block to the deepest loop it's in, but we need the inverse.  For each
900   /// loop, we store in reverse post-order its "immediate" members, defined as
901   /// the header, the headers of immediate sub-loops, and all other blocks in
902   /// the loop that are not in sub-loops.
903   void initializeLoops();
904 
905   /// Propagate to a block's successors.
906   ///
907   /// In the context of distributing mass through \c OuterLoop, divide the mass
908   /// currently assigned to \c Node between its successors.
909   ///
910   /// \return \c true unless there's an irreducible backedge.
911   bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
912 
913   /// Compute mass in a particular loop.
914   ///
915   /// Assign mass to \c Loop's header, and then for each block in \c Loop in
916   /// reverse post-order, distribute mass to its successors.  Only visits nodes
917   /// that have not been packaged into sub-loops.
918   ///
919   /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
920   /// \return \c true unless there's an irreducible backedge.
921   bool computeMassInLoop(LoopData &Loop);
922 
923   /// Try to compute mass in the top-level function.
924   ///
925   /// Assign mass to the entry block, and then for each block in reverse
926   /// post-order, distribute mass to its successors.  Skips nodes that have
927   /// been packaged into loops.
928   ///
929   /// \pre \a computeMassInLoops() has been called.
930   /// \return \c true unless there's an irreducible backedge.
931   bool tryToComputeMassInFunction();
932 
933   /// Compute mass in (and package up) irreducible SCCs.
934   ///
935   /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
936   /// of \c Insert), and call \a computeMassInLoop() on each of them.
937   ///
938   /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
939   ///
940   /// \pre \a computeMassInLoop() has been called for each subloop of \c
941   /// OuterLoop.
942   /// \pre \c Insert points at the last loop successfully processed by \a
943   /// computeMassInLoop().
944   /// \pre \c OuterLoop has irreducible SCCs.
945   void computeIrreducibleMass(LoopData *OuterLoop,
946                               std::list<LoopData>::iterator Insert);
947 
948   /// Compute mass in all loops.
949   ///
950   /// For each loop bottom-up, call \a computeMassInLoop().
951   ///
952   /// \a computeMassInLoop() aborts (and returns \c false) on loops that
953   /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
954   /// re-enter \a computeMassInLoop().
955   ///
956   /// \post \a computeMassInLoop() has returned \c true for every loop.
957   void computeMassInLoops();
958 
959   /// Compute mass in the top-level function.
960   ///
961   /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
962   /// compute mass in the top-level function.
963   ///
964   /// \post \a tryToComputeMassInFunction() has returned \c true.
965   void computeMassInFunction();
966 
967   std::string getBlockName(const BlockNode &Node) const override {
968     return bfi_detail::getBlockName(getBlock(Node));
969   }
970 
971 public:
972   BlockFrequencyInfoImpl() = default;
973 
974   const FunctionT *getFunction() const { return F; }
975 
976   void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
977                  const LoopInfoT &LI);
978 
979   using BlockFrequencyInfoImplBase::getEntryFreq;
980 
981   BlockFrequency getBlockFreq(const BlockT *BB) const {
982     return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
983   }
984 
985   Optional<uint64_t> getBlockProfileCount(const Function &F,
986                                           const BlockT *BB,
987                                           bool AllowSynthetic = false) const {
988     return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB),
989                                                             AllowSynthetic);
990   }
991 
992   Optional<uint64_t> getProfileCountFromFreq(const Function &F,
993                                              uint64_t Freq,
994                                              bool AllowSynthetic = false) const {
995     return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq,
996                                                                AllowSynthetic);
997   }
998 
999   bool isIrrLoopHeader(const BlockT *BB) {
1000     return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB));
1001   }
1002 
1003   void setBlockFreq(const BlockT *BB, uint64_t Freq);
1004 
1005   void forgetBlock(const BlockT *BB) {
1006     // We don't erase corresponding items from `Freqs`, `RPOT` and other to
1007     // avoid invalidating indices. Doing so would have saved some memory, but
1008     // it's not worth it.
1009     Nodes.erase(BB);
1010   }
1011 
1012   Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
1013     return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
1014   }
1015 
1016   const BranchProbabilityInfoT &getBPI() const { return *BPI; }
1017 
1018   /// Print the frequencies for the current function.
1019   ///
1020   /// Prints the frequencies for the blocks in the current function.
1021   ///
1022   /// Blocks are printed in the natural iteration order of the function, rather
1023   /// than reverse post-order.  This provides two advantages:  writing -analyze
1024   /// tests is easier (since blocks come out in source order), and even
1025   /// unreachable blocks are printed.
1026   ///
1027   /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
1028   /// we need to override it here.
1029   raw_ostream &print(raw_ostream &OS) const override;
1030 
1031   using BlockFrequencyInfoImplBase::dump;
1032   using BlockFrequencyInfoImplBase::printBlockFreq;
1033 
1034   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
1035     return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
1036   }
1037 
1038   void verifyMatch(BlockFrequencyInfoImpl<BT> &Other) const;
1039 };
1040 
1041 namespace bfi_detail {
1042 
1043 template <class BFIImplT>
1044 class BFICallbackVH<BasicBlock, BFIImplT> : public CallbackVH {
1045   BFIImplT *BFIImpl;
1046 
1047 public:
1048   BFICallbackVH() = default;
1049 
1050   BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl)
1051       : CallbackVH(BB), BFIImpl(BFIImpl) {}
1052 
1053   virtual ~BFICallbackVH() = default;
1054 
1055   void deleted() override {
1056     BFIImpl->forgetBlock(cast<BasicBlock>(getValPtr()));
1057   }
1058 };
1059 
1060 /// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles
1061 /// don't apply to them.
1062 template <class BFIImplT>
1063 class BFICallbackVH<MachineBasicBlock, BFIImplT> {
1064 public:
1065   BFICallbackVH() = default;
1066   BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {}
1067 };
1068 
1069 } // end namespace bfi_detail
1070 
1071 template <class BT>
1072 void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
1073                                            const BranchProbabilityInfoT &BPI,
1074                                            const LoopInfoT &LI) {
1075   // Save the parameters.
1076   this->BPI = &BPI;
1077   this->LI = &LI;
1078   this->F = &F;
1079 
1080   // Clean up left-over data structures.
1081   BlockFrequencyInfoImplBase::clear();
1082   RPOT.clear();
1083   Nodes.clear();
1084 
1085   // Initialize.
1086   LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName()
1087                     << "\n================="
1088                     << std::string(F.getName().size(), '=') << "\n");
1089   initializeRPOT();
1090   initializeLoops();
1091 
1092   // Visit loops in post-order to find the local mass distribution, and then do
1093   // the full function.
1094   computeMassInLoops();
1095   computeMassInFunction();
1096   unwrapLoops();
1097   finalizeMetrics();
1098 
1099   if (CheckBFIUnknownBlockQueries) {
1100     // To detect BFI queries for unknown blocks, add entries for unreachable
1101     // blocks, if any. This is to distinguish between known/existing unreachable
1102     // blocks and unknown blocks.
1103     for (const BlockT &BB : F)
1104       if (!Nodes.count(&BB))
1105         setBlockFreq(&BB, 0);
1106   }
1107 }
1108 
1109 template <class BT>
1110 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) {
1111   if (Nodes.count(BB))
1112     BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
1113   else {
1114     // If BB is a newly added block after BFI is done, we need to create a new
1115     // BlockNode for it assigned with a new index. The index can be determined
1116     // by the size of Freqs.
1117     BlockNode NewNode(Freqs.size());
1118     Nodes[BB] = {NewNode, BFICallbackVH(BB, this)};
1119     Freqs.emplace_back();
1120     BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
1121   }
1122 }
1123 
1124 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
1125   const BlockT *Entry = &F->front();
1126   RPOT.reserve(F->size());
1127   std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
1128   std::reverse(RPOT.begin(), RPOT.end());
1129 
1130   assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
1131          "More nodes in function than Block Frequency Info supports");
1132 
1133   LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n");
1134   for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
1135     BlockNode Node = getNode(I);
1136     LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node)
1137                       << "\n");
1138     Nodes[*I] = {Node, BFICallbackVH(*I, this)};
1139   }
1140 
1141   Working.reserve(RPOT.size());
1142   for (size_t Index = 0; Index < RPOT.size(); ++Index)
1143     Working.emplace_back(Index);
1144   Freqs.resize(RPOT.size());
1145 }
1146 
1147 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
1148   LLVM_DEBUG(dbgs() << "loop-detection\n");
1149   if (LI->empty())
1150     return;
1151 
1152   // Visit loops top down and assign them an index.
1153   std::deque<std::pair<const LoopT *, LoopData *>> Q;
1154   for (const LoopT *L : *LI)
1155     Q.emplace_back(L, nullptr);
1156   while (!Q.empty()) {
1157     const LoopT *Loop = Q.front().first;
1158     LoopData *Parent = Q.front().second;
1159     Q.pop_front();
1160 
1161     BlockNode Header = getNode(Loop->getHeader());
1162     assert(Header.isValid());
1163 
1164     Loops.emplace_back(Parent, Header);
1165     Working[Header.Index].Loop = &Loops.back();
1166     LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
1167 
1168     for (const LoopT *L : *Loop)
1169       Q.emplace_back(L, &Loops.back());
1170   }
1171 
1172   // Visit nodes in reverse post-order and add them to their deepest containing
1173   // loop.
1174   for (size_t Index = 0; Index < RPOT.size(); ++Index) {
1175     // Loop headers have already been mostly mapped.
1176     if (Working[Index].isLoopHeader()) {
1177       LoopData *ContainingLoop = Working[Index].getContainingLoop();
1178       if (ContainingLoop)
1179         ContainingLoop->Nodes.push_back(Index);
1180       continue;
1181     }
1182 
1183     const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1184     if (!Loop)
1185       continue;
1186 
1187     // Add this node to its containing loop's member list.
1188     BlockNode Header = getNode(Loop->getHeader());
1189     assert(Header.isValid());
1190     const auto &HeaderData = Working[Header.Index];
1191     assert(HeaderData.isLoopHeader());
1192 
1193     Working[Index].Loop = HeaderData.Loop;
1194     HeaderData.Loop->Nodes.push_back(Index);
1195     LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1196                       << ": member = " << getBlockName(Index) << "\n");
1197   }
1198 }
1199 
1200 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1201   // Visit loops with the deepest first, and the top-level loops last.
1202   for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1203     if (computeMassInLoop(*L))
1204       continue;
1205     auto Next = std::next(L);
1206     computeIrreducibleMass(&*L, L.base());
1207     L = std::prev(Next);
1208     if (computeMassInLoop(*L))
1209       continue;
1210     llvm_unreachable("unhandled irreducible control flow");
1211   }
1212 }
1213 
1214 template <class BT>
1215 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
1216   // Compute mass in loop.
1217   LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1218 
1219   if (Loop.isIrreducible()) {
1220     LLVM_DEBUG(dbgs() << "isIrreducible = true\n");
1221     Distribution Dist;
1222     unsigned NumHeadersWithWeight = 0;
1223     Optional<uint64_t> MinHeaderWeight;
1224     DenseSet<uint32_t> HeadersWithoutWeight;
1225     HeadersWithoutWeight.reserve(Loop.NumHeaders);
1226     for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1227       auto &HeaderNode = Loop.Nodes[H];
1228       const BlockT *Block = getBlock(HeaderNode);
1229       IsIrrLoopHeader.set(Loop.Nodes[H].Index);
1230       Optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight();
1231       if (!HeaderWeight) {
1232         LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on "
1233                           << getBlockName(HeaderNode) << "\n");
1234         HeadersWithoutWeight.insert(H);
1235         continue;
1236       }
1237       LLVM_DEBUG(dbgs() << getBlockName(HeaderNode)
1238                         << " has irr loop header weight "
1239                         << HeaderWeight.getValue() << "\n");
1240       NumHeadersWithWeight++;
1241       uint64_t HeaderWeightValue = HeaderWeight.getValue();
1242       if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight)
1243         MinHeaderWeight = HeaderWeightValue;
1244       if (HeaderWeightValue) {
1245         Dist.addLocal(HeaderNode, HeaderWeightValue);
1246       }
1247     }
1248     // As a heuristic, if some headers don't have a weight, give them the
1249     // minimium weight seen (not to disrupt the existing trends too much by
1250     // using a weight that's in the general range of the other headers' weights,
1251     // and the minimum seems to perform better than the average.)
1252     // FIXME: better update in the passes that drop the header weight.
1253     // If no headers have a weight, give them even weight (use weight 1).
1254     if (!MinHeaderWeight)
1255       MinHeaderWeight = 1;
1256     for (uint32_t H : HeadersWithoutWeight) {
1257       auto &HeaderNode = Loop.Nodes[H];
1258       assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() &&
1259              "Shouldn't have a weight metadata");
1260       uint64_t MinWeight = MinHeaderWeight.getValue();
1261       LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to "
1262                         << getBlockName(HeaderNode) << "\n");
1263       if (MinWeight)
1264         Dist.addLocal(HeaderNode, MinWeight);
1265     }
1266     distributeIrrLoopHeaderMass(Dist);
1267     for (const BlockNode &M : Loop.Nodes)
1268       if (!propagateMassToSuccessors(&Loop, M))
1269         llvm_unreachable("unhandled irreducible control flow");
1270     if (NumHeadersWithWeight == 0)
1271       // No headers have a metadata. Adjust header mass.
1272       adjustLoopHeaderMass(Loop);
1273   } else {
1274     Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1275     if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1276       llvm_unreachable("irreducible control flow to loop header!?");
1277     for (const BlockNode &M : Loop.members())
1278       if (!propagateMassToSuccessors(&Loop, M))
1279         // Irreducible backedge.
1280         return false;
1281   }
1282 
1283   computeLoopScale(Loop);
1284   packageLoop(Loop);
1285   return true;
1286 }
1287 
1288 template <class BT>
1289 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
1290   // Compute mass in function.
1291   LLVM_DEBUG(dbgs() << "compute-mass-in-function\n");
1292   assert(!Working.empty() && "no blocks in function");
1293   assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1294 
1295   Working[0].getMass() = BlockMass::getFull();
1296   for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1297     // Check for nodes that have been packaged.
1298     BlockNode Node = getNode(I);
1299     if (Working[Node.Index].isPackaged())
1300       continue;
1301 
1302     if (!propagateMassToSuccessors(nullptr, Node))
1303       return false;
1304   }
1305   return true;
1306 }
1307 
1308 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1309   if (tryToComputeMassInFunction())
1310     return;
1311   computeIrreducibleMass(nullptr, Loops.begin());
1312   if (tryToComputeMassInFunction())
1313     return;
1314   llvm_unreachable("unhandled irreducible control flow");
1315 }
1316 
1317 /// \note This should be a lambda, but that crashes GCC 4.7.
1318 namespace bfi_detail {
1319 
1320 template <class BT> struct BlockEdgesAdder {
1321   using BlockT = BT;
1322   using LoopData = BlockFrequencyInfoImplBase::LoopData;
1323   using Successor = GraphTraits<const BlockT *>;
1324 
1325   const BlockFrequencyInfoImpl<BT> &BFI;
1326 
1327   explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
1328       : BFI(BFI) {}
1329 
1330   void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
1331                   const LoopData *OuterLoop) {
1332     const BlockT *BB = BFI.RPOT[Irr.Node.Index];
1333     for (const auto Succ : children<const BlockT *>(BB))
1334       G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
1335   }
1336 };
1337 
1338 } // end namespace bfi_detail
1339 
1340 template <class BT>
1341 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
1342     LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1343   LLVM_DEBUG(dbgs() << "analyze-irreducible-in-";
1344              if (OuterLoop) dbgs()
1345              << "loop: " << getLoopName(*OuterLoop) << "\n";
1346              else dbgs() << "function\n");
1347 
1348   using namespace bfi_detail;
1349 
1350   // Ideally, addBlockEdges() would be declared here as a lambda, but that
1351   // crashes GCC 4.7.
1352   BlockEdgesAdder<BT> addBlockEdges(*this);
1353   IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1354 
1355   for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1356     computeMassInLoop(L);
1357 
1358   if (!OuterLoop)
1359     return;
1360   updateLoopWithIrreducible(*OuterLoop);
1361 }
1362 
1363 // A helper function that converts a branch probability into weight.
1364 inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
1365   return Prob.getNumerator();
1366 }
1367 
1368 template <class BT>
1369 bool
1370 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
1371                                                       const BlockNode &Node) {
1372   LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1373   // Calculate probability for successors.
1374   Distribution Dist;
1375   if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1376     assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1377     if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1378       // Irreducible backedge.
1379       return false;
1380   } else {
1381     const BlockT *BB = getBlock(Node);
1382     for (auto SI = GraphTraits<const BlockT *>::child_begin(BB),
1383               SE = GraphTraits<const BlockT *>::child_end(BB);
1384          SI != SE; ++SI)
1385       if (!addToDist(
1386               Dist, OuterLoop, Node, getNode(*SI),
1387               getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
1388         // Irreducible backedge.
1389         return false;
1390   }
1391 
1392   // Distribute mass to successors, saving exit and backedge data in the
1393   // loop header.
1394   distributeMass(Node, OuterLoop, Dist);
1395   return true;
1396 }
1397 
1398 template <class BT>
1399 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
1400   if (!F)
1401     return OS;
1402   OS << "block-frequency-info: " << F->getName() << "\n";
1403   for (const BlockT &BB : *F) {
1404     OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
1405     getFloatingBlockFreq(&BB).print(OS, 5)
1406         << ", int = " << getBlockFreq(&BB).getFrequency();
1407     if (Optional<uint64_t> ProfileCount =
1408         BlockFrequencyInfoImplBase::getBlockProfileCount(
1409             F->getFunction(), getNode(&BB)))
1410       OS << ", count = " << ProfileCount.getValue();
1411     if (Optional<uint64_t> IrrLoopHeaderWeight =
1412         BB.getIrrLoopHeaderWeight())
1413       OS << ", irr_loop_header_weight = " << IrrLoopHeaderWeight.getValue();
1414     OS << "\n";
1415   }
1416 
1417   // Add an extra newline for readability.
1418   OS << "\n";
1419   return OS;
1420 }
1421 
1422 template <class BT>
1423 void BlockFrequencyInfoImpl<BT>::verifyMatch(
1424     BlockFrequencyInfoImpl<BT> &Other) const {
1425   bool Match = true;
1426   DenseMap<const BlockT *, BlockNode> ValidNodes;
1427   DenseMap<const BlockT *, BlockNode> OtherValidNodes;
1428   for (auto &Entry : Nodes) {
1429     const BlockT *BB = Entry.first;
1430     if (BB) {
1431       ValidNodes[BB] = Entry.second.first;
1432     }
1433   }
1434   for (auto &Entry : Other.Nodes) {
1435     const BlockT *BB = Entry.first;
1436     if (BB) {
1437       OtherValidNodes[BB] = Entry.second.first;
1438     }
1439   }
1440   unsigned NumValidNodes = ValidNodes.size();
1441   unsigned NumOtherValidNodes = OtherValidNodes.size();
1442   if (NumValidNodes != NumOtherValidNodes) {
1443     Match = false;
1444     dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs "
1445            << NumOtherValidNodes << "\n";
1446   } else {
1447     for (auto &Entry : ValidNodes) {
1448       const BlockT *BB = Entry.first;
1449       BlockNode Node = Entry.second;
1450       if (OtherValidNodes.count(BB)) {
1451         BlockNode OtherNode = OtherValidNodes[BB];
1452         auto Freq = Freqs[Node.Index];
1453         auto OtherFreq = Other.Freqs[OtherNode.Index];
1454         if (Freq.Integer != OtherFreq.Integer) {
1455           Match = false;
1456           dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " "
1457                  << Freq.Integer << " vs " << OtherFreq.Integer << "\n";
1458         }
1459       } else {
1460         Match = false;
1461         dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index "
1462                << Node.Index << " does not exist in Other.\n";
1463       }
1464     }
1465     // If there's a valid node in OtherValidNodes that's not in ValidNodes,
1466     // either the above num check or the check on OtherValidNodes will fail.
1467   }
1468   if (!Match) {
1469     dbgs() << "This\n";
1470     print(dbgs());
1471     dbgs() << "Other\n";
1472     Other.print(dbgs());
1473   }
1474   assert(Match && "BFI mismatch");
1475 }
1476 
1477 // Graph trait base class for block frequency information graph
1478 // viewer.
1479 
1480 enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
1481 
1482 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
1483 struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
1484   using GTraits = GraphTraits<BlockFrequencyInfoT *>;
1485   using NodeRef = typename GTraits::NodeRef;
1486   using EdgeIter = typename GTraits::ChildIteratorType;
1487   using NodeIter = typename GTraits::nodes_iterator;
1488 
1489   uint64_t MaxFrequency = 0;
1490 
1491   explicit BFIDOTGraphTraitsBase(bool isSimple = false)
1492       : DefaultDOTGraphTraits(isSimple) {}
1493 
1494   static StringRef getGraphName(const BlockFrequencyInfoT *G) {
1495     return G->getFunction()->getName();
1496   }
1497 
1498   std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
1499                                 unsigned HotPercentThreshold = 0) {
1500     std::string Result;
1501     if (!HotPercentThreshold)
1502       return Result;
1503 
1504     // Compute MaxFrequency on the fly:
1505     if (!MaxFrequency) {
1506       for (NodeIter I = GTraits::nodes_begin(Graph),
1507                     E = GTraits::nodes_end(Graph);
1508            I != E; ++I) {
1509         NodeRef N = *I;
1510         MaxFrequency =
1511             std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
1512       }
1513     }
1514     BlockFrequency Freq = Graph->getBlockFreq(Node);
1515     BlockFrequency HotFreq =
1516         (BlockFrequency(MaxFrequency) *
1517          BranchProbability::getBranchProbability(HotPercentThreshold, 100));
1518 
1519     if (Freq < HotFreq)
1520       return Result;
1521 
1522     raw_string_ostream OS(Result);
1523     OS << "color=\"red\"";
1524     OS.flush();
1525     return Result;
1526   }
1527 
1528   std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
1529                            GVDAGType GType, int layout_order = -1) {
1530     std::string Result;
1531     raw_string_ostream OS(Result);
1532 
1533     if (layout_order != -1)
1534       OS << Node->getName() << "[" << layout_order << "] : ";
1535     else
1536       OS << Node->getName() << " : ";
1537     switch (GType) {
1538     case GVDT_Fraction:
1539       Graph->printBlockFreq(OS, Node);
1540       break;
1541     case GVDT_Integer:
1542       OS << Graph->getBlockFreq(Node).getFrequency();
1543       break;
1544     case GVDT_Count: {
1545       auto Count = Graph->getBlockProfileCount(Node);
1546       if (Count)
1547         OS << Count.getValue();
1548       else
1549         OS << "Unknown";
1550       break;
1551     }
1552     case GVDT_None:
1553       llvm_unreachable("If we are not supposed to render a graph we should "
1554                        "never reach this point.");
1555     }
1556     return Result;
1557   }
1558 
1559   std::string getEdgeAttributes(NodeRef Node, EdgeIter EI,
1560                                 const BlockFrequencyInfoT *BFI,
1561                                 const BranchProbabilityInfoT *BPI,
1562                                 unsigned HotPercentThreshold = 0) {
1563     std::string Str;
1564     if (!BPI)
1565       return Str;
1566 
1567     BranchProbability BP = BPI->getEdgeProbability(Node, EI);
1568     uint32_t N = BP.getNumerator();
1569     uint32_t D = BP.getDenominator();
1570     double Percent = 100.0 * N / D;
1571     raw_string_ostream OS(Str);
1572     OS << format("label=\"%.1f%%\"", Percent);
1573 
1574     if (HotPercentThreshold) {
1575       BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
1576       BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
1577                                BranchProbability(HotPercentThreshold, 100);
1578 
1579       if (EFreq >= HotFreq) {
1580         OS << ",color=\"red\"";
1581       }
1582     }
1583 
1584     OS.flush();
1585     return Str;
1586   }
1587 };
1588 
1589 } // end namespace llvm
1590 
1591 #undef DEBUG_TYPE
1592 
1593 #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
1594