1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for the loop memory dependence framework that
10 // was originally developed for the Loop Vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
15 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16 
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/Analysis/LoopAnalysisManager.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/Pass.h"
22 
23 namespace llvm {
24 
25 class AAResults;
26 class DataLayout;
27 class Loop;
28 class LoopAccessInfo;
29 class OptimizationRemarkEmitter;
30 class raw_ostream;
31 class SCEV;
32 class SCEVUnionPredicate;
33 class Value;
34 
35 /// Collection of parameters shared beetween the Loop Vectorizer and the
36 /// Loop Access Analysis.
37 struct VectorizerParams {
38   /// Maximum SIMD width.
39   static const unsigned MaxVectorWidth;
40 
41   /// VF as overridden by the user.
42   static unsigned VectorizationFactor;
43   /// Interleave factor as overridden by the user.
44   static unsigned VectorizationInterleave;
45   /// True if force-vector-interleave was specified by the user.
46   static bool isInterleaveForced();
47 
48   /// \When performing memory disambiguation checks at runtime do not
49   /// make more than this number of comparisons.
50   static unsigned RuntimeMemoryCheckThreshold;
51 };
52 
53 /// Checks memory dependences among accesses to the same underlying
54 /// object to determine whether there vectorization is legal or not (and at
55 /// which vectorization factor).
56 ///
57 /// Note: This class will compute a conservative dependence for access to
58 /// different underlying pointers. Clients, such as the loop vectorizer, will
59 /// sometimes deal these potential dependencies by emitting runtime checks.
60 ///
61 /// We use the ScalarEvolution framework to symbolically evalutate access
62 /// functions pairs. Since we currently don't restructure the loop we can rely
63 /// on the program order of memory accesses to determine their safety.
64 /// At the moment we will only deem accesses as safe for:
65 ///  * A negative constant distance assuming program order.
66 ///
67 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
68 ///            a[i] = tmp;                y = a[i];
69 ///
70 ///   The latter case is safe because later checks guarantuee that there can't
71 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
72 ///   the same variable: a header phi can only be an induction or a reduction, a
73 ///   reduction can't have a memory sink, an induction can't have a memory
74 ///   source). This is important and must not be violated (or we have to
75 ///   resort to checking for cycles through memory).
76 ///
77 ///  * A positive constant distance assuming program order that is bigger
78 ///    than the biggest memory access.
79 ///
80 ///     tmp = a[i]        OR              b[i] = x
81 ///     a[i+2] = tmp                      y = b[i+2];
82 ///
83 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
84 ///
85 ///  * Zero distances and all accesses have the same size.
86 ///
87 class MemoryDepChecker {
88 public:
89   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
90   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
91   /// Set of potential dependent memory accesses.
92   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
93 
94   /// Type to keep track of the status of the dependence check. The order of
95   /// the elements is important and has to be from most permissive to least
96   /// permissive.
97   enum class VectorizationSafetyStatus {
98     // Can vectorize safely without RT checks. All dependences are known to be
99     // safe.
100     Safe,
101     // Can possibly vectorize with RT checks to overcome unknown dependencies.
102     PossiblySafeWithRtChecks,
103     // Cannot vectorize due to known unsafe dependencies.
104     Unsafe,
105   };
106 
107   /// Dependece between memory access instructions.
108   struct Dependence {
109     /// The type of the dependence.
110     enum DepType {
111       // No dependence.
112       NoDep,
113       // We couldn't determine the direction or the distance.
114       Unknown,
115       // Lexically forward.
116       //
117       // FIXME: If we only have loop-independent forward dependences (e.g. a
118       // read and write of A[i]), LAA will locally deem the dependence "safe"
119       // without querying the MemoryDepChecker.  Therefore we can miss
120       // enumerating loop-independent forward dependences in
121       // getDependences.  Note that as soon as there are different
122       // indices used to access the same array, the MemoryDepChecker *is*
123       // queried and the dependence list is complete.
124       Forward,
125       // Forward, but if vectorized, is likely to prevent store-to-load
126       // forwarding.
127       ForwardButPreventsForwarding,
128       // Lexically backward.
129       Backward,
130       // Backward, but the distance allows a vectorization factor of
131       // MaxSafeDepDistBytes.
132       BackwardVectorizable,
133       // Same, but may prevent store-to-load forwarding.
134       BackwardVectorizableButPreventsForwarding
135     };
136 
137     /// String version of the types.
138     static const char *DepName[];
139 
140     /// Index of the source of the dependence in the InstMap vector.
141     unsigned Source;
142     /// Index of the destination of the dependence in the InstMap vector.
143     unsigned Destination;
144     /// The type of the dependence.
145     DepType Type;
146 
DependenceDependence147     Dependence(unsigned Source, unsigned Destination, DepType Type)
148         : Source(Source), Destination(Destination), Type(Type) {}
149 
150     /// Return the source instruction of the dependence.
151     Instruction *getSource(const LoopAccessInfo &LAI) const;
152     /// Return the destination instruction of the dependence.
153     Instruction *getDestination(const LoopAccessInfo &LAI) const;
154 
155     /// Dependence types that don't prevent vectorization.
156     static VectorizationSafetyStatus isSafeForVectorization(DepType Type);
157 
158     /// Lexically forward dependence.
159     bool isForward() const;
160     /// Lexically backward dependence.
161     bool isBackward() const;
162 
163     /// May be a lexically backward dependence type (includes Unknown).
164     bool isPossiblyBackward() const;
165 
166     /// Print the dependence.  \p Instr is used to map the instruction
167     /// indices to instructions.
168     void print(raw_ostream &OS, unsigned Depth,
169                const SmallVectorImpl<Instruction *> &Instrs) const;
170   };
171 
MemoryDepChecker(PredicatedScalarEvolution & PSE,const Loop * L)172   MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
173       : PSE(PSE), InnermostLoop(L), AccessIdx(0), MaxSafeDepDistBytes(0),
174         MaxSafeRegisterWidth(-1U), FoundNonConstantDistanceDependence(false),
175         Status(VectorizationSafetyStatus::Safe), RecordDependences(true) {}
176 
177   /// Register the location (instructions are given increasing numbers)
178   /// of a write access.
addAccess(StoreInst * SI)179   void addAccess(StoreInst *SI) {
180     Value *Ptr = SI->getPointerOperand();
181     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
182     InstMap.push_back(SI);
183     ++AccessIdx;
184   }
185 
186   /// Register the location (instructions are given increasing numbers)
187   /// of a write access.
addAccess(LoadInst * LI)188   void addAccess(LoadInst *LI) {
189     Value *Ptr = LI->getPointerOperand();
190     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
191     InstMap.push_back(LI);
192     ++AccessIdx;
193   }
194 
195   /// Check whether the dependencies between the accesses are safe.
196   ///
197   /// Only checks sets with elements in \p CheckDeps.
198   bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
199                    const ValueToValueMap &Strides);
200 
201   /// No memory dependence was encountered that would inhibit
202   /// vectorization.
isSafeForVectorization()203   bool isSafeForVectorization() const {
204     return Status == VectorizationSafetyStatus::Safe;
205   }
206 
207   /// The maximum number of bytes of a vector register we can vectorize
208   /// the accesses safely with.
getMaxSafeDepDistBytes()209   uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
210 
211   /// Return the number of elements that are safe to operate on
212   /// simultaneously, multiplied by the size of the element in bits.
getMaxSafeRegisterWidth()213   uint64_t getMaxSafeRegisterWidth() const { return MaxSafeRegisterWidth; }
214 
215   /// In same cases when the dependency check fails we can still
216   /// vectorize the loop with a dynamic array access check.
shouldRetryWithRuntimeCheck()217   bool shouldRetryWithRuntimeCheck() const {
218     return FoundNonConstantDistanceDependence &&
219            Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
220   }
221 
222   /// Returns the memory dependences.  If null is returned we exceeded
223   /// the MaxDependences threshold and this information is not
224   /// available.
getDependences()225   const SmallVectorImpl<Dependence> *getDependences() const {
226     return RecordDependences ? &Dependences : nullptr;
227   }
228 
clearDependences()229   void clearDependences() { Dependences.clear(); }
230 
231   /// The vector of memory access instructions.  The indices are used as
232   /// instruction identifiers in the Dependence class.
getMemoryInstructions()233   const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
234     return InstMap;
235   }
236 
237   /// Generate a mapping between the memory instructions and their
238   /// indices according to program order.
generateInstructionOrderMap()239   DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
240     DenseMap<Instruction *, unsigned> OrderMap;
241 
242     for (unsigned I = 0; I < InstMap.size(); ++I)
243       OrderMap[InstMap[I]] = I;
244 
245     return OrderMap;
246   }
247 
248   /// Find the set of instructions that read or write via \p Ptr.
249   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
250                                                          bool isWrite) const;
251 
252 private:
253   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
254   /// applies dynamic knowledge to simplify SCEV expressions and convert them
255   /// to a more usable form. We need this in case assumptions about SCEV
256   /// expressions need to be made in order to avoid unknown dependences. For
257   /// example we might assume a unit stride for a pointer in order to prove
258   /// that a memory access is strided and doesn't wrap.
259   PredicatedScalarEvolution &PSE;
260   const Loop *InnermostLoop;
261 
262   /// Maps access locations (ptr, read/write) to program order.
263   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
264 
265   /// Memory access instructions in program order.
266   SmallVector<Instruction *, 16> InstMap;
267 
268   /// The program order index to be used for the next instruction.
269   unsigned AccessIdx;
270 
271   // We can access this many bytes in parallel safely.
272   uint64_t MaxSafeDepDistBytes;
273 
274   /// Number of elements (from consecutive iterations) that are safe to
275   /// operate on simultaneously, multiplied by the size of the element in bits.
276   /// The size of the element is taken from the memory access that is most
277   /// restrictive.
278   uint64_t MaxSafeRegisterWidth;
279 
280   /// If we see a non-constant dependence distance we can still try to
281   /// vectorize this loop with runtime checks.
282   bool FoundNonConstantDistanceDependence;
283 
284   /// Result of the dependence checks, indicating whether the checked
285   /// dependences are safe for vectorization, require RT checks or are known to
286   /// be unsafe.
287   VectorizationSafetyStatus Status;
288 
289   //// True if Dependences reflects the dependences in the
290   //// loop.  If false we exceeded MaxDependences and
291   //// Dependences is invalid.
292   bool RecordDependences;
293 
294   /// Memory dependences collected during the analysis.  Only valid if
295   /// RecordDependences is true.
296   SmallVector<Dependence, 8> Dependences;
297 
298   /// Check whether there is a plausible dependence between the two
299   /// accesses.
300   ///
301   /// Access \p A must happen before \p B in program order. The two indices
302   /// identify the index into the program order map.
303   ///
304   /// This function checks  whether there is a plausible dependence (or the
305   /// absence of such can't be proved) between the two accesses. If there is a
306   /// plausible dependence but the dependence distance is bigger than one
307   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
308   /// distance is smaller than any other distance encountered so far).
309   /// Otherwise, this function returns true signaling a possible dependence.
310   Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
311                                   const MemAccessInfo &B, unsigned BIdx,
312                                   const ValueToValueMap &Strides);
313 
314   /// Check whether the data dependence could prevent store-load
315   /// forwarding.
316   ///
317   /// \return false if we shouldn't vectorize at all or avoid larger
318   /// vectorization factors by limiting MaxSafeDepDistBytes.
319   bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
320 
321   /// Updates the current safety status with \p S. We can go from Safe to
322   /// either PossiblySafeWithRtChecks or Unsafe and from
323   /// PossiblySafeWithRtChecks to Unsafe.
324   void mergeInStatus(VectorizationSafetyStatus S);
325 };
326 
327 class RuntimePointerChecking;
328 /// A grouping of pointers. A single memcheck is required between
329 /// two groups.
330 struct RuntimeCheckingPtrGroup {
331   /// Create a new pointer checking group containing a single
332   /// pointer, with index \p Index in RtCheck.
333   RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck);
334 
335   /// Tries to add the pointer recorded in RtCheck at index
336   /// \p Index to this pointer checking group. We can only add a pointer
337   /// to a checking group if we will still be able to get
338   /// the upper and lower bounds of the check. Returns true in case
339   /// of success, false otherwise.
340   bool addPointer(unsigned Index);
341 
342   /// Constitutes the context of this pointer checking group. For each
343   /// pointer that is a member of this group we will retain the index
344   /// at which it appears in RtCheck.
345   RuntimePointerChecking &RtCheck;
346   /// The SCEV expression which represents the upper bound of all the
347   /// pointers in this group.
348   const SCEV *High;
349   /// The SCEV expression which represents the lower bound of all the
350   /// pointers in this group.
351   const SCEV *Low;
352   /// Indices of all the pointers that constitute this grouping.
353   SmallVector<unsigned, 2> Members;
354 };
355 
356 /// A memcheck which made up of a pair of grouped pointers.
357 typedef std::pair<const RuntimeCheckingPtrGroup *,
358                   const RuntimeCheckingPtrGroup *>
359     RuntimePointerCheck;
360 
361 /// Holds information about the memory runtime legality checks to verify
362 /// that a group of pointers do not overlap.
363 class RuntimePointerChecking {
364   friend struct RuntimeCheckingPtrGroup;
365 
366 public:
367   struct PointerInfo {
368     /// Holds the pointer value that we need to check.
369     TrackingVH<Value> PointerValue;
370     /// Holds the smallest byte address accessed by the pointer throughout all
371     /// iterations of the loop.
372     const SCEV *Start;
373     /// Holds the largest byte address accessed by the pointer throughout all
374     /// iterations of the loop, plus 1.
375     const SCEV *End;
376     /// Holds the information if this pointer is used for writing to memory.
377     bool IsWritePtr;
378     /// Holds the id of the set of pointers that could be dependent because of a
379     /// shared underlying object.
380     unsigned DependencySetId;
381     /// Holds the id of the disjoint alias set to which this pointer belongs.
382     unsigned AliasSetId;
383     /// SCEV for the access.
384     const SCEV *Expr;
385 
PointerInfoPointerInfo386     PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
387                 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
388                 const SCEV *Expr)
389         : PointerValue(PointerValue), Start(Start), End(End),
390           IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
391           AliasSetId(AliasSetId), Expr(Expr) {}
392   };
393 
RuntimePointerChecking(ScalarEvolution * SE)394   RuntimePointerChecking(ScalarEvolution *SE) : Need(false), SE(SE) {}
395 
396   /// Reset the state of the pointer runtime information.
reset()397   void reset() {
398     Need = false;
399     Pointers.clear();
400     Checks.clear();
401   }
402 
403   /// Insert a pointer and calculate the start and end SCEVs.
404   /// We need \p PSE in order to compute the SCEV expression of the pointer
405   /// according to the assumptions that we've made during the analysis.
406   /// The method might also version the pointer stride according to \p Strides,
407   /// and add new predicates to \p PSE.
408   void insert(Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
409               unsigned ASId, const ValueToValueMap &Strides,
410               PredicatedScalarEvolution &PSE);
411 
412   /// No run-time memory checking is necessary.
empty()413   bool empty() const { return Pointers.empty(); }
414 
415   /// Generate the checks and store it.  This also performs the grouping
416   /// of pointers to reduce the number of memchecks necessary.
417   void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
418                       bool UseDependencies);
419 
420   /// Returns the checks that generateChecks created.
getChecks()421   const SmallVector<RuntimePointerCheck, 4> &getChecks() const {
422     return Checks;
423   }
424 
425   /// Decide if we need to add a check between two groups of pointers,
426   /// according to needsChecking.
427   bool needsChecking(const RuntimeCheckingPtrGroup &M,
428                      const RuntimeCheckingPtrGroup &N) const;
429 
430   /// Returns the number of run-time checks required according to
431   /// needsChecking.
getNumberOfChecks()432   unsigned getNumberOfChecks() const { return Checks.size(); }
433 
434   /// Print the list run-time memory checks necessary.
435   void print(raw_ostream &OS, unsigned Depth = 0) const;
436 
437   /// Print \p Checks.
438   void printChecks(raw_ostream &OS,
439                    const SmallVectorImpl<RuntimePointerCheck> &Checks,
440                    unsigned Depth = 0) const;
441 
442   /// This flag indicates if we need to add the runtime check.
443   bool Need;
444 
445   /// Information about the pointers that may require checking.
446   SmallVector<PointerInfo, 2> Pointers;
447 
448   /// Holds a partitioning of pointers into "check groups".
449   SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups;
450 
451   /// Check if pointers are in the same partition
452   ///
453   /// \p PtrToPartition contains the partition number for pointers (-1 if the
454   /// pointer belongs to multiple partitions).
455   static bool
456   arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
457                              unsigned PtrIdx1, unsigned PtrIdx2);
458 
459   /// Decide whether we need to issue a run-time check for pointer at
460   /// index \p I and \p J to prove their independence.
461   bool needsChecking(unsigned I, unsigned J) const;
462 
463   /// Return PointerInfo for pointer at index \p PtrIdx.
getPointerInfo(unsigned PtrIdx)464   const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
465     return Pointers[PtrIdx];
466   }
467 
getSE()468   ScalarEvolution *getSE() const { return SE; }
469 
470 private:
471   /// Groups pointers such that a single memcheck is required
472   /// between two different groups. This will clear the CheckingGroups vector
473   /// and re-compute it. We will only group dependecies if \p UseDependencies
474   /// is true, otherwise we will create a separate group for each pointer.
475   void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
476                    bool UseDependencies);
477 
478   /// Generate the checks and return them.
479   SmallVector<RuntimePointerCheck, 4> generateChecks() const;
480 
481   /// Holds a pointer to the ScalarEvolution analysis.
482   ScalarEvolution *SE;
483 
484   /// Set of run-time checks required to establish independence of
485   /// otherwise may-aliasing pointers in the loop.
486   SmallVector<RuntimePointerCheck, 4> Checks;
487 };
488 
489 /// Drive the analysis of memory accesses in the loop
490 ///
491 /// This class is responsible for analyzing the memory accesses of a loop.  It
492 /// collects the accesses and then its main helper the AccessAnalysis class
493 /// finds and categorizes the dependences in buildDependenceSets.
494 ///
495 /// For memory dependences that can be analyzed at compile time, it determines
496 /// whether the dependence is part of cycle inhibiting vectorization.  This work
497 /// is delegated to the MemoryDepChecker class.
498 ///
499 /// For memory dependences that cannot be determined at compile time, it
500 /// generates run-time checks to prove independence.  This is done by
501 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
502 /// RuntimePointerCheck class.
503 ///
504 /// If pointers can wrap or can't be expressed as affine AddRec expressions by
505 /// ScalarEvolution, we will generate run-time checks by emitting a
506 /// SCEVUnionPredicate.
507 ///
508 /// Checks for both memory dependences and the SCEV predicates contained in the
509 /// PSE must be emitted in order for the results of this analysis to be valid.
510 class LoopAccessInfo {
511 public:
512   LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
513                  AAResults *AA, DominatorTree *DT, LoopInfo *LI);
514 
515   /// Return true we can analyze the memory accesses in the loop and there are
516   /// no memory dependence cycles.
canVectorizeMemory()517   bool canVectorizeMemory() const { return CanVecMem; }
518 
519   /// Return true if there is a convergent operation in the loop. There may
520   /// still be reported runtime pointer checks that would be required, but it is
521   /// not legal to insert them.
hasConvergentOp()522   bool hasConvergentOp() const { return HasConvergentOp; }
523 
getRuntimePointerChecking()524   const RuntimePointerChecking *getRuntimePointerChecking() const {
525     return PtrRtChecking.get();
526   }
527 
528   /// Number of memchecks required to prove independence of otherwise
529   /// may-alias pointers.
getNumRuntimePointerChecks()530   unsigned getNumRuntimePointerChecks() const {
531     return PtrRtChecking->getNumberOfChecks();
532   }
533 
534   /// Return true if the block BB needs to be predicated in order for the loop
535   /// to be vectorized.
536   static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
537                                     DominatorTree *DT);
538 
539   /// Returns true if the value V is uniform within the loop.
540   bool isUniform(Value *V) const;
541 
getMaxSafeDepDistBytes()542   uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
getNumStores()543   unsigned getNumStores() const { return NumStores; }
getNumLoads()544   unsigned getNumLoads() const { return NumLoads;}
545 
546   /// The diagnostics report generated for the analysis.  E.g. why we
547   /// couldn't analyze the loop.
getReport()548   const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
549 
550   /// the Memory Dependence Checker which can determine the
551   /// loop-independent and loop-carried dependences between memory accesses.
getDepChecker()552   const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
553 
554   /// Return the list of instructions that use \p Ptr to read or write
555   /// memory.
getInstructionsForAccess(Value * Ptr,bool isWrite)556   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
557                                                          bool isWrite) const {
558     return DepChecker->getInstructionsForAccess(Ptr, isWrite);
559   }
560 
561   /// If an access has a symbolic strides, this maps the pointer value to
562   /// the stride symbol.
getSymbolicStrides()563   const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
564 
565   /// Pointer has a symbolic stride.
hasStride(Value * V)566   bool hasStride(Value *V) const { return StrideSet.count(V); }
567 
568   /// Print the information about the memory accesses in the loop.
569   void print(raw_ostream &OS, unsigned Depth = 0) const;
570 
571   /// If the loop has memory dependence involving an invariant address, i.e. two
572   /// stores or a store and a load, then return true, else return false.
hasDependenceInvolvingLoopInvariantAddress()573   bool hasDependenceInvolvingLoopInvariantAddress() const {
574     return HasDependenceInvolvingLoopInvariantAddress;
575   }
576 
577   /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
578   /// them to a more usable form.  All SCEV expressions during the analysis
579   /// should be re-written (and therefore simplified) according to PSE.
580   /// A user of LoopAccessAnalysis will need to emit the runtime checks
581   /// associated with this predicate.
getPSE()582   const PredicatedScalarEvolution &getPSE() const { return *PSE; }
583 
584 private:
585   /// Analyze the loop.
586   void analyzeLoop(AAResults *AA, LoopInfo *LI,
587                    const TargetLibraryInfo *TLI, DominatorTree *DT);
588 
589   /// Check if the structure of the loop allows it to be analyzed by this
590   /// pass.
591   bool canAnalyzeLoop();
592 
593   /// Save the analysis remark.
594   ///
595   /// LAA does not directly emits the remarks.  Instead it stores it which the
596   /// client can retrieve and presents as its own analysis
597   /// (e.g. -Rpass-analysis=loop-vectorize).
598   OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
599                                              Instruction *Instr = nullptr);
600 
601   /// Collect memory access with loop invariant strides.
602   ///
603   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
604   /// invariant.
605   void collectStridedAccess(Value *LoadOrStoreInst);
606 
607   std::unique_ptr<PredicatedScalarEvolution> PSE;
608 
609   /// We need to check that all of the pointers in this list are disjoint
610   /// at runtime. Using std::unique_ptr to make using move ctor simpler.
611   std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
612 
613   /// the Memory Dependence Checker which can determine the
614   /// loop-independent and loop-carried dependences between memory accesses.
615   std::unique_ptr<MemoryDepChecker> DepChecker;
616 
617   Loop *TheLoop;
618 
619   unsigned NumLoads;
620   unsigned NumStores;
621 
622   uint64_t MaxSafeDepDistBytes;
623 
624   /// Cache the result of analyzeLoop.
625   bool CanVecMem;
626   bool HasConvergentOp;
627 
628   /// Indicator that there are non vectorizable stores to a uniform address.
629   bool HasDependenceInvolvingLoopInvariantAddress;
630 
631   /// The diagnostics report generated for the analysis.  E.g. why we
632   /// couldn't analyze the loop.
633   std::unique_ptr<OptimizationRemarkAnalysis> Report;
634 
635   /// If an access has a symbolic strides, this maps the pointer value to
636   /// the stride symbol.
637   ValueToValueMap SymbolicStrides;
638 
639   /// Set of symbolic strides values.
640   SmallPtrSet<Value *, 8> StrideSet;
641 };
642 
643 Value *stripIntegerCast(Value *V);
644 
645 /// Return the SCEV corresponding to a pointer with the symbolic stride
646 /// replaced with constant one, assuming the SCEV predicate associated with
647 /// \p PSE is true.
648 ///
649 /// If necessary this method will version the stride of the pointer according
650 /// to \p PtrToStride and therefore add further predicates to \p PSE.
651 ///
652 /// If \p OrigPtr is not null, use it to look up the stride value instead of \p
653 /// Ptr.  \p PtrToStride provides the mapping between the pointer value and its
654 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
655 const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
656                                       const ValueToValueMap &PtrToStride,
657                                       Value *Ptr, Value *OrigPtr = nullptr);
658 
659 /// If the pointer has a constant stride return it in units of its
660 /// element size.  Otherwise return zero.
661 ///
662 /// Ensure that it does not wrap in the address space, assuming the predicate
663 /// associated with \p PSE is true.
664 ///
665 /// If necessary this method will version the stride of the pointer according
666 /// to \p PtrToStride and therefore add further predicates to \p PSE.
667 /// The \p Assume parameter indicates if we are allowed to make additional
668 /// run-time assumptions.
669 int64_t getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, const Loop *Lp,
670                      const ValueToValueMap &StridesMap = ValueToValueMap(),
671                      bool Assume = false, bool ShouldCheckWrap = true);
672 
673 /// Attempt to sort the pointers in \p VL and return the sorted indices
674 /// in \p SortedIndices, if reordering is required.
675 ///
676 /// Returns 'true' if sorting is legal, otherwise returns 'false'.
677 ///
678 /// For example, for a given \p VL of memory accesses in program order, a[i+4],
679 /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
680 /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
681 /// saves the mask for actual memory accesses in program order in
682 /// \p SortedIndices as <1,2,0,3>
683 bool sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
684                      ScalarEvolution &SE,
685                      SmallVectorImpl<unsigned> &SortedIndices);
686 
687 /// Returns true if the memory operations \p A and \p B are consecutive.
688 /// This is a simple API that does not depend on the analysis pass.
689 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
690                          ScalarEvolution &SE, bool CheckType = true);
691 
692 /// This analysis provides dependence information for the memory accesses
693 /// of a loop.
694 ///
695 /// It runs the analysis for a loop on demand.  This can be initiated by
696 /// querying the loop access info via LAA::getInfo.  getInfo return a
697 /// LoopAccessInfo object.  See this class for the specifics of what information
698 /// is provided.
699 class LoopAccessLegacyAnalysis : public FunctionPass {
700 public:
701   static char ID;
702 
703   LoopAccessLegacyAnalysis();
704 
705   bool runOnFunction(Function &F) override;
706 
707   void getAnalysisUsage(AnalysisUsage &AU) const override;
708 
709   /// Query the result of the loop access information for the loop \p L.
710   ///
711   /// If there is no cached result available run the analysis.
712   const LoopAccessInfo &getInfo(Loop *L);
713 
releaseMemory()714   void releaseMemory() override {
715     // Invalidate the cache when the pass is freed.
716     LoopAccessInfoMap.clear();
717   }
718 
719   /// Print the result of the analysis when invoked with -analyze.
720   void print(raw_ostream &OS, const Module *M = nullptr) const override;
721 
722 private:
723   /// The cache.
724   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
725 
726   // The used analysis passes.
727   ScalarEvolution *SE = nullptr;
728   const TargetLibraryInfo *TLI = nullptr;
729   AAResults *AA = nullptr;
730   DominatorTree *DT = nullptr;
731   LoopInfo *LI = nullptr;
732 };
733 
734 /// This analysis provides dependence information for the memory
735 /// accesses of a loop.
736 ///
737 /// It runs the analysis for a loop on demand.  This can be initiated by
738 /// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
739 /// getResult return a LoopAccessInfo object.  See this class for the
740 /// specifics of what information is provided.
741 class LoopAccessAnalysis
742     : public AnalysisInfoMixin<LoopAccessAnalysis> {
743   friend AnalysisInfoMixin<LoopAccessAnalysis>;
744   static AnalysisKey Key;
745 
746 public:
747   typedef LoopAccessInfo Result;
748 
749   Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);
750 };
751 
getSource(const LoopAccessInfo & LAI)752 inline Instruction *MemoryDepChecker::Dependence::getSource(
753     const LoopAccessInfo &LAI) const {
754   return LAI.getDepChecker().getMemoryInstructions()[Source];
755 }
756 
getDestination(const LoopAccessInfo & LAI)757 inline Instruction *MemoryDepChecker::Dependence::getDestination(
758     const LoopAccessInfo &LAI) const {
759   return LAI.getDepChecker().getMemoryInstructions()[Destination];
760 }
761 
762 } // End llvm namespace
763 
764 #endif
765