1 //===- CFG.h ----------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file provides various utilities for inspecting and working with the
11 /// control flow graph in LLVM IR. This includes generic facilities for
12 /// iterating successors and predecessors of basic blocks, the successors of
13 /// specific terminator instructions, etc. It also defines specializations of
14 /// GraphTraits that allow Function and BasicBlock graphs to be treated as
15 /// proper graphs for generic algorithms.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #ifndef LLVM_IR_CFG_H
20 #define LLVM_IR_CFG_H
21 
22 #include "llvm/ADT/GraphTraits.h"
23 #include "llvm/ADT/iterator.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/Casting.h"
28 #include <cassert>
29 #include <cstddef>
30 #include <iterator>
31 
32 namespace llvm {
33 
34 class BasicBlock;
35 class Instruction;
36 class Use;
37 
38 //===----------------------------------------------------------------------===//
39 // BasicBlock pred_iterator definition
40 //===----------------------------------------------------------------------===//
41 
42 template <class Ptr, class USE_iterator> // Predecessor Iterator
43 class PredIterator : public std::iterator<std::forward_iterator_tag,
44                                           Ptr, ptrdiff_t, Ptr*, Ptr*> {
45   using super =
46       std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*, Ptr*>;
47   using Self = PredIterator<Ptr, USE_iterator>;
48   USE_iterator It;
49 
advancePastNonTerminators()50   inline void advancePastNonTerminators() {
51     // Loop to ignore non-terminator uses (for example BlockAddresses).
52     while (!It.atEnd()) {
53       if (auto *Inst = dyn_cast<Instruction>(*It))
54         if (Inst->isTerminator())
55           break;
56 
57       ++It;
58     }
59   }
60 
61 public:
62   using pointer = typename super::pointer;
63   using reference = typename super::reference;
64 
65   PredIterator() = default;
PredIterator(Ptr * bb)66   explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
67     advancePastNonTerminators();
68   }
PredIterator(Ptr * bb,bool)69   inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
70 
71   inline bool operator==(const Self& x) const { return It == x.It; }
72   inline bool operator!=(const Self& x) const { return !operator==(x); }
73 
74   inline reference operator*() const {
75     assert(!It.atEnd() && "pred_iterator out of range!");
76     return cast<Instruction>(*It)->getParent();
77   }
78   inline pointer *operator->() const { return &operator*(); }
79 
80   inline Self& operator++() {   // Preincrement
81     assert(!It.atEnd() && "pred_iterator out of range!");
82     ++It; advancePastNonTerminators();
83     return *this;
84   }
85 
86   inline Self operator++(int) { // Postincrement
87     Self tmp = *this; ++*this; return tmp;
88   }
89 
90   /// getOperandNo - Return the operand number in the predecessor's
91   /// terminator of the successor.
getOperandNo()92   unsigned getOperandNo() const {
93     return It.getOperandNo();
94   }
95 
96   /// getUse - Return the operand Use in the predecessor's terminator
97   /// of the successor.
getUse()98   Use &getUse() const {
99     return It.getUse();
100   }
101 };
102 
103 using pred_iterator = PredIterator<BasicBlock, Value::user_iterator>;
104 using const_pred_iterator =
105     PredIterator<const BasicBlock, Value::const_user_iterator>;
106 using pred_range = iterator_range<pred_iterator>;
107 using const_pred_range = iterator_range<const_pred_iterator>;
108 
pred_begin(BasicBlock * BB)109 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
pred_begin(const BasicBlock * BB)110 inline const_pred_iterator pred_begin(const BasicBlock *BB) {
111   return const_pred_iterator(BB);
112 }
pred_end(BasicBlock * BB)113 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
pred_end(const BasicBlock * BB)114 inline const_pred_iterator pred_end(const BasicBlock *BB) {
115   return const_pred_iterator(BB, true);
116 }
pred_empty(const BasicBlock * BB)117 inline bool pred_empty(const BasicBlock *BB) {
118   return pred_begin(BB) == pred_end(BB);
119 }
120 /// Get the number of predecessors of \p BB. This is a linear time operation.
121 /// Use \ref BasicBlock::hasNPredecessors() or hasNPredecessorsOrMore if able.
pred_size(const BasicBlock * BB)122 inline unsigned pred_size(const BasicBlock *BB) {
123   return std::distance(pred_begin(BB), pred_end(BB));
124 }
predecessors(BasicBlock * BB)125 inline pred_range predecessors(BasicBlock *BB) {
126   return pred_range(pred_begin(BB), pred_end(BB));
127 }
predecessors(const BasicBlock * BB)128 inline const_pred_range predecessors(const BasicBlock *BB) {
129   return const_pred_range(pred_begin(BB), pred_end(BB));
130 }
131 
132 //===----------------------------------------------------------------------===//
133 // Instruction and BasicBlock succ_iterator helpers
134 //===----------------------------------------------------------------------===//
135 
136 template <class InstructionT, class BlockT>
137 class SuccIterator
138     : public iterator_facade_base<SuccIterator<InstructionT, BlockT>,
139                                   std::random_access_iterator_tag, BlockT, int,
140                                   BlockT *, BlockT *> {
141 public:
142   using difference_type = int;
143   using pointer = BlockT *;
144   using reference = BlockT *;
145 
146 private:
147   InstructionT *Inst;
148   int Idx;
149   using Self = SuccIterator<InstructionT, BlockT>;
150 
index_is_valid(int Idx)151   inline bool index_is_valid(int Idx) {
152     // Note that we specially support the index of zero being valid even in the
153     // face of a null instruction.
154     return Idx >= 0 && (Idx == 0 || Idx <= (int)Inst->getNumSuccessors());
155   }
156 
157   /// Proxy object to allow write access in operator[]
158   class SuccessorProxy {
159     Self It;
160 
161   public:
SuccessorProxy(const Self & It)162     explicit SuccessorProxy(const Self &It) : It(It) {}
163 
164     SuccessorProxy(const SuccessorProxy &) = default;
165 
166     SuccessorProxy &operator=(SuccessorProxy RHS) {
167       *this = reference(RHS);
168       return *this;
169     }
170 
171     SuccessorProxy &operator=(reference RHS) {
172       It.Inst->setSuccessor(It.Idx, RHS);
173       return *this;
174     }
175 
reference()176     operator reference() const { return *It; }
177   };
178 
179 public:
180   // begin iterator
SuccIterator(InstructionT * Inst)181   explicit inline SuccIterator(InstructionT *Inst) : Inst(Inst), Idx(0) {}
182   // end iterator
SuccIterator(InstructionT * Inst,bool)183   inline SuccIterator(InstructionT *Inst, bool) : Inst(Inst) {
184     if (Inst)
185       Idx = Inst->getNumSuccessors();
186     else
187       // Inst == NULL happens, if a basic block is not fully constructed and
188       // consequently getTerminator() returns NULL. In this case we construct
189       // a SuccIterator which describes a basic block that has zero
190       // successors.
191       // Defining SuccIterator for incomplete and malformed CFGs is especially
192       // useful for debugging.
193       Idx = 0;
194   }
195 
196   /// This is used to interface between code that wants to
197   /// operate on terminator instructions directly.
getSuccessorIndex()198   int getSuccessorIndex() const { return Idx; }
199 
200   inline bool operator==(const Self &x) const { return Idx == x.Idx; }
201 
202   inline BlockT *operator*() const { return Inst->getSuccessor(Idx); }
203 
204   // We use the basic block pointer directly for operator->.
205   inline BlockT *operator->() const { return operator*(); }
206 
207   inline bool operator<(const Self &RHS) const {
208     assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
209     return Idx < RHS.Idx;
210   }
211 
212   int operator-(const Self &RHS) const {
213     assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
214     return Idx - RHS.Idx;
215   }
216 
217   inline Self &operator+=(int RHS) {
218     int NewIdx = Idx + RHS;
219     assert(index_is_valid(NewIdx) && "Iterator index out of bound");
220     Idx = NewIdx;
221     return *this;
222   }
223 
224   inline Self &operator-=(int RHS) { return operator+=(-RHS); }
225 
226   // Specially implement the [] operation using a proxy object to support
227   // assignment.
228   inline SuccessorProxy operator[](int Offset) {
229     Self TmpIt = *this;
230     TmpIt += Offset;
231     return SuccessorProxy(TmpIt);
232   }
233 
234   /// Get the source BlockT of this iterator.
getSource()235   inline BlockT *getSource() {
236     assert(Inst && "Source not available, if basic block was malformed");
237     return Inst->getParent();
238   }
239 };
240 
241 using succ_iterator = SuccIterator<Instruction, BasicBlock>;
242 using const_succ_iterator = SuccIterator<const Instruction, const BasicBlock>;
243 using succ_range = iterator_range<succ_iterator>;
244 using const_succ_range = iterator_range<const_succ_iterator>;
245 
succ_begin(Instruction * I)246 inline succ_iterator succ_begin(Instruction *I) { return succ_iterator(I); }
succ_begin(const Instruction * I)247 inline const_succ_iterator succ_begin(const Instruction *I) {
248   return const_succ_iterator(I);
249 }
succ_end(Instruction * I)250 inline succ_iterator succ_end(Instruction *I) { return succ_iterator(I, true); }
succ_end(const Instruction * I)251 inline const_succ_iterator succ_end(const Instruction *I) {
252   return const_succ_iterator(I, true);
253 }
succ_empty(const Instruction * I)254 inline bool succ_empty(const Instruction *I) {
255   return succ_begin(I) == succ_end(I);
256 }
succ_size(const Instruction * I)257 inline unsigned succ_size(const Instruction *I) {
258   return std::distance(succ_begin(I), succ_end(I));
259 }
successors(Instruction * I)260 inline succ_range successors(Instruction *I) {
261   return succ_range(succ_begin(I), succ_end(I));
262 }
successors(const Instruction * I)263 inline const_succ_range successors(const Instruction *I) {
264   return const_succ_range(succ_begin(I), succ_end(I));
265 }
266 
succ_begin(BasicBlock * BB)267 inline succ_iterator succ_begin(BasicBlock *BB) {
268   return succ_iterator(BB->getTerminator());
269 }
succ_begin(const BasicBlock * BB)270 inline const_succ_iterator succ_begin(const BasicBlock *BB) {
271   return const_succ_iterator(BB->getTerminator());
272 }
succ_end(BasicBlock * BB)273 inline succ_iterator succ_end(BasicBlock *BB) {
274   return succ_iterator(BB->getTerminator(), true);
275 }
succ_end(const BasicBlock * BB)276 inline const_succ_iterator succ_end(const BasicBlock *BB) {
277   return const_succ_iterator(BB->getTerminator(), true);
278 }
succ_empty(const BasicBlock * BB)279 inline bool succ_empty(const BasicBlock *BB) {
280   return succ_begin(BB) == succ_end(BB);
281 }
succ_size(const BasicBlock * BB)282 inline unsigned succ_size(const BasicBlock *BB) {
283   return std::distance(succ_begin(BB), succ_end(BB));
284 }
successors(BasicBlock * BB)285 inline succ_range successors(BasicBlock *BB) {
286   return succ_range(succ_begin(BB), succ_end(BB));
287 }
successors(const BasicBlock * BB)288 inline const_succ_range successors(const BasicBlock *BB) {
289   return const_succ_range(succ_begin(BB), succ_end(BB));
290 }
291 
292 //===--------------------------------------------------------------------===//
293 // GraphTraits specializations for basic block graphs (CFGs)
294 //===--------------------------------------------------------------------===//
295 
296 // Provide specializations of GraphTraits to be able to treat a function as a
297 // graph of basic blocks...
298 
299 template <> struct GraphTraits<BasicBlock*> {
300   using NodeRef = BasicBlock *;
301   using ChildIteratorType = succ_iterator;
302 
303   static NodeRef getEntryNode(BasicBlock *BB) { return BB; }
304   static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
305   static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
306 };
307 
308 template <> struct GraphTraits<const BasicBlock*> {
309   using NodeRef = const BasicBlock *;
310   using ChildIteratorType = const_succ_iterator;
311 
312   static NodeRef getEntryNode(const BasicBlock *BB) { return BB; }
313 
314   static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
315   static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
316 };
317 
318 // Provide specializations of GraphTraits to be able to treat a function as a
319 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
320 // a function is considered to be when traversing the predecessor edges of a BB
321 // instead of the successor edges.
322 //
323 template <> struct GraphTraits<Inverse<BasicBlock*>> {
324   using NodeRef = BasicBlock *;
325   using ChildIteratorType = pred_iterator;
326 
327   static NodeRef getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
328   static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
329   static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
330 };
331 
332 template <> struct GraphTraits<Inverse<const BasicBlock*>> {
333   using NodeRef = const BasicBlock *;
334   using ChildIteratorType = const_pred_iterator;
335 
336   static NodeRef getEntryNode(Inverse<const BasicBlock *> G) { return G.Graph; }
337   static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
338   static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
339 };
340 
341 //===--------------------------------------------------------------------===//
342 // GraphTraits specializations for function basic block graphs (CFGs)
343 //===--------------------------------------------------------------------===//
344 
345 // Provide specializations of GraphTraits to be able to treat a function as a
346 // graph of basic blocks... these are the same as the basic block iterators,
347 // except that the root node is implicitly the first node of the function.
348 //
349 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
350   static NodeRef getEntryNode(Function *F) { return &F->getEntryBlock(); }
351 
352   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
353   using nodes_iterator = pointer_iterator<Function::iterator>;
354 
355   static nodes_iterator nodes_begin(Function *F) {
356     return nodes_iterator(F->begin());
357   }
358 
359   static nodes_iterator nodes_end(Function *F) {
360     return nodes_iterator(F->end());
361   }
362 
363   static size_t size(Function *F) { return F->size(); }
364 };
365 template <> struct GraphTraits<const Function*> :
366   public GraphTraits<const BasicBlock*> {
367   static NodeRef getEntryNode(const Function *F) { return &F->getEntryBlock(); }
368 
369   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
370   using nodes_iterator = pointer_iterator<Function::const_iterator>;
371 
372   static nodes_iterator nodes_begin(const Function *F) {
373     return nodes_iterator(F->begin());
374   }
375 
376   static nodes_iterator nodes_end(const Function *F) {
377     return nodes_iterator(F->end());
378   }
379 
380   static size_t size(const Function *F) { return F->size(); }
381 };
382 
383 // Provide specializations of GraphTraits to be able to treat a function as a
384 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
385 // a function is considered to be when traversing the predecessor edges of a BB
386 // instead of the successor edges.
387 //
388 template <> struct GraphTraits<Inverse<Function*>> :
389   public GraphTraits<Inverse<BasicBlock*>> {
390   static NodeRef getEntryNode(Inverse<Function *> G) {
391     return &G.Graph->getEntryBlock();
392   }
393 };
394 template <> struct GraphTraits<Inverse<const Function*>> :
395   public GraphTraits<Inverse<const BasicBlock*>> {
396   static NodeRef getEntryNode(Inverse<const Function *> G) {
397     return &G.Graph->getEntryBlock();
398   }
399 };
400 
401 } // end namespace llvm
402 
403 #endif // LLVM_IR_CFG_H
404