1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library. First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression. These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 // Chains of recurrences -- a method to expedite the evaluation
42 // of closed-form functions
43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 // On computational properties of chains of recurrences
46 // Eugene V. Zima
47 //
48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 // Robert A. van Engelen
50 //
51 // Efficient Symbolic Analysis for Optimizing Compilers
52 // Robert A. van Engelen
53 //
54 // Using the chains of recurrences algebra for data dependence testing and
55 // induction variable substitution
56 // MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136
137 using namespace llvm;
138
139 #define DEBUG_TYPE "scalar-evolution"
140
141 STATISTIC(NumArrayLenItCounts,
142 "Number of trip counts computed with array length");
143 STATISTIC(NumTripCountsComputed,
144 "Number of loops with predictable loop counts");
145 STATISTIC(NumTripCountsNotComputed,
146 "Number of loops without predictable loop counts");
147 STATISTIC(NumBruteForceTripCountsComputed,
148 "Number of loops with trip counts computed by force");
149
150 static cl::opt<unsigned>
151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
152 cl::ZeroOrMore,
153 cl::desc("Maximum number of iterations SCEV will "
154 "symbolically execute a constant "
155 "derived loop"),
156 cl::init(100));
157
158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
159 static cl::opt<bool> VerifySCEV(
160 "verify-scev", cl::Hidden,
161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163 "verify-scev-strict", cl::Hidden,
164 cl::desc("Enable stricter verification with -verify-scev is passed"));
165 static cl::opt<bool>
166 VerifySCEVMap("verify-scev-maps", cl::Hidden,
167 cl::desc("Verify no dangling value in ScalarEvolution's "
168 "ExprValueMap (slow)"));
169
170 static cl::opt<bool> VerifyIR(
171 "scev-verify-ir", cl::Hidden,
172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
173 cl::init(false));
174
175 static cl::opt<unsigned> MulOpsInlineThreshold(
176 "scev-mulops-inline-threshold", cl::Hidden,
177 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
178 cl::init(32));
179
180 static cl::opt<unsigned> AddOpsInlineThreshold(
181 "scev-addops-inline-threshold", cl::Hidden,
182 cl::desc("Threshold for inlining addition operands into a SCEV"),
183 cl::init(500));
184
185 static cl::opt<unsigned> MaxSCEVCompareDepth(
186 "scalar-evolution-max-scev-compare-depth", cl::Hidden,
187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
188 cl::init(32));
189
190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
193 cl::init(2));
194
195 static cl::opt<unsigned> MaxValueCompareDepth(
196 "scalar-evolution-max-value-compare-depth", cl::Hidden,
197 cl::desc("Maximum depth of recursive value complexity comparisons"),
198 cl::init(2));
199
200 static cl::opt<unsigned>
201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
202 cl::desc("Maximum depth of recursive arithmetics"),
203 cl::init(32));
204
205 static cl::opt<unsigned> MaxConstantEvolvingDepth(
206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
208
209 static cl::opt<unsigned>
210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
212 cl::init(8));
213
214 static cl::opt<unsigned>
215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
216 cl::desc("Max coefficients in AddRec during evolving"),
217 cl::init(8));
218
219 static cl::opt<unsigned>
220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
221 cl::desc("Size of the expression which is considered huge"),
222 cl::init(4096));
223
224 static cl::opt<bool>
225 ClassifyExpressions("scalar-evolution-classify-expressions",
226 cl::Hidden, cl::init(true),
227 cl::desc("When printing analysis, include information on every instruction"));
228
229
230 //===----------------------------------------------------------------------===//
231 // SCEV class definitions
232 //===----------------------------------------------------------------------===//
233
234 //===----------------------------------------------------------------------===//
235 // Implementation of the SCEV class.
236 //
237
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const239 LLVM_DUMP_METHOD void SCEV::dump() const {
240 print(dbgs());
241 dbgs() << '\n';
242 }
243 #endif
244
print(raw_ostream & OS) const245 void SCEV::print(raw_ostream &OS) const {
246 switch (static_cast<SCEVTypes>(getSCEVType())) {
247 case scConstant:
248 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
249 return;
250 case scTruncate: {
251 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
252 const SCEV *Op = Trunc->getOperand();
253 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
254 << *Trunc->getType() << ")";
255 return;
256 }
257 case scZeroExtend: {
258 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
259 const SCEV *Op = ZExt->getOperand();
260 OS << "(zext " << *Op->getType() << " " << *Op << " to "
261 << *ZExt->getType() << ")";
262 return;
263 }
264 case scSignExtend: {
265 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
266 const SCEV *Op = SExt->getOperand();
267 OS << "(sext " << *Op->getType() << " " << *Op << " to "
268 << *SExt->getType() << ")";
269 return;
270 }
271 case scAddRecExpr: {
272 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
273 OS << "{" << *AR->getOperand(0);
274 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
275 OS << ",+," << *AR->getOperand(i);
276 OS << "}<";
277 if (AR->hasNoUnsignedWrap())
278 OS << "nuw><";
279 if (AR->hasNoSignedWrap())
280 OS << "nsw><";
281 if (AR->hasNoSelfWrap() &&
282 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
283 OS << "nw><";
284 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
285 OS << ">";
286 return;
287 }
288 case scAddExpr:
289 case scMulExpr:
290 case scUMaxExpr:
291 case scSMaxExpr:
292 case scUMinExpr:
293 case scSMinExpr: {
294 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
295 const char *OpStr = nullptr;
296 switch (NAry->getSCEVType()) {
297 case scAddExpr: OpStr = " + "; break;
298 case scMulExpr: OpStr = " * "; break;
299 case scUMaxExpr: OpStr = " umax "; break;
300 case scSMaxExpr: OpStr = " smax "; break;
301 case scUMinExpr:
302 OpStr = " umin ";
303 break;
304 case scSMinExpr:
305 OpStr = " smin ";
306 break;
307 }
308 OS << "(";
309 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
310 I != E; ++I) {
311 OS << **I;
312 if (std::next(I) != E)
313 OS << OpStr;
314 }
315 OS << ")";
316 switch (NAry->getSCEVType()) {
317 case scAddExpr:
318 case scMulExpr:
319 if (NAry->hasNoUnsignedWrap())
320 OS << "<nuw>";
321 if (NAry->hasNoSignedWrap())
322 OS << "<nsw>";
323 }
324 return;
325 }
326 case scUDivExpr: {
327 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
328 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
329 return;
330 }
331 case scUnknown: {
332 const SCEVUnknown *U = cast<SCEVUnknown>(this);
333 Type *AllocTy;
334 if (U->isSizeOf(AllocTy)) {
335 OS << "sizeof(" << *AllocTy << ")";
336 return;
337 }
338 if (U->isAlignOf(AllocTy)) {
339 OS << "alignof(" << *AllocTy << ")";
340 return;
341 }
342
343 Type *CTy;
344 Constant *FieldNo;
345 if (U->isOffsetOf(CTy, FieldNo)) {
346 OS << "offsetof(" << *CTy << ", ";
347 FieldNo->printAsOperand(OS, false);
348 OS << ")";
349 return;
350 }
351
352 // Otherwise just print it normally.
353 U->getValue()->printAsOperand(OS, false);
354 return;
355 }
356 case scCouldNotCompute:
357 OS << "***COULDNOTCOMPUTE***";
358 return;
359 }
360 llvm_unreachable("Unknown SCEV kind!");
361 }
362
getType() const363 Type *SCEV::getType() const {
364 switch (static_cast<SCEVTypes>(getSCEVType())) {
365 case scConstant:
366 return cast<SCEVConstant>(this)->getType();
367 case scTruncate:
368 case scZeroExtend:
369 case scSignExtend:
370 return cast<SCEVCastExpr>(this)->getType();
371 case scAddRecExpr:
372 case scMulExpr:
373 case scUMaxExpr:
374 case scSMaxExpr:
375 case scUMinExpr:
376 case scSMinExpr:
377 return cast<SCEVNAryExpr>(this)->getType();
378 case scAddExpr:
379 return cast<SCEVAddExpr>(this)->getType();
380 case scUDivExpr:
381 return cast<SCEVUDivExpr>(this)->getType();
382 case scUnknown:
383 return cast<SCEVUnknown>(this)->getType();
384 case scCouldNotCompute:
385 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
386 }
387 llvm_unreachable("Unknown SCEV kind!");
388 }
389
isZero() const390 bool SCEV::isZero() const {
391 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
392 return SC->getValue()->isZero();
393 return false;
394 }
395
isOne() const396 bool SCEV::isOne() const {
397 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
398 return SC->getValue()->isOne();
399 return false;
400 }
401
isAllOnesValue() const402 bool SCEV::isAllOnesValue() const {
403 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
404 return SC->getValue()->isMinusOne();
405 return false;
406 }
407
isNonConstantNegative() const408 bool SCEV::isNonConstantNegative() const {
409 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
410 if (!Mul) return false;
411
412 // If there is a constant factor, it will be first.
413 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
414 if (!SC) return false;
415
416 // Return true if the value is negative, this matches things like (-42 * V).
417 return SC->getAPInt().isNegative();
418 }
419
SCEVCouldNotCompute()420 SCEVCouldNotCompute::SCEVCouldNotCompute() :
421 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
422
classof(const SCEV * S)423 bool SCEVCouldNotCompute::classof(const SCEV *S) {
424 return S->getSCEVType() == scCouldNotCompute;
425 }
426
getConstant(ConstantInt * V)427 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
428 FoldingSetNodeID ID;
429 ID.AddInteger(scConstant);
430 ID.AddPointer(V);
431 void *IP = nullptr;
432 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
433 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
434 UniqueSCEVs.InsertNode(S, IP);
435 return S;
436 }
437
getConstant(const APInt & Val)438 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
439 return getConstant(ConstantInt::get(getContext(), Val));
440 }
441
442 const SCEV *
getConstant(Type * Ty,uint64_t V,bool isSigned)443 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
444 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
445 return getConstant(ConstantInt::get(ITy, V, isSigned));
446 }
447
SCEVCastExpr(const FoldingSetNodeIDRef ID,unsigned SCEVTy,const SCEV * op,Type * ty)448 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
449 unsigned SCEVTy, const SCEV *op, Type *ty)
450 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
451
SCEVTruncateExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)452 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
453 const SCEV *op, Type *ty)
454 : SCEVCastExpr(ID, scTruncate, op, ty) {
455 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
456 "Cannot truncate non-integer value!");
457 }
458
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)459 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
460 const SCEV *op, Type *ty)
461 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
462 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
463 "Cannot zero extend non-integer value!");
464 }
465
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)466 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
467 const SCEV *op, Type *ty)
468 : SCEVCastExpr(ID, scSignExtend, op, ty) {
469 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
470 "Cannot sign extend non-integer value!");
471 }
472
deleted()473 void SCEVUnknown::deleted() {
474 // Clear this SCEVUnknown from various maps.
475 SE->forgetMemoizedResults(this);
476
477 // Remove this SCEVUnknown from the uniquing map.
478 SE->UniqueSCEVs.RemoveNode(this);
479
480 // Release the value.
481 setValPtr(nullptr);
482 }
483
allUsesReplacedWith(Value * New)484 void SCEVUnknown::allUsesReplacedWith(Value *New) {
485 // Remove this SCEVUnknown from the uniquing map.
486 SE->UniqueSCEVs.RemoveNode(this);
487
488 // Update this SCEVUnknown to point to the new value. This is needed
489 // because there may still be outstanding SCEVs which still point to
490 // this SCEVUnknown.
491 setValPtr(New);
492 }
493
isSizeOf(Type * & AllocTy) const494 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
495 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
496 if (VCE->getOpcode() == Instruction::PtrToInt)
497 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
498 if (CE->getOpcode() == Instruction::GetElementPtr &&
499 CE->getOperand(0)->isNullValue() &&
500 CE->getNumOperands() == 2)
501 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
502 if (CI->isOne()) {
503 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
504 ->getElementType();
505 return true;
506 }
507
508 return false;
509 }
510
isAlignOf(Type * & AllocTy) const511 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
512 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
513 if (VCE->getOpcode() == Instruction::PtrToInt)
514 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
515 if (CE->getOpcode() == Instruction::GetElementPtr &&
516 CE->getOperand(0)->isNullValue()) {
517 Type *Ty =
518 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
519 if (StructType *STy = dyn_cast<StructType>(Ty))
520 if (!STy->isPacked() &&
521 CE->getNumOperands() == 3 &&
522 CE->getOperand(1)->isNullValue()) {
523 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
524 if (CI->isOne() &&
525 STy->getNumElements() == 2 &&
526 STy->getElementType(0)->isIntegerTy(1)) {
527 AllocTy = STy->getElementType(1);
528 return true;
529 }
530 }
531 }
532
533 return false;
534 }
535
isOffsetOf(Type * & CTy,Constant * & FieldNo) const536 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
537 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
538 if (VCE->getOpcode() == Instruction::PtrToInt)
539 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
540 if (CE->getOpcode() == Instruction::GetElementPtr &&
541 CE->getNumOperands() == 3 &&
542 CE->getOperand(0)->isNullValue() &&
543 CE->getOperand(1)->isNullValue()) {
544 Type *Ty =
545 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
546 // Ignore vector types here so that ScalarEvolutionExpander doesn't
547 // emit getelementptrs that index into vectors.
548 if (Ty->isStructTy() || Ty->isArrayTy()) {
549 CTy = Ty;
550 FieldNo = CE->getOperand(2);
551 return true;
552 }
553 }
554
555 return false;
556 }
557
558 //===----------------------------------------------------------------------===//
559 // SCEV Utilities
560 //===----------------------------------------------------------------------===//
561
562 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
563 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
564 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that
565 /// have been previously deemed to be "equally complex" by this routine. It is
566 /// intended to avoid exponential time complexity in cases like:
567 ///
568 /// %a = f(%x, %y)
569 /// %b = f(%a, %a)
570 /// %c = f(%b, %b)
571 ///
572 /// %d = f(%x, %y)
573 /// %e = f(%d, %d)
574 /// %f = f(%e, %e)
575 ///
576 /// CompareValueComplexity(%f, %c)
577 ///
578 /// Since we do not continue running this routine on expression trees once we
579 /// have seen unequal values, there is no need to track them in the cache.
580 static int
CompareValueComplexity(EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,Value * LV,Value * RV,unsigned Depth)581 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
582 const LoopInfo *const LI, Value *LV, Value *RV,
583 unsigned Depth) {
584 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
585 return 0;
586
587 // Order pointer values after integer values. This helps SCEVExpander form
588 // GEPs.
589 bool LIsPointer = LV->getType()->isPointerTy(),
590 RIsPointer = RV->getType()->isPointerTy();
591 if (LIsPointer != RIsPointer)
592 return (int)LIsPointer - (int)RIsPointer;
593
594 // Compare getValueID values.
595 unsigned LID = LV->getValueID(), RID = RV->getValueID();
596 if (LID != RID)
597 return (int)LID - (int)RID;
598
599 // Sort arguments by their position.
600 if (const auto *LA = dyn_cast<Argument>(LV)) {
601 const auto *RA = cast<Argument>(RV);
602 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
603 return (int)LArgNo - (int)RArgNo;
604 }
605
606 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
607 const auto *RGV = cast<GlobalValue>(RV);
608
609 const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
610 auto LT = GV->getLinkage();
611 return !(GlobalValue::isPrivateLinkage(LT) ||
612 GlobalValue::isInternalLinkage(LT));
613 };
614
615 // Use the names to distinguish the two values, but only if the
616 // names are semantically important.
617 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
618 return LGV->getName().compare(RGV->getName());
619 }
620
621 // For instructions, compare their loop depth, and their operand count. This
622 // is pretty loose.
623 if (const auto *LInst = dyn_cast<Instruction>(LV)) {
624 const auto *RInst = cast<Instruction>(RV);
625
626 // Compare loop depths.
627 const BasicBlock *LParent = LInst->getParent(),
628 *RParent = RInst->getParent();
629 if (LParent != RParent) {
630 unsigned LDepth = LI->getLoopDepth(LParent),
631 RDepth = LI->getLoopDepth(RParent);
632 if (LDepth != RDepth)
633 return (int)LDepth - (int)RDepth;
634 }
635
636 // Compare the number of operands.
637 unsigned LNumOps = LInst->getNumOperands(),
638 RNumOps = RInst->getNumOperands();
639 if (LNumOps != RNumOps)
640 return (int)LNumOps - (int)RNumOps;
641
642 for (unsigned Idx : seq(0u, LNumOps)) {
643 int Result =
644 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
645 RInst->getOperand(Idx), Depth + 1);
646 if (Result != 0)
647 return Result;
648 }
649 }
650
651 EqCacheValue.unionSets(LV, RV);
652 return 0;
653 }
654
655 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
656 // than RHS, respectively. A three-way result allows recursive comparisons to be
657 // more efficient.
CompareSCEVComplexity(EquivalenceClasses<const SCEV * > & EqCacheSCEV,EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,const SCEV * LHS,const SCEV * RHS,DominatorTree & DT,unsigned Depth=0)658 static int CompareSCEVComplexity(
659 EquivalenceClasses<const SCEV *> &EqCacheSCEV,
660 EquivalenceClasses<const Value *> &EqCacheValue,
661 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
662 DominatorTree &DT, unsigned Depth = 0) {
663 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
664 if (LHS == RHS)
665 return 0;
666
667 // Primarily, sort the SCEVs by their getSCEVType().
668 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
669 if (LType != RType)
670 return (int)LType - (int)RType;
671
672 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
673 return 0;
674 // Aside from the getSCEVType() ordering, the particular ordering
675 // isn't very important except that it's beneficial to be consistent,
676 // so that (a + b) and (b + a) don't end up as different expressions.
677 switch (static_cast<SCEVTypes>(LType)) {
678 case scUnknown: {
679 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
680 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
681
682 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
683 RU->getValue(), Depth + 1);
684 if (X == 0)
685 EqCacheSCEV.unionSets(LHS, RHS);
686 return X;
687 }
688
689 case scConstant: {
690 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
691 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
692
693 // Compare constant values.
694 const APInt &LA = LC->getAPInt();
695 const APInt &RA = RC->getAPInt();
696 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
697 if (LBitWidth != RBitWidth)
698 return (int)LBitWidth - (int)RBitWidth;
699 return LA.ult(RA) ? -1 : 1;
700 }
701
702 case scAddRecExpr: {
703 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
704 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
705
706 // There is always a dominance between two recs that are used by one SCEV,
707 // so we can safely sort recs by loop header dominance. We require such
708 // order in getAddExpr.
709 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
710 if (LLoop != RLoop) {
711 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
712 assert(LHead != RHead && "Two loops share the same header?");
713 if (DT.dominates(LHead, RHead))
714 return 1;
715 else
716 assert(DT.dominates(RHead, LHead) &&
717 "No dominance between recurrences used by one SCEV?");
718 return -1;
719 }
720
721 // Addrec complexity grows with operand count.
722 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
723 if (LNumOps != RNumOps)
724 return (int)LNumOps - (int)RNumOps;
725
726 // Lexicographically compare.
727 for (unsigned i = 0; i != LNumOps; ++i) {
728 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
729 LA->getOperand(i), RA->getOperand(i), DT,
730 Depth + 1);
731 if (X != 0)
732 return X;
733 }
734 EqCacheSCEV.unionSets(LHS, RHS);
735 return 0;
736 }
737
738 case scAddExpr:
739 case scMulExpr:
740 case scSMaxExpr:
741 case scUMaxExpr:
742 case scSMinExpr:
743 case scUMinExpr: {
744 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
745 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
746
747 // Lexicographically compare n-ary expressions.
748 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
749 if (LNumOps != RNumOps)
750 return (int)LNumOps - (int)RNumOps;
751
752 for (unsigned i = 0; i != LNumOps; ++i) {
753 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
754 LC->getOperand(i), RC->getOperand(i), DT,
755 Depth + 1);
756 if (X != 0)
757 return X;
758 }
759 EqCacheSCEV.unionSets(LHS, RHS);
760 return 0;
761 }
762
763 case scUDivExpr: {
764 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
765 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
766
767 // Lexicographically compare udiv expressions.
768 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
769 RC->getLHS(), DT, Depth + 1);
770 if (X != 0)
771 return X;
772 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
773 RC->getRHS(), DT, Depth + 1);
774 if (X == 0)
775 EqCacheSCEV.unionSets(LHS, RHS);
776 return X;
777 }
778
779 case scTruncate:
780 case scZeroExtend:
781 case scSignExtend: {
782 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
783 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
784
785 // Compare cast expressions by operand.
786 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
787 LC->getOperand(), RC->getOperand(), DT,
788 Depth + 1);
789 if (X == 0)
790 EqCacheSCEV.unionSets(LHS, RHS);
791 return X;
792 }
793
794 case scCouldNotCompute:
795 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
796 }
797 llvm_unreachable("Unknown SCEV kind!");
798 }
799
800 /// Given a list of SCEV objects, order them by their complexity, and group
801 /// objects of the same complexity together by value. When this routine is
802 /// finished, we know that any duplicates in the vector are consecutive and that
803 /// complexity is monotonically increasing.
804 ///
805 /// Note that we go take special precautions to ensure that we get deterministic
806 /// results from this routine. In other words, we don't want the results of
807 /// this to depend on where the addresses of various SCEV objects happened to
808 /// land in memory.
GroupByComplexity(SmallVectorImpl<const SCEV * > & Ops,LoopInfo * LI,DominatorTree & DT)809 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
810 LoopInfo *LI, DominatorTree &DT) {
811 if (Ops.size() < 2) return; // Noop
812
813 EquivalenceClasses<const SCEV *> EqCacheSCEV;
814 EquivalenceClasses<const Value *> EqCacheValue;
815 if (Ops.size() == 2) {
816 // This is the common case, which also happens to be trivially simple.
817 // Special case it.
818 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
819 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
820 std::swap(LHS, RHS);
821 return;
822 }
823
824 // Do the rough sort by complexity.
825 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
826 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
827 0;
828 });
829
830 // Now that we are sorted by complexity, group elements of the same
831 // complexity. Note that this is, at worst, N^2, but the vector is likely to
832 // be extremely short in practice. Note that we take this approach because we
833 // do not want to depend on the addresses of the objects we are grouping.
834 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
835 const SCEV *S = Ops[i];
836 unsigned Complexity = S->getSCEVType();
837
838 // If there are any objects of the same complexity and same value as this
839 // one, group them.
840 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
841 if (Ops[j] == S) { // Found a duplicate.
842 // Move it to immediately after i'th element.
843 std::swap(Ops[i+1], Ops[j]);
844 ++i; // no need to rescan it.
845 if (i == e-2) return; // Done!
846 }
847 }
848 }
849 }
850
851 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
852 /// least HugeExprThreshold nodes).
hasHugeExpression(ArrayRef<const SCEV * > Ops)853 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
854 return any_of(Ops, [](const SCEV *S) {
855 return S->getExpressionSize() >= HugeExprThreshold;
856 });
857 }
858
859 //===----------------------------------------------------------------------===//
860 // Simple SCEV method implementations
861 //===----------------------------------------------------------------------===//
862
863 /// Compute BC(It, K). The result has width W. Assume, K > 0.
BinomialCoefficient(const SCEV * It,unsigned K,ScalarEvolution & SE,Type * ResultTy)864 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
865 ScalarEvolution &SE,
866 Type *ResultTy) {
867 // Handle the simplest case efficiently.
868 if (K == 1)
869 return SE.getTruncateOrZeroExtend(It, ResultTy);
870
871 // We are using the following formula for BC(It, K):
872 //
873 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
874 //
875 // Suppose, W is the bitwidth of the return value. We must be prepared for
876 // overflow. Hence, we must assure that the result of our computation is
877 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
878 // safe in modular arithmetic.
879 //
880 // However, this code doesn't use exactly that formula; the formula it uses
881 // is something like the following, where T is the number of factors of 2 in
882 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
883 // exponentiation:
884 //
885 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
886 //
887 // This formula is trivially equivalent to the previous formula. However,
888 // this formula can be implemented much more efficiently. The trick is that
889 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
890 // arithmetic. To do exact division in modular arithmetic, all we have
891 // to do is multiply by the inverse. Therefore, this step can be done at
892 // width W.
893 //
894 // The next issue is how to safely do the division by 2^T. The way this
895 // is done is by doing the multiplication step at a width of at least W + T
896 // bits. This way, the bottom W+T bits of the product are accurate. Then,
897 // when we perform the division by 2^T (which is equivalent to a right shift
898 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
899 // truncated out after the division by 2^T.
900 //
901 // In comparison to just directly using the first formula, this technique
902 // is much more efficient; using the first formula requires W * K bits,
903 // but this formula less than W + K bits. Also, the first formula requires
904 // a division step, whereas this formula only requires multiplies and shifts.
905 //
906 // It doesn't matter whether the subtraction step is done in the calculation
907 // width or the input iteration count's width; if the subtraction overflows,
908 // the result must be zero anyway. We prefer here to do it in the width of
909 // the induction variable because it helps a lot for certain cases; CodeGen
910 // isn't smart enough to ignore the overflow, which leads to much less
911 // efficient code if the width of the subtraction is wider than the native
912 // register width.
913 //
914 // (It's possible to not widen at all by pulling out factors of 2 before
915 // the multiplication; for example, K=2 can be calculated as
916 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
917 // extra arithmetic, so it's not an obvious win, and it gets
918 // much more complicated for K > 3.)
919
920 // Protection from insane SCEVs; this bound is conservative,
921 // but it probably doesn't matter.
922 if (K > 1000)
923 return SE.getCouldNotCompute();
924
925 unsigned W = SE.getTypeSizeInBits(ResultTy);
926
927 // Calculate K! / 2^T and T; we divide out the factors of two before
928 // multiplying for calculating K! / 2^T to avoid overflow.
929 // Other overflow doesn't matter because we only care about the bottom
930 // W bits of the result.
931 APInt OddFactorial(W, 1);
932 unsigned T = 1;
933 for (unsigned i = 3; i <= K; ++i) {
934 APInt Mult(W, i);
935 unsigned TwoFactors = Mult.countTrailingZeros();
936 T += TwoFactors;
937 Mult.lshrInPlace(TwoFactors);
938 OddFactorial *= Mult;
939 }
940
941 // We need at least W + T bits for the multiplication step
942 unsigned CalculationBits = W + T;
943
944 // Calculate 2^T, at width T+W.
945 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
946
947 // Calculate the multiplicative inverse of K! / 2^T;
948 // this multiplication factor will perform the exact division by
949 // K! / 2^T.
950 APInt Mod = APInt::getSignedMinValue(W+1);
951 APInt MultiplyFactor = OddFactorial.zext(W+1);
952 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
953 MultiplyFactor = MultiplyFactor.trunc(W);
954
955 // Calculate the product, at width T+W
956 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
957 CalculationBits);
958 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
959 for (unsigned i = 1; i != K; ++i) {
960 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
961 Dividend = SE.getMulExpr(Dividend,
962 SE.getTruncateOrZeroExtend(S, CalculationTy));
963 }
964
965 // Divide by 2^T
966 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
967
968 // Truncate the result, and divide by K! / 2^T.
969
970 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
971 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
972 }
973
974 /// Return the value of this chain of recurrences at the specified iteration
975 /// number. We can evaluate this recurrence by multiplying each element in the
976 /// chain by the binomial coefficient corresponding to it. In other words, we
977 /// can evaluate {A,+,B,+,C,+,D} as:
978 ///
979 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
980 ///
981 /// where BC(It, k) stands for binomial coefficient.
evaluateAtIteration(const SCEV * It,ScalarEvolution & SE) const982 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
983 ScalarEvolution &SE) const {
984 const SCEV *Result = getStart();
985 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
986 // The computation is correct in the face of overflow provided that the
987 // multiplication is performed _after_ the evaluation of the binomial
988 // coefficient.
989 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
990 if (isa<SCEVCouldNotCompute>(Coeff))
991 return Coeff;
992
993 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
994 }
995 return Result;
996 }
997
998 //===----------------------------------------------------------------------===//
999 // SCEV Expression folder implementations
1000 //===----------------------------------------------------------------------===//
1001
getTruncateExpr(const SCEV * Op,Type * Ty,unsigned Depth)1002 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1003 unsigned Depth) {
1004 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1005 "This is not a truncating conversion!");
1006 assert(isSCEVable(Ty) &&
1007 "This is not a conversion to a SCEVable type!");
1008 Ty = getEffectiveSCEVType(Ty);
1009
1010 FoldingSetNodeID ID;
1011 ID.AddInteger(scTruncate);
1012 ID.AddPointer(Op);
1013 ID.AddPointer(Ty);
1014 void *IP = nullptr;
1015 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1016
1017 // Fold if the operand is constant.
1018 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1019 return getConstant(
1020 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1021
1022 // trunc(trunc(x)) --> trunc(x)
1023 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1024 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1025
1026 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1027 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1028 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1029
1030 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1031 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1032 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1033
1034 if (Depth > MaxCastDepth) {
1035 SCEV *S =
1036 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1037 UniqueSCEVs.InsertNode(S, IP);
1038 addToLoopUseLists(S);
1039 return S;
1040 }
1041
1042 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1043 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1044 // if after transforming we have at most one truncate, not counting truncates
1045 // that replace other casts.
1046 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1047 auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1048 SmallVector<const SCEV *, 4> Operands;
1049 unsigned numTruncs = 0;
1050 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1051 ++i) {
1052 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1053 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1054 numTruncs++;
1055 Operands.push_back(S);
1056 }
1057 if (numTruncs < 2) {
1058 if (isa<SCEVAddExpr>(Op))
1059 return getAddExpr(Operands);
1060 else if (isa<SCEVMulExpr>(Op))
1061 return getMulExpr(Operands);
1062 else
1063 llvm_unreachable("Unexpected SCEV type for Op.");
1064 }
1065 // Although we checked in the beginning that ID is not in the cache, it is
1066 // possible that during recursion and different modification ID was inserted
1067 // into the cache. So if we find it, just return it.
1068 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1069 return S;
1070 }
1071
1072 // If the input value is a chrec scev, truncate the chrec's operands.
1073 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1074 SmallVector<const SCEV *, 4> Operands;
1075 for (const SCEV *Op : AddRec->operands())
1076 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1077 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1078 }
1079
1080 // The cast wasn't folded; create an explicit cast node. We can reuse
1081 // the existing insert position since if we get here, we won't have
1082 // made any changes which would invalidate it.
1083 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1084 Op, Ty);
1085 UniqueSCEVs.InsertNode(S, IP);
1086 addToLoopUseLists(S);
1087 return S;
1088 }
1089
1090 // Get the limit of a recurrence such that incrementing by Step cannot cause
1091 // signed overflow as long as the value of the recurrence within the
1092 // loop does not exceed this limit before incrementing.
getSignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1093 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1094 ICmpInst::Predicate *Pred,
1095 ScalarEvolution *SE) {
1096 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1097 if (SE->isKnownPositive(Step)) {
1098 *Pred = ICmpInst::ICMP_SLT;
1099 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1100 SE->getSignedRangeMax(Step));
1101 }
1102 if (SE->isKnownNegative(Step)) {
1103 *Pred = ICmpInst::ICMP_SGT;
1104 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1105 SE->getSignedRangeMin(Step));
1106 }
1107 return nullptr;
1108 }
1109
1110 // Get the limit of a recurrence such that incrementing by Step cannot cause
1111 // unsigned overflow as long as the value of the recurrence within the loop does
1112 // not exceed this limit before incrementing.
getUnsignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1113 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1114 ICmpInst::Predicate *Pred,
1115 ScalarEvolution *SE) {
1116 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1117 *Pred = ICmpInst::ICMP_ULT;
1118
1119 return SE->getConstant(APInt::getMinValue(BitWidth) -
1120 SE->getUnsignedRangeMax(Step));
1121 }
1122
1123 namespace {
1124
1125 struct ExtendOpTraitsBase {
1126 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1127 unsigned);
1128 };
1129
1130 // Used to make code generic over signed and unsigned overflow.
1131 template <typename ExtendOp> struct ExtendOpTraits {
1132 // Members present:
1133 //
1134 // static const SCEV::NoWrapFlags WrapType;
1135 //
1136 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1137 //
1138 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1139 // ICmpInst::Predicate *Pred,
1140 // ScalarEvolution *SE);
1141 };
1142
1143 template <>
1144 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1145 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1146
1147 static const GetExtendExprTy GetExtendExpr;
1148
getOverflowLimitForStep__anond51b32ac0411::ExtendOpTraits1149 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1150 ICmpInst::Predicate *Pred,
1151 ScalarEvolution *SE) {
1152 return getSignedOverflowLimitForStep(Step, Pred, SE);
1153 }
1154 };
1155
1156 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1157 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1158
1159 template <>
1160 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1161 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1162
1163 static const GetExtendExprTy GetExtendExpr;
1164
getOverflowLimitForStep__anond51b32ac0411::ExtendOpTraits1165 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1166 ICmpInst::Predicate *Pred,
1167 ScalarEvolution *SE) {
1168 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1169 }
1170 };
1171
1172 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1173 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1174
1175 } // end anonymous namespace
1176
1177 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1178 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1179 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1180 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1181 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1182 // expression "Step + sext/zext(PreIncAR)" is congruent with
1183 // "sext/zext(PostIncAR)"
1184 template <typename ExtendOpTy>
getPreStartForExtend(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1185 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1186 ScalarEvolution *SE, unsigned Depth) {
1187 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1188 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1189
1190 const Loop *L = AR->getLoop();
1191 const SCEV *Start = AR->getStart();
1192 const SCEV *Step = AR->getStepRecurrence(*SE);
1193
1194 // Check for a simple looking step prior to loop entry.
1195 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1196 if (!SA)
1197 return nullptr;
1198
1199 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1200 // subtraction is expensive. For this purpose, perform a quick and dirty
1201 // difference, by checking for Step in the operand list.
1202 SmallVector<const SCEV *, 4> DiffOps;
1203 for (const SCEV *Op : SA->operands())
1204 if (Op != Step)
1205 DiffOps.push_back(Op);
1206
1207 if (DiffOps.size() == SA->getNumOperands())
1208 return nullptr;
1209
1210 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1211 // `Step`:
1212
1213 // 1. NSW/NUW flags on the step increment.
1214 auto PreStartFlags =
1215 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1216 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1217 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1218 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1219
1220 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1221 // "S+X does not sign/unsign-overflow".
1222 //
1223
1224 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1225 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1226 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1227 return PreStart;
1228
1229 // 2. Direct overflow check on the step operation's expression.
1230 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1231 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1232 const SCEV *OperandExtendedStart =
1233 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1234 (SE->*GetExtendExpr)(Step, WideTy, Depth));
1235 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1236 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1237 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1238 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1239 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1240 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1241 }
1242 return PreStart;
1243 }
1244
1245 // 3. Loop precondition.
1246 ICmpInst::Predicate Pred;
1247 const SCEV *OverflowLimit =
1248 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1249
1250 if (OverflowLimit &&
1251 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1252 return PreStart;
1253
1254 return nullptr;
1255 }
1256
1257 // Get the normalized zero or sign extended expression for this AddRec's Start.
1258 template <typename ExtendOpTy>
getExtendAddRecStart(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1259 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1260 ScalarEvolution *SE,
1261 unsigned Depth) {
1262 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1263
1264 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1265 if (!PreStart)
1266 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1267
1268 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1269 Depth),
1270 (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1271 }
1272
1273 // Try to prove away overflow by looking at "nearby" add recurrences. A
1274 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1275 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1276 //
1277 // Formally:
1278 //
1279 // {S,+,X} == {S-T,+,X} + T
1280 // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1281 //
1282 // If ({S-T,+,X} + T) does not overflow ... (1)
1283 //
1284 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1285 //
1286 // If {S-T,+,X} does not overflow ... (2)
1287 //
1288 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1289 // == {Ext(S-T)+Ext(T),+,Ext(X)}
1290 //
1291 // If (S-T)+T does not overflow ... (3)
1292 //
1293 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1294 // == {Ext(S),+,Ext(X)} == LHS
1295 //
1296 // Thus, if (1), (2) and (3) are true for some T, then
1297 // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1298 //
1299 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1300 // does not overflow" restricted to the 0th iteration. Therefore we only need
1301 // to check for (1) and (2).
1302 //
1303 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1304 // is `Delta` (defined below).
1305 template <typename ExtendOpTy>
proveNoWrapByVaryingStart(const SCEV * Start,const SCEV * Step,const Loop * L)1306 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1307 const SCEV *Step,
1308 const Loop *L) {
1309 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1310
1311 // We restrict `Start` to a constant to prevent SCEV from spending too much
1312 // time here. It is correct (but more expensive) to continue with a
1313 // non-constant `Start` and do a general SCEV subtraction to compute
1314 // `PreStart` below.
1315 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1316 if (!StartC)
1317 return false;
1318
1319 APInt StartAI = StartC->getAPInt();
1320
1321 for (unsigned Delta : {-2, -1, 1, 2}) {
1322 const SCEV *PreStart = getConstant(StartAI - Delta);
1323
1324 FoldingSetNodeID ID;
1325 ID.AddInteger(scAddRecExpr);
1326 ID.AddPointer(PreStart);
1327 ID.AddPointer(Step);
1328 ID.AddPointer(L);
1329 void *IP = nullptr;
1330 const auto *PreAR =
1331 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1332
1333 // Give up if we don't already have the add recurrence we need because
1334 // actually constructing an add recurrence is relatively expensive.
1335 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1336 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1337 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1338 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1339 DeltaS, &Pred, this);
1340 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1341 return true;
1342 }
1343 }
1344
1345 return false;
1346 }
1347
1348 // Finds an integer D for an expression (C + x + y + ...) such that the top
1349 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1350 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1351 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1352 // the (C + x + y + ...) expression is \p WholeAddExpr.
extractConstantWithoutWrapping(ScalarEvolution & SE,const SCEVConstant * ConstantTerm,const SCEVAddExpr * WholeAddExpr)1353 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1354 const SCEVConstant *ConstantTerm,
1355 const SCEVAddExpr *WholeAddExpr) {
1356 const APInt &C = ConstantTerm->getAPInt();
1357 const unsigned BitWidth = C.getBitWidth();
1358 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1359 uint32_t TZ = BitWidth;
1360 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1361 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1362 if (TZ) {
1363 // Set D to be as many least significant bits of C as possible while still
1364 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1365 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1366 }
1367 return APInt(BitWidth, 0);
1368 }
1369
1370 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1371 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1372 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1373 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
extractConstantWithoutWrapping(ScalarEvolution & SE,const APInt & ConstantStart,const SCEV * Step)1374 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1375 const APInt &ConstantStart,
1376 const SCEV *Step) {
1377 const unsigned BitWidth = ConstantStart.getBitWidth();
1378 const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1379 if (TZ)
1380 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1381 : ConstantStart;
1382 return APInt(BitWidth, 0);
1383 }
1384
1385 const SCEV *
getZeroExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1386 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1387 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1388 "This is not an extending conversion!");
1389 assert(isSCEVable(Ty) &&
1390 "This is not a conversion to a SCEVable type!");
1391 Ty = getEffectiveSCEVType(Ty);
1392
1393 // Fold if the operand is constant.
1394 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1395 return getConstant(
1396 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1397
1398 // zext(zext(x)) --> zext(x)
1399 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1400 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1401
1402 // Before doing any expensive analysis, check to see if we've already
1403 // computed a SCEV for this Op and Ty.
1404 FoldingSetNodeID ID;
1405 ID.AddInteger(scZeroExtend);
1406 ID.AddPointer(Op);
1407 ID.AddPointer(Ty);
1408 void *IP = nullptr;
1409 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1410 if (Depth > MaxCastDepth) {
1411 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1412 Op, Ty);
1413 UniqueSCEVs.InsertNode(S, IP);
1414 addToLoopUseLists(S);
1415 return S;
1416 }
1417
1418 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1419 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1420 // It's possible the bits taken off by the truncate were all zero bits. If
1421 // so, we should be able to simplify this further.
1422 const SCEV *X = ST->getOperand();
1423 ConstantRange CR = getUnsignedRange(X);
1424 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1425 unsigned NewBits = getTypeSizeInBits(Ty);
1426 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1427 CR.zextOrTrunc(NewBits)))
1428 return getTruncateOrZeroExtend(X, Ty, Depth);
1429 }
1430
1431 // If the input value is a chrec scev, and we can prove that the value
1432 // did not overflow the old, smaller, value, we can zero extend all of the
1433 // operands (often constants). This allows analysis of something like
1434 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1435 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1436 if (AR->isAffine()) {
1437 const SCEV *Start = AR->getStart();
1438 const SCEV *Step = AR->getStepRecurrence(*this);
1439 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1440 const Loop *L = AR->getLoop();
1441
1442 if (!AR->hasNoUnsignedWrap()) {
1443 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1444 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1445 }
1446
1447 // If we have special knowledge that this addrec won't overflow,
1448 // we don't need to do any further analysis.
1449 if (AR->hasNoUnsignedWrap())
1450 return getAddRecExpr(
1451 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1452 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1453
1454 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1455 // Note that this serves two purposes: It filters out loops that are
1456 // simply not analyzable, and it covers the case where this code is
1457 // being called from within backedge-taken count analysis, such that
1458 // attempting to ask for the backedge-taken count would likely result
1459 // in infinite recursion. In the later case, the analysis code will
1460 // cope with a conservative value, and it will take care to purge
1461 // that value once it has finished.
1462 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1463 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1464 // Manually compute the final value for AR, checking for
1465 // overflow.
1466
1467 // Check whether the backedge-taken count can be losslessly casted to
1468 // the addrec's type. The count is always unsigned.
1469 const SCEV *CastedMaxBECount =
1470 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1471 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1472 CastedMaxBECount, MaxBECount->getType(), Depth);
1473 if (MaxBECount == RecastedMaxBECount) {
1474 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1475 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1476 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1477 SCEV::FlagAnyWrap, Depth + 1);
1478 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1479 SCEV::FlagAnyWrap,
1480 Depth + 1),
1481 WideTy, Depth + 1);
1482 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1483 const SCEV *WideMaxBECount =
1484 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1485 const SCEV *OperandExtendedAdd =
1486 getAddExpr(WideStart,
1487 getMulExpr(WideMaxBECount,
1488 getZeroExtendExpr(Step, WideTy, Depth + 1),
1489 SCEV::FlagAnyWrap, Depth + 1),
1490 SCEV::FlagAnyWrap, Depth + 1);
1491 if (ZAdd == OperandExtendedAdd) {
1492 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1493 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1494 // Return the expression with the addrec on the outside.
1495 return getAddRecExpr(
1496 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1497 Depth + 1),
1498 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1499 AR->getNoWrapFlags());
1500 }
1501 // Similar to above, only this time treat the step value as signed.
1502 // This covers loops that count down.
1503 OperandExtendedAdd =
1504 getAddExpr(WideStart,
1505 getMulExpr(WideMaxBECount,
1506 getSignExtendExpr(Step, WideTy, Depth + 1),
1507 SCEV::FlagAnyWrap, Depth + 1),
1508 SCEV::FlagAnyWrap, Depth + 1);
1509 if (ZAdd == OperandExtendedAdd) {
1510 // Cache knowledge of AR NW, which is propagated to this AddRec.
1511 // Negative step causes unsigned wrap, but it still can't self-wrap.
1512 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1513 // Return the expression with the addrec on the outside.
1514 return getAddRecExpr(
1515 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1516 Depth + 1),
1517 getSignExtendExpr(Step, Ty, Depth + 1), L,
1518 AR->getNoWrapFlags());
1519 }
1520 }
1521 }
1522
1523 // Normally, in the cases we can prove no-overflow via a
1524 // backedge guarding condition, we can also compute a backedge
1525 // taken count for the loop. The exceptions are assumptions and
1526 // guards present in the loop -- SCEV is not great at exploiting
1527 // these to compute max backedge taken counts, but can still use
1528 // these to prove lack of overflow. Use this fact to avoid
1529 // doing extra work that may not pay off.
1530 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1531 !AC.assumptions().empty()) {
1532 // If the backedge is guarded by a comparison with the pre-inc
1533 // value the addrec is safe. Also, if the entry is guarded by
1534 // a comparison with the start value and the backedge is
1535 // guarded by a comparison with the post-inc value, the addrec
1536 // is safe.
1537 if (isKnownPositive(Step)) {
1538 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1539 getUnsignedRangeMax(Step));
1540 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1541 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1542 // Cache knowledge of AR NUW, which is propagated to this
1543 // AddRec.
1544 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1545 // Return the expression with the addrec on the outside.
1546 return getAddRecExpr(
1547 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1548 Depth + 1),
1549 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1550 AR->getNoWrapFlags());
1551 }
1552 } else if (isKnownNegative(Step)) {
1553 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1554 getSignedRangeMin(Step));
1555 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1556 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1557 // Cache knowledge of AR NW, which is propagated to this
1558 // AddRec. Negative step causes unsigned wrap, but it
1559 // still can't self-wrap.
1560 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1561 // Return the expression with the addrec on the outside.
1562 return getAddRecExpr(
1563 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1564 Depth + 1),
1565 getSignExtendExpr(Step, Ty, Depth + 1), L,
1566 AR->getNoWrapFlags());
1567 }
1568 }
1569 }
1570
1571 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1572 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1573 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1574 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1575 const APInt &C = SC->getAPInt();
1576 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1577 if (D != 0) {
1578 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1579 const SCEV *SResidual =
1580 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1581 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1582 return getAddExpr(SZExtD, SZExtR,
1583 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1584 Depth + 1);
1585 }
1586 }
1587
1588 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1589 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1590 return getAddRecExpr(
1591 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1592 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1593 }
1594 }
1595
1596 // zext(A % B) --> zext(A) % zext(B)
1597 {
1598 const SCEV *LHS;
1599 const SCEV *RHS;
1600 if (matchURem(Op, LHS, RHS))
1601 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1602 getZeroExtendExpr(RHS, Ty, Depth + 1));
1603 }
1604
1605 // zext(A / B) --> zext(A) / zext(B).
1606 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1607 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1608 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1609
1610 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1611 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1612 if (SA->hasNoUnsignedWrap()) {
1613 // If the addition does not unsign overflow then we can, by definition,
1614 // commute the zero extension with the addition operation.
1615 SmallVector<const SCEV *, 4> Ops;
1616 for (const auto *Op : SA->operands())
1617 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1618 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1619 }
1620
1621 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1622 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1623 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1624 //
1625 // Often address arithmetics contain expressions like
1626 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1627 // This transformation is useful while proving that such expressions are
1628 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1629 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1630 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1631 if (D != 0) {
1632 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1633 const SCEV *SResidual =
1634 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1635 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1636 return getAddExpr(SZExtD, SZExtR,
1637 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1638 Depth + 1);
1639 }
1640 }
1641 }
1642
1643 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1644 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1645 if (SM->hasNoUnsignedWrap()) {
1646 // If the multiply does not unsign overflow then we can, by definition,
1647 // commute the zero extension with the multiply operation.
1648 SmallVector<const SCEV *, 4> Ops;
1649 for (const auto *Op : SM->operands())
1650 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1651 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1652 }
1653
1654 // zext(2^K * (trunc X to iN)) to iM ->
1655 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1656 //
1657 // Proof:
1658 //
1659 // zext(2^K * (trunc X to iN)) to iM
1660 // = zext((trunc X to iN) << K) to iM
1661 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1662 // (because shl removes the top K bits)
1663 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1664 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1665 //
1666 if (SM->getNumOperands() == 2)
1667 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1668 if (MulLHS->getAPInt().isPowerOf2())
1669 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1670 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1671 MulLHS->getAPInt().logBase2();
1672 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1673 return getMulExpr(
1674 getZeroExtendExpr(MulLHS, Ty),
1675 getZeroExtendExpr(
1676 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1677 SCEV::FlagNUW, Depth + 1);
1678 }
1679 }
1680
1681 // The cast wasn't folded; create an explicit cast node.
1682 // Recompute the insert position, as it may have been invalidated.
1683 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1684 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1685 Op, Ty);
1686 UniqueSCEVs.InsertNode(S, IP);
1687 addToLoopUseLists(S);
1688 return S;
1689 }
1690
1691 const SCEV *
getSignExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1692 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1693 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1694 "This is not an extending conversion!");
1695 assert(isSCEVable(Ty) &&
1696 "This is not a conversion to a SCEVable type!");
1697 Ty = getEffectiveSCEVType(Ty);
1698
1699 // Fold if the operand is constant.
1700 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1701 return getConstant(
1702 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1703
1704 // sext(sext(x)) --> sext(x)
1705 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1706 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1707
1708 // sext(zext(x)) --> zext(x)
1709 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1710 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1711
1712 // Before doing any expensive analysis, check to see if we've already
1713 // computed a SCEV for this Op and Ty.
1714 FoldingSetNodeID ID;
1715 ID.AddInteger(scSignExtend);
1716 ID.AddPointer(Op);
1717 ID.AddPointer(Ty);
1718 void *IP = nullptr;
1719 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1720 // Limit recursion depth.
1721 if (Depth > MaxCastDepth) {
1722 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1723 Op, Ty);
1724 UniqueSCEVs.InsertNode(S, IP);
1725 addToLoopUseLists(S);
1726 return S;
1727 }
1728
1729 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1730 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1731 // It's possible the bits taken off by the truncate were all sign bits. If
1732 // so, we should be able to simplify this further.
1733 const SCEV *X = ST->getOperand();
1734 ConstantRange CR = getSignedRange(X);
1735 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1736 unsigned NewBits = getTypeSizeInBits(Ty);
1737 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1738 CR.sextOrTrunc(NewBits)))
1739 return getTruncateOrSignExtend(X, Ty, Depth);
1740 }
1741
1742 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1743 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1744 if (SA->hasNoSignedWrap()) {
1745 // If the addition does not sign overflow then we can, by definition,
1746 // commute the sign extension with the addition operation.
1747 SmallVector<const SCEV *, 4> Ops;
1748 for (const auto *Op : SA->operands())
1749 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1750 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1751 }
1752
1753 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1754 // if D + (C - D + x + y + ...) could be proven to not signed wrap
1755 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1756 //
1757 // For instance, this will bring two seemingly different expressions:
1758 // 1 + sext(5 + 20 * %x + 24 * %y) and
1759 // sext(6 + 20 * %x + 24 * %y)
1760 // to the same form:
1761 // 2 + sext(4 + 20 * %x + 24 * %y)
1762 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1763 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1764 if (D != 0) {
1765 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1766 const SCEV *SResidual =
1767 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1768 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1769 return getAddExpr(SSExtD, SSExtR,
1770 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1771 Depth + 1);
1772 }
1773 }
1774 }
1775 // If the input value is a chrec scev, and we can prove that the value
1776 // did not overflow the old, smaller, value, we can sign extend all of the
1777 // operands (often constants). This allows analysis of something like
1778 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1779 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1780 if (AR->isAffine()) {
1781 const SCEV *Start = AR->getStart();
1782 const SCEV *Step = AR->getStepRecurrence(*this);
1783 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1784 const Loop *L = AR->getLoop();
1785
1786 if (!AR->hasNoSignedWrap()) {
1787 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1788 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1789 }
1790
1791 // If we have special knowledge that this addrec won't overflow,
1792 // we don't need to do any further analysis.
1793 if (AR->hasNoSignedWrap())
1794 return getAddRecExpr(
1795 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1796 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1797
1798 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1799 // Note that this serves two purposes: It filters out loops that are
1800 // simply not analyzable, and it covers the case where this code is
1801 // being called from within backedge-taken count analysis, such that
1802 // attempting to ask for the backedge-taken count would likely result
1803 // in infinite recursion. In the later case, the analysis code will
1804 // cope with a conservative value, and it will take care to purge
1805 // that value once it has finished.
1806 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1807 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1808 // Manually compute the final value for AR, checking for
1809 // overflow.
1810
1811 // Check whether the backedge-taken count can be losslessly casted to
1812 // the addrec's type. The count is always unsigned.
1813 const SCEV *CastedMaxBECount =
1814 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1815 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1816 CastedMaxBECount, MaxBECount->getType(), Depth);
1817 if (MaxBECount == RecastedMaxBECount) {
1818 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1819 // Check whether Start+Step*MaxBECount has no signed overflow.
1820 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1821 SCEV::FlagAnyWrap, Depth + 1);
1822 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1823 SCEV::FlagAnyWrap,
1824 Depth + 1),
1825 WideTy, Depth + 1);
1826 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
1827 const SCEV *WideMaxBECount =
1828 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1829 const SCEV *OperandExtendedAdd =
1830 getAddExpr(WideStart,
1831 getMulExpr(WideMaxBECount,
1832 getSignExtendExpr(Step, WideTy, Depth + 1),
1833 SCEV::FlagAnyWrap, Depth + 1),
1834 SCEV::FlagAnyWrap, Depth + 1);
1835 if (SAdd == OperandExtendedAdd) {
1836 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1837 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1838 // Return the expression with the addrec on the outside.
1839 return getAddRecExpr(
1840 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1841 Depth + 1),
1842 getSignExtendExpr(Step, Ty, Depth + 1), L,
1843 AR->getNoWrapFlags());
1844 }
1845 // Similar to above, only this time treat the step value as unsigned.
1846 // This covers loops that count up with an unsigned step.
1847 OperandExtendedAdd =
1848 getAddExpr(WideStart,
1849 getMulExpr(WideMaxBECount,
1850 getZeroExtendExpr(Step, WideTy, Depth + 1),
1851 SCEV::FlagAnyWrap, Depth + 1),
1852 SCEV::FlagAnyWrap, Depth + 1);
1853 if (SAdd == OperandExtendedAdd) {
1854 // If AR wraps around then
1855 //
1856 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1857 // => SAdd != OperandExtendedAdd
1858 //
1859 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1860 // (SAdd == OperandExtendedAdd => AR is NW)
1861
1862 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1863
1864 // Return the expression with the addrec on the outside.
1865 return getAddRecExpr(
1866 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
1867 Depth + 1),
1868 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1869 AR->getNoWrapFlags());
1870 }
1871 }
1872 }
1873
1874 // Normally, in the cases we can prove no-overflow via a
1875 // backedge guarding condition, we can also compute a backedge
1876 // taken count for the loop. The exceptions are assumptions and
1877 // guards present in the loop -- SCEV is not great at exploiting
1878 // these to compute max backedge taken counts, but can still use
1879 // these to prove lack of overflow. Use this fact to avoid
1880 // doing extra work that may not pay off.
1881
1882 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1883 !AC.assumptions().empty()) {
1884 // If the backedge is guarded by a comparison with the pre-inc
1885 // value the addrec is safe. Also, if the entry is guarded by
1886 // a comparison with the start value and the backedge is
1887 // guarded by a comparison with the post-inc value, the addrec
1888 // is safe.
1889 ICmpInst::Predicate Pred;
1890 const SCEV *OverflowLimit =
1891 getSignedOverflowLimitForStep(Step, &Pred, this);
1892 if (OverflowLimit &&
1893 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1894 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
1895 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1896 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1897 return getAddRecExpr(
1898 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1899 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1900 }
1901 }
1902
1903 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
1904 // if D + (C - D + Step * n) could be proven to not signed wrap
1905 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1906 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1907 const APInt &C = SC->getAPInt();
1908 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1909 if (D != 0) {
1910 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1911 const SCEV *SResidual =
1912 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1913 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1914 return getAddExpr(SSExtD, SSExtR,
1915 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1916 Depth + 1);
1917 }
1918 }
1919
1920 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1921 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1922 return getAddRecExpr(
1923 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1924 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1925 }
1926 }
1927
1928 // If the input value is provably positive and we could not simplify
1929 // away the sext build a zext instead.
1930 if (isKnownNonNegative(Op))
1931 return getZeroExtendExpr(Op, Ty, Depth + 1);
1932
1933 // The cast wasn't folded; create an explicit cast node.
1934 // Recompute the insert position, as it may have been invalidated.
1935 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1936 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1937 Op, Ty);
1938 UniqueSCEVs.InsertNode(S, IP);
1939 addToLoopUseLists(S);
1940 return S;
1941 }
1942
1943 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1944 /// unspecified bits out to the given type.
getAnyExtendExpr(const SCEV * Op,Type * Ty)1945 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1946 Type *Ty) {
1947 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1948 "This is not an extending conversion!");
1949 assert(isSCEVable(Ty) &&
1950 "This is not a conversion to a SCEVable type!");
1951 Ty = getEffectiveSCEVType(Ty);
1952
1953 // Sign-extend negative constants.
1954 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1955 if (SC->getAPInt().isNegative())
1956 return getSignExtendExpr(Op, Ty);
1957
1958 // Peel off a truncate cast.
1959 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1960 const SCEV *NewOp = T->getOperand();
1961 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1962 return getAnyExtendExpr(NewOp, Ty);
1963 return getTruncateOrNoop(NewOp, Ty);
1964 }
1965
1966 // Next try a zext cast. If the cast is folded, use it.
1967 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1968 if (!isa<SCEVZeroExtendExpr>(ZExt))
1969 return ZExt;
1970
1971 // Next try a sext cast. If the cast is folded, use it.
1972 const SCEV *SExt = getSignExtendExpr(Op, Ty);
1973 if (!isa<SCEVSignExtendExpr>(SExt))
1974 return SExt;
1975
1976 // Force the cast to be folded into the operands of an addrec.
1977 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1978 SmallVector<const SCEV *, 4> Ops;
1979 for (const SCEV *Op : AR->operands())
1980 Ops.push_back(getAnyExtendExpr(Op, Ty));
1981 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1982 }
1983
1984 // If the expression is obviously signed, use the sext cast value.
1985 if (isa<SCEVSMaxExpr>(Op))
1986 return SExt;
1987
1988 // Absent any other information, use the zext cast value.
1989 return ZExt;
1990 }
1991
1992 /// Process the given Ops list, which is a list of operands to be added under
1993 /// the given scale, update the given map. This is a helper function for
1994 /// getAddRecExpr. As an example of what it does, given a sequence of operands
1995 /// that would form an add expression like this:
1996 ///
1997 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1998 ///
1999 /// where A and B are constants, update the map with these values:
2000 ///
2001 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2002 ///
2003 /// and add 13 + A*B*29 to AccumulatedConstant.
2004 /// This will allow getAddRecExpr to produce this:
2005 ///
2006 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2007 ///
2008 /// This form often exposes folding opportunities that are hidden in
2009 /// the original operand list.
2010 ///
2011 /// Return true iff it appears that any interesting folding opportunities
2012 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2013 /// the common case where no interesting opportunities are present, and
2014 /// is also used as a check to avoid infinite recursion.
2015 static bool
CollectAddOperandsWithScales(DenseMap<const SCEV *,APInt> & M,SmallVectorImpl<const SCEV * > & NewOps,APInt & AccumulatedConstant,const SCEV * const * Ops,size_t NumOperands,const APInt & Scale,ScalarEvolution & SE)2016 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2017 SmallVectorImpl<const SCEV *> &NewOps,
2018 APInt &AccumulatedConstant,
2019 const SCEV *const *Ops, size_t NumOperands,
2020 const APInt &Scale,
2021 ScalarEvolution &SE) {
2022 bool Interesting = false;
2023
2024 // Iterate over the add operands. They are sorted, with constants first.
2025 unsigned i = 0;
2026 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2027 ++i;
2028 // Pull a buried constant out to the outside.
2029 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2030 Interesting = true;
2031 AccumulatedConstant += Scale * C->getAPInt();
2032 }
2033
2034 // Next comes everything else. We're especially interested in multiplies
2035 // here, but they're in the middle, so just visit the rest with one loop.
2036 for (; i != NumOperands; ++i) {
2037 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2038 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2039 APInt NewScale =
2040 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2041 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2042 // A multiplication of a constant with another add; recurse.
2043 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2044 Interesting |=
2045 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2046 Add->op_begin(), Add->getNumOperands(),
2047 NewScale, SE);
2048 } else {
2049 // A multiplication of a constant with some other value. Update
2050 // the map.
2051 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2052 const SCEV *Key = SE.getMulExpr(MulOps);
2053 auto Pair = M.insert({Key, NewScale});
2054 if (Pair.second) {
2055 NewOps.push_back(Pair.first->first);
2056 } else {
2057 Pair.first->second += NewScale;
2058 // The map already had an entry for this value, which may indicate
2059 // a folding opportunity.
2060 Interesting = true;
2061 }
2062 }
2063 } else {
2064 // An ordinary operand. Update the map.
2065 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2066 M.insert({Ops[i], Scale});
2067 if (Pair.second) {
2068 NewOps.push_back(Pair.first->first);
2069 } else {
2070 Pair.first->second += Scale;
2071 // The map already had an entry for this value, which may indicate
2072 // a folding opportunity.
2073 Interesting = true;
2074 }
2075 }
2076 }
2077
2078 return Interesting;
2079 }
2080
2081 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2082 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2083 // can't-overflow flags for the operation if possible.
2084 static SCEV::NoWrapFlags
StrengthenNoWrapFlags(ScalarEvolution * SE,SCEVTypes Type,const ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2085 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2086 const ArrayRef<const SCEV *> Ops,
2087 SCEV::NoWrapFlags Flags) {
2088 using namespace std::placeholders;
2089
2090 using OBO = OverflowingBinaryOperator;
2091
2092 bool CanAnalyze =
2093 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2094 (void)CanAnalyze;
2095 assert(CanAnalyze && "don't call from other places!");
2096
2097 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2098 SCEV::NoWrapFlags SignOrUnsignWrap =
2099 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2100
2101 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2102 auto IsKnownNonNegative = [&](const SCEV *S) {
2103 return SE->isKnownNonNegative(S);
2104 };
2105
2106 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2107 Flags =
2108 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2109
2110 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2111
2112 if (SignOrUnsignWrap != SignOrUnsignMask &&
2113 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2114 isa<SCEVConstant>(Ops[0])) {
2115
2116 auto Opcode = [&] {
2117 switch (Type) {
2118 case scAddExpr:
2119 return Instruction::Add;
2120 case scMulExpr:
2121 return Instruction::Mul;
2122 default:
2123 llvm_unreachable("Unexpected SCEV op.");
2124 }
2125 }();
2126
2127 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2128
2129 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2130 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2131 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2132 Opcode, C, OBO::NoSignedWrap);
2133 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2134 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2135 }
2136
2137 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2138 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2139 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2140 Opcode, C, OBO::NoUnsignedWrap);
2141 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2142 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2143 }
2144 }
2145
2146 return Flags;
2147 }
2148
isAvailableAtLoopEntry(const SCEV * S,const Loop * L)2149 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2150 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2151 }
2152
2153 /// Get a canonical add expression, or something simpler if possible.
getAddExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags,unsigned Depth)2154 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2155 SCEV::NoWrapFlags Flags,
2156 unsigned Depth) {
2157 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2158 "only nuw or nsw allowed");
2159 assert(!Ops.empty() && "Cannot get empty add!");
2160 if (Ops.size() == 1) return Ops[0];
2161 #ifndef NDEBUG
2162 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2163 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2164 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2165 "SCEVAddExpr operand types don't match!");
2166 #endif
2167
2168 // Sort by complexity, this groups all similar expression types together.
2169 GroupByComplexity(Ops, &LI, DT);
2170
2171 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2172
2173 // If there are any constants, fold them together.
2174 unsigned Idx = 0;
2175 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2176 ++Idx;
2177 assert(Idx < Ops.size());
2178 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2179 // We found two constants, fold them together!
2180 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2181 if (Ops.size() == 2) return Ops[0];
2182 Ops.erase(Ops.begin()+1); // Erase the folded element
2183 LHSC = cast<SCEVConstant>(Ops[0]);
2184 }
2185
2186 // If we are left with a constant zero being added, strip it off.
2187 if (LHSC->getValue()->isZero()) {
2188 Ops.erase(Ops.begin());
2189 --Idx;
2190 }
2191
2192 if (Ops.size() == 1) return Ops[0];
2193 }
2194
2195 // Limit recursion calls depth.
2196 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2197 return getOrCreateAddExpr(Ops, Flags);
2198
2199 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2200 static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags);
2201 return S;
2202 }
2203
2204 // Okay, check to see if the same value occurs in the operand list more than
2205 // once. If so, merge them together into an multiply expression. Since we
2206 // sorted the list, these values are required to be adjacent.
2207 Type *Ty = Ops[0]->getType();
2208 bool FoundMatch = false;
2209 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2210 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
2211 // Scan ahead to count how many equal operands there are.
2212 unsigned Count = 2;
2213 while (i+Count != e && Ops[i+Count] == Ops[i])
2214 ++Count;
2215 // Merge the values into a multiply.
2216 const SCEV *Scale = getConstant(Ty, Count);
2217 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2218 if (Ops.size() == Count)
2219 return Mul;
2220 Ops[i] = Mul;
2221 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2222 --i; e -= Count - 1;
2223 FoundMatch = true;
2224 }
2225 if (FoundMatch)
2226 return getAddExpr(Ops, Flags, Depth + 1);
2227
2228 // Check for truncates. If all the operands are truncated from the same
2229 // type, see if factoring out the truncate would permit the result to be
2230 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2231 // if the contents of the resulting outer trunc fold to something simple.
2232 auto FindTruncSrcType = [&]() -> Type * {
2233 // We're ultimately looking to fold an addrec of truncs and muls of only
2234 // constants and truncs, so if we find any other types of SCEV
2235 // as operands of the addrec then we bail and return nullptr here.
2236 // Otherwise, we return the type of the operand of a trunc that we find.
2237 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2238 return T->getOperand()->getType();
2239 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2240 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2241 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2242 return T->getOperand()->getType();
2243 }
2244 return nullptr;
2245 };
2246 if (auto *SrcType = FindTruncSrcType()) {
2247 SmallVector<const SCEV *, 8> LargeOps;
2248 bool Ok = true;
2249 // Check all the operands to see if they can be represented in the
2250 // source type of the truncate.
2251 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2252 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2253 if (T->getOperand()->getType() != SrcType) {
2254 Ok = false;
2255 break;
2256 }
2257 LargeOps.push_back(T->getOperand());
2258 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2259 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2260 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2261 SmallVector<const SCEV *, 8> LargeMulOps;
2262 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2263 if (const SCEVTruncateExpr *T =
2264 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2265 if (T->getOperand()->getType() != SrcType) {
2266 Ok = false;
2267 break;
2268 }
2269 LargeMulOps.push_back(T->getOperand());
2270 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2271 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2272 } else {
2273 Ok = false;
2274 break;
2275 }
2276 }
2277 if (Ok)
2278 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2279 } else {
2280 Ok = false;
2281 break;
2282 }
2283 }
2284 if (Ok) {
2285 // Evaluate the expression in the larger type.
2286 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2287 // If it folds to something simple, use it. Otherwise, don't.
2288 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2289 return getTruncateExpr(Fold, Ty);
2290 }
2291 }
2292
2293 // Skip past any other cast SCEVs.
2294 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2295 ++Idx;
2296
2297 // If there are add operands they would be next.
2298 if (Idx < Ops.size()) {
2299 bool DeletedAdd = false;
2300 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2301 if (Ops.size() > AddOpsInlineThreshold ||
2302 Add->getNumOperands() > AddOpsInlineThreshold)
2303 break;
2304 // If we have an add, expand the add operands onto the end of the operands
2305 // list.
2306 Ops.erase(Ops.begin()+Idx);
2307 Ops.append(Add->op_begin(), Add->op_end());
2308 DeletedAdd = true;
2309 }
2310
2311 // If we deleted at least one add, we added operands to the end of the list,
2312 // and they are not necessarily sorted. Recurse to resort and resimplify
2313 // any operands we just acquired.
2314 if (DeletedAdd)
2315 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2316 }
2317
2318 // Skip over the add expression until we get to a multiply.
2319 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2320 ++Idx;
2321
2322 // Check to see if there are any folding opportunities present with
2323 // operands multiplied by constant values.
2324 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2325 uint64_t BitWidth = getTypeSizeInBits(Ty);
2326 DenseMap<const SCEV *, APInt> M;
2327 SmallVector<const SCEV *, 8> NewOps;
2328 APInt AccumulatedConstant(BitWidth, 0);
2329 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2330 Ops.data(), Ops.size(),
2331 APInt(BitWidth, 1), *this)) {
2332 struct APIntCompare {
2333 bool operator()(const APInt &LHS, const APInt &RHS) const {
2334 return LHS.ult(RHS);
2335 }
2336 };
2337
2338 // Some interesting folding opportunity is present, so its worthwhile to
2339 // re-generate the operands list. Group the operands by constant scale,
2340 // to avoid multiplying by the same constant scale multiple times.
2341 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2342 for (const SCEV *NewOp : NewOps)
2343 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2344 // Re-generate the operands list.
2345 Ops.clear();
2346 if (AccumulatedConstant != 0)
2347 Ops.push_back(getConstant(AccumulatedConstant));
2348 for (auto &MulOp : MulOpLists)
2349 if (MulOp.first != 0)
2350 Ops.push_back(getMulExpr(
2351 getConstant(MulOp.first),
2352 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2353 SCEV::FlagAnyWrap, Depth + 1));
2354 if (Ops.empty())
2355 return getZero(Ty);
2356 if (Ops.size() == 1)
2357 return Ops[0];
2358 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2359 }
2360 }
2361
2362 // If we are adding something to a multiply expression, make sure the
2363 // something is not already an operand of the multiply. If so, merge it into
2364 // the multiply.
2365 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2366 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2367 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2368 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2369 if (isa<SCEVConstant>(MulOpSCEV))
2370 continue;
2371 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2372 if (MulOpSCEV == Ops[AddOp]) {
2373 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2374 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2375 if (Mul->getNumOperands() != 2) {
2376 // If the multiply has more than two operands, we must get the
2377 // Y*Z term.
2378 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2379 Mul->op_begin()+MulOp);
2380 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2381 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2382 }
2383 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2384 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2385 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2386 SCEV::FlagAnyWrap, Depth + 1);
2387 if (Ops.size() == 2) return OuterMul;
2388 if (AddOp < Idx) {
2389 Ops.erase(Ops.begin()+AddOp);
2390 Ops.erase(Ops.begin()+Idx-1);
2391 } else {
2392 Ops.erase(Ops.begin()+Idx);
2393 Ops.erase(Ops.begin()+AddOp-1);
2394 }
2395 Ops.push_back(OuterMul);
2396 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2397 }
2398
2399 // Check this multiply against other multiplies being added together.
2400 for (unsigned OtherMulIdx = Idx+1;
2401 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2402 ++OtherMulIdx) {
2403 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2404 // If MulOp occurs in OtherMul, we can fold the two multiplies
2405 // together.
2406 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2407 OMulOp != e; ++OMulOp)
2408 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2409 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2410 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2411 if (Mul->getNumOperands() != 2) {
2412 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2413 Mul->op_begin()+MulOp);
2414 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2415 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2416 }
2417 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2418 if (OtherMul->getNumOperands() != 2) {
2419 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2420 OtherMul->op_begin()+OMulOp);
2421 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2422 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2423 }
2424 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2425 const SCEV *InnerMulSum =
2426 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2427 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2428 SCEV::FlagAnyWrap, Depth + 1);
2429 if (Ops.size() == 2) return OuterMul;
2430 Ops.erase(Ops.begin()+Idx);
2431 Ops.erase(Ops.begin()+OtherMulIdx-1);
2432 Ops.push_back(OuterMul);
2433 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2434 }
2435 }
2436 }
2437 }
2438
2439 // If there are any add recurrences in the operands list, see if any other
2440 // added values are loop invariant. If so, we can fold them into the
2441 // recurrence.
2442 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2443 ++Idx;
2444
2445 // Scan over all recurrences, trying to fold loop invariants into them.
2446 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2447 // Scan all of the other operands to this add and add them to the vector if
2448 // they are loop invariant w.r.t. the recurrence.
2449 SmallVector<const SCEV *, 8> LIOps;
2450 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2451 const Loop *AddRecLoop = AddRec->getLoop();
2452 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2453 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2454 LIOps.push_back(Ops[i]);
2455 Ops.erase(Ops.begin()+i);
2456 --i; --e;
2457 }
2458
2459 // If we found some loop invariants, fold them into the recurrence.
2460 if (!LIOps.empty()) {
2461 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2462 LIOps.push_back(AddRec->getStart());
2463
2464 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2465 AddRec->op_end());
2466 // This follows from the fact that the no-wrap flags on the outer add
2467 // expression are applicable on the 0th iteration, when the add recurrence
2468 // will be equal to its start value.
2469 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2470
2471 // Build the new addrec. Propagate the NUW and NSW flags if both the
2472 // outer add and the inner addrec are guaranteed to have no overflow.
2473 // Always propagate NW.
2474 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2475 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2476
2477 // If all of the other operands were loop invariant, we are done.
2478 if (Ops.size() == 1) return NewRec;
2479
2480 // Otherwise, add the folded AddRec by the non-invariant parts.
2481 for (unsigned i = 0;; ++i)
2482 if (Ops[i] == AddRec) {
2483 Ops[i] = NewRec;
2484 break;
2485 }
2486 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2487 }
2488
2489 // Okay, if there weren't any loop invariants to be folded, check to see if
2490 // there are multiple AddRec's with the same loop induction variable being
2491 // added together. If so, we can fold them.
2492 for (unsigned OtherIdx = Idx+1;
2493 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2494 ++OtherIdx) {
2495 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2496 // so that the 1st found AddRecExpr is dominated by all others.
2497 assert(DT.dominates(
2498 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2499 AddRec->getLoop()->getHeader()) &&
2500 "AddRecExprs are not sorted in reverse dominance order?");
2501 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2502 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2503 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2504 AddRec->op_end());
2505 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2506 ++OtherIdx) {
2507 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2508 if (OtherAddRec->getLoop() == AddRecLoop) {
2509 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2510 i != e; ++i) {
2511 if (i >= AddRecOps.size()) {
2512 AddRecOps.append(OtherAddRec->op_begin()+i,
2513 OtherAddRec->op_end());
2514 break;
2515 }
2516 SmallVector<const SCEV *, 2> TwoOps = {
2517 AddRecOps[i], OtherAddRec->getOperand(i)};
2518 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2519 }
2520 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2521 }
2522 }
2523 // Step size has changed, so we cannot guarantee no self-wraparound.
2524 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2525 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2526 }
2527 }
2528
2529 // Otherwise couldn't fold anything into this recurrence. Move onto the
2530 // next one.
2531 }
2532
2533 // Okay, it looks like we really DO need an add expr. Check to see if we
2534 // already have one, otherwise create a new one.
2535 return getOrCreateAddExpr(Ops, Flags);
2536 }
2537
2538 const SCEV *
getOrCreateAddExpr(ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2539 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2540 SCEV::NoWrapFlags Flags) {
2541 FoldingSetNodeID ID;
2542 ID.AddInteger(scAddExpr);
2543 for (const SCEV *Op : Ops)
2544 ID.AddPointer(Op);
2545 void *IP = nullptr;
2546 SCEVAddExpr *S =
2547 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2548 if (!S) {
2549 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2550 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2551 S = new (SCEVAllocator)
2552 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2553 UniqueSCEVs.InsertNode(S, IP);
2554 addToLoopUseLists(S);
2555 }
2556 S->setNoWrapFlags(Flags);
2557 return S;
2558 }
2559
2560 const SCEV *
getOrCreateAddRecExpr(ArrayRef<const SCEV * > Ops,const Loop * L,SCEV::NoWrapFlags Flags)2561 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2562 const Loop *L, SCEV::NoWrapFlags Flags) {
2563 FoldingSetNodeID ID;
2564 ID.AddInteger(scAddRecExpr);
2565 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2566 ID.AddPointer(Ops[i]);
2567 ID.AddPointer(L);
2568 void *IP = nullptr;
2569 SCEVAddRecExpr *S =
2570 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2571 if (!S) {
2572 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2573 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2574 S = new (SCEVAllocator)
2575 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2576 UniqueSCEVs.InsertNode(S, IP);
2577 addToLoopUseLists(S);
2578 }
2579 S->setNoWrapFlags(Flags);
2580 return S;
2581 }
2582
2583 const SCEV *
getOrCreateMulExpr(ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2584 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2585 SCEV::NoWrapFlags Flags) {
2586 FoldingSetNodeID ID;
2587 ID.AddInteger(scMulExpr);
2588 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2589 ID.AddPointer(Ops[i]);
2590 void *IP = nullptr;
2591 SCEVMulExpr *S =
2592 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2593 if (!S) {
2594 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2595 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2596 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2597 O, Ops.size());
2598 UniqueSCEVs.InsertNode(S, IP);
2599 addToLoopUseLists(S);
2600 }
2601 S->setNoWrapFlags(Flags);
2602 return S;
2603 }
2604
umul_ov(uint64_t i,uint64_t j,bool & Overflow)2605 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2606 uint64_t k = i*j;
2607 if (j > 1 && k / j != i) Overflow = true;
2608 return k;
2609 }
2610
2611 /// Compute the result of "n choose k", the binomial coefficient. If an
2612 /// intermediate computation overflows, Overflow will be set and the return will
2613 /// be garbage. Overflow is not cleared on absence of overflow.
Choose(uint64_t n,uint64_t k,bool & Overflow)2614 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2615 // We use the multiplicative formula:
2616 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2617 // At each iteration, we take the n-th term of the numeral and divide by the
2618 // (k-n)th term of the denominator. This division will always produce an
2619 // integral result, and helps reduce the chance of overflow in the
2620 // intermediate computations. However, we can still overflow even when the
2621 // final result would fit.
2622
2623 if (n == 0 || n == k) return 1;
2624 if (k > n) return 0;
2625
2626 if (k > n/2)
2627 k = n-k;
2628
2629 uint64_t r = 1;
2630 for (uint64_t i = 1; i <= k; ++i) {
2631 r = umul_ov(r, n-(i-1), Overflow);
2632 r /= i;
2633 }
2634 return r;
2635 }
2636
2637 /// Determine if any of the operands in this SCEV are a constant or if
2638 /// any of the add or multiply expressions in this SCEV contain a constant.
containsConstantInAddMulChain(const SCEV * StartExpr)2639 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2640 struct FindConstantInAddMulChain {
2641 bool FoundConstant = false;
2642
2643 bool follow(const SCEV *S) {
2644 FoundConstant |= isa<SCEVConstant>(S);
2645 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2646 }
2647
2648 bool isDone() const {
2649 return FoundConstant;
2650 }
2651 };
2652
2653 FindConstantInAddMulChain F;
2654 SCEVTraversal<FindConstantInAddMulChain> ST(F);
2655 ST.visitAll(StartExpr);
2656 return F.FoundConstant;
2657 }
2658
2659 /// Get a canonical multiply expression, or something simpler if possible.
getMulExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags,unsigned Depth)2660 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2661 SCEV::NoWrapFlags Flags,
2662 unsigned Depth) {
2663 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2664 "only nuw or nsw allowed");
2665 assert(!Ops.empty() && "Cannot get empty mul!");
2666 if (Ops.size() == 1) return Ops[0];
2667 #ifndef NDEBUG
2668 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2669 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2670 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2671 "SCEVMulExpr operand types don't match!");
2672 #endif
2673
2674 // Sort by complexity, this groups all similar expression types together.
2675 GroupByComplexity(Ops, &LI, DT);
2676
2677 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2678
2679 // Limit recursion calls depth, but fold all-constant expressions.
2680 // `Ops` is sorted, so it's enough to check just last one.
2681 if ((Depth > MaxArithDepth || hasHugeExpression(Ops)) &&
2682 !isa<SCEVConstant>(Ops.back()))
2683 return getOrCreateMulExpr(Ops, Flags);
2684
2685 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2686 static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags);
2687 return S;
2688 }
2689
2690 // If there are any constants, fold them together.
2691 unsigned Idx = 0;
2692 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2693
2694 if (Ops.size() == 2)
2695 // C1*(C2+V) -> C1*C2 + C1*V
2696 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2697 // If any of Add's ops are Adds or Muls with a constant, apply this
2698 // transformation as well.
2699 //
2700 // TODO: There are some cases where this transformation is not
2701 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
2702 // this transformation should be narrowed down.
2703 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2704 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2705 SCEV::FlagAnyWrap, Depth + 1),
2706 getMulExpr(LHSC, Add->getOperand(1),
2707 SCEV::FlagAnyWrap, Depth + 1),
2708 SCEV::FlagAnyWrap, Depth + 1);
2709
2710 ++Idx;
2711 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2712 // We found two constants, fold them together!
2713 ConstantInt *Fold =
2714 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2715 Ops[0] = getConstant(Fold);
2716 Ops.erase(Ops.begin()+1); // Erase the folded element
2717 if (Ops.size() == 1) return Ops[0];
2718 LHSC = cast<SCEVConstant>(Ops[0]);
2719 }
2720
2721 // If we are left with a constant one being multiplied, strip it off.
2722 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2723 Ops.erase(Ops.begin());
2724 --Idx;
2725 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2726 // If we have a multiply of zero, it will always be zero.
2727 return Ops[0];
2728 } else if (Ops[0]->isAllOnesValue()) {
2729 // If we have a mul by -1 of an add, try distributing the -1 among the
2730 // add operands.
2731 if (Ops.size() == 2) {
2732 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2733 SmallVector<const SCEV *, 4> NewOps;
2734 bool AnyFolded = false;
2735 for (const SCEV *AddOp : Add->operands()) {
2736 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2737 Depth + 1);
2738 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2739 NewOps.push_back(Mul);
2740 }
2741 if (AnyFolded)
2742 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2743 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2744 // Negation preserves a recurrence's no self-wrap property.
2745 SmallVector<const SCEV *, 4> Operands;
2746 for (const SCEV *AddRecOp : AddRec->operands())
2747 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2748 Depth + 1));
2749
2750 return getAddRecExpr(Operands, AddRec->getLoop(),
2751 AddRec->getNoWrapFlags(SCEV::FlagNW));
2752 }
2753 }
2754 }
2755
2756 if (Ops.size() == 1)
2757 return Ops[0];
2758 }
2759
2760 // Skip over the add expression until we get to a multiply.
2761 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2762 ++Idx;
2763
2764 // If there are mul operands inline them all into this expression.
2765 if (Idx < Ops.size()) {
2766 bool DeletedMul = false;
2767 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2768 if (Ops.size() > MulOpsInlineThreshold)
2769 break;
2770 // If we have an mul, expand the mul operands onto the end of the
2771 // operands list.
2772 Ops.erase(Ops.begin()+Idx);
2773 Ops.append(Mul->op_begin(), Mul->op_end());
2774 DeletedMul = true;
2775 }
2776
2777 // If we deleted at least one mul, we added operands to the end of the
2778 // list, and they are not necessarily sorted. Recurse to resort and
2779 // resimplify any operands we just acquired.
2780 if (DeletedMul)
2781 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2782 }
2783
2784 // If there are any add recurrences in the operands list, see if any other
2785 // added values are loop invariant. If so, we can fold them into the
2786 // recurrence.
2787 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2788 ++Idx;
2789
2790 // Scan over all recurrences, trying to fold loop invariants into them.
2791 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2792 // Scan all of the other operands to this mul and add them to the vector
2793 // if they are loop invariant w.r.t. the recurrence.
2794 SmallVector<const SCEV *, 8> LIOps;
2795 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2796 const Loop *AddRecLoop = AddRec->getLoop();
2797 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2798 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2799 LIOps.push_back(Ops[i]);
2800 Ops.erase(Ops.begin()+i);
2801 --i; --e;
2802 }
2803
2804 // If we found some loop invariants, fold them into the recurrence.
2805 if (!LIOps.empty()) {
2806 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
2807 SmallVector<const SCEV *, 4> NewOps;
2808 NewOps.reserve(AddRec->getNumOperands());
2809 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2810 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2811 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2812 SCEV::FlagAnyWrap, Depth + 1));
2813
2814 // Build the new addrec. Propagate the NUW and NSW flags if both the
2815 // outer mul and the inner addrec are guaranteed to have no overflow.
2816 //
2817 // No self-wrap cannot be guaranteed after changing the step size, but
2818 // will be inferred if either NUW or NSW is true.
2819 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2820 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2821
2822 // If all of the other operands were loop invariant, we are done.
2823 if (Ops.size() == 1) return NewRec;
2824
2825 // Otherwise, multiply the folded AddRec by the non-invariant parts.
2826 for (unsigned i = 0;; ++i)
2827 if (Ops[i] == AddRec) {
2828 Ops[i] = NewRec;
2829 break;
2830 }
2831 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2832 }
2833
2834 // Okay, if there weren't any loop invariants to be folded, check to see
2835 // if there are multiple AddRec's with the same loop induction variable
2836 // being multiplied together. If so, we can fold them.
2837
2838 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2839 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2840 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2841 // ]]],+,...up to x=2n}.
2842 // Note that the arguments to choose() are always integers with values
2843 // known at compile time, never SCEV objects.
2844 //
2845 // The implementation avoids pointless extra computations when the two
2846 // addrec's are of different length (mathematically, it's equivalent to
2847 // an infinite stream of zeros on the right).
2848 bool OpsModified = false;
2849 for (unsigned OtherIdx = Idx+1;
2850 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2851 ++OtherIdx) {
2852 const SCEVAddRecExpr *OtherAddRec =
2853 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2854 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2855 continue;
2856
2857 // Limit max number of arguments to avoid creation of unreasonably big
2858 // SCEVAddRecs with very complex operands.
2859 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
2860 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
2861 continue;
2862
2863 bool Overflow = false;
2864 Type *Ty = AddRec->getType();
2865 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2866 SmallVector<const SCEV*, 7> AddRecOps;
2867 for (int x = 0, xe = AddRec->getNumOperands() +
2868 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2869 SmallVector <const SCEV *, 7> SumOps;
2870 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2871 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2872 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2873 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2874 z < ze && !Overflow; ++z) {
2875 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2876 uint64_t Coeff;
2877 if (LargerThan64Bits)
2878 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2879 else
2880 Coeff = Coeff1*Coeff2;
2881 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2882 const SCEV *Term1 = AddRec->getOperand(y-z);
2883 const SCEV *Term2 = OtherAddRec->getOperand(z);
2884 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
2885 SCEV::FlagAnyWrap, Depth + 1));
2886 }
2887 }
2888 if (SumOps.empty())
2889 SumOps.push_back(getZero(Ty));
2890 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
2891 }
2892 if (!Overflow) {
2893 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
2894 SCEV::FlagAnyWrap);
2895 if (Ops.size() == 2) return NewAddRec;
2896 Ops[Idx] = NewAddRec;
2897 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2898 OpsModified = true;
2899 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2900 if (!AddRec)
2901 break;
2902 }
2903 }
2904 if (OpsModified)
2905 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2906
2907 // Otherwise couldn't fold anything into this recurrence. Move onto the
2908 // next one.
2909 }
2910
2911 // Okay, it looks like we really DO need an mul expr. Check to see if we
2912 // already have one, otherwise create a new one.
2913 return getOrCreateMulExpr(Ops, Flags);
2914 }
2915
2916 /// Represents an unsigned remainder expression based on unsigned division.
getURemExpr(const SCEV * LHS,const SCEV * RHS)2917 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
2918 const SCEV *RHS) {
2919 assert(getEffectiveSCEVType(LHS->getType()) ==
2920 getEffectiveSCEVType(RHS->getType()) &&
2921 "SCEVURemExpr operand types don't match!");
2922
2923 // Short-circuit easy cases
2924 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2925 // If constant is one, the result is trivial
2926 if (RHSC->getValue()->isOne())
2927 return getZero(LHS->getType()); // X urem 1 --> 0
2928
2929 // If constant is a power of two, fold into a zext(trunc(LHS)).
2930 if (RHSC->getAPInt().isPowerOf2()) {
2931 Type *FullTy = LHS->getType();
2932 Type *TruncTy =
2933 IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
2934 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
2935 }
2936 }
2937
2938 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
2939 const SCEV *UDiv = getUDivExpr(LHS, RHS);
2940 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
2941 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
2942 }
2943
2944 /// Get a canonical unsigned division expression, or something simpler if
2945 /// possible.
getUDivExpr(const SCEV * LHS,const SCEV * RHS)2946 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2947 const SCEV *RHS) {
2948 assert(getEffectiveSCEVType(LHS->getType()) ==
2949 getEffectiveSCEVType(RHS->getType()) &&
2950 "SCEVUDivExpr operand types don't match!");
2951
2952 FoldingSetNodeID ID;
2953 ID.AddInteger(scUDivExpr);
2954 ID.AddPointer(LHS);
2955 ID.AddPointer(RHS);
2956 void *IP = nullptr;
2957 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
2958 return S;
2959
2960 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2961 if (RHSC->getValue()->isOne())
2962 return LHS; // X udiv 1 --> x
2963 // If the denominator is zero, the result of the udiv is undefined. Don't
2964 // try to analyze it, because the resolution chosen here may differ from
2965 // the resolution chosen in other parts of the compiler.
2966 if (!RHSC->getValue()->isZero()) {
2967 // Determine if the division can be folded into the operands of
2968 // its operands.
2969 // TODO: Generalize this to non-constants by using known-bits information.
2970 Type *Ty = LHS->getType();
2971 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2972 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2973 // For non-power-of-two values, effectively round the value up to the
2974 // nearest power of two.
2975 if (!RHSC->getAPInt().isPowerOf2())
2976 ++MaxShiftAmt;
2977 IntegerType *ExtTy =
2978 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2979 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2980 if (const SCEVConstant *Step =
2981 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2982 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2983 const APInt &StepInt = Step->getAPInt();
2984 const APInt &DivInt = RHSC->getAPInt();
2985 if (!StepInt.urem(DivInt) &&
2986 getZeroExtendExpr(AR, ExtTy) ==
2987 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2988 getZeroExtendExpr(Step, ExtTy),
2989 AR->getLoop(), SCEV::FlagAnyWrap)) {
2990 SmallVector<const SCEV *, 4> Operands;
2991 for (const SCEV *Op : AR->operands())
2992 Operands.push_back(getUDivExpr(Op, RHS));
2993 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2994 }
2995 /// Get a canonical UDivExpr for a recurrence.
2996 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2997 // We can currently only fold X%N if X is constant.
2998 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2999 if (StartC && !DivInt.urem(StepInt) &&
3000 getZeroExtendExpr(AR, ExtTy) ==
3001 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3002 getZeroExtendExpr(Step, ExtTy),
3003 AR->getLoop(), SCEV::FlagAnyWrap)) {
3004 const APInt &StartInt = StartC->getAPInt();
3005 const APInt &StartRem = StartInt.urem(StepInt);
3006 if (StartRem != 0) {
3007 const SCEV *NewLHS =
3008 getAddRecExpr(getConstant(StartInt - StartRem), Step,
3009 AR->getLoop(), SCEV::FlagNW);
3010 if (LHS != NewLHS) {
3011 LHS = NewLHS;
3012
3013 // Reset the ID to include the new LHS, and check if it is
3014 // already cached.
3015 ID.clear();
3016 ID.AddInteger(scUDivExpr);
3017 ID.AddPointer(LHS);
3018 ID.AddPointer(RHS);
3019 IP = nullptr;
3020 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3021 return S;
3022 }
3023 }
3024 }
3025 }
3026 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3027 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3028 SmallVector<const SCEV *, 4> Operands;
3029 for (const SCEV *Op : M->operands())
3030 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3031 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3032 // Find an operand that's safely divisible.
3033 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3034 const SCEV *Op = M->getOperand(i);
3035 const SCEV *Div = getUDivExpr(Op, RHSC);
3036 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3037 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3038 M->op_end());
3039 Operands[i] = Div;
3040 return getMulExpr(Operands);
3041 }
3042 }
3043 }
3044
3045 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3046 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3047 if (auto *DivisorConstant =
3048 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3049 bool Overflow = false;
3050 APInt NewRHS =
3051 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3052 if (Overflow) {
3053 return getConstant(RHSC->getType(), 0, false);
3054 }
3055 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3056 }
3057 }
3058
3059 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3060 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3061 SmallVector<const SCEV *, 4> Operands;
3062 for (const SCEV *Op : A->operands())
3063 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3064 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3065 Operands.clear();
3066 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3067 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3068 if (isa<SCEVUDivExpr>(Op) ||
3069 getMulExpr(Op, RHS) != A->getOperand(i))
3070 break;
3071 Operands.push_back(Op);
3072 }
3073 if (Operands.size() == A->getNumOperands())
3074 return getAddExpr(Operands);
3075 }
3076 }
3077
3078 // Fold if both operands are constant.
3079 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3080 Constant *LHSCV = LHSC->getValue();
3081 Constant *RHSCV = RHSC->getValue();
3082 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3083 RHSCV)));
3084 }
3085 }
3086 }
3087
3088 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3089 // changes). Make sure we get a new one.
3090 IP = nullptr;
3091 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3092 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3093 LHS, RHS);
3094 UniqueSCEVs.InsertNode(S, IP);
3095 addToLoopUseLists(S);
3096 return S;
3097 }
3098
gcd(const SCEVConstant * C1,const SCEVConstant * C2)3099 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3100 APInt A = C1->getAPInt().abs();
3101 APInt B = C2->getAPInt().abs();
3102 uint32_t ABW = A.getBitWidth();
3103 uint32_t BBW = B.getBitWidth();
3104
3105 if (ABW > BBW)
3106 B = B.zext(ABW);
3107 else if (ABW < BBW)
3108 A = A.zext(BBW);
3109
3110 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3111 }
3112
3113 /// Get a canonical unsigned division expression, or something simpler if
3114 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3115 /// can attempt to remove factors from the LHS and RHS. We can't do this when
3116 /// it's not exact because the udiv may be clearing bits.
getUDivExactExpr(const SCEV * LHS,const SCEV * RHS)3117 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3118 const SCEV *RHS) {
3119 // TODO: we could try to find factors in all sorts of things, but for now we
3120 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3121 // end of this file for inspiration.
3122
3123 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3124 if (!Mul || !Mul->hasNoUnsignedWrap())
3125 return getUDivExpr(LHS, RHS);
3126
3127 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3128 // If the mulexpr multiplies by a constant, then that constant must be the
3129 // first element of the mulexpr.
3130 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3131 if (LHSCst == RHSCst) {
3132 SmallVector<const SCEV *, 2> Operands;
3133 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3134 return getMulExpr(Operands);
3135 }
3136
3137 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3138 // that there's a factor provided by one of the other terms. We need to
3139 // check.
3140 APInt Factor = gcd(LHSCst, RHSCst);
3141 if (!Factor.isIntN(1)) {
3142 LHSCst =
3143 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3144 RHSCst =
3145 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3146 SmallVector<const SCEV *, 2> Operands;
3147 Operands.push_back(LHSCst);
3148 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3149 LHS = getMulExpr(Operands);
3150 RHS = RHSCst;
3151 Mul = dyn_cast<SCEVMulExpr>(LHS);
3152 if (!Mul)
3153 return getUDivExactExpr(LHS, RHS);
3154 }
3155 }
3156 }
3157
3158 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3159 if (Mul->getOperand(i) == RHS) {
3160 SmallVector<const SCEV *, 2> Operands;
3161 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3162 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3163 return getMulExpr(Operands);
3164 }
3165 }
3166
3167 return getUDivExpr(LHS, RHS);
3168 }
3169
3170 /// Get an add recurrence expression for the specified loop. Simplify the
3171 /// expression as much as possible.
getAddRecExpr(const SCEV * Start,const SCEV * Step,const Loop * L,SCEV::NoWrapFlags Flags)3172 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3173 const Loop *L,
3174 SCEV::NoWrapFlags Flags) {
3175 SmallVector<const SCEV *, 4> Operands;
3176 Operands.push_back(Start);
3177 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3178 if (StepChrec->getLoop() == L) {
3179 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3180 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3181 }
3182
3183 Operands.push_back(Step);
3184 return getAddRecExpr(Operands, L, Flags);
3185 }
3186
3187 /// Get an add recurrence expression for the specified loop. Simplify the
3188 /// expression as much as possible.
3189 const SCEV *
getAddRecExpr(SmallVectorImpl<const SCEV * > & Operands,const Loop * L,SCEV::NoWrapFlags Flags)3190 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3191 const Loop *L, SCEV::NoWrapFlags Flags) {
3192 if (Operands.size() == 1) return Operands[0];
3193 #ifndef NDEBUG
3194 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3195 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3196 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3197 "SCEVAddRecExpr operand types don't match!");
3198 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3199 assert(isLoopInvariant(Operands[i], L) &&
3200 "SCEVAddRecExpr operand is not loop-invariant!");
3201 #endif
3202
3203 if (Operands.back()->isZero()) {
3204 Operands.pop_back();
3205 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
3206 }
3207
3208 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3209 // use that information to infer NUW and NSW flags. However, computing a
3210 // BE count requires calling getAddRecExpr, so we may not yet have a
3211 // meaningful BE count at this point (and if we don't, we'd be stuck
3212 // with a SCEVCouldNotCompute as the cached BE count).
3213
3214 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3215
3216 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3217 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3218 const Loop *NestedLoop = NestedAR->getLoop();
3219 if (L->contains(NestedLoop)
3220 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3221 : (!NestedLoop->contains(L) &&
3222 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3223 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3224 NestedAR->op_end());
3225 Operands[0] = NestedAR->getStart();
3226 // AddRecs require their operands be loop-invariant with respect to their
3227 // loops. Don't perform this transformation if it would break this
3228 // requirement.
3229 bool AllInvariant = all_of(
3230 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3231
3232 if (AllInvariant) {
3233 // Create a recurrence for the outer loop with the same step size.
3234 //
3235 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3236 // inner recurrence has the same property.
3237 SCEV::NoWrapFlags OuterFlags =
3238 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3239
3240 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3241 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3242 return isLoopInvariant(Op, NestedLoop);
3243 });
3244
3245 if (AllInvariant) {
3246 // Ok, both add recurrences are valid after the transformation.
3247 //
3248 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3249 // the outer recurrence has the same property.
3250 SCEV::NoWrapFlags InnerFlags =
3251 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3252 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3253 }
3254 }
3255 // Reset Operands to its original state.
3256 Operands[0] = NestedAR;
3257 }
3258 }
3259
3260 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3261 // already have one, otherwise create a new one.
3262 return getOrCreateAddRecExpr(Operands, L, Flags);
3263 }
3264
3265 const SCEV *
getGEPExpr(GEPOperator * GEP,const SmallVectorImpl<const SCEV * > & IndexExprs)3266 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3267 const SmallVectorImpl<const SCEV *> &IndexExprs) {
3268 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3269 // getSCEV(Base)->getType() has the same address space as Base->getType()
3270 // because SCEV::getType() preserves the address space.
3271 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3272 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3273 // instruction to its SCEV, because the Instruction may be guarded by control
3274 // flow and the no-overflow bits may not be valid for the expression in any
3275 // context. This can be fixed similarly to how these flags are handled for
3276 // adds.
3277 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3278 : SCEV::FlagAnyWrap;
3279
3280 const SCEV *TotalOffset = getZero(IntIdxTy);
3281 Type *CurTy = GEP->getType();
3282 bool FirstIter = true;
3283 for (const SCEV *IndexExpr : IndexExprs) {
3284 // Compute the (potentially symbolic) offset in bytes for this index.
3285 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3286 // For a struct, add the member offset.
3287 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3288 unsigned FieldNo = Index->getZExtValue();
3289 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3290
3291 // Add the field offset to the running total offset.
3292 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3293
3294 // Update CurTy to the type of the field at Index.
3295 CurTy = STy->getTypeAtIndex(Index);
3296 } else {
3297 // Update CurTy to its element type.
3298 if (FirstIter) {
3299 assert(isa<PointerType>(CurTy) &&
3300 "The first index of a GEP indexes a pointer");
3301 CurTy = GEP->getSourceElementType();
3302 FirstIter = false;
3303 } else {
3304 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3305 }
3306 // For an array, add the element offset, explicitly scaled.
3307 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3308 // Getelementptr indices are signed.
3309 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3310
3311 // Multiply the index by the element size to compute the element offset.
3312 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3313
3314 // Add the element offset to the running total offset.
3315 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3316 }
3317 }
3318
3319 // Add the total offset from all the GEP indices to the base.
3320 auto *GEPExpr = getAddExpr(BaseExpr, TotalOffset, Wrap);
3321 assert(BaseExpr->getType() == GEPExpr->getType() &&
3322 "GEP should not change type mid-flight.");
3323 return GEPExpr;
3324 }
3325
3326 std::tuple<SCEV *, FoldingSetNodeID, void *>
findExistingSCEVInCache(int SCEVType,ArrayRef<const SCEV * > Ops)3327 ScalarEvolution::findExistingSCEVInCache(int SCEVType,
3328 ArrayRef<const SCEV *> Ops) {
3329 FoldingSetNodeID ID;
3330 void *IP = nullptr;
3331 ID.AddInteger(SCEVType);
3332 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3333 ID.AddPointer(Ops[i]);
3334 return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3335 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3336 }
3337
getMinMaxExpr(unsigned Kind,SmallVectorImpl<const SCEV * > & Ops)3338 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind,
3339 SmallVectorImpl<const SCEV *> &Ops) {
3340 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3341 if (Ops.size() == 1) return Ops[0];
3342 #ifndef NDEBUG
3343 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3344 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3345 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3346 "Operand types don't match!");
3347 #endif
3348
3349 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3350 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3351
3352 // Sort by complexity, this groups all similar expression types together.
3353 GroupByComplexity(Ops, &LI, DT);
3354
3355 // Check if we have created the same expression before.
3356 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3357 return S;
3358 }
3359
3360 // If there are any constants, fold them together.
3361 unsigned Idx = 0;
3362 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3363 ++Idx;
3364 assert(Idx < Ops.size());
3365 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3366 if (Kind == scSMaxExpr)
3367 return APIntOps::smax(LHS, RHS);
3368 else if (Kind == scSMinExpr)
3369 return APIntOps::smin(LHS, RHS);
3370 else if (Kind == scUMaxExpr)
3371 return APIntOps::umax(LHS, RHS);
3372 else if (Kind == scUMinExpr)
3373 return APIntOps::umin(LHS, RHS);
3374 llvm_unreachable("Unknown SCEV min/max opcode");
3375 };
3376
3377 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3378 // We found two constants, fold them together!
3379 ConstantInt *Fold = ConstantInt::get(
3380 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3381 Ops[0] = getConstant(Fold);
3382 Ops.erase(Ops.begin()+1); // Erase the folded element
3383 if (Ops.size() == 1) return Ops[0];
3384 LHSC = cast<SCEVConstant>(Ops[0]);
3385 }
3386
3387 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3388 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3389
3390 if (IsMax ? IsMinV : IsMaxV) {
3391 // If we are left with a constant minimum(/maximum)-int, strip it off.
3392 Ops.erase(Ops.begin());
3393 --Idx;
3394 } else if (IsMax ? IsMaxV : IsMinV) {
3395 // If we have a max(/min) with a constant maximum(/minimum)-int,
3396 // it will always be the extremum.
3397 return LHSC;
3398 }
3399
3400 if (Ops.size() == 1) return Ops[0];
3401 }
3402
3403 // Find the first operation of the same kind
3404 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3405 ++Idx;
3406
3407 // Check to see if one of the operands is of the same kind. If so, expand its
3408 // operands onto our operand list, and recurse to simplify.
3409 if (Idx < Ops.size()) {
3410 bool DeletedAny = false;
3411 while (Ops[Idx]->getSCEVType() == Kind) {
3412 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3413 Ops.erase(Ops.begin()+Idx);
3414 Ops.append(SMME->op_begin(), SMME->op_end());
3415 DeletedAny = true;
3416 }
3417
3418 if (DeletedAny)
3419 return getMinMaxExpr(Kind, Ops);
3420 }
3421
3422 // Okay, check to see if the same value occurs in the operand list twice. If
3423 // so, delete one. Since we sorted the list, these values are required to
3424 // be adjacent.
3425 llvm::CmpInst::Predicate GEPred =
3426 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3427 llvm::CmpInst::Predicate LEPred =
3428 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3429 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3430 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3431 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3432 if (Ops[i] == Ops[i + 1] ||
3433 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3434 // X op Y op Y --> X op Y
3435 // X op Y --> X, if we know X, Y are ordered appropriately
3436 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3437 --i;
3438 --e;
3439 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3440 Ops[i + 1])) {
3441 // X op Y --> Y, if we know X, Y are ordered appropriately
3442 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3443 --i;
3444 --e;
3445 }
3446 }
3447
3448 if (Ops.size() == 1) return Ops[0];
3449
3450 assert(!Ops.empty() && "Reduced smax down to nothing!");
3451
3452 // Okay, it looks like we really DO need an expr. Check to see if we
3453 // already have one, otherwise create a new one.
3454 const SCEV *ExistingSCEV;
3455 FoldingSetNodeID ID;
3456 void *IP;
3457 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3458 if (ExistingSCEV)
3459 return ExistingSCEV;
3460 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3461 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3462 SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr(
3463 ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size());
3464
3465 UniqueSCEVs.InsertNode(S, IP);
3466 addToLoopUseLists(S);
3467 return S;
3468 }
3469
getSMaxExpr(const SCEV * LHS,const SCEV * RHS)3470 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3471 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3472 return getSMaxExpr(Ops);
3473 }
3474
getSMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3475 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3476 return getMinMaxExpr(scSMaxExpr, Ops);
3477 }
3478
getUMaxExpr(const SCEV * LHS,const SCEV * RHS)3479 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3480 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3481 return getUMaxExpr(Ops);
3482 }
3483
getUMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3484 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3485 return getMinMaxExpr(scUMaxExpr, Ops);
3486 }
3487
getSMinExpr(const SCEV * LHS,const SCEV * RHS)3488 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3489 const SCEV *RHS) {
3490 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3491 return getSMinExpr(Ops);
3492 }
3493
getSMinExpr(SmallVectorImpl<const SCEV * > & Ops)3494 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3495 return getMinMaxExpr(scSMinExpr, Ops);
3496 }
3497
getUMinExpr(const SCEV * LHS,const SCEV * RHS)3498 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3499 const SCEV *RHS) {
3500 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3501 return getUMinExpr(Ops);
3502 }
3503
getUMinExpr(SmallVectorImpl<const SCEV * > & Ops)3504 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3505 return getMinMaxExpr(scUMinExpr, Ops);
3506 }
3507
getSizeOfExpr(Type * IntTy,Type * AllocTy)3508 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3509 // We can bypass creating a target-independent
3510 // constant expression and then folding it back into a ConstantInt.
3511 // This is just a compile-time optimization.
3512 if (isa<ScalableVectorType>(AllocTy)) {
3513 Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo());
3514 Constant *One = ConstantInt::get(IntTy, 1);
3515 Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One);
3516 return getSCEV(ConstantExpr::getPtrToInt(GEP, IntTy));
3517 }
3518 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3519 }
3520
getOffsetOfExpr(Type * IntTy,StructType * STy,unsigned FieldNo)3521 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3522 StructType *STy,
3523 unsigned FieldNo) {
3524 // We can bypass creating a target-independent
3525 // constant expression and then folding it back into a ConstantInt.
3526 // This is just a compile-time optimization.
3527 return getConstant(
3528 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3529 }
3530
getUnknown(Value * V)3531 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3532 // Don't attempt to do anything other than create a SCEVUnknown object
3533 // here. createSCEV only calls getUnknown after checking for all other
3534 // interesting possibilities, and any other code that calls getUnknown
3535 // is doing so in order to hide a value from SCEV canonicalization.
3536
3537 FoldingSetNodeID ID;
3538 ID.AddInteger(scUnknown);
3539 ID.AddPointer(V);
3540 void *IP = nullptr;
3541 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3542 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3543 "Stale SCEVUnknown in uniquing map!");
3544 return S;
3545 }
3546 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3547 FirstUnknown);
3548 FirstUnknown = cast<SCEVUnknown>(S);
3549 UniqueSCEVs.InsertNode(S, IP);
3550 return S;
3551 }
3552
3553 //===----------------------------------------------------------------------===//
3554 // Basic SCEV Analysis and PHI Idiom Recognition Code
3555 //
3556
3557 /// Test if values of the given type are analyzable within the SCEV
3558 /// framework. This primarily includes integer types, and it can optionally
3559 /// include pointer types if the ScalarEvolution class has access to
3560 /// target-specific information.
isSCEVable(Type * Ty) const3561 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3562 // Integers and pointers are always SCEVable.
3563 return Ty->isIntOrPtrTy();
3564 }
3565
3566 /// Return the size in bits of the specified type, for which isSCEVable must
3567 /// return true.
getTypeSizeInBits(Type * Ty) const3568 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3569 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3570 if (Ty->isPointerTy())
3571 return getDataLayout().getIndexTypeSizeInBits(Ty);
3572 return getDataLayout().getTypeSizeInBits(Ty);
3573 }
3574
3575 /// Return a type with the same bitwidth as the given type and which represents
3576 /// how SCEV will treat the given type, for which isSCEVable must return
3577 /// true. For pointer types, this is the pointer index sized integer type.
getEffectiveSCEVType(Type * Ty) const3578 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3579 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3580
3581 if (Ty->isIntegerTy())
3582 return Ty;
3583
3584 // The only other support type is pointer.
3585 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3586 return getDataLayout().getIndexType(Ty);
3587 }
3588
getWiderType(Type * T1,Type * T2) const3589 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3590 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3591 }
3592
getCouldNotCompute()3593 const SCEV *ScalarEvolution::getCouldNotCompute() {
3594 return CouldNotCompute.get();
3595 }
3596
checkValidity(const SCEV * S) const3597 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3598 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3599 auto *SU = dyn_cast<SCEVUnknown>(S);
3600 return SU && SU->getValue() == nullptr;
3601 });
3602
3603 return !ContainsNulls;
3604 }
3605
containsAddRecurrence(const SCEV * S)3606 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3607 HasRecMapType::iterator I = HasRecMap.find(S);
3608 if (I != HasRecMap.end())
3609 return I->second;
3610
3611 bool FoundAddRec =
3612 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3613 HasRecMap.insert({S, FoundAddRec});
3614 return FoundAddRec;
3615 }
3616
3617 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3618 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3619 /// offset I, then return {S', I}, else return {\p S, nullptr}.
splitAddExpr(const SCEV * S)3620 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3621 const auto *Add = dyn_cast<SCEVAddExpr>(S);
3622 if (!Add)
3623 return {S, nullptr};
3624
3625 if (Add->getNumOperands() != 2)
3626 return {S, nullptr};
3627
3628 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3629 if (!ConstOp)
3630 return {S, nullptr};
3631
3632 return {Add->getOperand(1), ConstOp->getValue()};
3633 }
3634
3635 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3636 /// by the value and offset from any ValueOffsetPair in the set.
3637 SetVector<ScalarEvolution::ValueOffsetPair> *
getSCEVValues(const SCEV * S)3638 ScalarEvolution::getSCEVValues(const SCEV *S) {
3639 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3640 if (SI == ExprValueMap.end())
3641 return nullptr;
3642 #ifndef NDEBUG
3643 if (VerifySCEVMap) {
3644 // Check there is no dangling Value in the set returned.
3645 for (const auto &VE : SI->second)
3646 assert(ValueExprMap.count(VE.first));
3647 }
3648 #endif
3649 return &SI->second;
3650 }
3651
3652 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3653 /// cannot be used separately. eraseValueFromMap should be used to remove
3654 /// V from ValueExprMap and ExprValueMap at the same time.
eraseValueFromMap(Value * V)3655 void ScalarEvolution::eraseValueFromMap(Value *V) {
3656 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3657 if (I != ValueExprMap.end()) {
3658 const SCEV *S = I->second;
3659 // Remove {V, 0} from the set of ExprValueMap[S]
3660 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3661 SV->remove({V, nullptr});
3662
3663 // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3664 const SCEV *Stripped;
3665 ConstantInt *Offset;
3666 std::tie(Stripped, Offset) = splitAddExpr(S);
3667 if (Offset != nullptr) {
3668 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3669 SV->remove({V, Offset});
3670 }
3671 ValueExprMap.erase(V);
3672 }
3673 }
3674
3675 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3676 /// TODO: In reality it is better to check the poison recursively
3677 /// but this is better than nothing.
SCEVLostPoisonFlags(const SCEV * S,const Value * V)3678 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3679 if (auto *I = dyn_cast<Instruction>(V)) {
3680 if (isa<OverflowingBinaryOperator>(I)) {
3681 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3682 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3683 return true;
3684 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3685 return true;
3686 }
3687 } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3688 return true;
3689 }
3690 return false;
3691 }
3692
3693 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3694 /// create a new one.
getSCEV(Value * V)3695 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3696 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3697
3698 const SCEV *S = getExistingSCEV(V);
3699 if (S == nullptr) {
3700 S = createSCEV(V);
3701 // During PHI resolution, it is possible to create two SCEVs for the same
3702 // V, so it is needed to double check whether V->S is inserted into
3703 // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3704 std::pair<ValueExprMapType::iterator, bool> Pair =
3705 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3706 if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3707 ExprValueMap[S].insert({V, nullptr});
3708
3709 // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3710 // ExprValueMap.
3711 const SCEV *Stripped = S;
3712 ConstantInt *Offset = nullptr;
3713 std::tie(Stripped, Offset) = splitAddExpr(S);
3714 // If stripped is SCEVUnknown, don't bother to save
3715 // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3716 // increase the complexity of the expansion code.
3717 // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3718 // because it may generate add/sub instead of GEP in SCEV expansion.
3719 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3720 !isa<GetElementPtrInst>(V))
3721 ExprValueMap[Stripped].insert({V, Offset});
3722 }
3723 }
3724 return S;
3725 }
3726
getExistingSCEV(Value * V)3727 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3728 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3729
3730 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3731 if (I != ValueExprMap.end()) {
3732 const SCEV *S = I->second;
3733 if (checkValidity(S))
3734 return S;
3735 eraseValueFromMap(V);
3736 forgetMemoizedResults(S);
3737 }
3738 return nullptr;
3739 }
3740
3741 /// Return a SCEV corresponding to -V = -1*V
getNegativeSCEV(const SCEV * V,SCEV::NoWrapFlags Flags)3742 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3743 SCEV::NoWrapFlags Flags) {
3744 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3745 return getConstant(
3746 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3747
3748 Type *Ty = V->getType();
3749 Ty = getEffectiveSCEVType(Ty);
3750 return getMulExpr(
3751 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3752 }
3753
3754 /// If Expr computes ~A, return A else return nullptr
MatchNotExpr(const SCEV * Expr)3755 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3756 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3757 if (!Add || Add->getNumOperands() != 2 ||
3758 !Add->getOperand(0)->isAllOnesValue())
3759 return nullptr;
3760
3761 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3762 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3763 !AddRHS->getOperand(0)->isAllOnesValue())
3764 return nullptr;
3765
3766 return AddRHS->getOperand(1);
3767 }
3768
3769 /// Return a SCEV corresponding to ~V = -1-V
getNotSCEV(const SCEV * V)3770 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3771 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3772 return getConstant(
3773 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3774
3775 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3776 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3777 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3778 SmallVector<const SCEV *, 2> MatchedOperands;
3779 for (const SCEV *Operand : MME->operands()) {
3780 const SCEV *Matched = MatchNotExpr(Operand);
3781 if (!Matched)
3782 return (const SCEV *)nullptr;
3783 MatchedOperands.push_back(Matched);
3784 }
3785 return getMinMaxExpr(
3786 SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())),
3787 MatchedOperands);
3788 };
3789 if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3790 return Replaced;
3791 }
3792
3793 Type *Ty = V->getType();
3794 Ty = getEffectiveSCEVType(Ty);
3795 const SCEV *AllOnes =
3796 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3797 return getMinusSCEV(AllOnes, V);
3798 }
3799
getMinusSCEV(const SCEV * LHS,const SCEV * RHS,SCEV::NoWrapFlags Flags,unsigned Depth)3800 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3801 SCEV::NoWrapFlags Flags,
3802 unsigned Depth) {
3803 // Fast path: X - X --> 0.
3804 if (LHS == RHS)
3805 return getZero(LHS->getType());
3806
3807 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3808 // makes it so that we cannot make much use of NUW.
3809 auto AddFlags = SCEV::FlagAnyWrap;
3810 const bool RHSIsNotMinSigned =
3811 !getSignedRangeMin(RHS).isMinSignedValue();
3812 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3813 // Let M be the minimum representable signed value. Then (-1)*RHS
3814 // signed-wraps if and only if RHS is M. That can happen even for
3815 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3816 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3817 // (-1)*RHS, we need to prove that RHS != M.
3818 //
3819 // If LHS is non-negative and we know that LHS - RHS does not
3820 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3821 // either by proving that RHS > M or that LHS >= 0.
3822 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3823 AddFlags = SCEV::FlagNSW;
3824 }
3825 }
3826
3827 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3828 // RHS is NSW and LHS >= 0.
3829 //
3830 // The difficulty here is that the NSW flag may have been proven
3831 // relative to a loop that is to be found in a recurrence in LHS and
3832 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3833 // larger scope than intended.
3834 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3835
3836 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
3837 }
3838
getTruncateOrZeroExtend(const SCEV * V,Type * Ty,unsigned Depth)3839 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
3840 unsigned Depth) {
3841 Type *SrcTy = V->getType();
3842 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3843 "Cannot truncate or zero extend with non-integer arguments!");
3844 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3845 return V; // No conversion
3846 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3847 return getTruncateExpr(V, Ty, Depth);
3848 return getZeroExtendExpr(V, Ty, Depth);
3849 }
3850
getTruncateOrSignExtend(const SCEV * V,Type * Ty,unsigned Depth)3851 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
3852 unsigned Depth) {
3853 Type *SrcTy = V->getType();
3854 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3855 "Cannot truncate or zero extend with non-integer arguments!");
3856 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3857 return V; // No conversion
3858 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3859 return getTruncateExpr(V, Ty, Depth);
3860 return getSignExtendExpr(V, Ty, Depth);
3861 }
3862
3863 const SCEV *
getNoopOrZeroExtend(const SCEV * V,Type * Ty)3864 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3865 Type *SrcTy = V->getType();
3866 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3867 "Cannot noop or zero extend with non-integer arguments!");
3868 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3869 "getNoopOrZeroExtend cannot truncate!");
3870 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3871 return V; // No conversion
3872 return getZeroExtendExpr(V, Ty);
3873 }
3874
3875 const SCEV *
getNoopOrSignExtend(const SCEV * V,Type * Ty)3876 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3877 Type *SrcTy = V->getType();
3878 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3879 "Cannot noop or sign extend with non-integer arguments!");
3880 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3881 "getNoopOrSignExtend cannot truncate!");
3882 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3883 return V; // No conversion
3884 return getSignExtendExpr(V, Ty);
3885 }
3886
3887 const SCEV *
getNoopOrAnyExtend(const SCEV * V,Type * Ty)3888 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3889 Type *SrcTy = V->getType();
3890 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3891 "Cannot noop or any extend with non-integer arguments!");
3892 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3893 "getNoopOrAnyExtend cannot truncate!");
3894 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3895 return V; // No conversion
3896 return getAnyExtendExpr(V, Ty);
3897 }
3898
3899 const SCEV *
getTruncateOrNoop(const SCEV * V,Type * Ty)3900 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3901 Type *SrcTy = V->getType();
3902 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
3903 "Cannot truncate or noop with non-integer arguments!");
3904 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3905 "getTruncateOrNoop cannot extend!");
3906 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3907 return V; // No conversion
3908 return getTruncateExpr(V, Ty);
3909 }
3910
getUMaxFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)3911 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3912 const SCEV *RHS) {
3913 const SCEV *PromotedLHS = LHS;
3914 const SCEV *PromotedRHS = RHS;
3915
3916 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3917 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3918 else
3919 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3920
3921 return getUMaxExpr(PromotedLHS, PromotedRHS);
3922 }
3923
getUMinFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)3924 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3925 const SCEV *RHS) {
3926 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3927 return getUMinFromMismatchedTypes(Ops);
3928 }
3929
getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV * > & Ops)3930 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
3931 SmallVectorImpl<const SCEV *> &Ops) {
3932 assert(!Ops.empty() && "At least one operand must be!");
3933 // Trivial case.
3934 if (Ops.size() == 1)
3935 return Ops[0];
3936
3937 // Find the max type first.
3938 Type *MaxType = nullptr;
3939 for (auto *S : Ops)
3940 if (MaxType)
3941 MaxType = getWiderType(MaxType, S->getType());
3942 else
3943 MaxType = S->getType();
3944
3945 // Extend all ops to max type.
3946 SmallVector<const SCEV *, 2> PromotedOps;
3947 for (auto *S : Ops)
3948 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
3949
3950 // Generate umin.
3951 return getUMinExpr(PromotedOps);
3952 }
3953
getPointerBase(const SCEV * V)3954 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3955 // A pointer operand may evaluate to a nonpointer expression, such as null.
3956 if (!V->getType()->isPointerTy())
3957 return V;
3958
3959 while (true) {
3960 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3961 V = Cast->getOperand();
3962 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3963 const SCEV *PtrOp = nullptr;
3964 for (const SCEV *NAryOp : NAry->operands()) {
3965 if (NAryOp->getType()->isPointerTy()) {
3966 // Cannot find the base of an expression with multiple pointer ops.
3967 if (PtrOp)
3968 return V;
3969 PtrOp = NAryOp;
3970 }
3971 }
3972 if (!PtrOp) // All operands were non-pointer.
3973 return V;
3974 V = PtrOp;
3975 } else // Not something we can look further into.
3976 return V;
3977 }
3978 }
3979
3980 /// Push users of the given Instruction onto the given Worklist.
3981 static void
PushDefUseChildren(Instruction * I,SmallVectorImpl<Instruction * > & Worklist)3982 PushDefUseChildren(Instruction *I,
3983 SmallVectorImpl<Instruction *> &Worklist) {
3984 // Push the def-use children onto the Worklist stack.
3985 for (User *U : I->users())
3986 Worklist.push_back(cast<Instruction>(U));
3987 }
3988
forgetSymbolicName(Instruction * PN,const SCEV * SymName)3989 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3990 SmallVector<Instruction *, 16> Worklist;
3991 PushDefUseChildren(PN, Worklist);
3992
3993 SmallPtrSet<Instruction *, 8> Visited;
3994 Visited.insert(PN);
3995 while (!Worklist.empty()) {
3996 Instruction *I = Worklist.pop_back_val();
3997 if (!Visited.insert(I).second)
3998 continue;
3999
4000 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4001 if (It != ValueExprMap.end()) {
4002 const SCEV *Old = It->second;
4003
4004 // Short-circuit the def-use traversal if the symbolic name
4005 // ceases to appear in expressions.
4006 if (Old != SymName && !hasOperand(Old, SymName))
4007 continue;
4008
4009 // SCEVUnknown for a PHI either means that it has an unrecognized
4010 // structure, it's a PHI that's in the progress of being computed
4011 // by createNodeForPHI, or it's a single-value PHI. In the first case,
4012 // additional loop trip count information isn't going to change anything.
4013 // In the second case, createNodeForPHI will perform the necessary
4014 // updates on its own when it gets to that point. In the third, we do
4015 // want to forget the SCEVUnknown.
4016 if (!isa<PHINode>(I) ||
4017 !isa<SCEVUnknown>(Old) ||
4018 (I != PN && Old == SymName)) {
4019 eraseValueFromMap(It->first);
4020 forgetMemoizedResults(Old);
4021 }
4022 }
4023
4024 PushDefUseChildren(I, Worklist);
4025 }
4026 }
4027
4028 namespace {
4029
4030 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4031 /// expression in case its Loop is L. If it is not L then
4032 /// if IgnoreOtherLoops is true then use AddRec itself
4033 /// otherwise rewrite cannot be done.
4034 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4035 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4036 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool IgnoreOtherLoops=true)4037 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4038 bool IgnoreOtherLoops = true) {
4039 SCEVInitRewriter Rewriter(L, SE);
4040 const SCEV *Result = Rewriter.visit(S);
4041 if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4042 return SE.getCouldNotCompute();
4043 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4044 ? SE.getCouldNotCompute()
4045 : Result;
4046 }
4047
visitUnknown(const SCEVUnknown * Expr)4048 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4049 if (!SE.isLoopInvariant(Expr, L))
4050 SeenLoopVariantSCEVUnknown = true;
4051 return Expr;
4052 }
4053
visitAddRecExpr(const SCEVAddRecExpr * Expr)4054 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4055 // Only re-write AddRecExprs for this loop.
4056 if (Expr->getLoop() == L)
4057 return Expr->getStart();
4058 SeenOtherLoops = true;
4059 return Expr;
4060 }
4061
hasSeenLoopVariantSCEVUnknown()4062 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4063
hasSeenOtherLoops()4064 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4065
4066 private:
SCEVInitRewriter(const Loop * L,ScalarEvolution & SE)4067 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4068 : SCEVRewriteVisitor(SE), L(L) {}
4069
4070 const Loop *L;
4071 bool SeenLoopVariantSCEVUnknown = false;
4072 bool SeenOtherLoops = false;
4073 };
4074
4075 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4076 /// increment expression in case its Loop is L. If it is not L then
4077 /// use AddRec itself.
4078 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4079 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4080 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4081 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4082 SCEVPostIncRewriter Rewriter(L, SE);
4083 const SCEV *Result = Rewriter.visit(S);
4084 return Rewriter.hasSeenLoopVariantSCEVUnknown()
4085 ? SE.getCouldNotCompute()
4086 : Result;
4087 }
4088
visitUnknown(const SCEVUnknown * Expr)4089 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4090 if (!SE.isLoopInvariant(Expr, L))
4091 SeenLoopVariantSCEVUnknown = true;
4092 return Expr;
4093 }
4094
visitAddRecExpr(const SCEVAddRecExpr * Expr)4095 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4096 // Only re-write AddRecExprs for this loop.
4097 if (Expr->getLoop() == L)
4098 return Expr->getPostIncExpr(SE);
4099 SeenOtherLoops = true;
4100 return Expr;
4101 }
4102
hasSeenLoopVariantSCEVUnknown()4103 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4104
hasSeenOtherLoops()4105 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4106
4107 private:
SCEVPostIncRewriter(const Loop * L,ScalarEvolution & SE)4108 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4109 : SCEVRewriteVisitor(SE), L(L) {}
4110
4111 const Loop *L;
4112 bool SeenLoopVariantSCEVUnknown = false;
4113 bool SeenOtherLoops = false;
4114 };
4115
4116 /// This class evaluates the compare condition by matching it against the
4117 /// condition of loop latch. If there is a match we assume a true value
4118 /// for the condition while building SCEV nodes.
4119 class SCEVBackedgeConditionFolder
4120 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4121 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4122 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4123 ScalarEvolution &SE) {
4124 bool IsPosBECond = false;
4125 Value *BECond = nullptr;
4126 if (BasicBlock *Latch = L->getLoopLatch()) {
4127 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4128 if (BI && BI->isConditional()) {
4129 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4130 "Both outgoing branches should not target same header!");
4131 BECond = BI->getCondition();
4132 IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4133 } else {
4134 return S;
4135 }
4136 }
4137 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4138 return Rewriter.visit(S);
4139 }
4140
visitUnknown(const SCEVUnknown * Expr)4141 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4142 const SCEV *Result = Expr;
4143 bool InvariantF = SE.isLoopInvariant(Expr, L);
4144
4145 if (!InvariantF) {
4146 Instruction *I = cast<Instruction>(Expr->getValue());
4147 switch (I->getOpcode()) {
4148 case Instruction::Select: {
4149 SelectInst *SI = cast<SelectInst>(I);
4150 Optional<const SCEV *> Res =
4151 compareWithBackedgeCondition(SI->getCondition());
4152 if (Res.hasValue()) {
4153 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4154 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4155 }
4156 break;
4157 }
4158 default: {
4159 Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4160 if (Res.hasValue())
4161 Result = Res.getValue();
4162 break;
4163 }
4164 }
4165 }
4166 return Result;
4167 }
4168
4169 private:
SCEVBackedgeConditionFolder(const Loop * L,Value * BECond,bool IsPosBECond,ScalarEvolution & SE)4170 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4171 bool IsPosBECond, ScalarEvolution &SE)
4172 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4173 IsPositiveBECond(IsPosBECond) {}
4174
4175 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4176
4177 const Loop *L;
4178 /// Loop back condition.
4179 Value *BackedgeCond = nullptr;
4180 /// Set to true if loop back is on positive branch condition.
4181 bool IsPositiveBECond;
4182 };
4183
4184 Optional<const SCEV *>
compareWithBackedgeCondition(Value * IC)4185 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4186
4187 // If value matches the backedge condition for loop latch,
4188 // then return a constant evolution node based on loopback
4189 // branch taken.
4190 if (BackedgeCond == IC)
4191 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4192 : SE.getZero(Type::getInt1Ty(SE.getContext()));
4193 return None;
4194 }
4195
4196 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4197 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4198 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4199 ScalarEvolution &SE) {
4200 SCEVShiftRewriter Rewriter(L, SE);
4201 const SCEV *Result = Rewriter.visit(S);
4202 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4203 }
4204
visitUnknown(const SCEVUnknown * Expr)4205 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4206 // Only allow AddRecExprs for this loop.
4207 if (!SE.isLoopInvariant(Expr, L))
4208 Valid = false;
4209 return Expr;
4210 }
4211
visitAddRecExpr(const SCEVAddRecExpr * Expr)4212 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4213 if (Expr->getLoop() == L && Expr->isAffine())
4214 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4215 Valid = false;
4216 return Expr;
4217 }
4218
isValid()4219 bool isValid() { return Valid; }
4220
4221 private:
SCEVShiftRewriter(const Loop * L,ScalarEvolution & SE)4222 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4223 : SCEVRewriteVisitor(SE), L(L) {}
4224
4225 const Loop *L;
4226 bool Valid = true;
4227 };
4228
4229 } // end anonymous namespace
4230
4231 SCEV::NoWrapFlags
proveNoWrapViaConstantRanges(const SCEVAddRecExpr * AR)4232 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4233 if (!AR->isAffine())
4234 return SCEV::FlagAnyWrap;
4235
4236 using OBO = OverflowingBinaryOperator;
4237
4238 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4239
4240 if (!AR->hasNoSignedWrap()) {
4241 ConstantRange AddRecRange = getSignedRange(AR);
4242 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4243
4244 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4245 Instruction::Add, IncRange, OBO::NoSignedWrap);
4246 if (NSWRegion.contains(AddRecRange))
4247 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4248 }
4249
4250 if (!AR->hasNoUnsignedWrap()) {
4251 ConstantRange AddRecRange = getUnsignedRange(AR);
4252 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4253
4254 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4255 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4256 if (NUWRegion.contains(AddRecRange))
4257 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4258 }
4259
4260 return Result;
4261 }
4262
4263 namespace {
4264
4265 /// Represents an abstract binary operation. This may exist as a
4266 /// normal instruction or constant expression, or may have been
4267 /// derived from an expression tree.
4268 struct BinaryOp {
4269 unsigned Opcode;
4270 Value *LHS;
4271 Value *RHS;
4272 bool IsNSW = false;
4273 bool IsNUW = false;
4274
4275 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4276 /// constant expression.
4277 Operator *Op = nullptr;
4278
BinaryOp__anond51b32ac0f11::BinaryOp4279 explicit BinaryOp(Operator *Op)
4280 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4281 Op(Op) {
4282 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4283 IsNSW = OBO->hasNoSignedWrap();
4284 IsNUW = OBO->hasNoUnsignedWrap();
4285 }
4286 }
4287
BinaryOp__anond51b32ac0f11::BinaryOp4288 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4289 bool IsNUW = false)
4290 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4291 };
4292
4293 } // end anonymous namespace
4294
4295 /// Try to map \p V into a BinaryOp, and return \c None on failure.
MatchBinaryOp(Value * V,DominatorTree & DT)4296 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4297 auto *Op = dyn_cast<Operator>(V);
4298 if (!Op)
4299 return None;
4300
4301 // Implementation detail: all the cleverness here should happen without
4302 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4303 // SCEV expressions when possible, and we should not break that.
4304
4305 switch (Op->getOpcode()) {
4306 case Instruction::Add:
4307 case Instruction::Sub:
4308 case Instruction::Mul:
4309 case Instruction::UDiv:
4310 case Instruction::URem:
4311 case Instruction::And:
4312 case Instruction::Or:
4313 case Instruction::AShr:
4314 case Instruction::Shl:
4315 return BinaryOp(Op);
4316
4317 case Instruction::Xor:
4318 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4319 // If the RHS of the xor is a signmask, then this is just an add.
4320 // Instcombine turns add of signmask into xor as a strength reduction step.
4321 if (RHSC->getValue().isSignMask())
4322 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4323 return BinaryOp(Op);
4324
4325 case Instruction::LShr:
4326 // Turn logical shift right of a constant into a unsigned divide.
4327 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4328 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4329
4330 // If the shift count is not less than the bitwidth, the result of
4331 // the shift is undefined. Don't try to analyze it, because the
4332 // resolution chosen here may differ from the resolution chosen in
4333 // other parts of the compiler.
4334 if (SA->getValue().ult(BitWidth)) {
4335 Constant *X =
4336 ConstantInt::get(SA->getContext(),
4337 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4338 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4339 }
4340 }
4341 return BinaryOp(Op);
4342
4343 case Instruction::ExtractValue: {
4344 auto *EVI = cast<ExtractValueInst>(Op);
4345 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4346 break;
4347
4348 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4349 if (!WO)
4350 break;
4351
4352 Instruction::BinaryOps BinOp = WO->getBinaryOp();
4353 bool Signed = WO->isSigned();
4354 // TODO: Should add nuw/nsw flags for mul as well.
4355 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4356 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4357
4358 // Now that we know that all uses of the arithmetic-result component of
4359 // CI are guarded by the overflow check, we can go ahead and pretend
4360 // that the arithmetic is non-overflowing.
4361 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4362 /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4363 }
4364
4365 default:
4366 break;
4367 }
4368
4369 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4370 // semantics as a Sub, return a binary sub expression.
4371 if (auto *II = dyn_cast<IntrinsicInst>(V))
4372 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4373 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4374
4375 return None;
4376 }
4377
4378 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4379 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4380 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4381 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4382 /// follows one of the following patterns:
4383 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4384 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4385 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4386 /// we return the type of the truncation operation, and indicate whether the
4387 /// truncated type should be treated as signed/unsigned by setting
4388 /// \p Signed to true/false, respectively.
isSimpleCastedPHI(const SCEV * Op,const SCEVUnknown * SymbolicPHI,bool & Signed,ScalarEvolution & SE)4389 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4390 bool &Signed, ScalarEvolution &SE) {
4391 // The case where Op == SymbolicPHI (that is, with no type conversions on
4392 // the way) is handled by the regular add recurrence creating logic and
4393 // would have already been triggered in createAddRecForPHI. Reaching it here
4394 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4395 // because one of the other operands of the SCEVAddExpr updating this PHI is
4396 // not invariant).
4397 //
4398 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4399 // this case predicates that allow us to prove that Op == SymbolicPHI will
4400 // be added.
4401 if (Op == SymbolicPHI)
4402 return nullptr;
4403
4404 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4405 unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4406 if (SourceBits != NewBits)
4407 return nullptr;
4408
4409 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4410 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4411 if (!SExt && !ZExt)
4412 return nullptr;
4413 const SCEVTruncateExpr *Trunc =
4414 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4415 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4416 if (!Trunc)
4417 return nullptr;
4418 const SCEV *X = Trunc->getOperand();
4419 if (X != SymbolicPHI)
4420 return nullptr;
4421 Signed = SExt != nullptr;
4422 return Trunc->getType();
4423 }
4424
isIntegerLoopHeaderPHI(const PHINode * PN,LoopInfo & LI)4425 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4426 if (!PN->getType()->isIntegerTy())
4427 return nullptr;
4428 const Loop *L = LI.getLoopFor(PN->getParent());
4429 if (!L || L->getHeader() != PN->getParent())
4430 return nullptr;
4431 return L;
4432 }
4433
4434 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4435 // computation that updates the phi follows the following pattern:
4436 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4437 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4438 // If so, try to see if it can be rewritten as an AddRecExpr under some
4439 // Predicates. If successful, return them as a pair. Also cache the results
4440 // of the analysis.
4441 //
4442 // Example usage scenario:
4443 // Say the Rewriter is called for the following SCEV:
4444 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4445 // where:
4446 // %X = phi i64 (%Start, %BEValue)
4447 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4448 // and call this function with %SymbolicPHI = %X.
4449 //
4450 // The analysis will find that the value coming around the backedge has
4451 // the following SCEV:
4452 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4453 // Upon concluding that this matches the desired pattern, the function
4454 // will return the pair {NewAddRec, SmallPredsVec} where:
4455 // NewAddRec = {%Start,+,%Step}
4456 // SmallPredsVec = {P1, P2, P3} as follows:
4457 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4458 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4459 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4460 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4461 // under the predicates {P1,P2,P3}.
4462 // This predicated rewrite will be cached in PredicatedSCEVRewrites:
4463 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4464 //
4465 // TODO's:
4466 //
4467 // 1) Extend the Induction descriptor to also support inductions that involve
4468 // casts: When needed (namely, when we are called in the context of the
4469 // vectorizer induction analysis), a Set of cast instructions will be
4470 // populated by this method, and provided back to isInductionPHI. This is
4471 // needed to allow the vectorizer to properly record them to be ignored by
4472 // the cost model and to avoid vectorizing them (otherwise these casts,
4473 // which are redundant under the runtime overflow checks, will be
4474 // vectorized, which can be costly).
4475 //
4476 // 2) Support additional induction/PHISCEV patterns: We also want to support
4477 // inductions where the sext-trunc / zext-trunc operations (partly) occur
4478 // after the induction update operation (the induction increment):
4479 //
4480 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4481 // which correspond to a phi->add->trunc->sext/zext->phi update chain.
4482 //
4483 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4484 // which correspond to a phi->trunc->add->sext/zext->phi update chain.
4485 //
4486 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4487 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCastsImpl(const SCEVUnknown * SymbolicPHI)4488 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4489 SmallVector<const SCEVPredicate *, 3> Predicates;
4490
4491 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4492 // return an AddRec expression under some predicate.
4493
4494 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4495 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4496 assert(L && "Expecting an integer loop header phi");
4497
4498 // The loop may have multiple entrances or multiple exits; we can analyze
4499 // this phi as an addrec if it has a unique entry value and a unique
4500 // backedge value.
4501 Value *BEValueV = nullptr, *StartValueV = nullptr;
4502 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4503 Value *V = PN->getIncomingValue(i);
4504 if (L->contains(PN->getIncomingBlock(i))) {
4505 if (!BEValueV) {
4506 BEValueV = V;
4507 } else if (BEValueV != V) {
4508 BEValueV = nullptr;
4509 break;
4510 }
4511 } else if (!StartValueV) {
4512 StartValueV = V;
4513 } else if (StartValueV != V) {
4514 StartValueV = nullptr;
4515 break;
4516 }
4517 }
4518 if (!BEValueV || !StartValueV)
4519 return None;
4520
4521 const SCEV *BEValue = getSCEV(BEValueV);
4522
4523 // If the value coming around the backedge is an add with the symbolic
4524 // value we just inserted, possibly with casts that we can ignore under
4525 // an appropriate runtime guard, then we found a simple induction variable!
4526 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4527 if (!Add)
4528 return None;
4529
4530 // If there is a single occurrence of the symbolic value, possibly
4531 // casted, replace it with a recurrence.
4532 unsigned FoundIndex = Add->getNumOperands();
4533 Type *TruncTy = nullptr;
4534 bool Signed;
4535 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4536 if ((TruncTy =
4537 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4538 if (FoundIndex == e) {
4539 FoundIndex = i;
4540 break;
4541 }
4542
4543 if (FoundIndex == Add->getNumOperands())
4544 return None;
4545
4546 // Create an add with everything but the specified operand.
4547 SmallVector<const SCEV *, 8> Ops;
4548 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4549 if (i != FoundIndex)
4550 Ops.push_back(Add->getOperand(i));
4551 const SCEV *Accum = getAddExpr(Ops);
4552
4553 // The runtime checks will not be valid if the step amount is
4554 // varying inside the loop.
4555 if (!isLoopInvariant(Accum, L))
4556 return None;
4557
4558 // *** Part2: Create the predicates
4559
4560 // Analysis was successful: we have a phi-with-cast pattern for which we
4561 // can return an AddRec expression under the following predicates:
4562 //
4563 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4564 // fits within the truncated type (does not overflow) for i = 0 to n-1.
4565 // P2: An Equal predicate that guarantees that
4566 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4567 // P3: An Equal predicate that guarantees that
4568 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4569 //
4570 // As we next prove, the above predicates guarantee that:
4571 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4572 //
4573 //
4574 // More formally, we want to prove that:
4575 // Expr(i+1) = Start + (i+1) * Accum
4576 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4577 //
4578 // Given that:
4579 // 1) Expr(0) = Start
4580 // 2) Expr(1) = Start + Accum
4581 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4582 // 3) Induction hypothesis (step i):
4583 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4584 //
4585 // Proof:
4586 // Expr(i+1) =
4587 // = Start + (i+1)*Accum
4588 // = (Start + i*Accum) + Accum
4589 // = Expr(i) + Accum
4590 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4591 // :: from step i
4592 //
4593 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4594 //
4595 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4596 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
4597 // + Accum :: from P3
4598 //
4599 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4600 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4601 //
4602 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4603 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4604 //
4605 // By induction, the same applies to all iterations 1<=i<n:
4606 //
4607
4608 // Create a truncated addrec for which we will add a no overflow check (P1).
4609 const SCEV *StartVal = getSCEV(StartValueV);
4610 const SCEV *PHISCEV =
4611 getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4612 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4613
4614 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4615 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4616 // will be constant.
4617 //
4618 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4619 // add P1.
4620 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4621 SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4622 Signed ? SCEVWrapPredicate::IncrementNSSW
4623 : SCEVWrapPredicate::IncrementNUSW;
4624 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4625 Predicates.push_back(AddRecPred);
4626 }
4627
4628 // Create the Equal Predicates P2,P3:
4629
4630 // It is possible that the predicates P2 and/or P3 are computable at
4631 // compile time due to StartVal and/or Accum being constants.
4632 // If either one is, then we can check that now and escape if either P2
4633 // or P3 is false.
4634
4635 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4636 // for each of StartVal and Accum
4637 auto getExtendedExpr = [&](const SCEV *Expr,
4638 bool CreateSignExtend) -> const SCEV * {
4639 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4640 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4641 const SCEV *ExtendedExpr =
4642 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4643 : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4644 return ExtendedExpr;
4645 };
4646
4647 // Given:
4648 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4649 // = getExtendedExpr(Expr)
4650 // Determine whether the predicate P: Expr == ExtendedExpr
4651 // is known to be false at compile time
4652 auto PredIsKnownFalse = [&](const SCEV *Expr,
4653 const SCEV *ExtendedExpr) -> bool {
4654 return Expr != ExtendedExpr &&
4655 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4656 };
4657
4658 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4659 if (PredIsKnownFalse(StartVal, StartExtended)) {
4660 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4661 return None;
4662 }
4663
4664 // The Step is always Signed (because the overflow checks are either
4665 // NSSW or NUSW)
4666 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4667 if (PredIsKnownFalse(Accum, AccumExtended)) {
4668 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4669 return None;
4670 }
4671
4672 auto AppendPredicate = [&](const SCEV *Expr,
4673 const SCEV *ExtendedExpr) -> void {
4674 if (Expr != ExtendedExpr &&
4675 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4676 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4677 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4678 Predicates.push_back(Pred);
4679 }
4680 };
4681
4682 AppendPredicate(StartVal, StartExtended);
4683 AppendPredicate(Accum, AccumExtended);
4684
4685 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4686 // which the casts had been folded away. The caller can rewrite SymbolicPHI
4687 // into NewAR if it will also add the runtime overflow checks specified in
4688 // Predicates.
4689 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4690
4691 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4692 std::make_pair(NewAR, Predicates);
4693 // Remember the result of the analysis for this SCEV at this locayyytion.
4694 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4695 return PredRewrite;
4696 }
4697
4698 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCasts(const SCEVUnknown * SymbolicPHI)4699 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4700 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4701 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4702 if (!L)
4703 return None;
4704
4705 // Check to see if we already analyzed this PHI.
4706 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4707 if (I != PredicatedSCEVRewrites.end()) {
4708 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4709 I->second;
4710 // Analysis was done before and failed to create an AddRec:
4711 if (Rewrite.first == SymbolicPHI)
4712 return None;
4713 // Analysis was done before and succeeded to create an AddRec under
4714 // a predicate:
4715 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4716 assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4717 return Rewrite;
4718 }
4719
4720 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4721 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4722
4723 // Record in the cache that the analysis failed
4724 if (!Rewrite) {
4725 SmallVector<const SCEVPredicate *, 3> Predicates;
4726 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4727 return None;
4728 }
4729
4730 return Rewrite;
4731 }
4732
4733 // FIXME: This utility is currently required because the Rewriter currently
4734 // does not rewrite this expression:
4735 // {0, +, (sext ix (trunc iy to ix) to iy)}
4736 // into {0, +, %step},
4737 // even when the following Equal predicate exists:
4738 // "%step == (sext ix (trunc iy to ix) to iy)".
areAddRecsEqualWithPreds(const SCEVAddRecExpr * AR1,const SCEVAddRecExpr * AR2) const4739 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4740 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4741 if (AR1 == AR2)
4742 return true;
4743
4744 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4745 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4746 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4747 return false;
4748 return true;
4749 };
4750
4751 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4752 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4753 return false;
4754 return true;
4755 }
4756
4757 /// A helper function for createAddRecFromPHI to handle simple cases.
4758 ///
4759 /// This function tries to find an AddRec expression for the simplest (yet most
4760 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4761 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4762 /// technique for finding the AddRec expression.
createSimpleAffineAddRec(PHINode * PN,Value * BEValueV,Value * StartValueV)4763 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4764 Value *BEValueV,
4765 Value *StartValueV) {
4766 const Loop *L = LI.getLoopFor(PN->getParent());
4767 assert(L && L->getHeader() == PN->getParent());
4768 assert(BEValueV && StartValueV);
4769
4770 auto BO = MatchBinaryOp(BEValueV, DT);
4771 if (!BO)
4772 return nullptr;
4773
4774 if (BO->Opcode != Instruction::Add)
4775 return nullptr;
4776
4777 const SCEV *Accum = nullptr;
4778 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4779 Accum = getSCEV(BO->RHS);
4780 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4781 Accum = getSCEV(BO->LHS);
4782
4783 if (!Accum)
4784 return nullptr;
4785
4786 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4787 if (BO->IsNUW)
4788 Flags = setFlags(Flags, SCEV::FlagNUW);
4789 if (BO->IsNSW)
4790 Flags = setFlags(Flags, SCEV::FlagNSW);
4791
4792 const SCEV *StartVal = getSCEV(StartValueV);
4793 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4794
4795 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4796
4797 // We can add Flags to the post-inc expression only if we
4798 // know that it is *undefined behavior* for BEValueV to
4799 // overflow.
4800 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4801 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4802 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4803
4804 return PHISCEV;
4805 }
4806
createAddRecFromPHI(PHINode * PN)4807 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
4808 const Loop *L = LI.getLoopFor(PN->getParent());
4809 if (!L || L->getHeader() != PN->getParent())
4810 return nullptr;
4811
4812 // The loop may have multiple entrances or multiple exits; we can analyze
4813 // this phi as an addrec if it has a unique entry value and a unique
4814 // backedge value.
4815 Value *BEValueV = nullptr, *StartValueV = nullptr;
4816 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4817 Value *V = PN->getIncomingValue(i);
4818 if (L->contains(PN->getIncomingBlock(i))) {
4819 if (!BEValueV) {
4820 BEValueV = V;
4821 } else if (BEValueV != V) {
4822 BEValueV = nullptr;
4823 break;
4824 }
4825 } else if (!StartValueV) {
4826 StartValueV = V;
4827 } else if (StartValueV != V) {
4828 StartValueV = nullptr;
4829 break;
4830 }
4831 }
4832 if (!BEValueV || !StartValueV)
4833 return nullptr;
4834
4835 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
4836 "PHI node already processed?");
4837
4838 // First, try to find AddRec expression without creating a fictituos symbolic
4839 // value for PN.
4840 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
4841 return S;
4842
4843 // Handle PHI node value symbolically.
4844 const SCEV *SymbolicName = getUnknown(PN);
4845 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
4846
4847 // Using this symbolic name for the PHI, analyze the value coming around
4848 // the back-edge.
4849 const SCEV *BEValue = getSCEV(BEValueV);
4850
4851 // NOTE: If BEValue is loop invariant, we know that the PHI node just
4852 // has a special value for the first iteration of the loop.
4853
4854 // If the value coming around the backedge is an add with the symbolic
4855 // value we just inserted, then we found a simple induction variable!
4856 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
4857 // If there is a single occurrence of the symbolic value, replace it
4858 // with a recurrence.
4859 unsigned FoundIndex = Add->getNumOperands();
4860 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4861 if (Add->getOperand(i) == SymbolicName)
4862 if (FoundIndex == e) {
4863 FoundIndex = i;
4864 break;
4865 }
4866
4867 if (FoundIndex != Add->getNumOperands()) {
4868 // Create an add with everything but the specified operand.
4869 SmallVector<const SCEV *, 8> Ops;
4870 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4871 if (i != FoundIndex)
4872 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
4873 L, *this));
4874 const SCEV *Accum = getAddExpr(Ops);
4875
4876 // This is not a valid addrec if the step amount is varying each
4877 // loop iteration, but is not itself an addrec in this loop.
4878 if (isLoopInvariant(Accum, L) ||
4879 (isa<SCEVAddRecExpr>(Accum) &&
4880 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4881 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4882
4883 if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4884 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4885 if (BO->IsNUW)
4886 Flags = setFlags(Flags, SCEV::FlagNUW);
4887 if (BO->IsNSW)
4888 Flags = setFlags(Flags, SCEV::FlagNSW);
4889 }
4890 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4891 // If the increment is an inbounds GEP, then we know the address
4892 // space cannot be wrapped around. We cannot make any guarantee
4893 // about signed or unsigned overflow because pointers are
4894 // unsigned but we may have a negative index from the base
4895 // pointer. We can guarantee that no unsigned wrap occurs if the
4896 // indices form a positive value.
4897 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4898 Flags = setFlags(Flags, SCEV::FlagNW);
4899
4900 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4901 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4902 Flags = setFlags(Flags, SCEV::FlagNUW);
4903 }
4904
4905 // We cannot transfer nuw and nsw flags from subtraction
4906 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4907 // for instance.
4908 }
4909
4910 const SCEV *StartVal = getSCEV(StartValueV);
4911 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4912
4913 // Okay, for the entire analysis of this edge we assumed the PHI
4914 // to be symbolic. We now need to go back and purge all of the
4915 // entries for the scalars that use the symbolic expression.
4916 forgetSymbolicName(PN, SymbolicName);
4917 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4918
4919 // We can add Flags to the post-inc expression only if we
4920 // know that it is *undefined behavior* for BEValueV to
4921 // overflow.
4922 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4923 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4924 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4925
4926 return PHISCEV;
4927 }
4928 }
4929 } else {
4930 // Otherwise, this could be a loop like this:
4931 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
4932 // In this case, j = {1,+,1} and BEValue is j.
4933 // Because the other in-value of i (0) fits the evolution of BEValue
4934 // i really is an addrec evolution.
4935 //
4936 // We can generalize this saying that i is the shifted value of BEValue
4937 // by one iteration:
4938 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
4939 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4940 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
4941 if (Shifted != getCouldNotCompute() &&
4942 Start != getCouldNotCompute()) {
4943 const SCEV *StartVal = getSCEV(StartValueV);
4944 if (Start == StartVal) {
4945 // Okay, for the entire analysis of this edge we assumed the PHI
4946 // to be symbolic. We now need to go back and purge all of the
4947 // entries for the scalars that use the symbolic expression.
4948 forgetSymbolicName(PN, SymbolicName);
4949 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4950 return Shifted;
4951 }
4952 }
4953 }
4954
4955 // Remove the temporary PHI node SCEV that has been inserted while intending
4956 // to create an AddRecExpr for this PHI node. We can not keep this temporary
4957 // as it will prevent later (possibly simpler) SCEV expressions to be added
4958 // to the ValueExprMap.
4959 eraseValueFromMap(PN);
4960
4961 return nullptr;
4962 }
4963
4964 // Checks if the SCEV S is available at BB. S is considered available at BB
4965 // if S can be materialized at BB without introducing a fault.
IsAvailableOnEntry(const Loop * L,DominatorTree & DT,const SCEV * S,BasicBlock * BB)4966 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4967 BasicBlock *BB) {
4968 struct CheckAvailable {
4969 bool TraversalDone = false;
4970 bool Available = true;
4971
4972 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
4973 BasicBlock *BB = nullptr;
4974 DominatorTree &DT;
4975
4976 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4977 : L(L), BB(BB), DT(DT) {}
4978
4979 bool setUnavailable() {
4980 TraversalDone = true;
4981 Available = false;
4982 return false;
4983 }
4984
4985 bool follow(const SCEV *S) {
4986 switch (S->getSCEVType()) {
4987 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4988 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4989 case scUMinExpr:
4990 case scSMinExpr:
4991 // These expressions are available if their operand(s) is/are.
4992 return true;
4993
4994 case scAddRecExpr: {
4995 // We allow add recurrences that are on the loop BB is in, or some
4996 // outer loop. This guarantees availability because the value of the
4997 // add recurrence at BB is simply the "current" value of the induction
4998 // variable. We can relax this in the future; for instance an add
4999 // recurrence on a sibling dominating loop is also available at BB.
5000 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5001 if (L && (ARLoop == L || ARLoop->contains(L)))
5002 return true;
5003
5004 return setUnavailable();
5005 }
5006
5007 case scUnknown: {
5008 // For SCEVUnknown, we check for simple dominance.
5009 const auto *SU = cast<SCEVUnknown>(S);
5010 Value *V = SU->getValue();
5011
5012 if (isa<Argument>(V))
5013 return false;
5014
5015 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5016 return false;
5017
5018 return setUnavailable();
5019 }
5020
5021 case scUDivExpr:
5022 case scCouldNotCompute:
5023 // We do not try to smart about these at all.
5024 return setUnavailable();
5025 }
5026 llvm_unreachable("switch should be fully covered!");
5027 }
5028
5029 bool isDone() { return TraversalDone; }
5030 };
5031
5032 CheckAvailable CA(L, BB, DT);
5033 SCEVTraversal<CheckAvailable> ST(CA);
5034
5035 ST.visitAll(S);
5036 return CA.Available;
5037 }
5038
5039 // Try to match a control flow sequence that branches out at BI and merges back
5040 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5041 // match.
BrPHIToSelect(DominatorTree & DT,BranchInst * BI,PHINode * Merge,Value * & C,Value * & LHS,Value * & RHS)5042 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5043 Value *&C, Value *&LHS, Value *&RHS) {
5044 C = BI->getCondition();
5045
5046 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5047 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5048
5049 if (!LeftEdge.isSingleEdge())
5050 return false;
5051
5052 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5053
5054 Use &LeftUse = Merge->getOperandUse(0);
5055 Use &RightUse = Merge->getOperandUse(1);
5056
5057 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5058 LHS = LeftUse;
5059 RHS = RightUse;
5060 return true;
5061 }
5062
5063 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5064 LHS = RightUse;
5065 RHS = LeftUse;
5066 return true;
5067 }
5068
5069 return false;
5070 }
5071
createNodeFromSelectLikePHI(PHINode * PN)5072 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5073 auto IsReachable =
5074 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5075 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5076 const Loop *L = LI.getLoopFor(PN->getParent());
5077
5078 // We don't want to break LCSSA, even in a SCEV expression tree.
5079 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5080 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5081 return nullptr;
5082
5083 // Try to match
5084 //
5085 // br %cond, label %left, label %right
5086 // left:
5087 // br label %merge
5088 // right:
5089 // br label %merge
5090 // merge:
5091 // V = phi [ %x, %left ], [ %y, %right ]
5092 //
5093 // as "select %cond, %x, %y"
5094
5095 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5096 assert(IDom && "At least the entry block should dominate PN");
5097
5098 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5099 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5100
5101 if (BI && BI->isConditional() &&
5102 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5103 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5104 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5105 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5106 }
5107
5108 return nullptr;
5109 }
5110
createNodeForPHI(PHINode * PN)5111 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5112 if (const SCEV *S = createAddRecFromPHI(PN))
5113 return S;
5114
5115 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5116 return S;
5117
5118 // If the PHI has a single incoming value, follow that value, unless the
5119 // PHI's incoming blocks are in a different loop, in which case doing so
5120 // risks breaking LCSSA form. Instcombine would normally zap these, but
5121 // it doesn't have DominatorTree information, so it may miss cases.
5122 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5123 if (LI.replacementPreservesLCSSAForm(PN, V))
5124 return getSCEV(V);
5125
5126 // If it's not a loop phi, we can't handle it yet.
5127 return getUnknown(PN);
5128 }
5129
createNodeForSelectOrPHI(Instruction * I,Value * Cond,Value * TrueVal,Value * FalseVal)5130 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5131 Value *Cond,
5132 Value *TrueVal,
5133 Value *FalseVal) {
5134 // Handle "constant" branch or select. This can occur for instance when a
5135 // loop pass transforms an inner loop and moves on to process the outer loop.
5136 if (auto *CI = dyn_cast<ConstantInt>(Cond))
5137 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5138
5139 // Try to match some simple smax or umax patterns.
5140 auto *ICI = dyn_cast<ICmpInst>(Cond);
5141 if (!ICI)
5142 return getUnknown(I);
5143
5144 Value *LHS = ICI->getOperand(0);
5145 Value *RHS = ICI->getOperand(1);
5146
5147 switch (ICI->getPredicate()) {
5148 case ICmpInst::ICMP_SLT:
5149 case ICmpInst::ICMP_SLE:
5150 std::swap(LHS, RHS);
5151 LLVM_FALLTHROUGH;
5152 case ICmpInst::ICMP_SGT:
5153 case ICmpInst::ICMP_SGE:
5154 // a >s b ? a+x : b+x -> smax(a, b)+x
5155 // a >s b ? b+x : a+x -> smin(a, b)+x
5156 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5157 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5158 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5159 const SCEV *LA = getSCEV(TrueVal);
5160 const SCEV *RA = getSCEV(FalseVal);
5161 const SCEV *LDiff = getMinusSCEV(LA, LS);
5162 const SCEV *RDiff = getMinusSCEV(RA, RS);
5163 if (LDiff == RDiff)
5164 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5165 LDiff = getMinusSCEV(LA, RS);
5166 RDiff = getMinusSCEV(RA, LS);
5167 if (LDiff == RDiff)
5168 return getAddExpr(getSMinExpr(LS, RS), LDiff);
5169 }
5170 break;
5171 case ICmpInst::ICMP_ULT:
5172 case ICmpInst::ICMP_ULE:
5173 std::swap(LHS, RHS);
5174 LLVM_FALLTHROUGH;
5175 case ICmpInst::ICMP_UGT:
5176 case ICmpInst::ICMP_UGE:
5177 // a >u b ? a+x : b+x -> umax(a, b)+x
5178 // a >u b ? b+x : a+x -> umin(a, b)+x
5179 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5180 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5181 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5182 const SCEV *LA = getSCEV(TrueVal);
5183 const SCEV *RA = getSCEV(FalseVal);
5184 const SCEV *LDiff = getMinusSCEV(LA, LS);
5185 const SCEV *RDiff = getMinusSCEV(RA, RS);
5186 if (LDiff == RDiff)
5187 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5188 LDiff = getMinusSCEV(LA, RS);
5189 RDiff = getMinusSCEV(RA, LS);
5190 if (LDiff == RDiff)
5191 return getAddExpr(getUMinExpr(LS, RS), LDiff);
5192 }
5193 break;
5194 case ICmpInst::ICMP_NE:
5195 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
5196 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5197 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5198 const SCEV *One = getOne(I->getType());
5199 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5200 const SCEV *LA = getSCEV(TrueVal);
5201 const SCEV *RA = getSCEV(FalseVal);
5202 const SCEV *LDiff = getMinusSCEV(LA, LS);
5203 const SCEV *RDiff = getMinusSCEV(RA, One);
5204 if (LDiff == RDiff)
5205 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5206 }
5207 break;
5208 case ICmpInst::ICMP_EQ:
5209 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
5210 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5211 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5212 const SCEV *One = getOne(I->getType());
5213 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5214 const SCEV *LA = getSCEV(TrueVal);
5215 const SCEV *RA = getSCEV(FalseVal);
5216 const SCEV *LDiff = getMinusSCEV(LA, One);
5217 const SCEV *RDiff = getMinusSCEV(RA, LS);
5218 if (LDiff == RDiff)
5219 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5220 }
5221 break;
5222 default:
5223 break;
5224 }
5225
5226 return getUnknown(I);
5227 }
5228
5229 /// Expand GEP instructions into add and multiply operations. This allows them
5230 /// to be analyzed by regular SCEV code.
createNodeForGEP(GEPOperator * GEP)5231 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5232 // Don't attempt to analyze GEPs over unsized objects.
5233 if (!GEP->getSourceElementType()->isSized())
5234 return getUnknown(GEP);
5235 const DataLayout &DL = F.getParent()->getDataLayout();
5236 // FIXME: Ideally, we should teach Scalar Evolution to
5237 // understand fat pointers.
5238 if (DL.isFatPointer(GEP->getPointerOperandType()->getPointerAddressSpace()))
5239 return getUnknown(GEP);
5240
5241 SmallVector<const SCEV *, 4> IndexExprs;
5242 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5243 IndexExprs.push_back(getSCEV(*Index));
5244 return getGEPExpr(GEP, IndexExprs);
5245 }
5246
GetMinTrailingZerosImpl(const SCEV * S)5247 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5248 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5249 return C->getAPInt().countTrailingZeros();
5250
5251 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5252 return std::min(GetMinTrailingZeros(T->getOperand()),
5253 (uint32_t)getTypeSizeInBits(T->getType()));
5254
5255 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5256 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5257 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5258 ? getTypeSizeInBits(E->getType())
5259 : OpRes;
5260 }
5261
5262 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5263 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5264 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5265 ? getTypeSizeInBits(E->getType())
5266 : OpRes;
5267 }
5268
5269 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5270 // The result is the min of all operands results.
5271 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5272 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5273 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5274 return MinOpRes;
5275 }
5276
5277 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5278 // The result is the sum of all operands results.
5279 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5280 unsigned BitWidth = getTypeSizeInBits(M->getType());
5281 for (unsigned i = 1, e = M->getNumOperands();
5282 SumOpRes != BitWidth && i != e; ++i)
5283 SumOpRes =
5284 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5285 return SumOpRes;
5286 }
5287
5288 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5289 // The result is the min of all operands results.
5290 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5291 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5292 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5293 return MinOpRes;
5294 }
5295
5296 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5297 // The result is the min of all operands results.
5298 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5299 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5300 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5301 return MinOpRes;
5302 }
5303
5304 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5305 // The result is the min of all operands results.
5306 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5307 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5308 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5309 return MinOpRes;
5310 }
5311
5312 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5313 // For a SCEVUnknown, ask ValueTracking.
5314 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5315 return Known.countMinTrailingZeros();
5316 }
5317
5318 // SCEVUDivExpr
5319 return 0;
5320 }
5321
GetMinTrailingZeros(const SCEV * S)5322 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5323 auto I = MinTrailingZerosCache.find(S);
5324 if (I != MinTrailingZerosCache.end())
5325 return I->second;
5326
5327 uint32_t Result = GetMinTrailingZerosImpl(S);
5328 auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5329 assert(InsertPair.second && "Should insert a new key");
5330 return InsertPair.first->second;
5331 }
5332
5333 /// Helper method to assign a range to V from metadata present in the IR.
GetRangeFromMetadata(Value * V)5334 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5335 if (Instruction *I = dyn_cast<Instruction>(V))
5336 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5337 return getConstantRangeFromMetadata(*MD);
5338
5339 return None;
5340 }
5341
5342 /// Determine the range for a particular SCEV. If SignHint is
5343 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5344 /// with a "cleaner" unsigned (resp. signed) representation.
5345 const ConstantRange &
getRangeRef(const SCEV * S,ScalarEvolution::RangeSignHint SignHint)5346 ScalarEvolution::getRangeRef(const SCEV *S,
5347 ScalarEvolution::RangeSignHint SignHint) {
5348 DenseMap<const SCEV *, ConstantRange> &Cache =
5349 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5350 : SignedRanges;
5351 ConstantRange::PreferredRangeType RangeType =
5352 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5353 ? ConstantRange::Unsigned : ConstantRange::Signed;
5354
5355 // See if we've computed this range already.
5356 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5357 if (I != Cache.end())
5358 return I->second;
5359
5360 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5361 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5362
5363 unsigned BitWidth = getTypeSizeInBits(S->getType());
5364 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5365 using OBO = OverflowingBinaryOperator;
5366
5367 // If the value has known zeros, the maximum value will have those known zeros
5368 // as well.
5369 uint32_t TZ = GetMinTrailingZeros(S);
5370 if (TZ != 0) {
5371 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5372 ConservativeResult =
5373 ConstantRange(APInt::getMinValue(BitWidth),
5374 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5375 else
5376 ConservativeResult = ConstantRange(
5377 APInt::getSignedMinValue(BitWidth),
5378 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5379 }
5380
5381 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5382 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5383 unsigned WrapType = OBO::AnyWrap;
5384 if (Add->hasNoSignedWrap())
5385 WrapType |= OBO::NoSignedWrap;
5386 if (Add->hasNoUnsignedWrap())
5387 WrapType |= OBO::NoUnsignedWrap;
5388 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5389 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5390 WrapType, RangeType);
5391 return setRange(Add, SignHint,
5392 ConservativeResult.intersectWith(X, RangeType));
5393 }
5394
5395 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5396 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5397 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5398 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5399 return setRange(Mul, SignHint,
5400 ConservativeResult.intersectWith(X, RangeType));
5401 }
5402
5403 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5404 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5405 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5406 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5407 return setRange(SMax, SignHint,
5408 ConservativeResult.intersectWith(X, RangeType));
5409 }
5410
5411 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5412 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5413 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5414 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5415 return setRange(UMax, SignHint,
5416 ConservativeResult.intersectWith(X, RangeType));
5417 }
5418
5419 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5420 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5421 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5422 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5423 return setRange(SMin, SignHint,
5424 ConservativeResult.intersectWith(X, RangeType));
5425 }
5426
5427 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5428 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5429 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5430 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5431 return setRange(UMin, SignHint,
5432 ConservativeResult.intersectWith(X, RangeType));
5433 }
5434
5435 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5436 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5437 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5438 return setRange(UDiv, SignHint,
5439 ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5440 }
5441
5442 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5443 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5444 return setRange(ZExt, SignHint,
5445 ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5446 RangeType));
5447 }
5448
5449 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5450 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5451 return setRange(SExt, SignHint,
5452 ConservativeResult.intersectWith(X.signExtend(BitWidth),
5453 RangeType));
5454 }
5455
5456 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5457 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5458 return setRange(Trunc, SignHint,
5459 ConservativeResult.intersectWith(X.truncate(BitWidth),
5460 RangeType));
5461 }
5462
5463 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5464 // If there's no unsigned wrap, the value will never be less than its
5465 // initial value.
5466 if (AddRec->hasNoUnsignedWrap()) {
5467 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5468 if (!UnsignedMinValue.isNullValue())
5469 ConservativeResult = ConservativeResult.intersectWith(
5470 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5471 }
5472
5473 // If there's no signed wrap, and all the operands except initial value have
5474 // the same sign or zero, the value won't ever be:
5475 // 1: smaller than initial value if operands are non negative,
5476 // 2: bigger than initial value if operands are non positive.
5477 // For both cases, value can not cross signed min/max boundary.
5478 if (AddRec->hasNoSignedWrap()) {
5479 bool AllNonNeg = true;
5480 bool AllNonPos = true;
5481 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5482 if (!isKnownNonNegative(AddRec->getOperand(i)))
5483 AllNonNeg = false;
5484 if (!isKnownNonPositive(AddRec->getOperand(i)))
5485 AllNonPos = false;
5486 }
5487 if (AllNonNeg)
5488 ConservativeResult = ConservativeResult.intersectWith(
5489 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5490 APInt::getSignedMinValue(BitWidth)),
5491 RangeType);
5492 else if (AllNonPos)
5493 ConservativeResult = ConservativeResult.intersectWith(
5494 ConstantRange::getNonEmpty(
5495 APInt::getSignedMinValue(BitWidth),
5496 getSignedRangeMax(AddRec->getStart()) + 1),
5497 RangeType);
5498 }
5499
5500 // TODO: non-affine addrec
5501 if (AddRec->isAffine()) {
5502 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5503 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5504 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5505 auto RangeFromAffine = getRangeForAffineAR(
5506 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5507 BitWidth);
5508 if (!RangeFromAffine.isFullSet())
5509 ConservativeResult =
5510 ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5511
5512 auto RangeFromFactoring = getRangeViaFactoring(
5513 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5514 BitWidth);
5515 if (!RangeFromFactoring.isFullSet())
5516 ConservativeResult =
5517 ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5518 }
5519 }
5520
5521 return setRange(AddRec, SignHint, std::move(ConservativeResult));
5522 }
5523
5524 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5525 // Check if the IR explicitly contains !range metadata.
5526 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5527 if (MDRange.hasValue())
5528 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5529 RangeType);
5530
5531 // Split here to avoid paying the compile-time cost of calling both
5532 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
5533 // if needed.
5534 const DataLayout &DL = getDataLayout();
5535 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5536 // For a SCEVUnknown, ask ValueTracking.
5537 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5538 if (Known.getBitWidth() != BitWidth)
5539 Known = Known.zextOrTrunc(BitWidth);
5540 // If Known does not result in full-set, intersect with it.
5541 if (Known.getMinValue() != Known.getMaxValue() + 1)
5542 ConservativeResult = ConservativeResult.intersectWith(
5543 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5544 RangeType);
5545 } else {
5546 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5547 "generalize as needed!");
5548 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5549 // If the pointer size is larger than the index size type, this can cause
5550 // NS to be larger than BitWidth. So compensate for this.
5551 if (U->getType()->isPointerTy()) {
5552 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5553 int ptrIdxDiff = ptrSize - BitWidth;
5554 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5555 NS -= ptrIdxDiff;
5556 }
5557
5558 if (NS > 1)
5559 ConservativeResult = ConservativeResult.intersectWith(
5560 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5561 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5562 RangeType);
5563 }
5564
5565 // A range of Phi is a subset of union of all ranges of its input.
5566 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5567 // Make sure that we do not run over cycled Phis.
5568 if (PendingPhiRanges.insert(Phi).second) {
5569 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5570 for (auto &Op : Phi->operands()) {
5571 auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5572 RangeFromOps = RangeFromOps.unionWith(OpRange);
5573 // No point to continue if we already have a full set.
5574 if (RangeFromOps.isFullSet())
5575 break;
5576 }
5577 ConservativeResult =
5578 ConservativeResult.intersectWith(RangeFromOps, RangeType);
5579 bool Erased = PendingPhiRanges.erase(Phi);
5580 assert(Erased && "Failed to erase Phi properly?");
5581 (void) Erased;
5582 }
5583 }
5584
5585 return setRange(U, SignHint, std::move(ConservativeResult));
5586 }
5587
5588 return setRange(S, SignHint, std::move(ConservativeResult));
5589 }
5590
5591 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5592 // values that the expression can take. Initially, the expression has a value
5593 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5594 // argument defines if we treat Step as signed or unsigned.
getRangeForAffineARHelper(APInt Step,const ConstantRange & StartRange,const APInt & MaxBECount,unsigned BitWidth,bool Signed)5595 static ConstantRange getRangeForAffineARHelper(APInt Step,
5596 const ConstantRange &StartRange,
5597 const APInt &MaxBECount,
5598 unsigned BitWidth, bool Signed) {
5599 // If either Step or MaxBECount is 0, then the expression won't change, and we
5600 // just need to return the initial range.
5601 if (Step == 0 || MaxBECount == 0)
5602 return StartRange;
5603
5604 // If we don't know anything about the initial value (i.e. StartRange is
5605 // FullRange), then we don't know anything about the final range either.
5606 // Return FullRange.
5607 if (StartRange.isFullSet())
5608 return ConstantRange::getFull(BitWidth);
5609
5610 // If Step is signed and negative, then we use its absolute value, but we also
5611 // note that we're moving in the opposite direction.
5612 bool Descending = Signed && Step.isNegative();
5613
5614 if (Signed)
5615 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5616 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5617 // This equations hold true due to the well-defined wrap-around behavior of
5618 // APInt.
5619 Step = Step.abs();
5620
5621 // Check if Offset is more than full span of BitWidth. If it is, the
5622 // expression is guaranteed to overflow.
5623 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5624 return ConstantRange::getFull(BitWidth);
5625
5626 // Offset is by how much the expression can change. Checks above guarantee no
5627 // overflow here.
5628 APInt Offset = Step * MaxBECount;
5629
5630 // Minimum value of the final range will match the minimal value of StartRange
5631 // if the expression is increasing and will be decreased by Offset otherwise.
5632 // Maximum value of the final range will match the maximal value of StartRange
5633 // if the expression is decreasing and will be increased by Offset otherwise.
5634 APInt StartLower = StartRange.getLower();
5635 APInt StartUpper = StartRange.getUpper() - 1;
5636 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5637 : (StartUpper + std::move(Offset));
5638
5639 // It's possible that the new minimum/maximum value will fall into the initial
5640 // range (due to wrap around). This means that the expression can take any
5641 // value in this bitwidth, and we have to return full range.
5642 if (StartRange.contains(MovedBoundary))
5643 return ConstantRange::getFull(BitWidth);
5644
5645 APInt NewLower =
5646 Descending ? std::move(MovedBoundary) : std::move(StartLower);
5647 APInt NewUpper =
5648 Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5649 NewUpper += 1;
5650
5651 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5652 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5653 }
5654
getRangeForAffineAR(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)5655 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5656 const SCEV *Step,
5657 const SCEV *MaxBECount,
5658 unsigned BitWidth) {
5659 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5660 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5661 "Precondition!");
5662
5663 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5664 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5665
5666 // First, consider step signed.
5667 ConstantRange StartSRange = getSignedRange(Start);
5668 ConstantRange StepSRange = getSignedRange(Step);
5669
5670 // If Step can be both positive and negative, we need to find ranges for the
5671 // maximum absolute step values in both directions and union them.
5672 ConstantRange SR =
5673 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5674 MaxBECountValue, BitWidth, /* Signed = */ true);
5675 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5676 StartSRange, MaxBECountValue,
5677 BitWidth, /* Signed = */ true));
5678
5679 // Next, consider step unsigned.
5680 ConstantRange UR = getRangeForAffineARHelper(
5681 getUnsignedRangeMax(Step), getUnsignedRange(Start),
5682 MaxBECountValue, BitWidth, /* Signed = */ false);
5683
5684 // Finally, intersect signed and unsigned ranges.
5685 return SR.intersectWith(UR, ConstantRange::Smallest);
5686 }
5687
getRangeViaFactoring(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)5688 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5689 const SCEV *Step,
5690 const SCEV *MaxBECount,
5691 unsigned BitWidth) {
5692 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5693 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5694
5695 struct SelectPattern {
5696 Value *Condition = nullptr;
5697 APInt TrueValue;
5698 APInt FalseValue;
5699
5700 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5701 const SCEV *S) {
5702 Optional<unsigned> CastOp;
5703 APInt Offset(BitWidth, 0);
5704
5705 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5706 "Should be!");
5707
5708 // Peel off a constant offset:
5709 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5710 // In the future we could consider being smarter here and handle
5711 // {Start+Step,+,Step} too.
5712 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5713 return;
5714
5715 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5716 S = SA->getOperand(1);
5717 }
5718
5719 // Peel off a cast operation
5720 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5721 CastOp = SCast->getSCEVType();
5722 S = SCast->getOperand();
5723 }
5724
5725 using namespace llvm::PatternMatch;
5726
5727 auto *SU = dyn_cast<SCEVUnknown>(S);
5728 const APInt *TrueVal, *FalseVal;
5729 if (!SU ||
5730 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5731 m_APInt(FalseVal)))) {
5732 Condition = nullptr;
5733 return;
5734 }
5735
5736 TrueValue = *TrueVal;
5737 FalseValue = *FalseVal;
5738
5739 // Re-apply the cast we peeled off earlier
5740 if (CastOp.hasValue())
5741 switch (*CastOp) {
5742 default:
5743 llvm_unreachable("Unknown SCEV cast type!");
5744
5745 case scTruncate:
5746 TrueValue = TrueValue.trunc(BitWidth);
5747 FalseValue = FalseValue.trunc(BitWidth);
5748 break;
5749 case scZeroExtend:
5750 TrueValue = TrueValue.zext(BitWidth);
5751 FalseValue = FalseValue.zext(BitWidth);
5752 break;
5753 case scSignExtend:
5754 TrueValue = TrueValue.sext(BitWidth);
5755 FalseValue = FalseValue.sext(BitWidth);
5756 break;
5757 }
5758
5759 // Re-apply the constant offset we peeled off earlier
5760 TrueValue += Offset;
5761 FalseValue += Offset;
5762 }
5763
5764 bool isRecognized() { return Condition != nullptr; }
5765 };
5766
5767 SelectPattern StartPattern(*this, BitWidth, Start);
5768 if (!StartPattern.isRecognized())
5769 return ConstantRange::getFull(BitWidth);
5770
5771 SelectPattern StepPattern(*this, BitWidth, Step);
5772 if (!StepPattern.isRecognized())
5773 return ConstantRange::getFull(BitWidth);
5774
5775 if (StartPattern.Condition != StepPattern.Condition) {
5776 // We don't handle this case today; but we could, by considering four
5777 // possibilities below instead of two. I'm not sure if there are cases where
5778 // that will help over what getRange already does, though.
5779 return ConstantRange::getFull(BitWidth);
5780 }
5781
5782 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5783 // construct arbitrary general SCEV expressions here. This function is called
5784 // from deep in the call stack, and calling getSCEV (on a sext instruction,
5785 // say) can end up caching a suboptimal value.
5786
5787 // FIXME: without the explicit `this` receiver below, MSVC errors out with
5788 // C2352 and C2512 (otherwise it isn't needed).
5789
5790 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5791 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5792 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5793 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5794
5795 ConstantRange TrueRange =
5796 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5797 ConstantRange FalseRange =
5798 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5799
5800 return TrueRange.unionWith(FalseRange);
5801 }
5802
getNoWrapFlagsFromUB(const Value * V)5803 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5804 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5805 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5806
5807 // Return early if there are no flags to propagate to the SCEV.
5808 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5809 if (BinOp->hasNoUnsignedWrap())
5810 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5811 if (BinOp->hasNoSignedWrap())
5812 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5813 if (Flags == SCEV::FlagAnyWrap)
5814 return SCEV::FlagAnyWrap;
5815
5816 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5817 }
5818
isSCEVExprNeverPoison(const Instruction * I)5819 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5820 // Here we check that I is in the header of the innermost loop containing I,
5821 // since we only deal with instructions in the loop header. The actual loop we
5822 // need to check later will come from an add recurrence, but getting that
5823 // requires computing the SCEV of the operands, which can be expensive. This
5824 // check we can do cheaply to rule out some cases early.
5825 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5826 if (InnermostContainingLoop == nullptr ||
5827 InnermostContainingLoop->getHeader() != I->getParent())
5828 return false;
5829
5830 // Only proceed if we can prove that I does not yield poison.
5831 if (!programUndefinedIfPoison(I))
5832 return false;
5833
5834 // At this point we know that if I is executed, then it does not wrap
5835 // according to at least one of NSW or NUW. If I is not executed, then we do
5836 // not know if the calculation that I represents would wrap. Multiple
5837 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5838 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5839 // derived from other instructions that map to the same SCEV. We cannot make
5840 // that guarantee for cases where I is not executed. So we need to find the
5841 // loop that I is considered in relation to and prove that I is executed for
5842 // every iteration of that loop. That implies that the value that I
5843 // calculates does not wrap anywhere in the loop, so then we can apply the
5844 // flags to the SCEV.
5845 //
5846 // We check isLoopInvariant to disambiguate in case we are adding recurrences
5847 // from different loops, so that we know which loop to prove that I is
5848 // executed in.
5849 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5850 // I could be an extractvalue from a call to an overflow intrinsic.
5851 // TODO: We can do better here in some cases.
5852 if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5853 return false;
5854 const SCEV *Op = getSCEV(I->getOperand(OpIndex));
5855 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
5856 bool AllOtherOpsLoopInvariant = true;
5857 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
5858 ++OtherOpIndex) {
5859 if (OtherOpIndex != OpIndex) {
5860 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
5861 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
5862 AllOtherOpsLoopInvariant = false;
5863 break;
5864 }
5865 }
5866 }
5867 if (AllOtherOpsLoopInvariant &&
5868 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
5869 return true;
5870 }
5871 }
5872 return false;
5873 }
5874
isAddRecNeverPoison(const Instruction * I,const Loop * L)5875 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
5876 // If we know that \c I can never be poison period, then that's enough.
5877 if (isSCEVExprNeverPoison(I))
5878 return true;
5879
5880 // For an add recurrence specifically, we assume that infinite loops without
5881 // side effects are undefined behavior, and then reason as follows:
5882 //
5883 // If the add recurrence is poison in any iteration, it is poison on all
5884 // future iterations (since incrementing poison yields poison). If the result
5885 // of the add recurrence is fed into the loop latch condition and the loop
5886 // does not contain any throws or exiting blocks other than the latch, we now
5887 // have the ability to "choose" whether the backedge is taken or not (by
5888 // choosing a sufficiently evil value for the poison feeding into the branch)
5889 // for every iteration including and after the one in which \p I first became
5890 // poison. There are two possibilities (let's call the iteration in which \p
5891 // I first became poison as K):
5892 //
5893 // 1. In the set of iterations including and after K, the loop body executes
5894 // no side effects. In this case executing the backege an infinte number
5895 // of times will yield undefined behavior.
5896 //
5897 // 2. In the set of iterations including and after K, the loop body executes
5898 // at least one side effect. In this case, that specific instance of side
5899 // effect is control dependent on poison, which also yields undefined
5900 // behavior.
5901
5902 auto *ExitingBB = L->getExitingBlock();
5903 auto *LatchBB = L->getLoopLatch();
5904 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
5905 return false;
5906
5907 SmallPtrSet<const Instruction *, 16> Pushed;
5908 SmallVector<const Instruction *, 8> PoisonStack;
5909
5910 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
5911 // things that are known to be poison under that assumption go on the
5912 // PoisonStack.
5913 Pushed.insert(I);
5914 PoisonStack.push_back(I);
5915
5916 bool LatchControlDependentOnPoison = false;
5917 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
5918 const Instruction *Poison = PoisonStack.pop_back_val();
5919
5920 for (auto *PoisonUser : Poison->users()) {
5921 if (propagatesPoison(cast<Instruction>(PoisonUser))) {
5922 if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
5923 PoisonStack.push_back(cast<Instruction>(PoisonUser));
5924 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
5925 assert(BI->isConditional() && "Only possibility!");
5926 if (BI->getParent() == LatchBB) {
5927 LatchControlDependentOnPoison = true;
5928 break;
5929 }
5930 }
5931 }
5932 }
5933
5934 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
5935 }
5936
5937 ScalarEvolution::LoopProperties
getLoopProperties(const Loop * L)5938 ScalarEvolution::getLoopProperties(const Loop *L) {
5939 using LoopProperties = ScalarEvolution::LoopProperties;
5940
5941 auto Itr = LoopPropertiesCache.find(L);
5942 if (Itr == LoopPropertiesCache.end()) {
5943 auto HasSideEffects = [](Instruction *I) {
5944 if (auto *SI = dyn_cast<StoreInst>(I))
5945 return !SI->isSimple();
5946
5947 return I->mayHaveSideEffects();
5948 };
5949
5950 LoopProperties LP = {/* HasNoAbnormalExits */ true,
5951 /*HasNoSideEffects*/ true};
5952
5953 for (auto *BB : L->getBlocks())
5954 for (auto &I : *BB) {
5955 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5956 LP.HasNoAbnormalExits = false;
5957 if (HasSideEffects(&I))
5958 LP.HasNoSideEffects = false;
5959 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
5960 break; // We're already as pessimistic as we can get.
5961 }
5962
5963 auto InsertPair = LoopPropertiesCache.insert({L, LP});
5964 assert(InsertPair.second && "We just checked!");
5965 Itr = InsertPair.first;
5966 }
5967
5968 return Itr->second;
5969 }
5970
createSCEV(Value * V)5971 const SCEV *ScalarEvolution::createSCEV(Value *V) {
5972 if (!isSCEVable(V->getType()))
5973 return getUnknown(V);
5974
5975 if (Instruction *I = dyn_cast<Instruction>(V)) {
5976 // Don't attempt to analyze instructions in blocks that aren't
5977 // reachable. Such instructions don't matter, and they aren't required
5978 // to obey basic rules for definitions dominating uses which this
5979 // analysis depends on.
5980 if (!DT.isReachableFromEntry(I->getParent()))
5981 return getUnknown(UndefValue::get(V->getType()));
5982 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
5983 return getConstant(CI);
5984 else if (isa<ConstantPointerNull>(V))
5985 return getZero(V->getType());
5986 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
5987 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
5988 else if (!isa<ConstantExpr>(V))
5989 return getUnknown(V);
5990
5991 Operator *U = cast<Operator>(V);
5992 if (auto BO = MatchBinaryOp(U, DT)) {
5993 switch (BO->Opcode) {
5994 case Instruction::Add: {
5995 // The simple thing to do would be to just call getSCEV on both operands
5996 // and call getAddExpr with the result. However if we're looking at a
5997 // bunch of things all added together, this can be quite inefficient,
5998 // because it leads to N-1 getAddExpr calls for N ultimate operands.
5999 // Instead, gather up all the operands and make a single getAddExpr call.
6000 // LLVM IR canonical form means we need only traverse the left operands.
6001 SmallVector<const SCEV *, 4> AddOps;
6002 do {
6003 if (BO->Op) {
6004 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6005 AddOps.push_back(OpSCEV);
6006 break;
6007 }
6008
6009 // If a NUW or NSW flag can be applied to the SCEV for this
6010 // addition, then compute the SCEV for this addition by itself
6011 // with a separate call to getAddExpr. We need to do that
6012 // instead of pushing the operands of the addition onto AddOps,
6013 // since the flags are only known to apply to this particular
6014 // addition - they may not apply to other additions that can be
6015 // formed with operands from AddOps.
6016 const SCEV *RHS = getSCEV(BO->RHS);
6017 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6018 if (Flags != SCEV::FlagAnyWrap) {
6019 const SCEV *LHS = getSCEV(BO->LHS);
6020 if (BO->Opcode == Instruction::Sub)
6021 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6022 else
6023 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6024 break;
6025 }
6026 }
6027
6028 if (BO->Opcode == Instruction::Sub)
6029 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6030 else
6031 AddOps.push_back(getSCEV(BO->RHS));
6032
6033 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6034 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6035 NewBO->Opcode != Instruction::Sub)) {
6036 AddOps.push_back(getSCEV(BO->LHS));
6037 break;
6038 }
6039 BO = NewBO;
6040 } while (true);
6041
6042 return getAddExpr(AddOps);
6043 }
6044
6045 case Instruction::Mul: {
6046 SmallVector<const SCEV *, 4> MulOps;
6047 do {
6048 if (BO->Op) {
6049 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6050 MulOps.push_back(OpSCEV);
6051 break;
6052 }
6053
6054 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6055 if (Flags != SCEV::FlagAnyWrap) {
6056 MulOps.push_back(
6057 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6058 break;
6059 }
6060 }
6061
6062 MulOps.push_back(getSCEV(BO->RHS));
6063 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6064 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6065 MulOps.push_back(getSCEV(BO->LHS));
6066 break;
6067 }
6068 BO = NewBO;
6069 } while (true);
6070
6071 return getMulExpr(MulOps);
6072 }
6073 case Instruction::UDiv:
6074 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6075 case Instruction::URem:
6076 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6077 case Instruction::Sub: {
6078 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6079 if (BO->Op)
6080 Flags = getNoWrapFlagsFromUB(BO->Op);
6081 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6082 }
6083 case Instruction::And:
6084 // For an expression like x&255 that merely masks off the high bits,
6085 // use zext(trunc(x)) as the SCEV expression.
6086 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6087 if (CI->isZero())
6088 return getSCEV(BO->RHS);
6089 if (CI->isMinusOne())
6090 return getSCEV(BO->LHS);
6091 const APInt &A = CI->getValue();
6092
6093 // Instcombine's ShrinkDemandedConstant may strip bits out of
6094 // constants, obscuring what would otherwise be a low-bits mask.
6095 // Use computeKnownBits to compute what ShrinkDemandedConstant
6096 // knew about to reconstruct a low-bits mask value.
6097 unsigned LZ = A.countLeadingZeros();
6098 unsigned TZ = A.countTrailingZeros();
6099 unsigned BitWidth = A.getBitWidth();
6100 KnownBits Known(BitWidth);
6101 computeKnownBits(BO->LHS, Known, getDataLayout(),
6102 0, &AC, nullptr, &DT);
6103
6104 APInt EffectiveMask =
6105 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6106 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6107 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6108 const SCEV *LHS = getSCEV(BO->LHS);
6109 const SCEV *ShiftedLHS = nullptr;
6110 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6111 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6112 // For an expression like (x * 8) & 8, simplify the multiply.
6113 unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6114 unsigned GCD = std::min(MulZeros, TZ);
6115 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6116 SmallVector<const SCEV*, 4> MulOps;
6117 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6118 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6119 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6120 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6121 }
6122 }
6123 if (!ShiftedLHS)
6124 ShiftedLHS = getUDivExpr(LHS, MulCount);
6125 return getMulExpr(
6126 getZeroExtendExpr(
6127 getTruncateExpr(ShiftedLHS,
6128 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6129 BO->LHS->getType()),
6130 MulCount);
6131 }
6132 }
6133 break;
6134
6135 case Instruction::Or:
6136 // If the RHS of the Or is a constant, we may have something like:
6137 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
6138 // optimizations will transparently handle this case.
6139 //
6140 // In order for this transformation to be safe, the LHS must be of the
6141 // form X*(2^n) and the Or constant must be less than 2^n.
6142 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6143 const SCEV *LHS = getSCEV(BO->LHS);
6144 const APInt &CIVal = CI->getValue();
6145 if (GetMinTrailingZeros(LHS) >=
6146 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6147 // Build a plain add SCEV.
6148 return getAddExpr(LHS, getSCEV(CI),
6149 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6150 }
6151 }
6152 break;
6153
6154 case Instruction::Xor:
6155 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6156 // If the RHS of xor is -1, then this is a not operation.
6157 if (CI->isMinusOne())
6158 return getNotSCEV(getSCEV(BO->LHS));
6159
6160 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6161 // This is a variant of the check for xor with -1, and it handles
6162 // the case where instcombine has trimmed non-demanded bits out
6163 // of an xor with -1.
6164 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6165 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6166 if (LBO->getOpcode() == Instruction::And &&
6167 LCI->getValue() == CI->getValue())
6168 if (const SCEVZeroExtendExpr *Z =
6169 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6170 Type *UTy = BO->LHS->getType();
6171 const SCEV *Z0 = Z->getOperand();
6172 Type *Z0Ty = Z0->getType();
6173 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6174
6175 // If C is a low-bits mask, the zero extend is serving to
6176 // mask off the high bits. Complement the operand and
6177 // re-apply the zext.
6178 if (CI->getValue().isMask(Z0TySize))
6179 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6180
6181 // If C is a single bit, it may be in the sign-bit position
6182 // before the zero-extend. In this case, represent the xor
6183 // using an add, which is equivalent, and re-apply the zext.
6184 APInt Trunc = CI->getValue().trunc(Z0TySize);
6185 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6186 Trunc.isSignMask())
6187 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6188 UTy);
6189 }
6190 }
6191 break;
6192
6193 case Instruction::Shl:
6194 // Turn shift left of a constant amount into a multiply.
6195 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6196 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6197
6198 // If the shift count is not less than the bitwidth, the result of
6199 // the shift is undefined. Don't try to analyze it, because the
6200 // resolution chosen here may differ from the resolution chosen in
6201 // other parts of the compiler.
6202 if (SA->getValue().uge(BitWidth))
6203 break;
6204
6205 // We can safely preserve the nuw flag in all cases. It's also safe to
6206 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6207 // requires special handling. It can be preserved as long as we're not
6208 // left shifting by bitwidth - 1.
6209 auto Flags = SCEV::FlagAnyWrap;
6210 if (BO->Op) {
6211 auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6212 if ((MulFlags & SCEV::FlagNSW) &&
6213 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6214 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6215 if (MulFlags & SCEV::FlagNUW)
6216 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6217 }
6218
6219 Constant *X = ConstantInt::get(
6220 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6221 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6222 }
6223 break;
6224
6225 case Instruction::AShr: {
6226 // AShr X, C, where C is a constant.
6227 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6228 if (!CI)
6229 break;
6230
6231 Type *OuterTy = BO->LHS->getType();
6232 uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6233 // If the shift count is not less than the bitwidth, the result of
6234 // the shift is undefined. Don't try to analyze it, because the
6235 // resolution chosen here may differ from the resolution chosen in
6236 // other parts of the compiler.
6237 if (CI->getValue().uge(BitWidth))
6238 break;
6239
6240 if (CI->isZero())
6241 return getSCEV(BO->LHS); // shift by zero --> noop
6242
6243 uint64_t AShrAmt = CI->getZExtValue();
6244 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6245
6246 Operator *L = dyn_cast<Operator>(BO->LHS);
6247 if (L && L->getOpcode() == Instruction::Shl) {
6248 // X = Shl A, n
6249 // Y = AShr X, m
6250 // Both n and m are constant.
6251
6252 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6253 if (L->getOperand(1) == BO->RHS)
6254 // For a two-shift sext-inreg, i.e. n = m,
6255 // use sext(trunc(x)) as the SCEV expression.
6256 return getSignExtendExpr(
6257 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6258
6259 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6260 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6261 uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6262 if (ShlAmt > AShrAmt) {
6263 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6264 // expression. We already checked that ShlAmt < BitWidth, so
6265 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6266 // ShlAmt - AShrAmt < Amt.
6267 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6268 ShlAmt - AShrAmt);
6269 return getSignExtendExpr(
6270 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6271 getConstant(Mul)), OuterTy);
6272 }
6273 }
6274 }
6275 break;
6276 }
6277 }
6278 }
6279
6280 switch (U->getOpcode()) {
6281 case Instruction::Trunc:
6282 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6283
6284 case Instruction::ZExt:
6285 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6286
6287 case Instruction::SExt:
6288 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6289 // The NSW flag of a subtract does not always survive the conversion to
6290 // A + (-1)*B. By pushing sign extension onto its operands we are much
6291 // more likely to preserve NSW and allow later AddRec optimisations.
6292 //
6293 // NOTE: This is effectively duplicating this logic from getSignExtend:
6294 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6295 // but by that point the NSW information has potentially been lost.
6296 if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6297 Type *Ty = U->getType();
6298 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6299 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6300 return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6301 }
6302 }
6303 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6304
6305 case Instruction::BitCast:
6306 // BitCasts are no-op casts so we just eliminate the cast.
6307 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6308 return getSCEV(U->getOperand(0));
6309 break;
6310
6311 case Instruction::SDiv:
6312 // If both operands are non-negative, this is just an udiv.
6313 if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6314 isKnownNonNegative(getSCEV(U->getOperand(1))))
6315 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6316 break;
6317
6318 case Instruction::SRem:
6319 // If both operands are non-negative, this is just an urem.
6320 if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6321 isKnownNonNegative(getSCEV(U->getOperand(1))))
6322 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6323 break;
6324
6325 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6326 // lead to pointer expressions which cannot safely be expanded to GEPs,
6327 // because ScalarEvolution doesn't respect the GEP aliasing rules when
6328 // simplifying integer expressions.
6329
6330 case Instruction::GetElementPtr:
6331 return createNodeForGEP(cast<GEPOperator>(U));
6332
6333 case Instruction::PHI:
6334 return createNodeForPHI(cast<PHINode>(U));
6335
6336 case Instruction::Select:
6337 // U can also be a select constant expr, which let fall through. Since
6338 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6339 // constant expressions cannot have instructions as operands, we'd have
6340 // returned getUnknown for a select constant expressions anyway.
6341 if (isa<Instruction>(U))
6342 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6343 U->getOperand(1), U->getOperand(2));
6344 break;
6345
6346 case Instruction::Call:
6347 case Instruction::Invoke:
6348 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6349 return getSCEV(RV);
6350 break;
6351 }
6352
6353 return getUnknown(V);
6354 }
6355
6356 //===----------------------------------------------------------------------===//
6357 // Iteration Count Computation Code
6358 //
6359
getConstantTripCount(const SCEVConstant * ExitCount)6360 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6361 if (!ExitCount)
6362 return 0;
6363
6364 ConstantInt *ExitConst = ExitCount->getValue();
6365
6366 // Guard against huge trip counts.
6367 if (ExitConst->getValue().getActiveBits() > 32)
6368 return 0;
6369
6370 // In case of integer overflow, this returns 0, which is correct.
6371 return ((unsigned)ExitConst->getZExtValue()) + 1;
6372 }
6373
getSmallConstantTripCount(const Loop * L)6374 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6375 if (BasicBlock *ExitingBB = L->getExitingBlock())
6376 return getSmallConstantTripCount(L, ExitingBB);
6377
6378 // No trip count information for multiple exits.
6379 return 0;
6380 }
6381
getSmallConstantTripCount(const Loop * L,BasicBlock * ExitingBlock)6382 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6383 BasicBlock *ExitingBlock) {
6384 assert(ExitingBlock && "Must pass a non-null exiting block!");
6385 assert(L->isLoopExiting(ExitingBlock) &&
6386 "Exiting block must actually branch out of the loop!");
6387 const SCEVConstant *ExitCount =
6388 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6389 return getConstantTripCount(ExitCount);
6390 }
6391
getSmallConstantMaxTripCount(const Loop * L)6392 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6393 const auto *MaxExitCount =
6394 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6395 return getConstantTripCount(MaxExitCount);
6396 }
6397
getSmallConstantTripMultiple(const Loop * L)6398 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6399 if (BasicBlock *ExitingBB = L->getExitingBlock())
6400 return getSmallConstantTripMultiple(L, ExitingBB);
6401
6402 // No trip multiple information for multiple exits.
6403 return 0;
6404 }
6405
6406 /// Returns the largest constant divisor of the trip count of this loop as a
6407 /// normal unsigned value, if possible. This means that the actual trip count is
6408 /// always a multiple of the returned value (don't forget the trip count could
6409 /// very well be zero as well!).
6410 ///
6411 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6412 /// multiple of a constant (which is also the case if the trip count is simply
6413 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6414 /// if the trip count is very large (>= 2^32).
6415 ///
6416 /// As explained in the comments for getSmallConstantTripCount, this assumes
6417 /// that control exits the loop via ExitingBlock.
6418 unsigned
getSmallConstantTripMultiple(const Loop * L,BasicBlock * ExitingBlock)6419 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6420 BasicBlock *ExitingBlock) {
6421 assert(ExitingBlock && "Must pass a non-null exiting block!");
6422 assert(L->isLoopExiting(ExitingBlock) &&
6423 "Exiting block must actually branch out of the loop!");
6424 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6425 if (ExitCount == getCouldNotCompute())
6426 return 1;
6427
6428 // Get the trip count from the BE count by adding 1.
6429 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6430
6431 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6432 if (!TC)
6433 // Attempt to factor more general cases. Returns the greatest power of
6434 // two divisor. If overflow happens, the trip count expression is still
6435 // divisible by the greatest power of 2 divisor returned.
6436 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6437
6438 ConstantInt *Result = TC->getValue();
6439
6440 // Guard against huge trip counts (this requires checking
6441 // for zero to handle the case where the trip count == -1 and the
6442 // addition wraps).
6443 if (!Result || Result->getValue().getActiveBits() > 32 ||
6444 Result->getValue().getActiveBits() == 0)
6445 return 1;
6446
6447 return (unsigned)Result->getZExtValue();
6448 }
6449
getExitCount(const Loop * L,BasicBlock * ExitingBlock,ExitCountKind Kind)6450 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6451 BasicBlock *ExitingBlock,
6452 ExitCountKind Kind) {
6453 switch (Kind) {
6454 case Exact:
6455 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6456 case ConstantMaximum:
6457 return getBackedgeTakenInfo(L).getMax(ExitingBlock, this);
6458 };
6459 llvm_unreachable("Invalid ExitCountKind!");
6460 }
6461
6462 const SCEV *
getPredicatedBackedgeTakenCount(const Loop * L,SCEVUnionPredicate & Preds)6463 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6464 SCEVUnionPredicate &Preds) {
6465 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6466 }
6467
getBackedgeTakenCount(const Loop * L,ExitCountKind Kind)6468 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6469 ExitCountKind Kind) {
6470 switch (Kind) {
6471 case Exact:
6472 return getBackedgeTakenInfo(L).getExact(L, this);
6473 case ConstantMaximum:
6474 return getBackedgeTakenInfo(L).getMax(this);
6475 };
6476 llvm_unreachable("Invalid ExitCountKind!");
6477 }
6478
isBackedgeTakenCountMaxOrZero(const Loop * L)6479 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6480 return getBackedgeTakenInfo(L).isMaxOrZero(this);
6481 }
6482
6483 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6484 static void
PushLoopPHIs(const Loop * L,SmallVectorImpl<Instruction * > & Worklist)6485 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6486 BasicBlock *Header = L->getHeader();
6487
6488 // Push all Loop-header PHIs onto the Worklist stack.
6489 for (PHINode &PN : Header->phis())
6490 Worklist.push_back(&PN);
6491 }
6492
6493 const ScalarEvolution::BackedgeTakenInfo &
getPredicatedBackedgeTakenInfo(const Loop * L)6494 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6495 auto &BTI = getBackedgeTakenInfo(L);
6496 if (BTI.hasFullInfo())
6497 return BTI;
6498
6499 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6500
6501 if (!Pair.second)
6502 return Pair.first->second;
6503
6504 BackedgeTakenInfo Result =
6505 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6506
6507 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6508 }
6509
6510 const ScalarEvolution::BackedgeTakenInfo &
getBackedgeTakenInfo(const Loop * L)6511 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6512 // Initially insert an invalid entry for this loop. If the insertion
6513 // succeeds, proceed to actually compute a backedge-taken count and
6514 // update the value. The temporary CouldNotCompute value tells SCEV
6515 // code elsewhere that it shouldn't attempt to request a new
6516 // backedge-taken count, which could result in infinite recursion.
6517 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6518 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6519 if (!Pair.second)
6520 return Pair.first->second;
6521
6522 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6523 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6524 // must be cleared in this scope.
6525 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6526
6527 // In product build, there are no usage of statistic.
6528 (void)NumTripCountsComputed;
6529 (void)NumTripCountsNotComputed;
6530 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6531 const SCEV *BEExact = Result.getExact(L, this);
6532 if (BEExact != getCouldNotCompute()) {
6533 assert(isLoopInvariant(BEExact, L) &&
6534 isLoopInvariant(Result.getMax(this), L) &&
6535 "Computed backedge-taken count isn't loop invariant for loop!");
6536 ++NumTripCountsComputed;
6537 }
6538 else if (Result.getMax(this) == getCouldNotCompute() &&
6539 isa<PHINode>(L->getHeader()->begin())) {
6540 // Only count loops that have phi nodes as not being computable.
6541 ++NumTripCountsNotComputed;
6542 }
6543 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6544
6545 // Now that we know more about the trip count for this loop, forget any
6546 // existing SCEV values for PHI nodes in this loop since they are only
6547 // conservative estimates made without the benefit of trip count
6548 // information. This is similar to the code in forgetLoop, except that
6549 // it handles SCEVUnknown PHI nodes specially.
6550 if (Result.hasAnyInfo()) {
6551 SmallVector<Instruction *, 16> Worklist;
6552 PushLoopPHIs(L, Worklist);
6553
6554 SmallPtrSet<Instruction *, 8> Discovered;
6555 while (!Worklist.empty()) {
6556 Instruction *I = Worklist.pop_back_val();
6557
6558 ValueExprMapType::iterator It =
6559 ValueExprMap.find_as(static_cast<Value *>(I));
6560 if (It != ValueExprMap.end()) {
6561 const SCEV *Old = It->second;
6562
6563 // SCEVUnknown for a PHI either means that it has an unrecognized
6564 // structure, or it's a PHI that's in the progress of being computed
6565 // by createNodeForPHI. In the former case, additional loop trip
6566 // count information isn't going to change anything. In the later
6567 // case, createNodeForPHI will perform the necessary updates on its
6568 // own when it gets to that point.
6569 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6570 eraseValueFromMap(It->first);
6571 forgetMemoizedResults(Old);
6572 }
6573 if (PHINode *PN = dyn_cast<PHINode>(I))
6574 ConstantEvolutionLoopExitValue.erase(PN);
6575 }
6576
6577 // Since we don't need to invalidate anything for correctness and we're
6578 // only invalidating to make SCEV's results more precise, we get to stop
6579 // early to avoid invalidating too much. This is especially important in
6580 // cases like:
6581 //
6582 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6583 // loop0:
6584 // %pn0 = phi
6585 // ...
6586 // loop1:
6587 // %pn1 = phi
6588 // ...
6589 //
6590 // where both loop0 and loop1's backedge taken count uses the SCEV
6591 // expression for %v. If we don't have the early stop below then in cases
6592 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6593 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6594 // count for loop1, effectively nullifying SCEV's trip count cache.
6595 for (auto *U : I->users())
6596 if (auto *I = dyn_cast<Instruction>(U)) {
6597 auto *LoopForUser = LI.getLoopFor(I->getParent());
6598 if (LoopForUser && L->contains(LoopForUser) &&
6599 Discovered.insert(I).second)
6600 Worklist.push_back(I);
6601 }
6602 }
6603 }
6604
6605 // Re-lookup the insert position, since the call to
6606 // computeBackedgeTakenCount above could result in a
6607 // recusive call to getBackedgeTakenInfo (on a different
6608 // loop), which would invalidate the iterator computed
6609 // earlier.
6610 return BackedgeTakenCounts.find(L)->second = std::move(Result);
6611 }
6612
forgetAllLoops()6613 void ScalarEvolution::forgetAllLoops() {
6614 // This method is intended to forget all info about loops. It should
6615 // invalidate caches as if the following happened:
6616 // - The trip counts of all loops have changed arbitrarily
6617 // - Every llvm::Value has been updated in place to produce a different
6618 // result.
6619 BackedgeTakenCounts.clear();
6620 PredicatedBackedgeTakenCounts.clear();
6621 LoopPropertiesCache.clear();
6622 ConstantEvolutionLoopExitValue.clear();
6623 ValueExprMap.clear();
6624 ValuesAtScopes.clear();
6625 LoopDispositions.clear();
6626 BlockDispositions.clear();
6627 UnsignedRanges.clear();
6628 SignedRanges.clear();
6629 ExprValueMap.clear();
6630 HasRecMap.clear();
6631 MinTrailingZerosCache.clear();
6632 PredicatedSCEVRewrites.clear();
6633 }
6634
forgetLoop(const Loop * L)6635 void ScalarEvolution::forgetLoop(const Loop *L) {
6636 // Drop any stored trip count value.
6637 auto RemoveLoopFromBackedgeMap =
6638 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6639 auto BTCPos = Map.find(L);
6640 if (BTCPos != Map.end()) {
6641 BTCPos->second.clear();
6642 Map.erase(BTCPos);
6643 }
6644 };
6645
6646 SmallVector<const Loop *, 16> LoopWorklist(1, L);
6647 SmallVector<Instruction *, 32> Worklist;
6648 SmallPtrSet<Instruction *, 16> Visited;
6649
6650 // Iterate over all the loops and sub-loops to drop SCEV information.
6651 while (!LoopWorklist.empty()) {
6652 auto *CurrL = LoopWorklist.pop_back_val();
6653
6654 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6655 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6656
6657 // Drop information about predicated SCEV rewrites for this loop.
6658 for (auto I = PredicatedSCEVRewrites.begin();
6659 I != PredicatedSCEVRewrites.end();) {
6660 std::pair<const SCEV *, const Loop *> Entry = I->first;
6661 if (Entry.second == CurrL)
6662 PredicatedSCEVRewrites.erase(I++);
6663 else
6664 ++I;
6665 }
6666
6667 auto LoopUsersItr = LoopUsers.find(CurrL);
6668 if (LoopUsersItr != LoopUsers.end()) {
6669 for (auto *S : LoopUsersItr->second)
6670 forgetMemoizedResults(S);
6671 LoopUsers.erase(LoopUsersItr);
6672 }
6673
6674 // Drop information about expressions based on loop-header PHIs.
6675 PushLoopPHIs(CurrL, Worklist);
6676
6677 while (!Worklist.empty()) {
6678 Instruction *I = Worklist.pop_back_val();
6679 if (!Visited.insert(I).second)
6680 continue;
6681
6682 ValueExprMapType::iterator It =
6683 ValueExprMap.find_as(static_cast<Value *>(I));
6684 if (It != ValueExprMap.end()) {
6685 eraseValueFromMap(It->first);
6686 forgetMemoizedResults(It->second);
6687 if (PHINode *PN = dyn_cast<PHINode>(I))
6688 ConstantEvolutionLoopExitValue.erase(PN);
6689 }
6690
6691 PushDefUseChildren(I, Worklist);
6692 }
6693
6694 LoopPropertiesCache.erase(CurrL);
6695 // Forget all contained loops too, to avoid dangling entries in the
6696 // ValuesAtScopes map.
6697 LoopWorklist.append(CurrL->begin(), CurrL->end());
6698 }
6699 }
6700
forgetTopmostLoop(const Loop * L)6701 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6702 while (Loop *Parent = L->getParentLoop())
6703 L = Parent;
6704 forgetLoop(L);
6705 }
6706
forgetValue(Value * V)6707 void ScalarEvolution::forgetValue(Value *V) {
6708 Instruction *I = dyn_cast<Instruction>(V);
6709 if (!I) return;
6710
6711 // Drop information about expressions based on loop-header PHIs.
6712 SmallVector<Instruction *, 16> Worklist;
6713 Worklist.push_back(I);
6714
6715 SmallPtrSet<Instruction *, 8> Visited;
6716 while (!Worklist.empty()) {
6717 I = Worklist.pop_back_val();
6718 if (!Visited.insert(I).second)
6719 continue;
6720
6721 ValueExprMapType::iterator It =
6722 ValueExprMap.find_as(static_cast<Value *>(I));
6723 if (It != ValueExprMap.end()) {
6724 eraseValueFromMap(It->first);
6725 forgetMemoizedResults(It->second);
6726 if (PHINode *PN = dyn_cast<PHINode>(I))
6727 ConstantEvolutionLoopExitValue.erase(PN);
6728 }
6729
6730 PushDefUseChildren(I, Worklist);
6731 }
6732 }
6733
forgetLoopDispositions(const Loop * L)6734 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
6735 LoopDispositions.clear();
6736 }
6737
6738 /// Get the exact loop backedge taken count considering all loop exits. A
6739 /// computable result can only be returned for loops with all exiting blocks
6740 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6741 /// is never skipped. This is a valid assumption as long as the loop exits via
6742 /// that test. For precise results, it is the caller's responsibility to specify
6743 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6744 const SCEV *
getExact(const Loop * L,ScalarEvolution * SE,SCEVUnionPredicate * Preds) const6745 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6746 SCEVUnionPredicate *Preds) const {
6747 // If any exits were not computable, the loop is not computable.
6748 if (!isComplete() || ExitNotTaken.empty())
6749 return SE->getCouldNotCompute();
6750
6751 const BasicBlock *Latch = L->getLoopLatch();
6752 // All exiting blocks we have collected must dominate the only backedge.
6753 if (!Latch)
6754 return SE->getCouldNotCompute();
6755
6756 // All exiting blocks we have gathered dominate loop's latch, so exact trip
6757 // count is simply a minimum out of all these calculated exit counts.
6758 SmallVector<const SCEV *, 2> Ops;
6759 for (auto &ENT : ExitNotTaken) {
6760 const SCEV *BECount = ENT.ExactNotTaken;
6761 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6762 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6763 "We should only have known counts for exiting blocks that dominate "
6764 "latch!");
6765
6766 Ops.push_back(BECount);
6767
6768 if (Preds && !ENT.hasAlwaysTruePredicate())
6769 Preds->add(ENT.Predicate.get());
6770
6771 assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6772 "Predicate should be always true!");
6773 }
6774
6775 return SE->getUMinFromMismatchedTypes(Ops);
6776 }
6777
6778 /// Get the exact not taken count for this loop exit.
6779 const SCEV *
getExact(BasicBlock * ExitingBlock,ScalarEvolution * SE) const6780 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6781 ScalarEvolution *SE) const {
6782 for (auto &ENT : ExitNotTaken)
6783 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6784 return ENT.ExactNotTaken;
6785
6786 return SE->getCouldNotCompute();
6787 }
6788
6789 const SCEV *
getMax(BasicBlock * ExitingBlock,ScalarEvolution * SE) const6790 ScalarEvolution::BackedgeTakenInfo::getMax(BasicBlock *ExitingBlock,
6791 ScalarEvolution *SE) const {
6792 for (auto &ENT : ExitNotTaken)
6793 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6794 return ENT.MaxNotTaken;
6795
6796 return SE->getCouldNotCompute();
6797 }
6798
6799 /// getMax - Get the max backedge taken count for the loop.
6800 const SCEV *
getMax(ScalarEvolution * SE) const6801 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6802 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6803 return !ENT.hasAlwaysTruePredicate();
6804 };
6805
6806 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6807 return SE->getCouldNotCompute();
6808
6809 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6810 "No point in having a non-constant max backedge taken count!");
6811 return getMax();
6812 }
6813
isMaxOrZero(ScalarEvolution * SE) const6814 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6815 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6816 return !ENT.hasAlwaysTruePredicate();
6817 };
6818 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6819 }
6820
hasOperand(const SCEV * S,ScalarEvolution * SE) const6821 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6822 ScalarEvolution *SE) const {
6823 if (getMax() && getMax() != SE->getCouldNotCompute() &&
6824 SE->hasOperand(getMax(), S))
6825 return true;
6826
6827 for (auto &ENT : ExitNotTaken)
6828 if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6829 SE->hasOperand(ENT.ExactNotTaken, S))
6830 return true;
6831
6832 return false;
6833 }
6834
ExitLimit(const SCEV * E)6835 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6836 : ExactNotTaken(E), MaxNotTaken(E) {
6837 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6838 isa<SCEVConstant>(MaxNotTaken)) &&
6839 "No point in having a non-constant max backedge taken count!");
6840 }
6841
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,ArrayRef<const SmallPtrSetImpl<const SCEVPredicate * > * > PredSetList)6842 ScalarEvolution::ExitLimit::ExitLimit(
6843 const SCEV *E, const SCEV *M, bool MaxOrZero,
6844 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6845 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6846 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6847 !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6848 "Exact is not allowed to be less precise than Max");
6849 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6850 isa<SCEVConstant>(MaxNotTaken)) &&
6851 "No point in having a non-constant max backedge taken count!");
6852 for (auto *PredSet : PredSetList)
6853 for (auto *P : *PredSet)
6854 addPredicate(P);
6855 }
6856
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,const SmallPtrSetImpl<const SCEVPredicate * > & PredSet)6857 ScalarEvolution::ExitLimit::ExitLimit(
6858 const SCEV *E, const SCEV *M, bool MaxOrZero,
6859 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6860 : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6861 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6862 isa<SCEVConstant>(MaxNotTaken)) &&
6863 "No point in having a non-constant max backedge taken count!");
6864 }
6865
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero)6866 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6867 bool MaxOrZero)
6868 : ExitLimit(E, M, MaxOrZero, None) {
6869 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6870 isa<SCEVConstant>(MaxNotTaken)) &&
6871 "No point in having a non-constant max backedge taken count!");
6872 }
6873
6874 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6875 /// computable exit into a persistent ExitNotTakenInfo array.
BackedgeTakenInfo(ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,bool Complete,const SCEV * MaxCount,bool MaxOrZero)6876 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6877 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6878 ExitCounts,
6879 bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6880 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6881 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6882
6883 ExitNotTaken.reserve(ExitCounts.size());
6884 std::transform(
6885 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6886 [&](const EdgeExitInfo &EEI) {
6887 BasicBlock *ExitBB = EEI.first;
6888 const ExitLimit &EL = EEI.second;
6889 if (EL.Predicates.empty())
6890 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
6891 nullptr);
6892
6893 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
6894 for (auto *Pred : EL.Predicates)
6895 Predicate->add(Pred);
6896
6897 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
6898 std::move(Predicate));
6899 });
6900 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
6901 "No point in having a non-constant max backedge taken count!");
6902 }
6903
6904 /// Invalidate this result and free the ExitNotTakenInfo array.
clear()6905 void ScalarEvolution::BackedgeTakenInfo::clear() {
6906 ExitNotTaken.clear();
6907 }
6908
6909 /// Compute the number of times the backedge of the specified loop will execute.
6910 ScalarEvolution::BackedgeTakenInfo
computeBackedgeTakenCount(const Loop * L,bool AllowPredicates)6911 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
6912 bool AllowPredicates) {
6913 SmallVector<BasicBlock *, 8> ExitingBlocks;
6914 L->getExitingBlocks(ExitingBlocks);
6915
6916 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6917
6918 SmallVector<EdgeExitInfo, 4> ExitCounts;
6919 bool CouldComputeBECount = true;
6920 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
6921 const SCEV *MustExitMaxBECount = nullptr;
6922 const SCEV *MayExitMaxBECount = nullptr;
6923 bool MustExitMaxOrZero = false;
6924
6925 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
6926 // and compute maxBECount.
6927 // Do a union of all the predicates here.
6928 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
6929 BasicBlock *ExitBB = ExitingBlocks[i];
6930
6931 // We canonicalize untaken exits to br (constant), ignore them so that
6932 // proving an exit untaken doesn't negatively impact our ability to reason
6933 // about the loop as whole.
6934 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
6935 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
6936 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
6937 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
6938 continue;
6939 }
6940
6941 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
6942
6943 assert((AllowPredicates || EL.Predicates.empty()) &&
6944 "Predicated exit limit when predicates are not allowed!");
6945
6946 // 1. For each exit that can be computed, add an entry to ExitCounts.
6947 // CouldComputeBECount is true only if all exits can be computed.
6948 if (EL.ExactNotTaken == getCouldNotCompute())
6949 // We couldn't compute an exact value for this exit, so
6950 // we won't be able to compute an exact value for the loop.
6951 CouldComputeBECount = false;
6952 else
6953 ExitCounts.emplace_back(ExitBB, EL);
6954
6955 // 2. Derive the loop's MaxBECount from each exit's max number of
6956 // non-exiting iterations. Partition the loop exits into two kinds:
6957 // LoopMustExits and LoopMayExits.
6958 //
6959 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
6960 // is a LoopMayExit. If any computable LoopMustExit is found, then
6961 // MaxBECount is the minimum EL.MaxNotTaken of computable
6962 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
6963 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
6964 // computable EL.MaxNotTaken.
6965 if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
6966 DT.dominates(ExitBB, Latch)) {
6967 if (!MustExitMaxBECount) {
6968 MustExitMaxBECount = EL.MaxNotTaken;
6969 MustExitMaxOrZero = EL.MaxOrZero;
6970 } else {
6971 MustExitMaxBECount =
6972 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
6973 }
6974 } else if (MayExitMaxBECount != getCouldNotCompute()) {
6975 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
6976 MayExitMaxBECount = EL.MaxNotTaken;
6977 else {
6978 MayExitMaxBECount =
6979 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
6980 }
6981 }
6982 }
6983 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
6984 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
6985 // The loop backedge will be taken the maximum or zero times if there's
6986 // a single exit that must be taken the maximum or zero times.
6987 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
6988 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
6989 MaxBECount, MaxOrZero);
6990 }
6991
6992 ScalarEvolution::ExitLimit
computeExitLimit(const Loop * L,BasicBlock * ExitingBlock,bool AllowPredicates)6993 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
6994 bool AllowPredicates) {
6995 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
6996 // If our exiting block does not dominate the latch, then its connection with
6997 // loop's exit limit may be far from trivial.
6998 const BasicBlock *Latch = L->getLoopLatch();
6999 if (!Latch || !DT.dominates(ExitingBlock, Latch))
7000 return getCouldNotCompute();
7001
7002 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7003 Instruction *Term = ExitingBlock->getTerminator();
7004 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7005 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7006 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7007 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7008 "It should have one successor in loop and one exit block!");
7009 // Proceed to the next level to examine the exit condition expression.
7010 return computeExitLimitFromCond(
7011 L, BI->getCondition(), ExitIfTrue,
7012 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7013 }
7014
7015 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7016 // For switch, make sure that there is a single exit from the loop.
7017 BasicBlock *Exit = nullptr;
7018 for (auto *SBB : successors(ExitingBlock))
7019 if (!L->contains(SBB)) {
7020 if (Exit) // Multiple exit successors.
7021 return getCouldNotCompute();
7022 Exit = SBB;
7023 }
7024 assert(Exit && "Exiting block must have at least one exit");
7025 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7026 /*ControlsExit=*/IsOnlyExit);
7027 }
7028
7029 return getCouldNotCompute();
7030 }
7031
computeExitLimitFromCond(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7032 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7033 const Loop *L, Value *ExitCond, bool ExitIfTrue,
7034 bool ControlsExit, bool AllowPredicates) {
7035 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7036 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7037 ControlsExit, AllowPredicates);
7038 }
7039
7040 Optional<ScalarEvolution::ExitLimit>
find(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7041 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7042 bool ExitIfTrue, bool ControlsExit,
7043 bool AllowPredicates) {
7044 (void)this->L;
7045 (void)this->ExitIfTrue;
7046 (void)this->AllowPredicates;
7047
7048 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7049 this->AllowPredicates == AllowPredicates &&
7050 "Variance in assumed invariant key components!");
7051 auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7052 if (Itr == TripCountMap.end())
7053 return None;
7054 return Itr->second;
7055 }
7056
insert(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates,const ExitLimit & EL)7057 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7058 bool ExitIfTrue,
7059 bool ControlsExit,
7060 bool AllowPredicates,
7061 const ExitLimit &EL) {
7062 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7063 this->AllowPredicates == AllowPredicates &&
7064 "Variance in assumed invariant key components!");
7065
7066 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7067 assert(InsertResult.second && "Expected successful insertion!");
7068 (void)InsertResult;
7069 (void)ExitIfTrue;
7070 }
7071
computeExitLimitFromCondCached(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7072 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7073 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7074 bool ControlsExit, bool AllowPredicates) {
7075
7076 if (auto MaybeEL =
7077 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7078 return *MaybeEL;
7079
7080 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7081 ControlsExit, AllowPredicates);
7082 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7083 return EL;
7084 }
7085
computeExitLimitFromCondImpl(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7086 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7087 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7088 bool ControlsExit, bool AllowPredicates) {
7089 // Check if the controlling expression for this loop is an And or Or.
7090 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7091 if (BO->getOpcode() == Instruction::And) {
7092 // Recurse on the operands of the and.
7093 bool EitherMayExit = !ExitIfTrue;
7094 ExitLimit EL0 = computeExitLimitFromCondCached(
7095 Cache, L, BO->getOperand(0), ExitIfTrue,
7096 ControlsExit && !EitherMayExit, AllowPredicates);
7097 ExitLimit EL1 = computeExitLimitFromCondCached(
7098 Cache, L, BO->getOperand(1), ExitIfTrue,
7099 ControlsExit && !EitherMayExit, AllowPredicates);
7100 // Be robust against unsimplified IR for the form "and i1 X, true"
7101 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7102 return CI->isOne() ? EL0 : EL1;
7103 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7104 return CI->isOne() ? EL1 : EL0;
7105 const SCEV *BECount = getCouldNotCompute();
7106 const SCEV *MaxBECount = getCouldNotCompute();
7107 if (EitherMayExit) {
7108 // Both conditions must be true for the loop to continue executing.
7109 // Choose the less conservative count.
7110 if (EL0.ExactNotTaken == getCouldNotCompute() ||
7111 EL1.ExactNotTaken == getCouldNotCompute())
7112 BECount = getCouldNotCompute();
7113 else
7114 BECount =
7115 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7116 if (EL0.MaxNotTaken == getCouldNotCompute())
7117 MaxBECount = EL1.MaxNotTaken;
7118 else if (EL1.MaxNotTaken == getCouldNotCompute())
7119 MaxBECount = EL0.MaxNotTaken;
7120 else
7121 MaxBECount =
7122 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7123 } else {
7124 // Both conditions must be true at the same time for the loop to exit.
7125 // For now, be conservative.
7126 if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7127 MaxBECount = EL0.MaxNotTaken;
7128 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7129 BECount = EL0.ExactNotTaken;
7130 }
7131
7132 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7133 // to be more aggressive when computing BECount than when computing
7134 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
7135 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7136 // to not.
7137 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7138 !isa<SCEVCouldNotCompute>(BECount))
7139 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7140
7141 return ExitLimit(BECount, MaxBECount, false,
7142 {&EL0.Predicates, &EL1.Predicates});
7143 }
7144 if (BO->getOpcode() == Instruction::Or) {
7145 // Recurse on the operands of the or.
7146 bool EitherMayExit = ExitIfTrue;
7147 ExitLimit EL0 = computeExitLimitFromCondCached(
7148 Cache, L, BO->getOperand(0), ExitIfTrue,
7149 ControlsExit && !EitherMayExit, AllowPredicates);
7150 ExitLimit EL1 = computeExitLimitFromCondCached(
7151 Cache, L, BO->getOperand(1), ExitIfTrue,
7152 ControlsExit && !EitherMayExit, AllowPredicates);
7153 // Be robust against unsimplified IR for the form "or i1 X, true"
7154 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7155 return CI->isZero() ? EL0 : EL1;
7156 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7157 return CI->isZero() ? EL1 : EL0;
7158 const SCEV *BECount = getCouldNotCompute();
7159 const SCEV *MaxBECount = getCouldNotCompute();
7160 if (EitherMayExit) {
7161 // Both conditions must be false for the loop to continue executing.
7162 // Choose the less conservative count.
7163 if (EL0.ExactNotTaken == getCouldNotCompute() ||
7164 EL1.ExactNotTaken == getCouldNotCompute())
7165 BECount = getCouldNotCompute();
7166 else
7167 BECount =
7168 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7169 if (EL0.MaxNotTaken == getCouldNotCompute())
7170 MaxBECount = EL1.MaxNotTaken;
7171 else if (EL1.MaxNotTaken == getCouldNotCompute())
7172 MaxBECount = EL0.MaxNotTaken;
7173 else
7174 MaxBECount =
7175 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7176 } else {
7177 // Both conditions must be false at the same time for the loop to exit.
7178 // For now, be conservative.
7179 if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7180 MaxBECount = EL0.MaxNotTaken;
7181 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7182 BECount = EL0.ExactNotTaken;
7183 }
7184 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7185 // to be more aggressive when computing BECount than when computing
7186 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
7187 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7188 // to not.
7189 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7190 !isa<SCEVCouldNotCompute>(BECount))
7191 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7192
7193 return ExitLimit(BECount, MaxBECount, false,
7194 {&EL0.Predicates, &EL1.Predicates});
7195 }
7196 }
7197
7198 // With an icmp, it may be feasible to compute an exact backedge-taken count.
7199 // Proceed to the next level to examine the icmp.
7200 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7201 ExitLimit EL =
7202 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7203 if (EL.hasFullInfo() || !AllowPredicates)
7204 return EL;
7205
7206 // Try again, but use SCEV predicates this time.
7207 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7208 /*AllowPredicates=*/true);
7209 }
7210
7211 // Check for a constant condition. These are normally stripped out by
7212 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7213 // preserve the CFG and is temporarily leaving constant conditions
7214 // in place.
7215 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7216 if (ExitIfTrue == !CI->getZExtValue())
7217 // The backedge is always taken.
7218 return getCouldNotCompute();
7219 else
7220 // The backedge is never taken.
7221 return getZero(CI->getType());
7222 }
7223
7224 // If it's not an integer or pointer comparison then compute it the hard way.
7225 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7226 }
7227
7228 ScalarEvolution::ExitLimit
computeExitLimitFromICmp(const Loop * L,ICmpInst * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7229 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7230 ICmpInst *ExitCond,
7231 bool ExitIfTrue,
7232 bool ControlsExit,
7233 bool AllowPredicates) {
7234 // If the condition was exit on true, convert the condition to exit on false
7235 ICmpInst::Predicate Pred;
7236 if (!ExitIfTrue)
7237 Pred = ExitCond->getPredicate();
7238 else
7239 Pred = ExitCond->getInversePredicate();
7240 const ICmpInst::Predicate OriginalPred = Pred;
7241
7242 // Handle common loops like: for (X = "string"; *X; ++X)
7243 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7244 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7245 ExitLimit ItCnt =
7246 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7247 if (ItCnt.hasAnyInfo())
7248 return ItCnt;
7249 }
7250
7251 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7252 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7253
7254 // Try to evaluate any dependencies out of the loop.
7255 LHS = getSCEVAtScope(LHS, L);
7256 RHS = getSCEVAtScope(RHS, L);
7257
7258 // At this point, we would like to compute how many iterations of the
7259 // loop the predicate will return true for these inputs.
7260 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7261 // If there is a loop-invariant, force it into the RHS.
7262 std::swap(LHS, RHS);
7263 Pred = ICmpInst::getSwappedPredicate(Pred);
7264 }
7265
7266 // Simplify the operands before analyzing them.
7267 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7268
7269 // If we have a comparison of a chrec against a constant, try to use value
7270 // ranges to answer this query.
7271 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7272 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7273 if (AddRec->getLoop() == L) {
7274 // Form the constant range.
7275 ConstantRange CompRange =
7276 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7277
7278 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7279 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7280 }
7281
7282 switch (Pred) {
7283 case ICmpInst::ICMP_NE: { // while (X != Y)
7284 // Convert to: while (X-Y != 0)
7285 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7286 AllowPredicates);
7287 if (EL.hasAnyInfo()) return EL;
7288 break;
7289 }
7290 case ICmpInst::ICMP_EQ: { // while (X == Y)
7291 // Convert to: while (X-Y == 0)
7292 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7293 if (EL.hasAnyInfo()) return EL;
7294 break;
7295 }
7296 case ICmpInst::ICMP_SLT:
7297 case ICmpInst::ICMP_ULT: { // while (X < Y)
7298 bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7299 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7300 AllowPredicates);
7301 if (EL.hasAnyInfo()) return EL;
7302 break;
7303 }
7304 case ICmpInst::ICMP_SGT:
7305 case ICmpInst::ICMP_UGT: { // while (X > Y)
7306 bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7307 ExitLimit EL =
7308 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7309 AllowPredicates);
7310 if (EL.hasAnyInfo()) return EL;
7311 break;
7312 }
7313 default:
7314 break;
7315 }
7316
7317 auto *ExhaustiveCount =
7318 computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7319
7320 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7321 return ExhaustiveCount;
7322
7323 return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7324 ExitCond->getOperand(1), L, OriginalPred);
7325 }
7326
7327 ScalarEvolution::ExitLimit
computeExitLimitFromSingleExitSwitch(const Loop * L,SwitchInst * Switch,BasicBlock * ExitingBlock,bool ControlsExit)7328 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7329 SwitchInst *Switch,
7330 BasicBlock *ExitingBlock,
7331 bool ControlsExit) {
7332 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7333
7334 // Give up if the exit is the default dest of a switch.
7335 if (Switch->getDefaultDest() == ExitingBlock)
7336 return getCouldNotCompute();
7337
7338 assert(L->contains(Switch->getDefaultDest()) &&
7339 "Default case must not exit the loop!");
7340 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7341 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7342
7343 // while (X != Y) --> while (X-Y != 0)
7344 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7345 if (EL.hasAnyInfo())
7346 return EL;
7347
7348 return getCouldNotCompute();
7349 }
7350
7351 static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr * AddRec,ConstantInt * C,ScalarEvolution & SE)7352 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7353 ScalarEvolution &SE) {
7354 const SCEV *InVal = SE.getConstant(C);
7355 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7356 assert(isa<SCEVConstant>(Val) &&
7357 "Evaluation of SCEV at constant didn't fold correctly?");
7358 return cast<SCEVConstant>(Val)->getValue();
7359 }
7360
7361 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7362 /// compute the backedge execution count.
7363 ScalarEvolution::ExitLimit
computeLoadConstantCompareExitLimit(LoadInst * LI,Constant * RHS,const Loop * L,ICmpInst::Predicate predicate)7364 ScalarEvolution::computeLoadConstantCompareExitLimit(
7365 LoadInst *LI,
7366 Constant *RHS,
7367 const Loop *L,
7368 ICmpInst::Predicate predicate) {
7369 if (LI->isVolatile()) return getCouldNotCompute();
7370
7371 // Check to see if the loaded pointer is a getelementptr of a global.
7372 // TODO: Use SCEV instead of manually grubbing with GEPs.
7373 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7374 if (!GEP) return getCouldNotCompute();
7375
7376 // Make sure that it is really a constant global we are gepping, with an
7377 // initializer, and make sure the first IDX is really 0.
7378 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7379 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7380 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7381 !cast<Constant>(GEP->getOperand(1))->isNullValue())
7382 return getCouldNotCompute();
7383
7384 // Okay, we allow one non-constant index into the GEP instruction.
7385 Value *VarIdx = nullptr;
7386 std::vector<Constant*> Indexes;
7387 unsigned VarIdxNum = 0;
7388 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7389 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7390 Indexes.push_back(CI);
7391 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7392 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
7393 VarIdx = GEP->getOperand(i);
7394 VarIdxNum = i-2;
7395 Indexes.push_back(nullptr);
7396 }
7397
7398 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7399 if (!VarIdx)
7400 return getCouldNotCompute();
7401
7402 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7403 // Check to see if X is a loop variant variable value now.
7404 const SCEV *Idx = getSCEV(VarIdx);
7405 Idx = getSCEVAtScope(Idx, L);
7406
7407 // We can only recognize very limited forms of loop index expressions, in
7408 // particular, only affine AddRec's like {C1,+,C2}.
7409 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7410 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7411 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7412 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7413 return getCouldNotCompute();
7414
7415 unsigned MaxSteps = MaxBruteForceIterations;
7416 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7417 ConstantInt *ItCst = ConstantInt::get(
7418 cast<IntegerType>(IdxExpr->getType()), IterationNum);
7419 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7420
7421 // Form the GEP offset.
7422 Indexes[VarIdxNum] = Val;
7423
7424 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7425 Indexes);
7426 if (!Result) break; // Cannot compute!
7427
7428 // Evaluate the condition for this iteration.
7429 Result = ConstantExpr::getICmp(predicate, Result, RHS);
7430 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
7431 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7432 ++NumArrayLenItCounts;
7433 return getConstant(ItCst); // Found terminating iteration!
7434 }
7435 }
7436 return getCouldNotCompute();
7437 }
7438
computeShiftCompareExitLimit(Value * LHS,Value * RHSV,const Loop * L,ICmpInst::Predicate Pred)7439 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7440 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7441 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7442 if (!RHS)
7443 return getCouldNotCompute();
7444
7445 const BasicBlock *Latch = L->getLoopLatch();
7446 if (!Latch)
7447 return getCouldNotCompute();
7448
7449 const BasicBlock *Predecessor = L->getLoopPredecessor();
7450 if (!Predecessor)
7451 return getCouldNotCompute();
7452
7453 // Return true if V is of the form "LHS `shift_op` <positive constant>".
7454 // Return LHS in OutLHS and shift_opt in OutOpCode.
7455 auto MatchPositiveShift =
7456 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7457
7458 using namespace PatternMatch;
7459
7460 ConstantInt *ShiftAmt;
7461 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7462 OutOpCode = Instruction::LShr;
7463 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7464 OutOpCode = Instruction::AShr;
7465 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7466 OutOpCode = Instruction::Shl;
7467 else
7468 return false;
7469
7470 return ShiftAmt->getValue().isStrictlyPositive();
7471 };
7472
7473 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7474 //
7475 // loop:
7476 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7477 // %iv.shifted = lshr i32 %iv, <positive constant>
7478 //
7479 // Return true on a successful match. Return the corresponding PHI node (%iv
7480 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7481 auto MatchShiftRecurrence =
7482 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7483 Optional<Instruction::BinaryOps> PostShiftOpCode;
7484
7485 {
7486 Instruction::BinaryOps OpC;
7487 Value *V;
7488
7489 // If we encounter a shift instruction, "peel off" the shift operation,
7490 // and remember that we did so. Later when we inspect %iv's backedge
7491 // value, we will make sure that the backedge value uses the same
7492 // operation.
7493 //
7494 // Note: the peeled shift operation does not have to be the same
7495 // instruction as the one feeding into the PHI's backedge value. We only
7496 // really care about it being the same *kind* of shift instruction --
7497 // that's all that is required for our later inferences to hold.
7498 if (MatchPositiveShift(LHS, V, OpC)) {
7499 PostShiftOpCode = OpC;
7500 LHS = V;
7501 }
7502 }
7503
7504 PNOut = dyn_cast<PHINode>(LHS);
7505 if (!PNOut || PNOut->getParent() != L->getHeader())
7506 return false;
7507
7508 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7509 Value *OpLHS;
7510
7511 return
7512 // The backedge value for the PHI node must be a shift by a positive
7513 // amount
7514 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7515
7516 // of the PHI node itself
7517 OpLHS == PNOut &&
7518
7519 // and the kind of shift should be match the kind of shift we peeled
7520 // off, if any.
7521 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7522 };
7523
7524 PHINode *PN;
7525 Instruction::BinaryOps OpCode;
7526 if (!MatchShiftRecurrence(LHS, PN, OpCode))
7527 return getCouldNotCompute();
7528
7529 const DataLayout &DL = getDataLayout();
7530
7531 // The key rationale for this optimization is that for some kinds of shift
7532 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7533 // within a finite number of iterations. If the condition guarding the
7534 // backedge (in the sense that the backedge is taken if the condition is true)
7535 // is false for the value the shift recurrence stabilizes to, then we know
7536 // that the backedge is taken only a finite number of times.
7537
7538 ConstantInt *StableValue = nullptr;
7539 switch (OpCode) {
7540 default:
7541 llvm_unreachable("Impossible case!");
7542
7543 case Instruction::AShr: {
7544 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7545 // bitwidth(K) iterations.
7546 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7547 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7548 Predecessor->getTerminator(), &DT);
7549 auto *Ty = cast<IntegerType>(RHS->getType());
7550 if (Known.isNonNegative())
7551 StableValue = ConstantInt::get(Ty, 0);
7552 else if (Known.isNegative())
7553 StableValue = ConstantInt::get(Ty, -1, true);
7554 else
7555 return getCouldNotCompute();
7556
7557 break;
7558 }
7559 case Instruction::LShr:
7560 case Instruction::Shl:
7561 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7562 // stabilize to 0 in at most bitwidth(K) iterations.
7563 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7564 break;
7565 }
7566
7567 auto *Result =
7568 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7569 assert(Result->getType()->isIntegerTy(1) &&
7570 "Otherwise cannot be an operand to a branch instruction");
7571
7572 if (Result->isZeroValue()) {
7573 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7574 const SCEV *UpperBound =
7575 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7576 return ExitLimit(getCouldNotCompute(), UpperBound, false);
7577 }
7578
7579 return getCouldNotCompute();
7580 }
7581
7582 /// Return true if we can constant fold an instruction of the specified type,
7583 /// assuming that all operands were constants.
CanConstantFold(const Instruction * I)7584 static bool CanConstantFold(const Instruction *I) {
7585 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7586 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7587 isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7588 return true;
7589
7590 if (const CallInst *CI = dyn_cast<CallInst>(I))
7591 if (const Function *F = CI->getCalledFunction())
7592 return canConstantFoldCallTo(CI, F);
7593 return false;
7594 }
7595
7596 /// Determine whether this instruction can constant evolve within this loop
7597 /// assuming its operands can all constant evolve.
canConstantEvolve(Instruction * I,const Loop * L)7598 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7599 // An instruction outside of the loop can't be derived from a loop PHI.
7600 if (!L->contains(I)) return false;
7601
7602 if (isa<PHINode>(I)) {
7603 // We don't currently keep track of the control flow needed to evaluate
7604 // PHIs, so we cannot handle PHIs inside of loops.
7605 return L->getHeader() == I->getParent();
7606 }
7607
7608 // If we won't be able to constant fold this expression even if the operands
7609 // are constants, bail early.
7610 return CanConstantFold(I);
7611 }
7612
7613 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7614 /// recursing through each instruction operand until reaching a loop header phi.
7615 static PHINode *
getConstantEvolvingPHIOperands(Instruction * UseInst,const Loop * L,DenseMap<Instruction *,PHINode * > & PHIMap,unsigned Depth)7616 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7617 DenseMap<Instruction *, PHINode *> &PHIMap,
7618 unsigned Depth) {
7619 if (Depth > MaxConstantEvolvingDepth)
7620 return nullptr;
7621
7622 // Otherwise, we can evaluate this instruction if all of its operands are
7623 // constant or derived from a PHI node themselves.
7624 PHINode *PHI = nullptr;
7625 for (Value *Op : UseInst->operands()) {
7626 if (isa<Constant>(Op)) continue;
7627
7628 Instruction *OpInst = dyn_cast<Instruction>(Op);
7629 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7630
7631 PHINode *P = dyn_cast<PHINode>(OpInst);
7632 if (!P)
7633 // If this operand is already visited, reuse the prior result.
7634 // We may have P != PHI if this is the deepest point at which the
7635 // inconsistent paths meet.
7636 P = PHIMap.lookup(OpInst);
7637 if (!P) {
7638 // Recurse and memoize the results, whether a phi is found or not.
7639 // This recursive call invalidates pointers into PHIMap.
7640 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7641 PHIMap[OpInst] = P;
7642 }
7643 if (!P)
7644 return nullptr; // Not evolving from PHI
7645 if (PHI && PHI != P)
7646 return nullptr; // Evolving from multiple different PHIs.
7647 PHI = P;
7648 }
7649 // This is a expression evolving from a constant PHI!
7650 return PHI;
7651 }
7652
7653 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7654 /// in the loop that V is derived from. We allow arbitrary operations along the
7655 /// way, but the operands of an operation must either be constants or a value
7656 /// derived from a constant PHI. If this expression does not fit with these
7657 /// constraints, return null.
getConstantEvolvingPHI(Value * V,const Loop * L)7658 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7659 Instruction *I = dyn_cast<Instruction>(V);
7660 if (!I || !canConstantEvolve(I, L)) return nullptr;
7661
7662 if (PHINode *PN = dyn_cast<PHINode>(I))
7663 return PN;
7664
7665 // Record non-constant instructions contained by the loop.
7666 DenseMap<Instruction *, PHINode *> PHIMap;
7667 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7668 }
7669
7670 /// EvaluateExpression - Given an expression that passes the
7671 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7672 /// in the loop has the value PHIVal. If we can't fold this expression for some
7673 /// reason, return null.
EvaluateExpression(Value * V,const Loop * L,DenseMap<Instruction *,Constant * > & Vals,const DataLayout & DL,const TargetLibraryInfo * TLI)7674 static Constant *EvaluateExpression(Value *V, const Loop *L,
7675 DenseMap<Instruction *, Constant *> &Vals,
7676 const DataLayout &DL,
7677 const TargetLibraryInfo *TLI) {
7678 // Convenient constant check, but redundant for recursive calls.
7679 if (Constant *C = dyn_cast<Constant>(V)) return C;
7680 Instruction *I = dyn_cast<Instruction>(V);
7681 if (!I) return nullptr;
7682
7683 if (Constant *C = Vals.lookup(I)) return C;
7684
7685 // An instruction inside the loop depends on a value outside the loop that we
7686 // weren't given a mapping for, or a value such as a call inside the loop.
7687 if (!canConstantEvolve(I, L)) return nullptr;
7688
7689 // An unmapped PHI can be due to a branch or another loop inside this loop,
7690 // or due to this not being the initial iteration through a loop where we
7691 // couldn't compute the evolution of this particular PHI last time.
7692 if (isa<PHINode>(I)) return nullptr;
7693
7694 std::vector<Constant*> Operands(I->getNumOperands());
7695
7696 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7697 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7698 if (!Operand) {
7699 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7700 if (!Operands[i]) return nullptr;
7701 continue;
7702 }
7703 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7704 Vals[Operand] = C;
7705 if (!C) return nullptr;
7706 Operands[i] = C;
7707 }
7708
7709 if (CmpInst *CI = dyn_cast<CmpInst>(I))
7710 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7711 Operands[1], DL, TLI);
7712 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7713 if (!LI->isVolatile())
7714 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7715 }
7716 return ConstantFoldInstOperands(I, Operands, DL, TLI);
7717 }
7718
7719
7720 // If every incoming value to PN except the one for BB is a specific Constant,
7721 // return that, else return nullptr.
getOtherIncomingValue(PHINode * PN,BasicBlock * BB)7722 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7723 Constant *IncomingVal = nullptr;
7724
7725 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7726 if (PN->getIncomingBlock(i) == BB)
7727 continue;
7728
7729 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7730 if (!CurrentVal)
7731 return nullptr;
7732
7733 if (IncomingVal != CurrentVal) {
7734 if (IncomingVal)
7735 return nullptr;
7736 IncomingVal = CurrentVal;
7737 }
7738 }
7739
7740 return IncomingVal;
7741 }
7742
7743 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7744 /// in the header of its containing loop, we know the loop executes a
7745 /// constant number of times, and the PHI node is just a recurrence
7746 /// involving constants, fold it.
7747 Constant *
getConstantEvolutionLoopExitValue(PHINode * PN,const APInt & BEs,const Loop * L)7748 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7749 const APInt &BEs,
7750 const Loop *L) {
7751 auto I = ConstantEvolutionLoopExitValue.find(PN);
7752 if (I != ConstantEvolutionLoopExitValue.end())
7753 return I->second;
7754
7755 if (BEs.ugt(MaxBruteForceIterations))
7756 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
7757
7758 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7759
7760 DenseMap<Instruction *, Constant *> CurrentIterVals;
7761 BasicBlock *Header = L->getHeader();
7762 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7763
7764 BasicBlock *Latch = L->getLoopLatch();
7765 if (!Latch)
7766 return nullptr;
7767
7768 for (PHINode &PHI : Header->phis()) {
7769 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7770 CurrentIterVals[&PHI] = StartCST;
7771 }
7772 if (!CurrentIterVals.count(PN))
7773 return RetVal = nullptr;
7774
7775 Value *BEValue = PN->getIncomingValueForBlock(Latch);
7776
7777 // Execute the loop symbolically to determine the exit value.
7778 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7779 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7780
7781 unsigned NumIterations = BEs.getZExtValue(); // must be in range
7782 unsigned IterationNum = 0;
7783 const DataLayout &DL = getDataLayout();
7784 for (; ; ++IterationNum) {
7785 if (IterationNum == NumIterations)
7786 return RetVal = CurrentIterVals[PN]; // Got exit value!
7787
7788 // Compute the value of the PHIs for the next iteration.
7789 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7790 DenseMap<Instruction *, Constant *> NextIterVals;
7791 Constant *NextPHI =
7792 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7793 if (!NextPHI)
7794 return nullptr; // Couldn't evaluate!
7795 NextIterVals[PN] = NextPHI;
7796
7797 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7798
7799 // Also evaluate the other PHI nodes. However, we don't get to stop if we
7800 // cease to be able to evaluate one of them or if they stop evolving,
7801 // because that doesn't necessarily prevent us from computing PN.
7802 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7803 for (const auto &I : CurrentIterVals) {
7804 PHINode *PHI = dyn_cast<PHINode>(I.first);
7805 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7806 PHIsToCompute.emplace_back(PHI, I.second);
7807 }
7808 // We use two distinct loops because EvaluateExpression may invalidate any
7809 // iterators into CurrentIterVals.
7810 for (const auto &I : PHIsToCompute) {
7811 PHINode *PHI = I.first;
7812 Constant *&NextPHI = NextIterVals[PHI];
7813 if (!NextPHI) { // Not already computed.
7814 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7815 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7816 }
7817 if (NextPHI != I.second)
7818 StoppedEvolving = false;
7819 }
7820
7821 // If all entries in CurrentIterVals == NextIterVals then we can stop
7822 // iterating, the loop can't continue to change.
7823 if (StoppedEvolving)
7824 return RetVal = CurrentIterVals[PN];
7825
7826 CurrentIterVals.swap(NextIterVals);
7827 }
7828 }
7829
computeExitCountExhaustively(const Loop * L,Value * Cond,bool ExitWhen)7830 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7831 Value *Cond,
7832 bool ExitWhen) {
7833 PHINode *PN = getConstantEvolvingPHI(Cond, L);
7834 if (!PN) return getCouldNotCompute();
7835
7836 // If the loop is canonicalized, the PHI will have exactly two entries.
7837 // That's the only form we support here.
7838 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7839
7840 DenseMap<Instruction *, Constant *> CurrentIterVals;
7841 BasicBlock *Header = L->getHeader();
7842 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7843
7844 BasicBlock *Latch = L->getLoopLatch();
7845 assert(Latch && "Should follow from NumIncomingValues == 2!");
7846
7847 for (PHINode &PHI : Header->phis()) {
7848 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7849 CurrentIterVals[&PHI] = StartCST;
7850 }
7851 if (!CurrentIterVals.count(PN))
7852 return getCouldNotCompute();
7853
7854 // Okay, we find a PHI node that defines the trip count of this loop. Execute
7855 // the loop symbolically to determine when the condition gets a value of
7856 // "ExitWhen".
7857 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
7858 const DataLayout &DL = getDataLayout();
7859 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7860 auto *CondVal = dyn_cast_or_null<ConstantInt>(
7861 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7862
7863 // Couldn't symbolically evaluate.
7864 if (!CondVal) return getCouldNotCompute();
7865
7866 if (CondVal->getValue() == uint64_t(ExitWhen)) {
7867 ++NumBruteForceTripCountsComputed;
7868 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7869 }
7870
7871 // Update all the PHI nodes for the next iteration.
7872 DenseMap<Instruction *, Constant *> NextIterVals;
7873
7874 // Create a list of which PHIs we need to compute. We want to do this before
7875 // calling EvaluateExpression on them because that may invalidate iterators
7876 // into CurrentIterVals.
7877 SmallVector<PHINode *, 8> PHIsToCompute;
7878 for (const auto &I : CurrentIterVals) {
7879 PHINode *PHI = dyn_cast<PHINode>(I.first);
7880 if (!PHI || PHI->getParent() != Header) continue;
7881 PHIsToCompute.push_back(PHI);
7882 }
7883 for (PHINode *PHI : PHIsToCompute) {
7884 Constant *&NextPHI = NextIterVals[PHI];
7885 if (NextPHI) continue; // Already computed!
7886
7887 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7888 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7889 }
7890 CurrentIterVals.swap(NextIterVals);
7891 }
7892
7893 // Too many iterations were needed to evaluate.
7894 return getCouldNotCompute();
7895 }
7896
getSCEVAtScope(const SCEV * V,const Loop * L)7897 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7898 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7899 ValuesAtScopes[V];
7900 // Check to see if we've folded this expression at this loop before.
7901 for (auto &LS : Values)
7902 if (LS.first == L)
7903 return LS.second ? LS.second : V;
7904
7905 Values.emplace_back(L, nullptr);
7906
7907 // Otherwise compute it.
7908 const SCEV *C = computeSCEVAtScope(V, L);
7909 for (auto &LS : reverse(ValuesAtScopes[V]))
7910 if (LS.first == L) {
7911 LS.second = C;
7912 break;
7913 }
7914 return C;
7915 }
7916
7917 /// This builds up a Constant using the ConstantExpr interface. That way, we
7918 /// will return Constants for objects which aren't represented by a
7919 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
7920 /// Returns NULL if the SCEV isn't representable as a Constant.
BuildConstantFromSCEV(const SCEV * V)7921 static Constant *BuildConstantFromSCEV(const SCEV *V) {
7922 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
7923 case scCouldNotCompute:
7924 case scAddRecExpr:
7925 break;
7926 case scConstant:
7927 return cast<SCEVConstant>(V)->getValue();
7928 case scUnknown:
7929 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
7930 case scSignExtend: {
7931 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
7932 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
7933 return ConstantExpr::getSExt(CastOp, SS->getType());
7934 break;
7935 }
7936 case scZeroExtend: {
7937 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
7938 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
7939 return ConstantExpr::getZExt(CastOp, SZ->getType());
7940 break;
7941 }
7942 case scTruncate: {
7943 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
7944 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
7945 return ConstantExpr::getTrunc(CastOp, ST->getType());
7946 break;
7947 }
7948 case scAddExpr: {
7949 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
7950 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
7951 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7952 unsigned AS = PTy->getAddressSpace();
7953 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7954 C = ConstantExpr::getBitCast(C, DestPtrTy);
7955 }
7956 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
7957 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
7958 if (!C2) return nullptr;
7959
7960 // First pointer!
7961 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
7962 unsigned AS = C2->getType()->getPointerAddressSpace();
7963 std::swap(C, C2);
7964 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
7965 // The offsets have been converted to bytes. We can add bytes to an
7966 // i8* by GEP with the byte count in the first index.
7967 C = ConstantExpr::getBitCast(C, DestPtrTy);
7968 }
7969
7970 // Don't bother trying to sum two pointers. We probably can't
7971 // statically compute a load that results from it anyway.
7972 if (C2->getType()->isPointerTy())
7973 return nullptr;
7974
7975 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
7976 if (PTy->getElementType()->isStructTy())
7977 C2 = ConstantExpr::getIntegerCast(
7978 C2, Type::getInt32Ty(C->getContext()), true);
7979 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
7980 } else
7981 C = ConstantExpr::getAdd(C, C2);
7982 }
7983 return C;
7984 }
7985 break;
7986 }
7987 case scMulExpr: {
7988 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
7989 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
7990 // Don't bother with pointers at all.
7991 if (C->getType()->isPointerTy()) return nullptr;
7992 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
7993 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
7994 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
7995 C = ConstantExpr::getMul(C, C2);
7996 }
7997 return C;
7998 }
7999 break;
8000 }
8001 case scUDivExpr: {
8002 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8003 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8004 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8005 if (LHS->getType() == RHS->getType())
8006 return ConstantExpr::getUDiv(LHS, RHS);
8007 break;
8008 }
8009 case scSMaxExpr:
8010 case scUMaxExpr:
8011 case scSMinExpr:
8012 case scUMinExpr:
8013 break; // TODO: smax, umax, smin, umax.
8014 }
8015 return nullptr;
8016 }
8017
computeSCEVAtScope(const SCEV * V,const Loop * L)8018 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8019 if (isa<SCEVConstant>(V)) return V;
8020
8021 // If this instruction is evolved from a constant-evolving PHI, compute the
8022 // exit value from the loop without using SCEVs.
8023 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8024 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8025 if (PHINode *PN = dyn_cast<PHINode>(I)) {
8026 const Loop *LI = this->LI[I->getParent()];
8027 // Looking for loop exit value.
8028 if (LI && LI->getParentLoop() == L &&
8029 PN->getParent() == LI->getHeader()) {
8030 // Okay, there is no closed form solution for the PHI node. Check
8031 // to see if the loop that contains it has a known backedge-taken
8032 // count. If so, we may be able to force computation of the exit
8033 // value.
8034 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8035 // This trivial case can show up in some degenerate cases where
8036 // the incoming IR has not yet been fully simplified.
8037 if (BackedgeTakenCount->isZero()) {
8038 Value *InitValue = nullptr;
8039 bool MultipleInitValues = false;
8040 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8041 if (!LI->contains(PN->getIncomingBlock(i))) {
8042 if (!InitValue)
8043 InitValue = PN->getIncomingValue(i);
8044 else if (InitValue != PN->getIncomingValue(i)) {
8045 MultipleInitValues = true;
8046 break;
8047 }
8048 }
8049 }
8050 if (!MultipleInitValues && InitValue)
8051 return getSCEV(InitValue);
8052 }
8053 // Do we have a loop invariant value flowing around the backedge
8054 // for a loop which must execute the backedge?
8055 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8056 isKnownPositive(BackedgeTakenCount) &&
8057 PN->getNumIncomingValues() == 2) {
8058
8059 unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8060 Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8061 if (LI->isLoopInvariant(BackedgeVal))
8062 return getSCEV(BackedgeVal);
8063 }
8064 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8065 // Okay, we know how many times the containing loop executes. If
8066 // this is a constant evolving PHI node, get the final value at
8067 // the specified iteration number.
8068 Constant *RV =
8069 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8070 if (RV) return getSCEV(RV);
8071 }
8072 }
8073
8074 // If there is a single-input Phi, evaluate it at our scope. If we can
8075 // prove that this replacement does not break LCSSA form, use new value.
8076 if (PN->getNumOperands() == 1) {
8077 const SCEV *Input = getSCEV(PN->getOperand(0));
8078 const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8079 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8080 // for the simplest case just support constants.
8081 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8082 }
8083 }
8084
8085 // Okay, this is an expression that we cannot symbolically evaluate
8086 // into a SCEV. Check to see if it's possible to symbolically evaluate
8087 // the arguments into constants, and if so, try to constant propagate the
8088 // result. This is particularly useful for computing loop exit values.
8089 if (CanConstantFold(I)) {
8090 SmallVector<Constant *, 4> Operands;
8091 bool MadeImprovement = false;
8092 for (Value *Op : I->operands()) {
8093 if (Constant *C = dyn_cast<Constant>(Op)) {
8094 Operands.push_back(C);
8095 continue;
8096 }
8097
8098 // If any of the operands is non-constant and if they are
8099 // non-integer and non-pointer, don't even try to analyze them
8100 // with scev techniques.
8101 if (!isSCEVable(Op->getType()))
8102 return V;
8103
8104 const SCEV *OrigV = getSCEV(Op);
8105 const SCEV *OpV = getSCEVAtScope(OrigV, L);
8106 MadeImprovement |= OrigV != OpV;
8107
8108 Constant *C = BuildConstantFromSCEV(OpV);
8109 if (!C) return V;
8110 if (C->getType() != Op->getType())
8111 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8112 Op->getType(),
8113 false),
8114 C, Op->getType());
8115 Operands.push_back(C);
8116 }
8117
8118 // Check to see if getSCEVAtScope actually made an improvement.
8119 if (MadeImprovement) {
8120 Constant *C = nullptr;
8121 const DataLayout &DL = getDataLayout();
8122 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8123 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8124 Operands[1], DL, &TLI);
8125 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8126 if (!LI->isVolatile())
8127 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8128 } else
8129 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8130 if (!C) return V;
8131 return getSCEV(C);
8132 }
8133 }
8134 }
8135
8136 // This is some other type of SCEVUnknown, just return it.
8137 return V;
8138 }
8139
8140 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8141 // Avoid performing the look-up in the common case where the specified
8142 // expression has no loop-variant portions.
8143 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8144 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8145 if (OpAtScope != Comm->getOperand(i)) {
8146 // Okay, at least one of these operands is loop variant but might be
8147 // foldable. Build a new instance of the folded commutative expression.
8148 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8149 Comm->op_begin()+i);
8150 NewOps.push_back(OpAtScope);
8151
8152 for (++i; i != e; ++i) {
8153 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8154 NewOps.push_back(OpAtScope);
8155 }
8156 if (isa<SCEVAddExpr>(Comm))
8157 return getAddExpr(NewOps, Comm->getNoWrapFlags());
8158 if (isa<SCEVMulExpr>(Comm))
8159 return getMulExpr(NewOps, Comm->getNoWrapFlags());
8160 if (isa<SCEVMinMaxExpr>(Comm))
8161 return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8162 llvm_unreachable("Unknown commutative SCEV type!");
8163 }
8164 }
8165 // If we got here, all operands are loop invariant.
8166 return Comm;
8167 }
8168
8169 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8170 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8171 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8172 if (LHS == Div->getLHS() && RHS == Div->getRHS())
8173 return Div; // must be loop invariant
8174 return getUDivExpr(LHS, RHS);
8175 }
8176
8177 // If this is a loop recurrence for a loop that does not contain L, then we
8178 // are dealing with the final value computed by the loop.
8179 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8180 // First, attempt to evaluate each operand.
8181 // Avoid performing the look-up in the common case where the specified
8182 // expression has no loop-variant portions.
8183 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8184 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8185 if (OpAtScope == AddRec->getOperand(i))
8186 continue;
8187
8188 // Okay, at least one of these operands is loop variant but might be
8189 // foldable. Build a new instance of the folded commutative expression.
8190 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8191 AddRec->op_begin()+i);
8192 NewOps.push_back(OpAtScope);
8193 for (++i; i != e; ++i)
8194 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8195
8196 const SCEV *FoldedRec =
8197 getAddRecExpr(NewOps, AddRec->getLoop(),
8198 AddRec->getNoWrapFlags(SCEV::FlagNW));
8199 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8200 // The addrec may be folded to a nonrecurrence, for example, if the
8201 // induction variable is multiplied by zero after constant folding. Go
8202 // ahead and return the folded value.
8203 if (!AddRec)
8204 return FoldedRec;
8205 break;
8206 }
8207
8208 // If the scope is outside the addrec's loop, evaluate it by using the
8209 // loop exit value of the addrec.
8210 if (!AddRec->getLoop()->contains(L)) {
8211 // To evaluate this recurrence, we need to know how many times the AddRec
8212 // loop iterates. Compute this now.
8213 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8214 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8215
8216 // Then, evaluate the AddRec.
8217 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8218 }
8219
8220 return AddRec;
8221 }
8222
8223 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8224 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8225 if (Op == Cast->getOperand())
8226 return Cast; // must be loop invariant
8227 return getZeroExtendExpr(Op, Cast->getType());
8228 }
8229
8230 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8231 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8232 if (Op == Cast->getOperand())
8233 return Cast; // must be loop invariant
8234 return getSignExtendExpr(Op, Cast->getType());
8235 }
8236
8237 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8238 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8239 if (Op == Cast->getOperand())
8240 return Cast; // must be loop invariant
8241 return getTruncateExpr(Op, Cast->getType());
8242 }
8243
8244 llvm_unreachable("Unknown SCEV type!");
8245 }
8246
getSCEVAtScope(Value * V,const Loop * L)8247 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8248 return getSCEVAtScope(getSCEV(V), L);
8249 }
8250
stripInjectiveFunctions(const SCEV * S) const8251 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8252 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8253 return stripInjectiveFunctions(ZExt->getOperand());
8254 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8255 return stripInjectiveFunctions(SExt->getOperand());
8256 return S;
8257 }
8258
8259 /// Finds the minimum unsigned root of the following equation:
8260 ///
8261 /// A * X = B (mod N)
8262 ///
8263 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8264 /// A and B isn't important.
8265 ///
8266 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
SolveLinEquationWithOverflow(const APInt & A,const SCEV * B,ScalarEvolution & SE)8267 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8268 ScalarEvolution &SE) {
8269 uint32_t BW = A.getBitWidth();
8270 assert(BW == SE.getTypeSizeInBits(B->getType()));
8271 assert(A != 0 && "A must be non-zero.");
8272
8273 // 1. D = gcd(A, N)
8274 //
8275 // The gcd of A and N may have only one prime factor: 2. The number of
8276 // trailing zeros in A is its multiplicity
8277 uint32_t Mult2 = A.countTrailingZeros();
8278 // D = 2^Mult2
8279
8280 // 2. Check if B is divisible by D.
8281 //
8282 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8283 // is not less than multiplicity of this prime factor for D.
8284 if (SE.GetMinTrailingZeros(B) < Mult2)
8285 return SE.getCouldNotCompute();
8286
8287 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8288 // modulo (N / D).
8289 //
8290 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8291 // (N / D) in general. The inverse itself always fits into BW bits, though,
8292 // so we immediately truncate it.
8293 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
8294 APInt Mod(BW + 1, 0);
8295 Mod.setBit(BW - Mult2); // Mod = N / D
8296 APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8297
8298 // 4. Compute the minimum unsigned root of the equation:
8299 // I * (B / D) mod (N / D)
8300 // To simplify the computation, we factor out the divide by D:
8301 // (I * B mod N) / D
8302 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8303 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8304 }
8305
8306 /// For a given quadratic addrec, generate coefficients of the corresponding
8307 /// quadratic equation, multiplied by a common value to ensure that they are
8308 /// integers.
8309 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8310 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8311 /// were multiplied by, and BitWidth is the bit width of the original addrec
8312 /// coefficients.
8313 /// This function returns None if the addrec coefficients are not compile-
8314 /// time constants.
8315 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
GetQuadraticEquation(const SCEVAddRecExpr * AddRec)8316 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8317 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8318 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8319 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8320 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8321 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8322 << *AddRec << '\n');
8323
8324 // We currently can only solve this if the coefficients are constants.
8325 if (!LC || !MC || !NC) {
8326 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8327 return None;
8328 }
8329
8330 APInt L = LC->getAPInt();
8331 APInt M = MC->getAPInt();
8332 APInt N = NC->getAPInt();
8333 assert(!N.isNullValue() && "This is not a quadratic addrec");
8334
8335 unsigned BitWidth = LC->getAPInt().getBitWidth();
8336 unsigned NewWidth = BitWidth + 1;
8337 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8338 << BitWidth << '\n');
8339 // The sign-extension (as opposed to a zero-extension) here matches the
8340 // extension used in SolveQuadraticEquationWrap (with the same motivation).
8341 N = N.sext(NewWidth);
8342 M = M.sext(NewWidth);
8343 L = L.sext(NewWidth);
8344
8345 // The increments are M, M+N, M+2N, ..., so the accumulated values are
8346 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8347 // L+M, L+2M+N, L+3M+3N, ...
8348 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8349 //
8350 // The equation Acc = 0 is then
8351 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
8352 // In a quadratic form it becomes:
8353 // N n^2 + (2M-N) n + 2L = 0.
8354
8355 APInt A = N;
8356 APInt B = 2 * M - A;
8357 APInt C = 2 * L;
8358 APInt T = APInt(NewWidth, 2);
8359 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8360 << "x + " << C << ", coeff bw: " << NewWidth
8361 << ", multiplied by " << T << '\n');
8362 return std::make_tuple(A, B, C, T, BitWidth);
8363 }
8364
8365 /// Helper function to compare optional APInts:
8366 /// (a) if X and Y both exist, return min(X, Y),
8367 /// (b) if neither X nor Y exist, return None,
8368 /// (c) if exactly one of X and Y exists, return that value.
MinOptional(Optional<APInt> X,Optional<APInt> Y)8369 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8370 if (X.hasValue() && Y.hasValue()) {
8371 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8372 APInt XW = X->sextOrSelf(W);
8373 APInt YW = Y->sextOrSelf(W);
8374 return XW.slt(YW) ? *X : *Y;
8375 }
8376 if (!X.hasValue() && !Y.hasValue())
8377 return None;
8378 return X.hasValue() ? *X : *Y;
8379 }
8380
8381 /// Helper function to truncate an optional APInt to a given BitWidth.
8382 /// When solving addrec-related equations, it is preferable to return a value
8383 /// that has the same bit width as the original addrec's coefficients. If the
8384 /// solution fits in the original bit width, truncate it (except for i1).
8385 /// Returning a value of a different bit width may inhibit some optimizations.
8386 ///
8387 /// In general, a solution to a quadratic equation generated from an addrec
8388 /// may require BW+1 bits, where BW is the bit width of the addrec's
8389 /// coefficients. The reason is that the coefficients of the quadratic
8390 /// equation are BW+1 bits wide (to avoid truncation when converting from
8391 /// the addrec to the equation).
TruncIfPossible(Optional<APInt> X,unsigned BitWidth)8392 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8393 if (!X.hasValue())
8394 return None;
8395 unsigned W = X->getBitWidth();
8396 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8397 return X->trunc(BitWidth);
8398 return X;
8399 }
8400
8401 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8402 /// iterations. The values L, M, N are assumed to be signed, and they
8403 /// should all have the same bit widths.
8404 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8405 /// where BW is the bit width of the addrec's coefficients.
8406 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8407 /// returned as such, otherwise the bit width of the returned value may
8408 /// be greater than BW.
8409 ///
8410 /// This function returns None if
8411 /// (a) the addrec coefficients are not constant, or
8412 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8413 /// like x^2 = 5, no integer solutions exist, in other cases an integer
8414 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8415 static Optional<APInt>
SolveQuadraticAddRecExact(const SCEVAddRecExpr * AddRec,ScalarEvolution & SE)8416 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8417 APInt A, B, C, M;
8418 unsigned BitWidth;
8419 auto T = GetQuadraticEquation(AddRec);
8420 if (!T.hasValue())
8421 return None;
8422
8423 std::tie(A, B, C, M, BitWidth) = *T;
8424 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8425 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8426 if (!X.hasValue())
8427 return None;
8428
8429 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8430 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8431 if (!V->isZero())
8432 return None;
8433
8434 return TruncIfPossible(X, BitWidth);
8435 }
8436
8437 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8438 /// iterations. The values M, N are assumed to be signed, and they
8439 /// should all have the same bit widths.
8440 /// Find the least n such that c(n) does not belong to the given range,
8441 /// while c(n-1) does.
8442 ///
8443 /// This function returns None if
8444 /// (a) the addrec coefficients are not constant, or
8445 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8446 /// bounds of the range.
8447 static Optional<APInt>
SolveQuadraticAddRecRange(const SCEVAddRecExpr * AddRec,const ConstantRange & Range,ScalarEvolution & SE)8448 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8449 const ConstantRange &Range, ScalarEvolution &SE) {
8450 assert(AddRec->getOperand(0)->isZero() &&
8451 "Starting value of addrec should be 0");
8452 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8453 << Range << ", addrec " << *AddRec << '\n');
8454 // This case is handled in getNumIterationsInRange. Here we can assume that
8455 // we start in the range.
8456 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8457 "Addrec's initial value should be in range");
8458
8459 APInt A, B, C, M;
8460 unsigned BitWidth;
8461 auto T = GetQuadraticEquation(AddRec);
8462 if (!T.hasValue())
8463 return None;
8464
8465 // Be careful about the return value: there can be two reasons for not
8466 // returning an actual number. First, if no solutions to the equations
8467 // were found, and second, if the solutions don't leave the given range.
8468 // The first case means that the actual solution is "unknown", the second
8469 // means that it's known, but not valid. If the solution is unknown, we
8470 // cannot make any conclusions.
8471 // Return a pair: the optional solution and a flag indicating if the
8472 // solution was found.
8473 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8474 // Solve for signed overflow and unsigned overflow, pick the lower
8475 // solution.
8476 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8477 << Bound << " (before multiplying by " << M << ")\n");
8478 Bound *= M; // The quadratic equation multiplier.
8479
8480 Optional<APInt> SO = None;
8481 if (BitWidth > 1) {
8482 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8483 "signed overflow\n");
8484 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8485 }
8486 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8487 "unsigned overflow\n");
8488 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8489 BitWidth+1);
8490
8491 auto LeavesRange = [&] (const APInt &X) {
8492 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8493 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8494 if (Range.contains(V0->getValue()))
8495 return false;
8496 // X should be at least 1, so X-1 is non-negative.
8497 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8498 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8499 if (Range.contains(V1->getValue()))
8500 return true;
8501 return false;
8502 };
8503
8504 // If SolveQuadraticEquationWrap returns None, it means that there can
8505 // be a solution, but the function failed to find it. We cannot treat it
8506 // as "no solution".
8507 if (!SO.hasValue() || !UO.hasValue())
8508 return { None, false };
8509
8510 // Check the smaller value first to see if it leaves the range.
8511 // At this point, both SO and UO must have values.
8512 Optional<APInt> Min = MinOptional(SO, UO);
8513 if (LeavesRange(*Min))
8514 return { Min, true };
8515 Optional<APInt> Max = Min == SO ? UO : SO;
8516 if (LeavesRange(*Max))
8517 return { Max, true };
8518
8519 // Solutions were found, but were eliminated, hence the "true".
8520 return { None, true };
8521 };
8522
8523 std::tie(A, B, C, M, BitWidth) = *T;
8524 // Lower bound is inclusive, subtract 1 to represent the exiting value.
8525 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8526 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8527 auto SL = SolveForBoundary(Lower);
8528 auto SU = SolveForBoundary(Upper);
8529 // If any of the solutions was unknown, no meaninigful conclusions can
8530 // be made.
8531 if (!SL.second || !SU.second)
8532 return None;
8533
8534 // Claim: The correct solution is not some value between Min and Max.
8535 //
8536 // Justification: Assuming that Min and Max are different values, one of
8537 // them is when the first signed overflow happens, the other is when the
8538 // first unsigned overflow happens. Crossing the range boundary is only
8539 // possible via an overflow (treating 0 as a special case of it, modeling
8540 // an overflow as crossing k*2^W for some k).
8541 //
8542 // The interesting case here is when Min was eliminated as an invalid
8543 // solution, but Max was not. The argument is that if there was another
8544 // overflow between Min and Max, it would also have been eliminated if
8545 // it was considered.
8546 //
8547 // For a given boundary, it is possible to have two overflows of the same
8548 // type (signed/unsigned) without having the other type in between: this
8549 // can happen when the vertex of the parabola is between the iterations
8550 // corresponding to the overflows. This is only possible when the two
8551 // overflows cross k*2^W for the same k. In such case, if the second one
8552 // left the range (and was the first one to do so), the first overflow
8553 // would have to enter the range, which would mean that either we had left
8554 // the range before or that we started outside of it. Both of these cases
8555 // are contradictions.
8556 //
8557 // Claim: In the case where SolveForBoundary returns None, the correct
8558 // solution is not some value between the Max for this boundary and the
8559 // Min of the other boundary.
8560 //
8561 // Justification: Assume that we had such Max_A and Min_B corresponding
8562 // to range boundaries A and B and such that Max_A < Min_B. If there was
8563 // a solution between Max_A and Min_B, it would have to be caused by an
8564 // overflow corresponding to either A or B. It cannot correspond to B,
8565 // since Min_B is the first occurrence of such an overflow. If it
8566 // corresponded to A, it would have to be either a signed or an unsigned
8567 // overflow that is larger than both eliminated overflows for A. But
8568 // between the eliminated overflows and this overflow, the values would
8569 // cover the entire value space, thus crossing the other boundary, which
8570 // is a contradiction.
8571
8572 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8573 }
8574
8575 ScalarEvolution::ExitLimit
howFarToZero(const SCEV * V,const Loop * L,bool ControlsExit,bool AllowPredicates)8576 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8577 bool AllowPredicates) {
8578
8579 // This is only used for loops with a "x != y" exit test. The exit condition
8580 // is now expressed as a single expression, V = x-y. So the exit test is
8581 // effectively V != 0. We know and take advantage of the fact that this
8582 // expression only being used in a comparison by zero context.
8583
8584 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8585 // If the value is a constant
8586 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8587 // If the value is already zero, the branch will execute zero times.
8588 if (C->getValue()->isZero()) return C;
8589 return getCouldNotCompute(); // Otherwise it will loop infinitely.
8590 }
8591
8592 const SCEVAddRecExpr *AddRec =
8593 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8594
8595 if (!AddRec && AllowPredicates)
8596 // Try to make this an AddRec using runtime tests, in the first X
8597 // iterations of this loop, where X is the SCEV expression found by the
8598 // algorithm below.
8599 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8600
8601 if (!AddRec || AddRec->getLoop() != L)
8602 return getCouldNotCompute();
8603
8604 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8605 // the quadratic equation to solve it.
8606 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8607 // We can only use this value if the chrec ends up with an exact zero
8608 // value at this index. When solving for "X*X != 5", for example, we
8609 // should not accept a root of 2.
8610 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8611 const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8612 return ExitLimit(R, R, false, Predicates);
8613 }
8614 return getCouldNotCompute();
8615 }
8616
8617 // Otherwise we can only handle this if it is affine.
8618 if (!AddRec->isAffine())
8619 return getCouldNotCompute();
8620
8621 // If this is an affine expression, the execution count of this branch is
8622 // the minimum unsigned root of the following equation:
8623 //
8624 // Start + Step*N = 0 (mod 2^BW)
8625 //
8626 // equivalent to:
8627 //
8628 // Step*N = -Start (mod 2^BW)
8629 //
8630 // where BW is the common bit width of Start and Step.
8631
8632 // Get the initial value for the loop.
8633 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8634 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8635
8636 // For now we handle only constant steps.
8637 //
8638 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8639 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8640 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8641 // We have not yet seen any such cases.
8642 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8643 if (!StepC || StepC->getValue()->isZero())
8644 return getCouldNotCompute();
8645
8646 // For positive steps (counting up until unsigned overflow):
8647 // N = -Start/Step (as unsigned)
8648 // For negative steps (counting down to zero):
8649 // N = Start/-Step
8650 // First compute the unsigned distance from zero in the direction of Step.
8651 bool CountDown = StepC->getAPInt().isNegative();
8652 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8653
8654 // Handle unitary steps, which cannot wraparound.
8655 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8656 // N = Distance (as unsigned)
8657 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8658 APInt MaxBECount = getUnsignedRangeMax(Distance);
8659
8660 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8661 // we end up with a loop whose backedge-taken count is n - 1. Detect this
8662 // case, and see if we can improve the bound.
8663 //
8664 // Explicitly handling this here is necessary because getUnsignedRange
8665 // isn't context-sensitive; it doesn't know that we only care about the
8666 // range inside the loop.
8667 const SCEV *Zero = getZero(Distance->getType());
8668 const SCEV *One = getOne(Distance->getType());
8669 const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8670 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8671 // If Distance + 1 doesn't overflow, we can compute the maximum distance
8672 // as "unsigned_max(Distance + 1) - 1".
8673 ConstantRange CR = getUnsignedRange(DistancePlusOne);
8674 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8675 }
8676 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8677 }
8678
8679 // If the condition controls loop exit (the loop exits only if the expression
8680 // is true) and the addition is no-wrap we can use unsigned divide to
8681 // compute the backedge count. In this case, the step may not divide the
8682 // distance, but we don't care because if the condition is "missed" the loop
8683 // will have undefined behavior due to wrapping.
8684 if (ControlsExit && AddRec->hasNoSelfWrap() &&
8685 loopHasNoAbnormalExits(AddRec->getLoop())) {
8686 const SCEV *Exact =
8687 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8688 const SCEV *Max =
8689 Exact == getCouldNotCompute()
8690 ? Exact
8691 : getConstant(getUnsignedRangeMax(Exact));
8692 return ExitLimit(Exact, Max, false, Predicates);
8693 }
8694
8695 // Solve the general equation.
8696 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8697 getNegativeSCEV(Start), *this);
8698 const SCEV *M = E == getCouldNotCompute()
8699 ? E
8700 : getConstant(getUnsignedRangeMax(E));
8701 return ExitLimit(E, M, false, Predicates);
8702 }
8703
8704 ScalarEvolution::ExitLimit
howFarToNonZero(const SCEV * V,const Loop * L)8705 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8706 // Loops that look like: while (X == 0) are very strange indeed. We don't
8707 // handle them yet except for the trivial case. This could be expanded in the
8708 // future as needed.
8709
8710 // If the value is a constant, check to see if it is known to be non-zero
8711 // already. If so, the backedge will execute zero times.
8712 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8713 if (!C->getValue()->isZero())
8714 return getZero(C->getType());
8715 return getCouldNotCompute(); // Otherwise it will loop infinitely.
8716 }
8717
8718 // We could implement others, but I really doubt anyone writes loops like
8719 // this, and if they did, they would already be constant folded.
8720 return getCouldNotCompute();
8721 }
8722
8723 std::pair<BasicBlock *, BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(BasicBlock * BB)8724 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8725 // If the block has a unique predecessor, then there is no path from the
8726 // predecessor to the block that does not go through the direct edge
8727 // from the predecessor to the block.
8728 if (BasicBlock *Pred = BB->getSinglePredecessor())
8729 return {Pred, BB};
8730
8731 // A loop's header is defined to be a block that dominates the loop.
8732 // If the header has a unique predecessor outside the loop, it must be
8733 // a block that has exactly one successor that can reach the loop.
8734 if (Loop *L = LI.getLoopFor(BB))
8735 return {L->getLoopPredecessor(), L->getHeader()};
8736
8737 return {nullptr, nullptr};
8738 }
8739
8740 /// SCEV structural equivalence is usually sufficient for testing whether two
8741 /// expressions are equal, however for the purposes of looking for a condition
8742 /// guarding a loop, it can be useful to be a little more general, since a
8743 /// front-end may have replicated the controlling expression.
HasSameValue(const SCEV * A,const SCEV * B)8744 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8745 // Quick check to see if they are the same SCEV.
8746 if (A == B) return true;
8747
8748 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8749 // Not all instructions that are "identical" compute the same value. For
8750 // instance, two distinct alloca instructions allocating the same type are
8751 // identical and do not read memory; but compute distinct values.
8752 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8753 };
8754
8755 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8756 // two different instructions with the same value. Check for this case.
8757 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8758 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8759 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8760 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8761 if (ComputesEqualValues(AI, BI))
8762 return true;
8763
8764 // Otherwise assume they may have a different value.
8765 return false;
8766 }
8767
SimplifyICmpOperands(ICmpInst::Predicate & Pred,const SCEV * & LHS,const SCEV * & RHS,unsigned Depth)8768 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8769 const SCEV *&LHS, const SCEV *&RHS,
8770 unsigned Depth) {
8771 bool Changed = false;
8772 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8773 // '0 != 0'.
8774 auto TrivialCase = [&](bool TriviallyTrue) {
8775 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8776 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8777 return true;
8778 };
8779 // If we hit the max recursion limit bail out.
8780 if (Depth >= 3)
8781 return false;
8782
8783 // Canonicalize a constant to the right side.
8784 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8785 // Check for both operands constant.
8786 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8787 if (ConstantExpr::getICmp(Pred,
8788 LHSC->getValue(),
8789 RHSC->getValue())->isNullValue())
8790 return TrivialCase(false);
8791 else
8792 return TrivialCase(true);
8793 }
8794 // Otherwise swap the operands to put the constant on the right.
8795 std::swap(LHS, RHS);
8796 Pred = ICmpInst::getSwappedPredicate(Pred);
8797 Changed = true;
8798 }
8799
8800 // If we're comparing an addrec with a value which is loop-invariant in the
8801 // addrec's loop, put the addrec on the left. Also make a dominance check,
8802 // as both operands could be addrecs loop-invariant in each other's loop.
8803 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8804 const Loop *L = AR->getLoop();
8805 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8806 std::swap(LHS, RHS);
8807 Pred = ICmpInst::getSwappedPredicate(Pred);
8808 Changed = true;
8809 }
8810 }
8811
8812 // If there's a constant operand, canonicalize comparisons with boundary
8813 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8814 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8815 const APInt &RA = RC->getAPInt();
8816
8817 bool SimplifiedByConstantRange = false;
8818
8819 if (!ICmpInst::isEquality(Pred)) {
8820 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8821 if (ExactCR.isFullSet())
8822 return TrivialCase(true);
8823 else if (ExactCR.isEmptySet())
8824 return TrivialCase(false);
8825
8826 APInt NewRHS;
8827 CmpInst::Predicate NewPred;
8828 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8829 ICmpInst::isEquality(NewPred)) {
8830 // We were able to convert an inequality to an equality.
8831 Pred = NewPred;
8832 RHS = getConstant(NewRHS);
8833 Changed = SimplifiedByConstantRange = true;
8834 }
8835 }
8836
8837 if (!SimplifiedByConstantRange) {
8838 switch (Pred) {
8839 default:
8840 break;
8841 case ICmpInst::ICMP_EQ:
8842 case ICmpInst::ICMP_NE:
8843 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8844 if (!RA)
8845 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8846 if (const SCEVMulExpr *ME =
8847 dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8848 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8849 ME->getOperand(0)->isAllOnesValue()) {
8850 RHS = AE->getOperand(1);
8851 LHS = ME->getOperand(1);
8852 Changed = true;
8853 }
8854 break;
8855
8856
8857 // The "Should have been caught earlier!" messages refer to the fact
8858 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8859 // should have fired on the corresponding cases, and canonicalized the
8860 // check to trivial case.
8861
8862 case ICmpInst::ICMP_UGE:
8863 assert(!RA.isMinValue() && "Should have been caught earlier!");
8864 Pred = ICmpInst::ICMP_UGT;
8865 RHS = getConstant(RA - 1);
8866 Changed = true;
8867 break;
8868 case ICmpInst::ICMP_ULE:
8869 assert(!RA.isMaxValue() && "Should have been caught earlier!");
8870 Pred = ICmpInst::ICMP_ULT;
8871 RHS = getConstant(RA + 1);
8872 Changed = true;
8873 break;
8874 case ICmpInst::ICMP_SGE:
8875 assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8876 Pred = ICmpInst::ICMP_SGT;
8877 RHS = getConstant(RA - 1);
8878 Changed = true;
8879 break;
8880 case ICmpInst::ICMP_SLE:
8881 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8882 Pred = ICmpInst::ICMP_SLT;
8883 RHS = getConstant(RA + 1);
8884 Changed = true;
8885 break;
8886 }
8887 }
8888 }
8889
8890 // Check for obvious equality.
8891 if (HasSameValue(LHS, RHS)) {
8892 if (ICmpInst::isTrueWhenEqual(Pred))
8893 return TrivialCase(true);
8894 if (ICmpInst::isFalseWhenEqual(Pred))
8895 return TrivialCase(false);
8896 }
8897
8898 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8899 // adding or subtracting 1 from one of the operands.
8900 switch (Pred) {
8901 case ICmpInst::ICMP_SLE:
8902 if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8903 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8904 SCEV::FlagNSW);
8905 Pred = ICmpInst::ICMP_SLT;
8906 Changed = true;
8907 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8908 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8909 SCEV::FlagNSW);
8910 Pred = ICmpInst::ICMP_SLT;
8911 Changed = true;
8912 }
8913 break;
8914 case ICmpInst::ICMP_SGE:
8915 if (!getSignedRangeMin(RHS).isMinSignedValue()) {
8916 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
8917 SCEV::FlagNSW);
8918 Pred = ICmpInst::ICMP_SGT;
8919 Changed = true;
8920 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
8921 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8922 SCEV::FlagNSW);
8923 Pred = ICmpInst::ICMP_SGT;
8924 Changed = true;
8925 }
8926 break;
8927 case ICmpInst::ICMP_ULE:
8928 if (!getUnsignedRangeMax(RHS).isMaxValue()) {
8929 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8930 SCEV::FlagNUW);
8931 Pred = ICmpInst::ICMP_ULT;
8932 Changed = true;
8933 } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
8934 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
8935 Pred = ICmpInst::ICMP_ULT;
8936 Changed = true;
8937 }
8938 break;
8939 case ICmpInst::ICMP_UGE:
8940 if (!getUnsignedRangeMin(RHS).isMinValue()) {
8941 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
8942 Pred = ICmpInst::ICMP_UGT;
8943 Changed = true;
8944 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
8945 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8946 SCEV::FlagNUW);
8947 Pred = ICmpInst::ICMP_UGT;
8948 Changed = true;
8949 }
8950 break;
8951 default:
8952 break;
8953 }
8954
8955 // TODO: More simplifications are possible here.
8956
8957 // Recursively simplify until we either hit a recursion limit or nothing
8958 // changes.
8959 if (Changed)
8960 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
8961
8962 return Changed;
8963 }
8964
isKnownNegative(const SCEV * S)8965 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
8966 return getSignedRangeMax(S).isNegative();
8967 }
8968
isKnownPositive(const SCEV * S)8969 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
8970 return getSignedRangeMin(S).isStrictlyPositive();
8971 }
8972
isKnownNonNegative(const SCEV * S)8973 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
8974 return !getSignedRangeMin(S).isNegative();
8975 }
8976
isKnownNonPositive(const SCEV * S)8977 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
8978 return !getSignedRangeMax(S).isStrictlyPositive();
8979 }
8980
isKnownNonZero(const SCEV * S)8981 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
8982 return isKnownNegative(S) || isKnownPositive(S);
8983 }
8984
8985 std::pair<const SCEV *, const SCEV *>
SplitIntoInitAndPostInc(const Loop * L,const SCEV * S)8986 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
8987 // Compute SCEV on entry of loop L.
8988 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
8989 if (Start == getCouldNotCompute())
8990 return { Start, Start };
8991 // Compute post increment SCEV for loop L.
8992 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
8993 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
8994 return { Start, PostInc };
8995 }
8996
isKnownViaInduction(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)8997 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
8998 const SCEV *LHS, const SCEV *RHS) {
8999 // First collect all loops.
9000 SmallPtrSet<const Loop *, 8> LoopsUsed;
9001 getUsedLoops(LHS, LoopsUsed);
9002 getUsedLoops(RHS, LoopsUsed);
9003
9004 if (LoopsUsed.empty())
9005 return false;
9006
9007 // Domination relationship must be a linear order on collected loops.
9008 #ifndef NDEBUG
9009 for (auto *L1 : LoopsUsed)
9010 for (auto *L2 : LoopsUsed)
9011 assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9012 DT.dominates(L2->getHeader(), L1->getHeader())) &&
9013 "Domination relationship is not a linear order");
9014 #endif
9015
9016 const Loop *MDL =
9017 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9018 [&](const Loop *L1, const Loop *L2) {
9019 return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9020 });
9021
9022 // Get init and post increment value for LHS.
9023 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9024 // if LHS contains unknown non-invariant SCEV then bail out.
9025 if (SplitLHS.first == getCouldNotCompute())
9026 return false;
9027 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9028 // Get init and post increment value for RHS.
9029 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9030 // if RHS contains unknown non-invariant SCEV then bail out.
9031 if (SplitRHS.first == getCouldNotCompute())
9032 return false;
9033 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9034 // It is possible that init SCEV contains an invariant load but it does
9035 // not dominate MDL and is not available at MDL loop entry, so we should
9036 // check it here.
9037 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9038 !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9039 return false;
9040
9041 // It seems backedge guard check is faster than entry one so in some cases
9042 // it can speed up whole estimation by short circuit
9043 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9044 SplitRHS.second) &&
9045 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9046 }
9047
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9048 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9049 const SCEV *LHS, const SCEV *RHS) {
9050 // Canonicalize the inputs first.
9051 (void)SimplifyICmpOperands(Pred, LHS, RHS);
9052
9053 if (isKnownViaInduction(Pred, LHS, RHS))
9054 return true;
9055
9056 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9057 return true;
9058
9059 // Otherwise see what can be done with some simple reasoning.
9060 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9061 }
9062
isKnownOnEveryIteration(ICmpInst::Predicate Pred,const SCEVAddRecExpr * LHS,const SCEV * RHS)9063 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9064 const SCEVAddRecExpr *LHS,
9065 const SCEV *RHS) {
9066 const Loop *L = LHS->getLoop();
9067 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9068 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9069 }
9070
isMonotonicPredicate(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred,bool & Increasing)9071 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9072 ICmpInst::Predicate Pred,
9073 bool &Increasing) {
9074 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9075
9076 #ifndef NDEBUG
9077 // Verify an invariant: inverting the predicate should turn a monotonically
9078 // increasing change to a monotonically decreasing one, and vice versa.
9079 bool IncreasingSwapped;
9080 bool ResultSwapped = isMonotonicPredicateImpl(
9081 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9082
9083 assert(Result == ResultSwapped && "should be able to analyze both!");
9084 if (ResultSwapped)
9085 assert(Increasing == !IncreasingSwapped &&
9086 "monotonicity should flip as we flip the predicate");
9087 #endif
9088
9089 return Result;
9090 }
9091
isMonotonicPredicateImpl(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred,bool & Increasing)9092 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9093 ICmpInst::Predicate Pred,
9094 bool &Increasing) {
9095
9096 // A zero step value for LHS means the induction variable is essentially a
9097 // loop invariant value. We don't really depend on the predicate actually
9098 // flipping from false to true (for increasing predicates, and the other way
9099 // around for decreasing predicates), all we care about is that *if* the
9100 // predicate changes then it only changes from false to true.
9101 //
9102 // A zero step value in itself is not very useful, but there may be places
9103 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9104 // as general as possible.
9105
9106 switch (Pred) {
9107 default:
9108 return false; // Conservative answer
9109
9110 case ICmpInst::ICMP_UGT:
9111 case ICmpInst::ICMP_UGE:
9112 case ICmpInst::ICMP_ULT:
9113 case ICmpInst::ICMP_ULE:
9114 if (!LHS->hasNoUnsignedWrap())
9115 return false;
9116
9117 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9118 return true;
9119
9120 case ICmpInst::ICMP_SGT:
9121 case ICmpInst::ICMP_SGE:
9122 case ICmpInst::ICMP_SLT:
9123 case ICmpInst::ICMP_SLE: {
9124 if (!LHS->hasNoSignedWrap())
9125 return false;
9126
9127 const SCEV *Step = LHS->getStepRecurrence(*this);
9128
9129 if (isKnownNonNegative(Step)) {
9130 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9131 return true;
9132 }
9133
9134 if (isKnownNonPositive(Step)) {
9135 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9136 return true;
9137 }
9138
9139 return false;
9140 }
9141
9142 }
9143
9144 llvm_unreachable("switch has default clause!");
9145 }
9146
isLoopInvariantPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L,ICmpInst::Predicate & InvariantPred,const SCEV * & InvariantLHS,const SCEV * & InvariantRHS)9147 bool ScalarEvolution::isLoopInvariantPredicate(
9148 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9149 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9150 const SCEV *&InvariantRHS) {
9151
9152 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9153 if (!isLoopInvariant(RHS, L)) {
9154 if (!isLoopInvariant(LHS, L))
9155 return false;
9156
9157 std::swap(LHS, RHS);
9158 Pred = ICmpInst::getSwappedPredicate(Pred);
9159 }
9160
9161 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9162 if (!ArLHS || ArLHS->getLoop() != L)
9163 return false;
9164
9165 bool Increasing;
9166 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9167 return false;
9168
9169 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9170 // true as the loop iterates, and the backedge is control dependent on
9171 // "ArLHS `Pred` RHS" == true then we can reason as follows:
9172 //
9173 // * if the predicate was false in the first iteration then the predicate
9174 // is never evaluated again, since the loop exits without taking the
9175 // backedge.
9176 // * if the predicate was true in the first iteration then it will
9177 // continue to be true for all future iterations since it is
9178 // monotonically increasing.
9179 //
9180 // For both the above possibilities, we can replace the loop varying
9181 // predicate with its value on the first iteration of the loop (which is
9182 // loop invariant).
9183 //
9184 // A similar reasoning applies for a monotonically decreasing predicate, by
9185 // replacing true with false and false with true in the above two bullets.
9186
9187 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9188
9189 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9190 return false;
9191
9192 InvariantPred = Pred;
9193 InvariantLHS = ArLHS->getStart();
9194 InvariantRHS = RHS;
9195 return true;
9196 }
9197
isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9198 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9199 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9200 if (HasSameValue(LHS, RHS))
9201 return ICmpInst::isTrueWhenEqual(Pred);
9202
9203 // This code is split out from isKnownPredicate because it is called from
9204 // within isLoopEntryGuardedByCond.
9205
9206 auto CheckRanges =
9207 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9208 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9209 .contains(RangeLHS);
9210 };
9211
9212 // The check at the top of the function catches the case where the values are
9213 // known to be equal.
9214 if (Pred == CmpInst::ICMP_EQ)
9215 return false;
9216
9217 if (Pred == CmpInst::ICMP_NE)
9218 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9219 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9220 isKnownNonZero(getMinusSCEV(LHS, RHS));
9221
9222 if (CmpInst::isSigned(Pred))
9223 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9224
9225 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9226 }
9227
isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9228 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9229 const SCEV *LHS,
9230 const SCEV *RHS) {
9231 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9232 // Return Y via OutY.
9233 auto MatchBinaryAddToConst =
9234 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9235 SCEV::NoWrapFlags ExpectedFlags) {
9236 const SCEV *NonConstOp, *ConstOp;
9237 SCEV::NoWrapFlags FlagsPresent;
9238
9239 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9240 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9241 return false;
9242
9243 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9244 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9245 };
9246
9247 APInt C;
9248
9249 switch (Pred) {
9250 default:
9251 break;
9252
9253 case ICmpInst::ICMP_SGE:
9254 std::swap(LHS, RHS);
9255 LLVM_FALLTHROUGH;
9256 case ICmpInst::ICMP_SLE:
9257 // X s<= (X + C)<nsw> if C >= 0
9258 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9259 return true;
9260
9261 // (X + C)<nsw> s<= X if C <= 0
9262 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9263 !C.isStrictlyPositive())
9264 return true;
9265 break;
9266
9267 case ICmpInst::ICMP_SGT:
9268 std::swap(LHS, RHS);
9269 LLVM_FALLTHROUGH;
9270 case ICmpInst::ICMP_SLT:
9271 // X s< (X + C)<nsw> if C > 0
9272 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9273 C.isStrictlyPositive())
9274 return true;
9275
9276 // (X + C)<nsw> s< X if C < 0
9277 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9278 return true;
9279 break;
9280 }
9281
9282 return false;
9283 }
9284
isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9285 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9286 const SCEV *LHS,
9287 const SCEV *RHS) {
9288 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9289 return false;
9290
9291 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9292 // the stack can result in exponential time complexity.
9293 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9294
9295 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9296 //
9297 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9298 // isKnownPredicate. isKnownPredicate is more powerful, but also more
9299 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9300 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
9301 // use isKnownPredicate later if needed.
9302 return isKnownNonNegative(RHS) &&
9303 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9304 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9305 }
9306
isImpliedViaGuard(BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9307 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9308 ICmpInst::Predicate Pred,
9309 const SCEV *LHS, const SCEV *RHS) {
9310 // No need to even try if we know the module has no guards.
9311 if (!HasGuards)
9312 return false;
9313
9314 return any_of(*BB, [&](Instruction &I) {
9315 using namespace llvm::PatternMatch;
9316
9317 Value *Condition;
9318 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9319 m_Value(Condition))) &&
9320 isImpliedCond(Pred, LHS, RHS, Condition, false);
9321 });
9322 }
9323
9324 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9325 /// protected by a conditional between LHS and RHS. This is used to
9326 /// to eliminate casts.
9327 bool
isLoopBackedgeGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9328 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9329 ICmpInst::Predicate Pred,
9330 const SCEV *LHS, const SCEV *RHS) {
9331 // Interpret a null as meaning no loop, where there is obviously no guard
9332 // (interprocedural conditions notwithstanding).
9333 if (!L) return true;
9334
9335 if (VerifyIR)
9336 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9337 "This cannot be done on broken IR!");
9338
9339
9340 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9341 return true;
9342
9343 BasicBlock *Latch = L->getLoopLatch();
9344 if (!Latch)
9345 return false;
9346
9347 BranchInst *LoopContinuePredicate =
9348 dyn_cast<BranchInst>(Latch->getTerminator());
9349 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9350 isImpliedCond(Pred, LHS, RHS,
9351 LoopContinuePredicate->getCondition(),
9352 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9353 return true;
9354
9355 // We don't want more than one activation of the following loops on the stack
9356 // -- that can lead to O(n!) time complexity.
9357 if (WalkingBEDominatingConds)
9358 return false;
9359
9360 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9361
9362 // See if we can exploit a trip count to prove the predicate.
9363 const auto &BETakenInfo = getBackedgeTakenInfo(L);
9364 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9365 if (LatchBECount != getCouldNotCompute()) {
9366 // We know that Latch branches back to the loop header exactly
9367 // LatchBECount times. This means the backdege condition at Latch is
9368 // equivalent to "{0,+,1} u< LatchBECount".
9369 Type *Ty = LatchBECount->getType();
9370 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9371 const SCEV *LoopCounter =
9372 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9373 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9374 LatchBECount))
9375 return true;
9376 }
9377
9378 // Check conditions due to any @llvm.assume intrinsics.
9379 for (auto &AssumeVH : AC.assumptions()) {
9380 if (!AssumeVH)
9381 continue;
9382 auto *CI = cast<CallInst>(AssumeVH);
9383 if (!DT.dominates(CI, Latch->getTerminator()))
9384 continue;
9385
9386 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9387 return true;
9388 }
9389
9390 // If the loop is not reachable from the entry block, we risk running into an
9391 // infinite loop as we walk up into the dom tree. These loops do not matter
9392 // anyway, so we just return a conservative answer when we see them.
9393 if (!DT.isReachableFromEntry(L->getHeader()))
9394 return false;
9395
9396 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9397 return true;
9398
9399 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9400 DTN != HeaderDTN; DTN = DTN->getIDom()) {
9401 assert(DTN && "should reach the loop header before reaching the root!");
9402
9403 BasicBlock *BB = DTN->getBlock();
9404 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9405 return true;
9406
9407 BasicBlock *PBB = BB->getSinglePredecessor();
9408 if (!PBB)
9409 continue;
9410
9411 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9412 if (!ContinuePredicate || !ContinuePredicate->isConditional())
9413 continue;
9414
9415 Value *Condition = ContinuePredicate->getCondition();
9416
9417 // If we have an edge `E` within the loop body that dominates the only
9418 // latch, the condition guarding `E` also guards the backedge. This
9419 // reasoning works only for loops with a single latch.
9420
9421 BasicBlockEdge DominatingEdge(PBB, BB);
9422 if (DominatingEdge.isSingleEdge()) {
9423 // We're constructively (and conservatively) enumerating edges within the
9424 // loop body that dominate the latch. The dominator tree better agree
9425 // with us on this:
9426 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9427
9428 if (isImpliedCond(Pred, LHS, RHS, Condition,
9429 BB != ContinuePredicate->getSuccessor(0)))
9430 return true;
9431 }
9432 }
9433
9434 return false;
9435 }
9436
9437 bool
isLoopEntryGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9438 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9439 ICmpInst::Predicate Pred,
9440 const SCEV *LHS, const SCEV *RHS) {
9441 // Interpret a null as meaning no loop, where there is obviously no guard
9442 // (interprocedural conditions notwithstanding).
9443 if (!L) return false;
9444
9445 if (VerifyIR)
9446 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9447 "This cannot be done on broken IR!");
9448
9449 // Both LHS and RHS must be available at loop entry.
9450 assert(isAvailableAtLoopEntry(LHS, L) &&
9451 "LHS is not available at Loop Entry");
9452 assert(isAvailableAtLoopEntry(RHS, L) &&
9453 "RHS is not available at Loop Entry");
9454
9455 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9456 return true;
9457
9458 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9459 // the facts (a >= b && a != b) separately. A typical situation is when the
9460 // non-strict comparison is known from ranges and non-equality is known from
9461 // dominating predicates. If we are proving strict comparison, we always try
9462 // to prove non-equality and non-strict comparison separately.
9463 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9464 const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9465 bool ProvedNonStrictComparison = false;
9466 bool ProvedNonEquality = false;
9467
9468 if (ProvingStrictComparison) {
9469 ProvedNonStrictComparison =
9470 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9471 ProvedNonEquality =
9472 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9473 if (ProvedNonStrictComparison && ProvedNonEquality)
9474 return true;
9475 }
9476
9477 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9478 auto ProveViaGuard = [&](BasicBlock *Block) {
9479 if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9480 return true;
9481 if (ProvingStrictComparison) {
9482 if (!ProvedNonStrictComparison)
9483 ProvedNonStrictComparison =
9484 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9485 if (!ProvedNonEquality)
9486 ProvedNonEquality =
9487 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9488 if (ProvedNonStrictComparison && ProvedNonEquality)
9489 return true;
9490 }
9491 return false;
9492 };
9493
9494 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9495 auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9496 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9497 return true;
9498 if (ProvingStrictComparison) {
9499 if (!ProvedNonStrictComparison)
9500 ProvedNonStrictComparison =
9501 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9502 if (!ProvedNonEquality)
9503 ProvedNonEquality =
9504 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9505 if (ProvedNonStrictComparison && ProvedNonEquality)
9506 return true;
9507 }
9508 return false;
9509 };
9510
9511 // Starting at the loop predecessor, climb up the predecessor chain, as long
9512 // as there are predecessors that can be found that have unique successors
9513 // leading to the original header.
9514 for (std::pair<BasicBlock *, BasicBlock *>
9515 Pair(L->getLoopPredecessor(), L->getHeader());
9516 Pair.first;
9517 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9518
9519 if (ProveViaGuard(Pair.first))
9520 return true;
9521
9522 BranchInst *LoopEntryPredicate =
9523 dyn_cast<BranchInst>(Pair.first->getTerminator());
9524 if (!LoopEntryPredicate ||
9525 LoopEntryPredicate->isUnconditional())
9526 continue;
9527
9528 if (ProveViaCond(LoopEntryPredicate->getCondition(),
9529 LoopEntryPredicate->getSuccessor(0) != Pair.second))
9530 return true;
9531 }
9532
9533 // Check conditions due to any @llvm.assume intrinsics.
9534 for (auto &AssumeVH : AC.assumptions()) {
9535 if (!AssumeVH)
9536 continue;
9537 auto *CI = cast<CallInst>(AssumeVH);
9538 if (!DT.dominates(CI, L->getHeader()))
9539 continue;
9540
9541 if (ProveViaCond(CI->getArgOperand(0), false))
9542 return true;
9543 }
9544
9545 return false;
9546 }
9547
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,Value * FoundCondValue,bool Inverse)9548 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9549 const SCEV *LHS, const SCEV *RHS,
9550 Value *FoundCondValue,
9551 bool Inverse) {
9552 if (!PendingLoopPredicates.insert(FoundCondValue).second)
9553 return false;
9554
9555 auto ClearOnExit =
9556 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9557
9558 // Recursively handle And and Or conditions.
9559 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9560 if (BO->getOpcode() == Instruction::And) {
9561 if (!Inverse)
9562 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9563 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9564 } else if (BO->getOpcode() == Instruction::Or) {
9565 if (Inverse)
9566 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9567 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9568 }
9569 }
9570
9571 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9572 if (!ICI) return false;
9573
9574 // Now that we found a conditional branch that dominates the loop or controls
9575 // the loop latch. Check to see if it is the comparison we are looking for.
9576 ICmpInst::Predicate FoundPred;
9577 if (Inverse)
9578 FoundPred = ICI->getInversePredicate();
9579 else
9580 FoundPred = ICI->getPredicate();
9581
9582 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9583 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9584
9585 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9586 }
9587
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS)9588 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9589 const SCEV *RHS,
9590 ICmpInst::Predicate FoundPred,
9591 const SCEV *FoundLHS,
9592 const SCEV *FoundRHS) {
9593 // Balance the types.
9594 if (getTypeSizeInBits(LHS->getType()) <
9595 getTypeSizeInBits(FoundLHS->getType())) {
9596 if (CmpInst::isSigned(Pred)) {
9597 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9598 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9599 } else {
9600 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9601 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9602 }
9603 } else if (getTypeSizeInBits(LHS->getType()) >
9604 getTypeSizeInBits(FoundLHS->getType())) {
9605 if (CmpInst::isSigned(FoundPred)) {
9606 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9607 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9608 } else {
9609 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9610 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9611 }
9612 }
9613
9614 // Canonicalize the query to match the way instcombine will have
9615 // canonicalized the comparison.
9616 if (SimplifyICmpOperands(Pred, LHS, RHS))
9617 if (LHS == RHS)
9618 return CmpInst::isTrueWhenEqual(Pred);
9619 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9620 if (FoundLHS == FoundRHS)
9621 return CmpInst::isFalseWhenEqual(FoundPred);
9622
9623 // Check to see if we can make the LHS or RHS match.
9624 if (LHS == FoundRHS || RHS == FoundLHS) {
9625 if (isa<SCEVConstant>(RHS)) {
9626 std::swap(FoundLHS, FoundRHS);
9627 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9628 } else {
9629 std::swap(LHS, RHS);
9630 Pred = ICmpInst::getSwappedPredicate(Pred);
9631 }
9632 }
9633
9634 // Check whether the found predicate is the same as the desired predicate.
9635 if (FoundPred == Pred)
9636 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9637
9638 // Check whether swapping the found predicate makes it the same as the
9639 // desired predicate.
9640 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9641 if (isa<SCEVConstant>(RHS))
9642 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9643 else
9644 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9645 RHS, LHS, FoundLHS, FoundRHS);
9646 }
9647
9648 // Unsigned comparison is the same as signed comparison when both the operands
9649 // are non-negative.
9650 if (CmpInst::isUnsigned(FoundPred) &&
9651 CmpInst::getSignedPredicate(FoundPred) == Pred &&
9652 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9653 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9654
9655 // Check if we can make progress by sharpening ranges.
9656 if (FoundPred == ICmpInst::ICMP_NE &&
9657 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9658
9659 const SCEVConstant *C = nullptr;
9660 const SCEV *V = nullptr;
9661
9662 if (isa<SCEVConstant>(FoundLHS)) {
9663 C = cast<SCEVConstant>(FoundLHS);
9664 V = FoundRHS;
9665 } else {
9666 C = cast<SCEVConstant>(FoundRHS);
9667 V = FoundLHS;
9668 }
9669
9670 // The guarding predicate tells us that C != V. If the known range
9671 // of V is [C, t), we can sharpen the range to [C + 1, t). The
9672 // range we consider has to correspond to same signedness as the
9673 // predicate we're interested in folding.
9674
9675 APInt Min = ICmpInst::isSigned(Pred) ?
9676 getSignedRangeMin(V) : getUnsignedRangeMin(V);
9677
9678 if (Min == C->getAPInt()) {
9679 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9680 // This is true even if (Min + 1) wraps around -- in case of
9681 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9682
9683 APInt SharperMin = Min + 1;
9684
9685 switch (Pred) {
9686 case ICmpInst::ICMP_SGE:
9687 case ICmpInst::ICMP_UGE:
9688 // We know V `Pred` SharperMin. If this implies LHS `Pred`
9689 // RHS, we're done.
9690 if (isImpliedCondOperands(Pred, LHS, RHS, V,
9691 getConstant(SharperMin)))
9692 return true;
9693 LLVM_FALLTHROUGH;
9694
9695 case ICmpInst::ICMP_SGT:
9696 case ICmpInst::ICMP_UGT:
9697 // We know from the range information that (V `Pred` Min ||
9698 // V == Min). We know from the guarding condition that !(V
9699 // == Min). This gives us
9700 //
9701 // V `Pred` Min || V == Min && !(V == Min)
9702 // => V `Pred` Min
9703 //
9704 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9705
9706 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9707 return true;
9708 LLVM_FALLTHROUGH;
9709
9710 default:
9711 // No change
9712 break;
9713 }
9714 }
9715 }
9716
9717 // Check whether the actual condition is beyond sufficient.
9718 if (FoundPred == ICmpInst::ICMP_EQ)
9719 if (ICmpInst::isTrueWhenEqual(Pred))
9720 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9721 return true;
9722 if (Pred == ICmpInst::ICMP_NE)
9723 if (!ICmpInst::isTrueWhenEqual(FoundPred))
9724 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9725 return true;
9726
9727 // Otherwise assume the worst.
9728 return false;
9729 }
9730
splitBinaryAdd(const SCEV * Expr,const SCEV * & L,const SCEV * & R,SCEV::NoWrapFlags & Flags)9731 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9732 const SCEV *&L, const SCEV *&R,
9733 SCEV::NoWrapFlags &Flags) {
9734 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9735 if (!AE || AE->getNumOperands() != 2)
9736 return false;
9737
9738 L = AE->getOperand(0);
9739 R = AE->getOperand(1);
9740 Flags = AE->getNoWrapFlags();
9741 return true;
9742 }
9743
computeConstantDifference(const SCEV * More,const SCEV * Less)9744 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9745 const SCEV *Less) {
9746 // We avoid subtracting expressions here because this function is usually
9747 // fairly deep in the call stack (i.e. is called many times).
9748
9749 // X - X = 0.
9750 if (More == Less)
9751 return APInt(getTypeSizeInBits(More->getType()), 0);
9752
9753 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9754 const auto *LAR = cast<SCEVAddRecExpr>(Less);
9755 const auto *MAR = cast<SCEVAddRecExpr>(More);
9756
9757 if (LAR->getLoop() != MAR->getLoop())
9758 return None;
9759
9760 // We look at affine expressions only; not for correctness but to keep
9761 // getStepRecurrence cheap.
9762 if (!LAR->isAffine() || !MAR->isAffine())
9763 return None;
9764
9765 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9766 return None;
9767
9768 Less = LAR->getStart();
9769 More = MAR->getStart();
9770
9771 // fall through
9772 }
9773
9774 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9775 const auto &M = cast<SCEVConstant>(More)->getAPInt();
9776 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9777 return M - L;
9778 }
9779
9780 SCEV::NoWrapFlags Flags;
9781 const SCEV *LLess = nullptr, *RLess = nullptr;
9782 const SCEV *LMore = nullptr, *RMore = nullptr;
9783 const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9784 // Compare (X + C1) vs X.
9785 if (splitBinaryAdd(Less, LLess, RLess, Flags))
9786 if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9787 if (RLess == More)
9788 return -(C1->getAPInt());
9789
9790 // Compare X vs (X + C2).
9791 if (splitBinaryAdd(More, LMore, RMore, Flags))
9792 if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9793 if (RMore == Less)
9794 return C2->getAPInt();
9795
9796 // Compare (X + C1) vs (X + C2).
9797 if (C1 && C2 && RLess == RMore)
9798 return C2->getAPInt() - C1->getAPInt();
9799
9800 return None;
9801 }
9802
isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)9803 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9804 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9805 const SCEV *FoundLHS, const SCEV *FoundRHS) {
9806 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9807 return false;
9808
9809 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9810 if (!AddRecLHS)
9811 return false;
9812
9813 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9814 if (!AddRecFoundLHS)
9815 return false;
9816
9817 // We'd like to let SCEV reason about control dependencies, so we constrain
9818 // both the inequalities to be about add recurrences on the same loop. This
9819 // way we can use isLoopEntryGuardedByCond later.
9820
9821 const Loop *L = AddRecFoundLHS->getLoop();
9822 if (L != AddRecLHS->getLoop())
9823 return false;
9824
9825 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
9826 //
9827 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9828 // ... (2)
9829 //
9830 // Informal proof for (2), assuming (1) [*]:
9831 //
9832 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9833 //
9834 // Then
9835 //
9836 // FoundLHS s< FoundRHS s< INT_MIN - C
9837 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
9838 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9839 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
9840 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9841 // <=> FoundLHS + C s< FoundRHS + C
9842 //
9843 // [*]: (1) can be proved by ruling out overflow.
9844 //
9845 // [**]: This can be proved by analyzing all the four possibilities:
9846 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9847 // (A s>= 0, B s>= 0).
9848 //
9849 // Note:
9850 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9851 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
9852 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
9853 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
9854 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9855 // C)".
9856
9857 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9858 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9859 if (!LDiff || !RDiff || *LDiff != *RDiff)
9860 return false;
9861
9862 if (LDiff->isMinValue())
9863 return true;
9864
9865 APInt FoundRHSLimit;
9866
9867 if (Pred == CmpInst::ICMP_ULT) {
9868 FoundRHSLimit = -(*RDiff);
9869 } else {
9870 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9871 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9872 }
9873
9874 // Try to prove (1) or (2), as needed.
9875 return isAvailableAtLoopEntry(FoundRHS, L) &&
9876 isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9877 getConstant(FoundRHSLimit));
9878 }
9879
isImpliedViaMerge(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)9880 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
9881 const SCEV *LHS, const SCEV *RHS,
9882 const SCEV *FoundLHS,
9883 const SCEV *FoundRHS, unsigned Depth) {
9884 const PHINode *LPhi = nullptr, *RPhi = nullptr;
9885
9886 auto ClearOnExit = make_scope_exit([&]() {
9887 if (LPhi) {
9888 bool Erased = PendingMerges.erase(LPhi);
9889 assert(Erased && "Failed to erase LPhi!");
9890 (void)Erased;
9891 }
9892 if (RPhi) {
9893 bool Erased = PendingMerges.erase(RPhi);
9894 assert(Erased && "Failed to erase RPhi!");
9895 (void)Erased;
9896 }
9897 });
9898
9899 // Find respective Phis and check that they are not being pending.
9900 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
9901 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
9902 if (!PendingMerges.insert(Phi).second)
9903 return false;
9904 LPhi = Phi;
9905 }
9906 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
9907 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
9908 // If we detect a loop of Phi nodes being processed by this method, for
9909 // example:
9910 //
9911 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
9912 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
9913 //
9914 // we don't want to deal with a case that complex, so return conservative
9915 // answer false.
9916 if (!PendingMerges.insert(Phi).second)
9917 return false;
9918 RPhi = Phi;
9919 }
9920
9921 // If none of LHS, RHS is a Phi, nothing to do here.
9922 if (!LPhi && !RPhi)
9923 return false;
9924
9925 // If there is a SCEVUnknown Phi we are interested in, make it left.
9926 if (!LPhi) {
9927 std::swap(LHS, RHS);
9928 std::swap(FoundLHS, FoundRHS);
9929 std::swap(LPhi, RPhi);
9930 Pred = ICmpInst::getSwappedPredicate(Pred);
9931 }
9932
9933 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
9934 const BasicBlock *LBB = LPhi->getParent();
9935 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
9936
9937 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
9938 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
9939 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
9940 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
9941 };
9942
9943 if (RPhi && RPhi->getParent() == LBB) {
9944 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
9945 // If we compare two Phis from the same block, and for each entry block
9946 // the predicate is true for incoming values from this block, then the
9947 // predicate is also true for the Phis.
9948 for (const BasicBlock *IncBB : predecessors(LBB)) {
9949 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
9950 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
9951 if (!ProvedEasily(L, R))
9952 return false;
9953 }
9954 } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
9955 // Case two: RHS is also a Phi from the same basic block, and it is an
9956 // AddRec. It means that there is a loop which has both AddRec and Unknown
9957 // PHIs, for it we can compare incoming values of AddRec from above the loop
9958 // and latch with their respective incoming values of LPhi.
9959 // TODO: Generalize to handle loops with many inputs in a header.
9960 if (LPhi->getNumIncomingValues() != 2) return false;
9961
9962 auto *RLoop = RAR->getLoop();
9963 auto *Predecessor = RLoop->getLoopPredecessor();
9964 assert(Predecessor && "Loop with AddRec with no predecessor?");
9965 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
9966 if (!ProvedEasily(L1, RAR->getStart()))
9967 return false;
9968 auto *Latch = RLoop->getLoopLatch();
9969 assert(Latch && "Loop with AddRec with no latch?");
9970 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
9971 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
9972 return false;
9973 } else {
9974 // In all other cases go over inputs of LHS and compare each of them to RHS,
9975 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
9976 // At this point RHS is either a non-Phi, or it is a Phi from some block
9977 // different from LBB.
9978 for (const BasicBlock *IncBB : predecessors(LBB)) {
9979 // Check that RHS is available in this block.
9980 if (!dominates(RHS, IncBB))
9981 return false;
9982 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
9983 if (!ProvedEasily(L, RHS))
9984 return false;
9985 }
9986 }
9987 return true;
9988 }
9989
isImpliedCondOperands(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)9990 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
9991 const SCEV *LHS, const SCEV *RHS,
9992 const SCEV *FoundLHS,
9993 const SCEV *FoundRHS) {
9994 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
9995 return true;
9996
9997 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
9998 return true;
9999
10000 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10001 FoundLHS, FoundRHS) ||
10002 // ~x < ~y --> x > y
10003 isImpliedCondOperandsHelper(Pred, LHS, RHS,
10004 getNotSCEV(FoundRHS),
10005 getNotSCEV(FoundLHS));
10006 }
10007
10008 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10009 template <typename MinMaxExprType>
IsMinMaxConsistingOf(const SCEV * MaybeMinMaxExpr,const SCEV * Candidate)10010 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10011 const SCEV *Candidate) {
10012 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10013 if (!MinMaxExpr)
10014 return false;
10015
10016 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10017 }
10018
IsKnownPredicateViaAddRecStart(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10019 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10020 ICmpInst::Predicate Pred,
10021 const SCEV *LHS, const SCEV *RHS) {
10022 // If both sides are affine addrecs for the same loop, with equal
10023 // steps, and we know the recurrences don't wrap, then we only
10024 // need to check the predicate on the starting values.
10025
10026 if (!ICmpInst::isRelational(Pred))
10027 return false;
10028
10029 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10030 if (!LAR)
10031 return false;
10032 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10033 if (!RAR)
10034 return false;
10035 if (LAR->getLoop() != RAR->getLoop())
10036 return false;
10037 if (!LAR->isAffine() || !RAR->isAffine())
10038 return false;
10039
10040 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10041 return false;
10042
10043 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10044 SCEV::FlagNSW : SCEV::FlagNUW;
10045 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10046 return false;
10047
10048 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10049 }
10050
10051 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10052 /// expression?
IsKnownPredicateViaMinOrMax(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10053 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10054 ICmpInst::Predicate Pred,
10055 const SCEV *LHS, const SCEV *RHS) {
10056 switch (Pred) {
10057 default:
10058 return false;
10059
10060 case ICmpInst::ICMP_SGE:
10061 std::swap(LHS, RHS);
10062 LLVM_FALLTHROUGH;
10063 case ICmpInst::ICMP_SLE:
10064 return
10065 // min(A, ...) <= A
10066 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10067 // A <= max(A, ...)
10068 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10069
10070 case ICmpInst::ICMP_UGE:
10071 std::swap(LHS, RHS);
10072 LLVM_FALLTHROUGH;
10073 case ICmpInst::ICMP_ULE:
10074 return
10075 // min(A, ...) <= A
10076 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10077 // A <= max(A, ...)
10078 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10079 }
10080
10081 llvm_unreachable("covered switch fell through?!");
10082 }
10083
isImpliedViaOperations(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)10084 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10085 const SCEV *LHS, const SCEV *RHS,
10086 const SCEV *FoundLHS,
10087 const SCEV *FoundRHS,
10088 unsigned Depth) {
10089 assert(getTypeSizeInBits(LHS->getType()) ==
10090 getTypeSizeInBits(RHS->getType()) &&
10091 "LHS and RHS have different sizes?");
10092 assert(getTypeSizeInBits(FoundLHS->getType()) ==
10093 getTypeSizeInBits(FoundRHS->getType()) &&
10094 "FoundLHS and FoundRHS have different sizes?");
10095 // We want to avoid hurting the compile time with analysis of too big trees.
10096 if (Depth > MaxSCEVOperationsImplicationDepth)
10097 return false;
10098 // We only want to work with ICMP_SGT comparison so far.
10099 // TODO: Extend to ICMP_UGT?
10100 if (Pred == ICmpInst::ICMP_SLT) {
10101 Pred = ICmpInst::ICMP_SGT;
10102 std::swap(LHS, RHS);
10103 std::swap(FoundLHS, FoundRHS);
10104 }
10105 if (Pred != ICmpInst::ICMP_SGT)
10106 return false;
10107
10108 auto GetOpFromSExt = [&](const SCEV *S) {
10109 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10110 return Ext->getOperand();
10111 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10112 // the constant in some cases.
10113 return S;
10114 };
10115
10116 // Acquire values from extensions.
10117 auto *OrigLHS = LHS;
10118 auto *OrigFoundLHS = FoundLHS;
10119 LHS = GetOpFromSExt(LHS);
10120 FoundLHS = GetOpFromSExt(FoundLHS);
10121
10122 // Is the SGT predicate can be proved trivially or using the found context.
10123 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10124 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10125 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10126 FoundRHS, Depth + 1);
10127 };
10128
10129 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10130 // We want to avoid creation of any new non-constant SCEV. Since we are
10131 // going to compare the operands to RHS, we should be certain that we don't
10132 // need any size extensions for this. So let's decline all cases when the
10133 // sizes of types of LHS and RHS do not match.
10134 // TODO: Maybe try to get RHS from sext to catch more cases?
10135 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10136 return false;
10137
10138 // Should not overflow.
10139 if (!LHSAddExpr->hasNoSignedWrap())
10140 return false;
10141
10142 auto *LL = LHSAddExpr->getOperand(0);
10143 auto *LR = LHSAddExpr->getOperand(1);
10144 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10145
10146 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10147 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10148 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10149 };
10150 // Try to prove the following rule:
10151 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10152 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10153 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10154 return true;
10155 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10156 Value *LL, *LR;
10157 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10158
10159 using namespace llvm::PatternMatch;
10160
10161 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10162 // Rules for division.
10163 // We are going to perform some comparisons with Denominator and its
10164 // derivative expressions. In general case, creating a SCEV for it may
10165 // lead to a complex analysis of the entire graph, and in particular it
10166 // can request trip count recalculation for the same loop. This would
10167 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10168 // this, we only want to create SCEVs that are constants in this section.
10169 // So we bail if Denominator is not a constant.
10170 if (!isa<ConstantInt>(LR))
10171 return false;
10172
10173 auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10174
10175 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10176 // then a SCEV for the numerator already exists and matches with FoundLHS.
10177 auto *Numerator = getExistingSCEV(LL);
10178 if (!Numerator || Numerator->getType() != FoundLHS->getType())
10179 return false;
10180
10181 // Make sure that the numerator matches with FoundLHS and the denominator
10182 // is positive.
10183 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10184 return false;
10185
10186 auto *DTy = Denominator->getType();
10187 auto *FRHSTy = FoundRHS->getType();
10188 if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10189 // One of types is a pointer and another one is not. We cannot extend
10190 // them properly to a wider type, so let us just reject this case.
10191 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10192 // to avoid this check.
10193 return false;
10194
10195 // Given that:
10196 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10197 auto *WTy = getWiderType(DTy, FRHSTy);
10198 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10199 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10200
10201 // Try to prove the following rule:
10202 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10203 // For example, given that FoundLHS > 2. It means that FoundLHS is at
10204 // least 3. If we divide it by Denominator < 4, we will have at least 1.
10205 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10206 if (isKnownNonPositive(RHS) &&
10207 IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10208 return true;
10209
10210 // Try to prove the following rule:
10211 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10212 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10213 // If we divide it by Denominator > 2, then:
10214 // 1. If FoundLHS is negative, then the result is 0.
10215 // 2. If FoundLHS is non-negative, then the result is non-negative.
10216 // Anyways, the result is non-negative.
10217 auto *MinusOne = getNegativeSCEV(getOne(WTy));
10218 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10219 if (isKnownNegative(RHS) &&
10220 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10221 return true;
10222 }
10223 }
10224
10225 // If our expression contained SCEVUnknown Phis, and we split it down and now
10226 // need to prove something for them, try to prove the predicate for every
10227 // possible incoming values of those Phis.
10228 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10229 return true;
10230
10231 return false;
10232 }
10233
isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10234 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10235 const SCEV *LHS, const SCEV *RHS) {
10236 // zext x u<= sext x, sext x s<= zext x
10237 switch (Pred) {
10238 case ICmpInst::ICMP_SGE:
10239 std::swap(LHS, RHS);
10240 LLVM_FALLTHROUGH;
10241 case ICmpInst::ICMP_SLE: {
10242 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt.
10243 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10244 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10245 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10246 return true;
10247 break;
10248 }
10249 case ICmpInst::ICMP_UGE:
10250 std::swap(LHS, RHS);
10251 LLVM_FALLTHROUGH;
10252 case ICmpInst::ICMP_ULE: {
10253 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt.
10254 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10255 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10256 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10257 return true;
10258 break;
10259 }
10260 default:
10261 break;
10262 };
10263 return false;
10264 }
10265
10266 bool
isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10267 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10268 const SCEV *LHS, const SCEV *RHS) {
10269 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10270 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10271 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10272 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10273 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10274 }
10275
10276 bool
isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10277 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10278 const SCEV *LHS, const SCEV *RHS,
10279 const SCEV *FoundLHS,
10280 const SCEV *FoundRHS) {
10281 switch (Pred) {
10282 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10283 case ICmpInst::ICMP_EQ:
10284 case ICmpInst::ICMP_NE:
10285 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10286 return true;
10287 break;
10288 case ICmpInst::ICMP_SLT:
10289 case ICmpInst::ICMP_SLE:
10290 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10291 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10292 return true;
10293 break;
10294 case ICmpInst::ICMP_SGT:
10295 case ICmpInst::ICMP_SGE:
10296 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10297 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10298 return true;
10299 break;
10300 case ICmpInst::ICMP_ULT:
10301 case ICmpInst::ICMP_ULE:
10302 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10303 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10304 return true;
10305 break;
10306 case ICmpInst::ICMP_UGT:
10307 case ICmpInst::ICMP_UGE:
10308 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10309 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10310 return true;
10311 break;
10312 }
10313
10314 // Maybe it can be proved via operations?
10315 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10316 return true;
10317
10318 return false;
10319 }
10320
isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10321 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10322 const SCEV *LHS,
10323 const SCEV *RHS,
10324 const SCEV *FoundLHS,
10325 const SCEV *FoundRHS) {
10326 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10327 // The restriction on `FoundRHS` be lifted easily -- it exists only to
10328 // reduce the compile time impact of this optimization.
10329 return false;
10330
10331 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10332 if (!Addend)
10333 return false;
10334
10335 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10336
10337 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10338 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10339 ConstantRange FoundLHSRange =
10340 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10341
10342 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10343 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10344
10345 // We can also compute the range of values for `LHS` that satisfy the
10346 // consequent, "`LHS` `Pred` `RHS`":
10347 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10348 ConstantRange SatisfyingLHSRange =
10349 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10350
10351 // The antecedent implies the consequent if every value of `LHS` that
10352 // satisfies the antecedent also satisfies the consequent.
10353 return SatisfyingLHSRange.contains(LHSRange);
10354 }
10355
doesIVOverflowOnLT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)10356 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10357 bool IsSigned, bool NoWrap) {
10358 assert(isKnownPositive(Stride) && "Positive stride expected!");
10359
10360 if (NoWrap) return false;
10361
10362 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10363 const SCEV *One = getOne(Stride->getType());
10364
10365 if (IsSigned) {
10366 APInt MaxRHS = getSignedRangeMax(RHS);
10367 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10368 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10369
10370 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10371 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10372 }
10373
10374 APInt MaxRHS = getUnsignedRangeMax(RHS);
10375 APInt MaxValue = APInt::getMaxValue(BitWidth);
10376 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10377
10378 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10379 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10380 }
10381
doesIVOverflowOnGT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)10382 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10383 bool IsSigned, bool NoWrap) {
10384 if (NoWrap) return false;
10385
10386 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10387 const SCEV *One = getOne(Stride->getType());
10388
10389 if (IsSigned) {
10390 APInt MinRHS = getSignedRangeMin(RHS);
10391 APInt MinValue = APInt::getSignedMinValue(BitWidth);
10392 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10393
10394 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10395 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10396 }
10397
10398 APInt MinRHS = getUnsignedRangeMin(RHS);
10399 APInt MinValue = APInt::getMinValue(BitWidth);
10400 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10401
10402 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10403 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10404 }
10405
computeBECount(const SCEV * Delta,const SCEV * Step,bool Equality)10406 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10407 bool Equality) {
10408 const SCEV *One = getOne(Step->getType());
10409 Delta = Equality ? getAddExpr(Delta, Step)
10410 : getAddExpr(Delta, getMinusSCEV(Step, One));
10411 return getUDivExpr(Delta, Step);
10412 }
10413
computeMaxBECountForLT(const SCEV * Start,const SCEV * Stride,const SCEV * End,unsigned BitWidth,bool IsSigned)10414 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10415 const SCEV *Stride,
10416 const SCEV *End,
10417 unsigned BitWidth,
10418 bool IsSigned) {
10419
10420 assert(!isKnownNonPositive(Stride) &&
10421 "Stride is expected strictly positive!");
10422 // Calculate the maximum backedge count based on the range of values
10423 // permitted by Start, End, and Stride.
10424 const SCEV *MaxBECount;
10425 APInt MinStart =
10426 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10427
10428 APInt StrideForMaxBECount =
10429 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10430
10431 // We already know that the stride is positive, so we paper over conservatism
10432 // in our range computation by forcing StrideForMaxBECount to be at least one.
10433 // In theory this is unnecessary, but we expect MaxBECount to be a
10434 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10435 // is nothing to constant fold it to).
10436 APInt One(BitWidth, 1, IsSigned);
10437 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10438
10439 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10440 : APInt::getMaxValue(BitWidth);
10441 APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10442
10443 // Although End can be a MAX expression we estimate MaxEnd considering only
10444 // the case End = RHS of the loop termination condition. This is safe because
10445 // in the other case (End - Start) is zero, leading to a zero maximum backedge
10446 // taken count.
10447 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10448 : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10449
10450 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10451 getConstant(StrideForMaxBECount) /* Step */,
10452 false /* Equality */);
10453
10454 return MaxBECount;
10455 }
10456
10457 ScalarEvolution::ExitLimit
howManyLessThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)10458 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10459 const Loop *L, bool IsSigned,
10460 bool ControlsExit, bool AllowPredicates) {
10461 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10462
10463 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10464 bool PredicatedIV = false;
10465
10466 if (!IV && AllowPredicates) {
10467 // Try to make this an AddRec using runtime tests, in the first X
10468 // iterations of this loop, where X is the SCEV expression found by the
10469 // algorithm below.
10470 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10471 PredicatedIV = true;
10472 }
10473
10474 // Avoid weird loops
10475 if (!IV || IV->getLoop() != L || !IV->isAffine())
10476 return getCouldNotCompute();
10477
10478 bool NoWrap = ControlsExit &&
10479 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10480
10481 const SCEV *Stride = IV->getStepRecurrence(*this);
10482
10483 bool PositiveStride = isKnownPositive(Stride);
10484
10485 // Avoid negative or zero stride values.
10486 if (!PositiveStride) {
10487 // We can compute the correct backedge taken count for loops with unknown
10488 // strides if we can prove that the loop is not an infinite loop with side
10489 // effects. Here's the loop structure we are trying to handle -
10490 //
10491 // i = start
10492 // do {
10493 // A[i] = i;
10494 // i += s;
10495 // } while (i < end);
10496 //
10497 // The backedge taken count for such loops is evaluated as -
10498 // (max(end, start + stride) - start - 1) /u stride
10499 //
10500 // The additional preconditions that we need to check to prove correctness
10501 // of the above formula is as follows -
10502 //
10503 // a) IV is either nuw or nsw depending upon signedness (indicated by the
10504 // NoWrap flag).
10505 // b) loop is single exit with no side effects.
10506 //
10507 //
10508 // Precondition a) implies that if the stride is negative, this is a single
10509 // trip loop. The backedge taken count formula reduces to zero in this case.
10510 //
10511 // Precondition b) implies that the unknown stride cannot be zero otherwise
10512 // we have UB.
10513 //
10514 // The positive stride case is the same as isKnownPositive(Stride) returning
10515 // true (original behavior of the function).
10516 //
10517 // We want to make sure that the stride is truly unknown as there are edge
10518 // cases where ScalarEvolution propagates no wrap flags to the
10519 // post-increment/decrement IV even though the increment/decrement operation
10520 // itself is wrapping. The computed backedge taken count may be wrong in
10521 // such cases. This is prevented by checking that the stride is not known to
10522 // be either positive or non-positive. For example, no wrap flags are
10523 // propagated to the post-increment IV of this loop with a trip count of 2 -
10524 //
10525 // unsigned char i;
10526 // for(i=127; i<128; i+=129)
10527 // A[i] = i;
10528 //
10529 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10530 !loopHasNoSideEffects(L))
10531 return getCouldNotCompute();
10532 } else if (!Stride->isOne() &&
10533 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10534 // Avoid proven overflow cases: this will ensure that the backedge taken
10535 // count will not generate any unsigned overflow. Relaxed no-overflow
10536 // conditions exploit NoWrapFlags, allowing to optimize in presence of
10537 // undefined behaviors like the case of C language.
10538 return getCouldNotCompute();
10539
10540 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10541 : ICmpInst::ICMP_ULT;
10542 const SCEV *Start = IV->getStart();
10543 const SCEV *End = RHS;
10544 // When the RHS is not invariant, we do not know the end bound of the loop and
10545 // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10546 // calculate the MaxBECount, given the start, stride and max value for the end
10547 // bound of the loop (RHS), and the fact that IV does not overflow (which is
10548 // checked above).
10549 if (!isLoopInvariant(RHS, L)) {
10550 const SCEV *MaxBECount = computeMaxBECountForLT(
10551 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10552 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10553 false /*MaxOrZero*/, Predicates);
10554 }
10555 // If the backedge is taken at least once, then it will be taken
10556 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10557 // is the LHS value of the less-than comparison the first time it is evaluated
10558 // and End is the RHS.
10559 const SCEV *BECountIfBackedgeTaken =
10560 computeBECount(getMinusSCEV(End, Start), Stride, false);
10561 // If the loop entry is guarded by the result of the backedge test of the
10562 // first loop iteration, then we know the backedge will be taken at least
10563 // once and so the backedge taken count is as above. If not then we use the
10564 // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10565 // as if the backedge is taken at least once max(End,Start) is End and so the
10566 // result is as above, and if not max(End,Start) is Start so we get a backedge
10567 // count of zero.
10568 const SCEV *BECount;
10569 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10570 BECount = BECountIfBackedgeTaken;
10571 else {
10572 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10573 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10574 }
10575
10576 const SCEV *MaxBECount;
10577 bool MaxOrZero = false;
10578 if (isa<SCEVConstant>(BECount))
10579 MaxBECount = BECount;
10580 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10581 // If we know exactly how many times the backedge will be taken if it's
10582 // taken at least once, then the backedge count will either be that or
10583 // zero.
10584 MaxBECount = BECountIfBackedgeTaken;
10585 MaxOrZero = true;
10586 } else {
10587 MaxBECount = computeMaxBECountForLT(
10588 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10589 }
10590
10591 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10592 !isa<SCEVCouldNotCompute>(BECount))
10593 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10594
10595 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10596 }
10597
10598 ScalarEvolution::ExitLimit
howManyGreaterThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)10599 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10600 const Loop *L, bool IsSigned,
10601 bool ControlsExit, bool AllowPredicates) {
10602 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10603 // We handle only IV > Invariant
10604 if (!isLoopInvariant(RHS, L))
10605 return getCouldNotCompute();
10606
10607 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10608 if (!IV && AllowPredicates)
10609 // Try to make this an AddRec using runtime tests, in the first X
10610 // iterations of this loop, where X is the SCEV expression found by the
10611 // algorithm below.
10612 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10613
10614 // Avoid weird loops
10615 if (!IV || IV->getLoop() != L || !IV->isAffine())
10616 return getCouldNotCompute();
10617
10618 bool NoWrap = ControlsExit &&
10619 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10620
10621 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10622
10623 // Avoid negative or zero stride values
10624 if (!isKnownPositive(Stride))
10625 return getCouldNotCompute();
10626
10627 // Avoid proven overflow cases: this will ensure that the backedge taken count
10628 // will not generate any unsigned overflow. Relaxed no-overflow conditions
10629 // exploit NoWrapFlags, allowing to optimize in presence of undefined
10630 // behaviors like the case of C language.
10631 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10632 return getCouldNotCompute();
10633
10634 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10635 : ICmpInst::ICMP_UGT;
10636
10637 const SCEV *Start = IV->getStart();
10638 const SCEV *End = RHS;
10639 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10640 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10641
10642 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10643
10644 APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10645 : getUnsignedRangeMax(Start);
10646
10647 APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10648 : getUnsignedRangeMin(Stride);
10649
10650 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10651 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10652 : APInt::getMinValue(BitWidth) + (MinStride - 1);
10653
10654 // Although End can be a MIN expression we estimate MinEnd considering only
10655 // the case End = RHS. This is safe because in the other case (Start - End)
10656 // is zero, leading to a zero maximum backedge taken count.
10657 APInt MinEnd =
10658 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10659 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10660
10661 const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
10662 ? BECount
10663 : computeBECount(getConstant(MaxStart - MinEnd),
10664 getConstant(MinStride), false);
10665
10666 if (isa<SCEVCouldNotCompute>(MaxBECount))
10667 MaxBECount = BECount;
10668
10669 return ExitLimit(BECount, MaxBECount, false, Predicates);
10670 }
10671
getNumIterationsInRange(const ConstantRange & Range,ScalarEvolution & SE) const10672 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10673 ScalarEvolution &SE) const {
10674 if (Range.isFullSet()) // Infinite loop.
10675 return SE.getCouldNotCompute();
10676
10677 // If the start is a non-zero constant, shift the range to simplify things.
10678 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10679 if (!SC->getValue()->isZero()) {
10680 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10681 Operands[0] = SE.getZero(SC->getType());
10682 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10683 getNoWrapFlags(FlagNW));
10684 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10685 return ShiftedAddRec->getNumIterationsInRange(
10686 Range.subtract(SC->getAPInt()), SE);
10687 // This is strange and shouldn't happen.
10688 return SE.getCouldNotCompute();
10689 }
10690
10691 // The only time we can solve this is when we have all constant indices.
10692 // Otherwise, we cannot determine the overflow conditions.
10693 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10694 return SE.getCouldNotCompute();
10695
10696 // Okay at this point we know that all elements of the chrec are constants and
10697 // that the start element is zero.
10698
10699 // First check to see if the range contains zero. If not, the first
10700 // iteration exits.
10701 unsigned BitWidth = SE.getTypeSizeInBits(getType());
10702 if (!Range.contains(APInt(BitWidth, 0)))
10703 return SE.getZero(getType());
10704
10705 if (isAffine()) {
10706 // If this is an affine expression then we have this situation:
10707 // Solve {0,+,A} in Range === Ax in Range
10708
10709 // We know that zero is in the range. If A is positive then we know that
10710 // the upper value of the range must be the first possible exit value.
10711 // If A is negative then the lower of the range is the last possible loop
10712 // value. Also note that we already checked for a full range.
10713 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10714 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10715
10716 // The exit value should be (End+A)/A.
10717 APInt ExitVal = (End + A).udiv(A);
10718 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10719
10720 // Evaluate at the exit value. If we really did fall out of the valid
10721 // range, then we computed our trip count, otherwise wrap around or other
10722 // things must have happened.
10723 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10724 if (Range.contains(Val->getValue()))
10725 return SE.getCouldNotCompute(); // Something strange happened
10726
10727 // Ensure that the previous value is in the range. This is a sanity check.
10728 assert(Range.contains(
10729 EvaluateConstantChrecAtConstant(this,
10730 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10731 "Linear scev computation is off in a bad way!");
10732 return SE.getConstant(ExitValue);
10733 }
10734
10735 if (isQuadratic()) {
10736 if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10737 return SE.getConstant(S.getValue());
10738 }
10739
10740 return SE.getCouldNotCompute();
10741 }
10742
10743 const SCEVAddRecExpr *
getPostIncExpr(ScalarEvolution & SE) const10744 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10745 assert(getNumOperands() > 1 && "AddRec with zero step?");
10746 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10747 // but in this case we cannot guarantee that the value returned will be an
10748 // AddRec because SCEV does not have a fixed point where it stops
10749 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10750 // may happen if we reach arithmetic depth limit while simplifying. So we
10751 // construct the returned value explicitly.
10752 SmallVector<const SCEV *, 3> Ops;
10753 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10754 // (this + Step) is {A+B,+,B+C,+...,+,N}.
10755 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10756 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10757 // We know that the last operand is not a constant zero (otherwise it would
10758 // have been popped out earlier). This guarantees us that if the result has
10759 // the same last operand, then it will also not be popped out, meaning that
10760 // the returned value will be an AddRec.
10761 const SCEV *Last = getOperand(getNumOperands() - 1);
10762 assert(!Last->isZero() && "Recurrency with zero step?");
10763 Ops.push_back(Last);
10764 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10765 SCEV::FlagAnyWrap));
10766 }
10767
10768 // Return true when S contains at least an undef value.
containsUndefs(const SCEV * S)10769 static inline bool containsUndefs(const SCEV *S) {
10770 return SCEVExprContains(S, [](const SCEV *S) {
10771 if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10772 return isa<UndefValue>(SU->getValue());
10773 return false;
10774 });
10775 }
10776
10777 namespace {
10778
10779 // Collect all steps of SCEV expressions.
10780 struct SCEVCollectStrides {
10781 ScalarEvolution &SE;
10782 SmallVectorImpl<const SCEV *> &Strides;
10783
SCEVCollectStrides__anond51b32ac2e11::SCEVCollectStrides10784 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10785 : SE(SE), Strides(S) {}
10786
follow__anond51b32ac2e11::SCEVCollectStrides10787 bool follow(const SCEV *S) {
10788 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10789 Strides.push_back(AR->getStepRecurrence(SE));
10790 return true;
10791 }
10792
isDone__anond51b32ac2e11::SCEVCollectStrides10793 bool isDone() const { return false; }
10794 };
10795
10796 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10797 struct SCEVCollectTerms {
10798 SmallVectorImpl<const SCEV *> &Terms;
10799
SCEVCollectTerms__anond51b32ac2e11::SCEVCollectTerms10800 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10801
follow__anond51b32ac2e11::SCEVCollectTerms10802 bool follow(const SCEV *S) {
10803 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10804 isa<SCEVSignExtendExpr>(S)) {
10805 if (!containsUndefs(S))
10806 Terms.push_back(S);
10807
10808 // Stop recursion: once we collected a term, do not walk its operands.
10809 return false;
10810 }
10811
10812 // Keep looking.
10813 return true;
10814 }
10815
isDone__anond51b32ac2e11::SCEVCollectTerms10816 bool isDone() const { return false; }
10817 };
10818
10819 // Check if a SCEV contains an AddRecExpr.
10820 struct SCEVHasAddRec {
10821 bool &ContainsAddRec;
10822
SCEVHasAddRec__anond51b32ac2e11::SCEVHasAddRec10823 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10824 ContainsAddRec = false;
10825 }
10826
follow__anond51b32ac2e11::SCEVHasAddRec10827 bool follow(const SCEV *S) {
10828 if (isa<SCEVAddRecExpr>(S)) {
10829 ContainsAddRec = true;
10830
10831 // Stop recursion: once we collected a term, do not walk its operands.
10832 return false;
10833 }
10834
10835 // Keep looking.
10836 return true;
10837 }
10838
isDone__anond51b32ac2e11::SCEVHasAddRec10839 bool isDone() const { return false; }
10840 };
10841
10842 // Find factors that are multiplied with an expression that (possibly as a
10843 // subexpression) contains an AddRecExpr. In the expression:
10844 //
10845 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
10846 //
10847 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10848 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10849 // parameters as they form a product with an induction variable.
10850 //
10851 // This collector expects all array size parameters to be in the same MulExpr.
10852 // It might be necessary to later add support for collecting parameters that are
10853 // spread over different nested MulExpr.
10854 struct SCEVCollectAddRecMultiplies {
10855 SmallVectorImpl<const SCEV *> &Terms;
10856 ScalarEvolution &SE;
10857
SCEVCollectAddRecMultiplies__anond51b32ac2e11::SCEVCollectAddRecMultiplies10858 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10859 : Terms(T), SE(SE) {}
10860
follow__anond51b32ac2e11::SCEVCollectAddRecMultiplies10861 bool follow(const SCEV *S) {
10862 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10863 bool HasAddRec = false;
10864 SmallVector<const SCEV *, 0> Operands;
10865 for (auto Op : Mul->operands()) {
10866 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10867 if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10868 Operands.push_back(Op);
10869 } else if (Unknown) {
10870 HasAddRec = true;
10871 } else {
10872 bool ContainsAddRec = false;
10873 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10874 visitAll(Op, ContiansAddRec);
10875 HasAddRec |= ContainsAddRec;
10876 }
10877 }
10878 if (Operands.size() == 0)
10879 return true;
10880
10881 if (!HasAddRec)
10882 return false;
10883
10884 Terms.push_back(SE.getMulExpr(Operands));
10885 // Stop recursion: once we collected a term, do not walk its operands.
10886 return false;
10887 }
10888
10889 // Keep looking.
10890 return true;
10891 }
10892
isDone__anond51b32ac2e11::SCEVCollectAddRecMultiplies10893 bool isDone() const { return false; }
10894 };
10895
10896 } // end anonymous namespace
10897
10898 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10899 /// two places:
10900 /// 1) The strides of AddRec expressions.
10901 /// 2) Unknowns that are multiplied with AddRec expressions.
collectParametricTerms(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Terms)10902 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10903 SmallVectorImpl<const SCEV *> &Terms) {
10904 SmallVector<const SCEV *, 4> Strides;
10905 SCEVCollectStrides StrideCollector(*this, Strides);
10906 visitAll(Expr, StrideCollector);
10907
10908 LLVM_DEBUG({
10909 dbgs() << "Strides:\n";
10910 for (const SCEV *S : Strides)
10911 dbgs() << *S << "\n";
10912 });
10913
10914 for (const SCEV *S : Strides) {
10915 SCEVCollectTerms TermCollector(Terms);
10916 visitAll(S, TermCollector);
10917 }
10918
10919 LLVM_DEBUG({
10920 dbgs() << "Terms:\n";
10921 for (const SCEV *T : Terms)
10922 dbgs() << *T << "\n";
10923 });
10924
10925 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
10926 visitAll(Expr, MulCollector);
10927 }
10928
findArrayDimensionsRec(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes)10929 static bool findArrayDimensionsRec(ScalarEvolution &SE,
10930 SmallVectorImpl<const SCEV *> &Terms,
10931 SmallVectorImpl<const SCEV *> &Sizes) {
10932 int Last = Terms.size() - 1;
10933 const SCEV *Step = Terms[Last];
10934
10935 // End of recursion.
10936 if (Last == 0) {
10937 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
10938 SmallVector<const SCEV *, 2> Qs;
10939 for (const SCEV *Op : M->operands())
10940 if (!isa<SCEVConstant>(Op))
10941 Qs.push_back(Op);
10942
10943 Step = SE.getMulExpr(Qs);
10944 }
10945
10946 Sizes.push_back(Step);
10947 return true;
10948 }
10949
10950 for (const SCEV *&Term : Terms) {
10951 // Normalize the terms before the next call to findArrayDimensionsRec.
10952 const SCEV *Q, *R;
10953 SCEVDivision::divide(SE, Term, Step, &Q, &R);
10954
10955 // Bail out when GCD does not evenly divide one of the terms.
10956 if (!R->isZero())
10957 return false;
10958
10959 Term = Q;
10960 }
10961
10962 // Remove all SCEVConstants.
10963 Terms.erase(
10964 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
10965 Terms.end());
10966
10967 if (Terms.size() > 0)
10968 if (!findArrayDimensionsRec(SE, Terms, Sizes))
10969 return false;
10970
10971 Sizes.push_back(Step);
10972 return true;
10973 }
10974
10975 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
containsParameters(SmallVectorImpl<const SCEV * > & Terms)10976 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
10977 for (const SCEV *T : Terms)
10978 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
10979 return true;
10980
10981 return false;
10982 }
10983
10984 // Return the number of product terms in S.
numberOfTerms(const SCEV * S)10985 static inline int numberOfTerms(const SCEV *S) {
10986 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
10987 return Expr->getNumOperands();
10988 return 1;
10989 }
10990
removeConstantFactors(ScalarEvolution & SE,const SCEV * T)10991 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
10992 if (isa<SCEVConstant>(T))
10993 return nullptr;
10994
10995 if (isa<SCEVUnknown>(T))
10996 return T;
10997
10998 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
10999 SmallVector<const SCEV *, 2> Factors;
11000 for (const SCEV *Op : M->operands())
11001 if (!isa<SCEVConstant>(Op))
11002 Factors.push_back(Op);
11003
11004 return SE.getMulExpr(Factors);
11005 }
11006
11007 return T;
11008 }
11009
11010 /// Return the size of an element read or written by Inst.
getElementSize(Instruction * Inst)11011 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11012 Type *Ty;
11013 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11014 Ty = Store->getValueOperand()->getType();
11015 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11016 Ty = Load->getType();
11017 else
11018 return nullptr;
11019
11020 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11021 return getSizeOfExpr(ETy, Ty);
11022 }
11023
findArrayDimensions(SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)11024 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11025 SmallVectorImpl<const SCEV *> &Sizes,
11026 const SCEV *ElementSize) {
11027 if (Terms.size() < 1 || !ElementSize)
11028 return;
11029
11030 // Early return when Terms do not contain parameters: we do not delinearize
11031 // non parametric SCEVs.
11032 if (!containsParameters(Terms))
11033 return;
11034
11035 LLVM_DEBUG({
11036 dbgs() << "Terms:\n";
11037 for (const SCEV *T : Terms)
11038 dbgs() << *T << "\n";
11039 });
11040
11041 // Remove duplicates.
11042 array_pod_sort(Terms.begin(), Terms.end());
11043 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11044
11045 // Put larger terms first.
11046 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11047 return numberOfTerms(LHS) > numberOfTerms(RHS);
11048 });
11049
11050 // Try to divide all terms by the element size. If term is not divisible by
11051 // element size, proceed with the original term.
11052 for (const SCEV *&Term : Terms) {
11053 const SCEV *Q, *R;
11054 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11055 if (!Q->isZero())
11056 Term = Q;
11057 }
11058
11059 SmallVector<const SCEV *, 4> NewTerms;
11060
11061 // Remove constant factors.
11062 for (const SCEV *T : Terms)
11063 if (const SCEV *NewT = removeConstantFactors(*this, T))
11064 NewTerms.push_back(NewT);
11065
11066 LLVM_DEBUG({
11067 dbgs() << "Terms after sorting:\n";
11068 for (const SCEV *T : NewTerms)
11069 dbgs() << *T << "\n";
11070 });
11071
11072 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11073 Sizes.clear();
11074 return;
11075 }
11076
11077 // The last element to be pushed into Sizes is the size of an element.
11078 Sizes.push_back(ElementSize);
11079
11080 LLVM_DEBUG({
11081 dbgs() << "Sizes:\n";
11082 for (const SCEV *S : Sizes)
11083 dbgs() << *S << "\n";
11084 });
11085 }
11086
computeAccessFunctions(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes)11087 void ScalarEvolution::computeAccessFunctions(
11088 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11089 SmallVectorImpl<const SCEV *> &Sizes) {
11090 // Early exit in case this SCEV is not an affine multivariate function.
11091 if (Sizes.empty())
11092 return;
11093
11094 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11095 if (!AR->isAffine())
11096 return;
11097
11098 const SCEV *Res = Expr;
11099 int Last = Sizes.size() - 1;
11100 for (int i = Last; i >= 0; i--) {
11101 const SCEV *Q, *R;
11102 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11103
11104 LLVM_DEBUG({
11105 dbgs() << "Res: " << *Res << "\n";
11106 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11107 dbgs() << "Res divided by Sizes[i]:\n";
11108 dbgs() << "Quotient: " << *Q << "\n";
11109 dbgs() << "Remainder: " << *R << "\n";
11110 });
11111
11112 Res = Q;
11113
11114 // Do not record the last subscript corresponding to the size of elements in
11115 // the array.
11116 if (i == Last) {
11117
11118 // Bail out if the remainder is too complex.
11119 if (isa<SCEVAddRecExpr>(R)) {
11120 Subscripts.clear();
11121 Sizes.clear();
11122 return;
11123 }
11124
11125 continue;
11126 }
11127
11128 // Record the access function for the current subscript.
11129 Subscripts.push_back(R);
11130 }
11131
11132 // Also push in last position the remainder of the last division: it will be
11133 // the access function of the innermost dimension.
11134 Subscripts.push_back(Res);
11135
11136 std::reverse(Subscripts.begin(), Subscripts.end());
11137
11138 LLVM_DEBUG({
11139 dbgs() << "Subscripts:\n";
11140 for (const SCEV *S : Subscripts)
11141 dbgs() << *S << "\n";
11142 });
11143 }
11144
11145 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11146 /// sizes of an array access. Returns the remainder of the delinearization that
11147 /// is the offset start of the array. The SCEV->delinearize algorithm computes
11148 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11149 /// expressions in the stride and base of a SCEV corresponding to the
11150 /// computation of a GCD (greatest common divisor) of base and stride. When
11151 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11152 ///
11153 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11154 ///
11155 /// void foo(long n, long m, long o, double A[n][m][o]) {
11156 ///
11157 /// for (long i = 0; i < n; i++)
11158 /// for (long j = 0; j < m; j++)
11159 /// for (long k = 0; k < o; k++)
11160 /// A[i][j][k] = 1.0;
11161 /// }
11162 ///
11163 /// the delinearization input is the following AddRec SCEV:
11164 ///
11165 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11166 ///
11167 /// From this SCEV, we are able to say that the base offset of the access is %A
11168 /// because it appears as an offset that does not divide any of the strides in
11169 /// the loops:
11170 ///
11171 /// CHECK: Base offset: %A
11172 ///
11173 /// and then SCEV->delinearize determines the size of some of the dimensions of
11174 /// the array as these are the multiples by which the strides are happening:
11175 ///
11176 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11177 ///
11178 /// Note that the outermost dimension remains of UnknownSize because there are
11179 /// no strides that would help identifying the size of the last dimension: when
11180 /// the array has been statically allocated, one could compute the size of that
11181 /// dimension by dividing the overall size of the array by the size of the known
11182 /// dimensions: %m * %o * 8.
11183 ///
11184 /// Finally delinearize provides the access functions for the array reference
11185 /// that does correspond to A[i][j][k] of the above C testcase:
11186 ///
11187 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11188 ///
11189 /// The testcases are checking the output of a function pass:
11190 /// DelinearizationPass that walks through all loads and stores of a function
11191 /// asking for the SCEV of the memory access with respect to all enclosing
11192 /// loops, calling SCEV->delinearize on that and printing the results.
delinearize(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)11193 void ScalarEvolution::delinearize(const SCEV *Expr,
11194 SmallVectorImpl<const SCEV *> &Subscripts,
11195 SmallVectorImpl<const SCEV *> &Sizes,
11196 const SCEV *ElementSize) {
11197 // First step: collect parametric terms.
11198 SmallVector<const SCEV *, 4> Terms;
11199 collectParametricTerms(Expr, Terms);
11200
11201 if (Terms.empty())
11202 return;
11203
11204 // Second step: find subscript sizes.
11205 findArrayDimensions(Terms, Sizes, ElementSize);
11206
11207 if (Sizes.empty())
11208 return;
11209
11210 // Third step: compute the access functions for each subscript.
11211 computeAccessFunctions(Expr, Subscripts, Sizes);
11212
11213 if (Subscripts.empty())
11214 return;
11215
11216 LLVM_DEBUG({
11217 dbgs() << "succeeded to delinearize " << *Expr << "\n";
11218 dbgs() << "ArrayDecl[UnknownSize]";
11219 for (const SCEV *S : Sizes)
11220 dbgs() << "[" << *S << "]";
11221
11222 dbgs() << "\nArrayRef";
11223 for (const SCEV *S : Subscripts)
11224 dbgs() << "[" << *S << "]";
11225 dbgs() << "\n";
11226 });
11227 }
11228
getIndexExpressionsFromGEP(const GetElementPtrInst * GEP,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<int> & Sizes)11229 bool ScalarEvolution::getIndexExpressionsFromGEP(
11230 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
11231 SmallVectorImpl<int> &Sizes) {
11232 assert(Subscripts.empty() && Sizes.empty() &&
11233 "Expected output lists to be empty on entry to this function.");
11234 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
11235 Type *Ty = GEP->getPointerOperandType();
11236 bool DroppedFirstDim = false;
11237 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
11238 const SCEV *Expr = getSCEV(GEP->getOperand(i));
11239 if (i == 1) {
11240 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
11241 Ty = PtrTy->getElementType();
11242 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
11243 Ty = ArrayTy->getElementType();
11244 } else {
11245 Subscripts.clear();
11246 Sizes.clear();
11247 return false;
11248 }
11249 if (auto *Const = dyn_cast<SCEVConstant>(Expr))
11250 if (Const->getValue()->isZero()) {
11251 DroppedFirstDim = true;
11252 continue;
11253 }
11254 Subscripts.push_back(Expr);
11255 continue;
11256 }
11257
11258 auto *ArrayTy = dyn_cast<ArrayType>(Ty);
11259 if (!ArrayTy) {
11260 Subscripts.clear();
11261 Sizes.clear();
11262 return false;
11263 }
11264
11265 Subscripts.push_back(Expr);
11266 if (!(DroppedFirstDim && i == 2))
11267 Sizes.push_back(ArrayTy->getNumElements());
11268
11269 Ty = ArrayTy->getElementType();
11270 }
11271 return !Subscripts.empty();
11272 }
11273
11274 //===----------------------------------------------------------------------===//
11275 // SCEVCallbackVH Class Implementation
11276 //===----------------------------------------------------------------------===//
11277
deleted()11278 void ScalarEvolution::SCEVCallbackVH::deleted() {
11279 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11280 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11281 SE->ConstantEvolutionLoopExitValue.erase(PN);
11282 SE->eraseValueFromMap(getValPtr());
11283 // this now dangles!
11284 }
11285
allUsesReplacedWith(Value * V)11286 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11287 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11288
11289 // Forget all the expressions associated with users of the old value,
11290 // so that future queries will recompute the expressions using the new
11291 // value.
11292 Value *Old = getValPtr();
11293 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11294 SmallPtrSet<User *, 8> Visited;
11295 while (!Worklist.empty()) {
11296 User *U = Worklist.pop_back_val();
11297 // Deleting the Old value will cause this to dangle. Postpone
11298 // that until everything else is done.
11299 if (U == Old)
11300 continue;
11301 if (!Visited.insert(U).second)
11302 continue;
11303 if (PHINode *PN = dyn_cast<PHINode>(U))
11304 SE->ConstantEvolutionLoopExitValue.erase(PN);
11305 SE->eraseValueFromMap(U);
11306 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11307 }
11308 // Delete the Old value.
11309 if (PHINode *PN = dyn_cast<PHINode>(Old))
11310 SE->ConstantEvolutionLoopExitValue.erase(PN);
11311 SE->eraseValueFromMap(Old);
11312 // this now dangles!
11313 }
11314
SCEVCallbackVH(Value * V,ScalarEvolution * se)11315 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11316 : CallbackVH(V), SE(se) {}
11317
11318 //===----------------------------------------------------------------------===//
11319 // ScalarEvolution Class Implementation
11320 //===----------------------------------------------------------------------===//
11321
ScalarEvolution(Function & F,TargetLibraryInfo & TLI,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI)11322 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11323 AssumptionCache &AC, DominatorTree &DT,
11324 LoopInfo &LI)
11325 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11326 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11327 LoopDispositions(64), BlockDispositions(64) {
11328 // To use guards for proving predicates, we need to scan every instruction in
11329 // relevant basic blocks, and not just terminators. Doing this is a waste of
11330 // time if the IR does not actually contain any calls to
11331 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11332 //
11333 // This pessimizes the case where a pass that preserves ScalarEvolution wants
11334 // to _add_ guards to the module when there weren't any before, and wants
11335 // ScalarEvolution to optimize based on those guards. For now we prefer to be
11336 // efficient in lieu of being smart in that rather obscure case.
11337
11338 auto *GuardDecl = F.getParent()->getFunction(
11339 Intrinsic::getName(Intrinsic::experimental_guard));
11340 HasGuards = GuardDecl && !GuardDecl->use_empty();
11341 }
11342
ScalarEvolution(ScalarEvolution && Arg)11343 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11344 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11345 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11346 ValueExprMap(std::move(Arg.ValueExprMap)),
11347 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11348 PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11349 PendingMerges(std::move(Arg.PendingMerges)),
11350 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11351 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11352 PredicatedBackedgeTakenCounts(
11353 std::move(Arg.PredicatedBackedgeTakenCounts)),
11354 ConstantEvolutionLoopExitValue(
11355 std::move(Arg.ConstantEvolutionLoopExitValue)),
11356 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11357 LoopDispositions(std::move(Arg.LoopDispositions)),
11358 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11359 BlockDispositions(std::move(Arg.BlockDispositions)),
11360 UnsignedRanges(std::move(Arg.UnsignedRanges)),
11361 SignedRanges(std::move(Arg.SignedRanges)),
11362 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11363 UniquePreds(std::move(Arg.UniquePreds)),
11364 SCEVAllocator(std::move(Arg.SCEVAllocator)),
11365 LoopUsers(std::move(Arg.LoopUsers)),
11366 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11367 FirstUnknown(Arg.FirstUnknown) {
11368 Arg.FirstUnknown = nullptr;
11369 }
11370
~ScalarEvolution()11371 ScalarEvolution::~ScalarEvolution() {
11372 // Iterate through all the SCEVUnknown instances and call their
11373 // destructors, so that they release their references to their values.
11374 for (SCEVUnknown *U = FirstUnknown; U;) {
11375 SCEVUnknown *Tmp = U;
11376 U = U->Next;
11377 Tmp->~SCEVUnknown();
11378 }
11379 FirstUnknown = nullptr;
11380
11381 ExprValueMap.clear();
11382 ValueExprMap.clear();
11383 HasRecMap.clear();
11384
11385 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11386 // that a loop had multiple computable exits.
11387 for (auto &BTCI : BackedgeTakenCounts)
11388 BTCI.second.clear();
11389 for (auto &BTCI : PredicatedBackedgeTakenCounts)
11390 BTCI.second.clear();
11391
11392 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11393 assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11394 assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11395 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11396 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11397 }
11398
hasLoopInvariantBackedgeTakenCount(const Loop * L)11399 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11400 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11401 }
11402
PrintLoopInfo(raw_ostream & OS,ScalarEvolution * SE,const Loop * L)11403 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11404 const Loop *L) {
11405 // Print all inner loops first
11406 for (Loop *I : *L)
11407 PrintLoopInfo(OS, SE, I);
11408
11409 OS << "Loop ";
11410 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11411 OS << ": ";
11412
11413 SmallVector<BasicBlock *, 8> ExitingBlocks;
11414 L->getExitingBlocks(ExitingBlocks);
11415 if (ExitingBlocks.size() != 1)
11416 OS << "<multiple exits> ";
11417
11418 if (SE->hasLoopInvariantBackedgeTakenCount(L))
11419 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
11420 else
11421 OS << "Unpredictable backedge-taken count.\n";
11422
11423 if (ExitingBlocks.size() > 1)
11424 for (BasicBlock *ExitingBlock : ExitingBlocks) {
11425 OS << " exit count for " << ExitingBlock->getName() << ": "
11426 << *SE->getExitCount(L, ExitingBlock) << "\n";
11427 }
11428
11429 OS << "Loop ";
11430 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11431 OS << ": ";
11432
11433 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
11434 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
11435 if (SE->isBackedgeTakenCountMaxOrZero(L))
11436 OS << ", actual taken count either this or zero.";
11437 } else {
11438 OS << "Unpredictable max backedge-taken count. ";
11439 }
11440
11441 OS << "\n"
11442 "Loop ";
11443 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11444 OS << ": ";
11445
11446 SCEVUnionPredicate Pred;
11447 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11448 if (!isa<SCEVCouldNotCompute>(PBT)) {
11449 OS << "Predicated backedge-taken count is " << *PBT << "\n";
11450 OS << " Predicates:\n";
11451 Pred.print(OS, 4);
11452 } else {
11453 OS << "Unpredictable predicated backedge-taken count. ";
11454 }
11455 OS << "\n";
11456
11457 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11458 OS << "Loop ";
11459 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11460 OS << ": ";
11461 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11462 }
11463 }
11464
loopDispositionToStr(ScalarEvolution::LoopDisposition LD)11465 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11466 switch (LD) {
11467 case ScalarEvolution::LoopVariant:
11468 return "Variant";
11469 case ScalarEvolution::LoopInvariant:
11470 return "Invariant";
11471 case ScalarEvolution::LoopComputable:
11472 return "Computable";
11473 }
11474 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11475 }
11476
print(raw_ostream & OS) const11477 void ScalarEvolution::print(raw_ostream &OS) const {
11478 // ScalarEvolution's implementation of the print method is to print
11479 // out SCEV values of all instructions that are interesting. Doing
11480 // this potentially causes it to create new SCEV objects though,
11481 // which technically conflicts with the const qualifier. This isn't
11482 // observable from outside the class though, so casting away the
11483 // const isn't dangerous.
11484 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11485
11486 if (ClassifyExpressions) {
11487 OS << "Classifying expressions for: ";
11488 F.printAsOperand(OS, /*PrintType=*/false);
11489 OS << "\n";
11490 for (Instruction &I : instructions(F))
11491 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11492 OS << I << '\n';
11493 OS << " --> ";
11494 const SCEV *SV = SE.getSCEV(&I);
11495 SV->print(OS);
11496 if (!isa<SCEVCouldNotCompute>(SV)) {
11497 OS << " U: ";
11498 SE.getUnsignedRange(SV).print(OS);
11499 OS << " S: ";
11500 SE.getSignedRange(SV).print(OS);
11501 }
11502
11503 const Loop *L = LI.getLoopFor(I.getParent());
11504
11505 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11506 if (AtUse != SV) {
11507 OS << " --> ";
11508 AtUse->print(OS);
11509 if (!isa<SCEVCouldNotCompute>(AtUse)) {
11510 OS << " U: ";
11511 SE.getUnsignedRange(AtUse).print(OS);
11512 OS << " S: ";
11513 SE.getSignedRange(AtUse).print(OS);
11514 }
11515 }
11516
11517 if (L) {
11518 OS << "\t\t" "Exits: ";
11519 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11520 if (!SE.isLoopInvariant(ExitValue, L)) {
11521 OS << "<<Unknown>>";
11522 } else {
11523 OS << *ExitValue;
11524 }
11525
11526 bool First = true;
11527 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11528 if (First) {
11529 OS << "\t\t" "LoopDispositions: { ";
11530 First = false;
11531 } else {
11532 OS << ", ";
11533 }
11534
11535 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11536 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11537 }
11538
11539 for (auto *InnerL : depth_first(L)) {
11540 if (InnerL == L)
11541 continue;
11542 if (First) {
11543 OS << "\t\t" "LoopDispositions: { ";
11544 First = false;
11545 } else {
11546 OS << ", ";
11547 }
11548
11549 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11550 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11551 }
11552
11553 OS << " }";
11554 }
11555
11556 OS << "\n";
11557 }
11558 }
11559
11560 OS << "Determining loop execution counts for: ";
11561 F.printAsOperand(OS, /*PrintType=*/false);
11562 OS << "\n";
11563 for (Loop *I : LI)
11564 PrintLoopInfo(OS, &SE, I);
11565 }
11566
11567 ScalarEvolution::LoopDisposition
getLoopDisposition(const SCEV * S,const Loop * L)11568 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11569 auto &Values = LoopDispositions[S];
11570 for (auto &V : Values) {
11571 if (V.getPointer() == L)
11572 return V.getInt();
11573 }
11574 Values.emplace_back(L, LoopVariant);
11575 LoopDisposition D = computeLoopDisposition(S, L);
11576 auto &Values2 = LoopDispositions[S];
11577 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11578 if (V.getPointer() == L) {
11579 V.setInt(D);
11580 break;
11581 }
11582 }
11583 return D;
11584 }
11585
11586 ScalarEvolution::LoopDisposition
computeLoopDisposition(const SCEV * S,const Loop * L)11587 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11588 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11589 case scConstant:
11590 return LoopInvariant;
11591 case scTruncate:
11592 case scZeroExtend:
11593 case scSignExtend:
11594 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11595 case scAddRecExpr: {
11596 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11597
11598 // If L is the addrec's loop, it's computable.
11599 if (AR->getLoop() == L)
11600 return LoopComputable;
11601
11602 // Add recurrences are never invariant in the function-body (null loop).
11603 if (!L)
11604 return LoopVariant;
11605
11606 // Everything that is not defined at loop entry is variant.
11607 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11608 return LoopVariant;
11609 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11610 " dominate the contained loop's header?");
11611
11612 // This recurrence is invariant w.r.t. L if AR's loop contains L.
11613 if (AR->getLoop()->contains(L))
11614 return LoopInvariant;
11615
11616 // This recurrence is variant w.r.t. L if any of its operands
11617 // are variant.
11618 for (auto *Op : AR->operands())
11619 if (!isLoopInvariant(Op, L))
11620 return LoopVariant;
11621
11622 // Otherwise it's loop-invariant.
11623 return LoopInvariant;
11624 }
11625 case scAddExpr:
11626 case scMulExpr:
11627 case scUMaxExpr:
11628 case scSMaxExpr:
11629 case scUMinExpr:
11630 case scSMinExpr: {
11631 bool HasVarying = false;
11632 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11633 LoopDisposition D = getLoopDisposition(Op, L);
11634 if (D == LoopVariant)
11635 return LoopVariant;
11636 if (D == LoopComputable)
11637 HasVarying = true;
11638 }
11639 return HasVarying ? LoopComputable : LoopInvariant;
11640 }
11641 case scUDivExpr: {
11642 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11643 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11644 if (LD == LoopVariant)
11645 return LoopVariant;
11646 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11647 if (RD == LoopVariant)
11648 return LoopVariant;
11649 return (LD == LoopInvariant && RD == LoopInvariant) ?
11650 LoopInvariant : LoopComputable;
11651 }
11652 case scUnknown:
11653 // All non-instruction values are loop invariant. All instructions are loop
11654 // invariant if they are not contained in the specified loop.
11655 // Instructions are never considered invariant in the function body
11656 // (null loop) because they are defined within the "loop".
11657 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11658 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11659 return LoopInvariant;
11660 case scCouldNotCompute:
11661 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11662 }
11663 llvm_unreachable("Unknown SCEV kind!");
11664 }
11665
isLoopInvariant(const SCEV * S,const Loop * L)11666 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11667 return getLoopDisposition(S, L) == LoopInvariant;
11668 }
11669
hasComputableLoopEvolution(const SCEV * S,const Loop * L)11670 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11671 return getLoopDisposition(S, L) == LoopComputable;
11672 }
11673
11674 ScalarEvolution::BlockDisposition
getBlockDisposition(const SCEV * S,const BasicBlock * BB)11675 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11676 auto &Values = BlockDispositions[S];
11677 for (auto &V : Values) {
11678 if (V.getPointer() == BB)
11679 return V.getInt();
11680 }
11681 Values.emplace_back(BB, DoesNotDominateBlock);
11682 BlockDisposition D = computeBlockDisposition(S, BB);
11683 auto &Values2 = BlockDispositions[S];
11684 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11685 if (V.getPointer() == BB) {
11686 V.setInt(D);
11687 break;
11688 }
11689 }
11690 return D;
11691 }
11692
11693 ScalarEvolution::BlockDisposition
computeBlockDisposition(const SCEV * S,const BasicBlock * BB)11694 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11695 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11696 case scConstant:
11697 return ProperlyDominatesBlock;
11698 case scTruncate:
11699 case scZeroExtend:
11700 case scSignExtend:
11701 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11702 case scAddRecExpr: {
11703 // This uses a "dominates" query instead of "properly dominates" query
11704 // to test for proper dominance too, because the instruction which
11705 // produces the addrec's value is a PHI, and a PHI effectively properly
11706 // dominates its entire containing block.
11707 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11708 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11709 return DoesNotDominateBlock;
11710
11711 // Fall through into SCEVNAryExpr handling.
11712 LLVM_FALLTHROUGH;
11713 }
11714 case scAddExpr:
11715 case scMulExpr:
11716 case scUMaxExpr:
11717 case scSMaxExpr:
11718 case scUMinExpr:
11719 case scSMinExpr: {
11720 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11721 bool Proper = true;
11722 for (const SCEV *NAryOp : NAry->operands()) {
11723 BlockDisposition D = getBlockDisposition(NAryOp, BB);
11724 if (D == DoesNotDominateBlock)
11725 return DoesNotDominateBlock;
11726 if (D == DominatesBlock)
11727 Proper = false;
11728 }
11729 return Proper ? ProperlyDominatesBlock : DominatesBlock;
11730 }
11731 case scUDivExpr: {
11732 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11733 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11734 BlockDisposition LD = getBlockDisposition(LHS, BB);
11735 if (LD == DoesNotDominateBlock)
11736 return DoesNotDominateBlock;
11737 BlockDisposition RD = getBlockDisposition(RHS, BB);
11738 if (RD == DoesNotDominateBlock)
11739 return DoesNotDominateBlock;
11740 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11741 ProperlyDominatesBlock : DominatesBlock;
11742 }
11743 case scUnknown:
11744 if (Instruction *I =
11745 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11746 if (I->getParent() == BB)
11747 return DominatesBlock;
11748 if (DT.properlyDominates(I->getParent(), BB))
11749 return ProperlyDominatesBlock;
11750 return DoesNotDominateBlock;
11751 }
11752 return ProperlyDominatesBlock;
11753 case scCouldNotCompute:
11754 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11755 }
11756 llvm_unreachable("Unknown SCEV kind!");
11757 }
11758
dominates(const SCEV * S,const BasicBlock * BB)11759 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11760 return getBlockDisposition(S, BB) >= DominatesBlock;
11761 }
11762
properlyDominates(const SCEV * S,const BasicBlock * BB)11763 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11764 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11765 }
11766
hasOperand(const SCEV * S,const SCEV * Op) const11767 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11768 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11769 }
11770
hasOperand(const SCEV * S) const11771 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11772 auto IsS = [&](const SCEV *X) { return S == X; };
11773 auto ContainsS = [&](const SCEV *X) {
11774 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11775 };
11776 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11777 }
11778
11779 void
forgetMemoizedResults(const SCEV * S)11780 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11781 ValuesAtScopes.erase(S);
11782 LoopDispositions.erase(S);
11783 BlockDispositions.erase(S);
11784 UnsignedRanges.erase(S);
11785 SignedRanges.erase(S);
11786 ExprValueMap.erase(S);
11787 HasRecMap.erase(S);
11788 MinTrailingZerosCache.erase(S);
11789
11790 for (auto I = PredicatedSCEVRewrites.begin();
11791 I != PredicatedSCEVRewrites.end();) {
11792 std::pair<const SCEV *, const Loop *> Entry = I->first;
11793 if (Entry.first == S)
11794 PredicatedSCEVRewrites.erase(I++);
11795 else
11796 ++I;
11797 }
11798
11799 auto RemoveSCEVFromBackedgeMap =
11800 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11801 for (auto I = Map.begin(), E = Map.end(); I != E;) {
11802 BackedgeTakenInfo &BEInfo = I->second;
11803 if (BEInfo.hasOperand(S, this)) {
11804 BEInfo.clear();
11805 Map.erase(I++);
11806 } else
11807 ++I;
11808 }
11809 };
11810
11811 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11812 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11813 }
11814
11815 void
getUsedLoops(const SCEV * S,SmallPtrSetImpl<const Loop * > & LoopsUsed)11816 ScalarEvolution::getUsedLoops(const SCEV *S,
11817 SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11818 struct FindUsedLoops {
11819 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11820 : LoopsUsed(LoopsUsed) {}
11821 SmallPtrSetImpl<const Loop *> &LoopsUsed;
11822 bool follow(const SCEV *S) {
11823 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11824 LoopsUsed.insert(AR->getLoop());
11825 return true;
11826 }
11827
11828 bool isDone() const { return false; }
11829 };
11830
11831 FindUsedLoops F(LoopsUsed);
11832 SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11833 }
11834
addToLoopUseLists(const SCEV * S)11835 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11836 SmallPtrSet<const Loop *, 8> LoopsUsed;
11837 getUsedLoops(S, LoopsUsed);
11838 for (auto *L : LoopsUsed)
11839 LoopUsers[L].push_back(S);
11840 }
11841
verify() const11842 void ScalarEvolution::verify() const {
11843 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11844 ScalarEvolution SE2(F, TLI, AC, DT, LI);
11845
11846 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11847
11848 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11849 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11850 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11851
11852 const SCEV *visitConstant(const SCEVConstant *Constant) {
11853 return SE.getConstant(Constant->getAPInt());
11854 }
11855
11856 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11857 return SE.getUnknown(Expr->getValue());
11858 }
11859
11860 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11861 return SE.getCouldNotCompute();
11862 }
11863 };
11864
11865 SCEVMapper SCM(SE2);
11866
11867 while (!LoopStack.empty()) {
11868 auto *L = LoopStack.pop_back_val();
11869 LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11870
11871 auto *CurBECount = SCM.visit(
11872 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11873 auto *NewBECount = SE2.getBackedgeTakenCount(L);
11874
11875 if (CurBECount == SE2.getCouldNotCompute() ||
11876 NewBECount == SE2.getCouldNotCompute()) {
11877 // NB! This situation is legal, but is very suspicious -- whatever pass
11878 // change the loop to make a trip count go from could not compute to
11879 // computable or vice-versa *should have* invalidated SCEV. However, we
11880 // choose not to assert here (for now) since we don't want false
11881 // positives.
11882 continue;
11883 }
11884
11885 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11886 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11887 // not propagate undef aggressively). This means we can (and do) fail
11888 // verification in cases where a transform makes the trip count of a loop
11889 // go from "undef" to "undef+1" (say). The transform is fine, since in
11890 // both cases the loop iterates "undef" times, but SCEV thinks we
11891 // increased the trip count of the loop by 1 incorrectly.
11892 continue;
11893 }
11894
11895 if (SE.getTypeSizeInBits(CurBECount->getType()) >
11896 SE.getTypeSizeInBits(NewBECount->getType()))
11897 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11898 else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11899 SE.getTypeSizeInBits(NewBECount->getType()))
11900 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11901
11902 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
11903
11904 // Unless VerifySCEVStrict is set, we only compare constant deltas.
11905 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
11906 dbgs() << "Trip Count for " << *L << " Changed!\n";
11907 dbgs() << "Old: " << *CurBECount << "\n";
11908 dbgs() << "New: " << *NewBECount << "\n";
11909 dbgs() << "Delta: " << *Delta << "\n";
11910 std::abort();
11911 }
11912 }
11913 }
11914
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)11915 bool ScalarEvolution::invalidate(
11916 Function &F, const PreservedAnalyses &PA,
11917 FunctionAnalysisManager::Invalidator &Inv) {
11918 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11919 // of its dependencies is invalidated.
11920 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11921 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11922 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11923 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11924 Inv.invalidate<LoopAnalysis>(F, PA);
11925 }
11926
11927 AnalysisKey ScalarEvolutionAnalysis::Key;
11928
run(Function & F,FunctionAnalysisManager & AM)11929 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11930 FunctionAnalysisManager &AM) {
11931 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11932 AM.getResult<AssumptionAnalysis>(F),
11933 AM.getResult<DominatorTreeAnalysis>(F),
11934 AM.getResult<LoopAnalysis>(F));
11935 }
11936
11937 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)11938 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
11939 AM.getResult<ScalarEvolutionAnalysis>(F).verify();
11940 return PreservedAnalyses::all();
11941 }
11942
11943 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)11944 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11945 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11946 return PreservedAnalyses::all();
11947 }
11948
11949 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11950 "Scalar Evolution Analysis", false, true)
11951 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11952 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11953 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11954 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11955 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11956 "Scalar Evolution Analysis", false, true)
11957
11958 char ScalarEvolutionWrapperPass::ID = 0;
11959
ScalarEvolutionWrapperPass()11960 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11961 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11962 }
11963
runOnFunction(Function & F)11964 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11965 SE.reset(new ScalarEvolution(
11966 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
11967 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11968 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11969 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11970 return false;
11971 }
11972
releaseMemory()11973 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
11974
print(raw_ostream & OS,const Module *) const11975 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
11976 SE->print(OS);
11977 }
11978
verifyAnalysis() const11979 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
11980 if (!VerifySCEV)
11981 return;
11982
11983 SE->verify();
11984 }
11985
getAnalysisUsage(AnalysisUsage & AU) const11986 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
11987 AU.setPreservesAll();
11988 AU.addRequiredTransitive<AssumptionCacheTracker>();
11989 AU.addRequiredTransitive<LoopInfoWrapperPass>();
11990 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
11991 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
11992 }
11993
getEqualPredicate(const SCEV * LHS,const SCEV * RHS)11994 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
11995 const SCEV *RHS) {
11996 FoldingSetNodeID ID;
11997 assert(LHS->getType() == RHS->getType() &&
11998 "Type mismatch between LHS and RHS");
11999 // Unique this node based on the arguments
12000 ID.AddInteger(SCEVPredicate::P_Equal);
12001 ID.AddPointer(LHS);
12002 ID.AddPointer(RHS);
12003 void *IP = nullptr;
12004 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12005 return S;
12006 SCEVEqualPredicate *Eq = new (SCEVAllocator)
12007 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12008 UniquePreds.InsertNode(Eq, IP);
12009 return Eq;
12010 }
12011
getWrapPredicate(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)12012 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12013 const SCEVAddRecExpr *AR,
12014 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12015 FoldingSetNodeID ID;
12016 // Unique this node based on the arguments
12017 ID.AddInteger(SCEVPredicate::P_Wrap);
12018 ID.AddPointer(AR);
12019 ID.AddInteger(AddedFlags);
12020 void *IP = nullptr;
12021 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12022 return S;
12023 auto *OF = new (SCEVAllocator)
12024 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12025 UniquePreds.InsertNode(OF, IP);
12026 return OF;
12027 }
12028
12029 namespace {
12030
12031 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12032 public:
12033
12034 /// Rewrites \p S in the context of a loop L and the SCEV predication
12035 /// infrastructure.
12036 ///
12037 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12038 /// equivalences present in \p Pred.
12039 ///
12040 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12041 /// \p NewPreds such that the result will be an AddRecExpr.
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)12042 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12043 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12044 SCEVUnionPredicate *Pred) {
12045 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12046 return Rewriter.visit(S);
12047 }
12048
visitUnknown(const SCEVUnknown * Expr)12049 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12050 if (Pred) {
12051 auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12052 for (auto *Pred : ExprPreds)
12053 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12054 if (IPred->getLHS() == Expr)
12055 return IPred->getRHS();
12056 }
12057 return convertToAddRecWithPreds(Expr);
12058 }
12059
visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr)12060 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12061 const SCEV *Operand = visit(Expr->getOperand());
12062 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12063 if (AR && AR->getLoop() == L && AR->isAffine()) {
12064 // This couldn't be folded because the operand didn't have the nuw
12065 // flag. Add the nusw flag as an assumption that we could make.
12066 const SCEV *Step = AR->getStepRecurrence(SE);
12067 Type *Ty = Expr->getType();
12068 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12069 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12070 SE.getSignExtendExpr(Step, Ty), L,
12071 AR->getNoWrapFlags());
12072 }
12073 return SE.getZeroExtendExpr(Operand, Expr->getType());
12074 }
12075
visitSignExtendExpr(const SCEVSignExtendExpr * Expr)12076 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12077 const SCEV *Operand = visit(Expr->getOperand());
12078 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12079 if (AR && AR->getLoop() == L && AR->isAffine()) {
12080 // This couldn't be folded because the operand didn't have the nsw
12081 // flag. Add the nssw flag as an assumption that we could make.
12082 const SCEV *Step = AR->getStepRecurrence(SE);
12083 Type *Ty = Expr->getType();
12084 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12085 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12086 SE.getSignExtendExpr(Step, Ty), L,
12087 AR->getNoWrapFlags());
12088 }
12089 return SE.getSignExtendExpr(Operand, Expr->getType());
12090 }
12091
12092 private:
SCEVPredicateRewriter(const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)12093 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12094 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12095 SCEVUnionPredicate *Pred)
12096 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12097
addOverflowAssumption(const SCEVPredicate * P)12098 bool addOverflowAssumption(const SCEVPredicate *P) {
12099 if (!NewPreds) {
12100 // Check if we've already made this assumption.
12101 return Pred && Pred->implies(P);
12102 }
12103 NewPreds->insert(P);
12104 return true;
12105 }
12106
addOverflowAssumption(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)12107 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12108 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12109 auto *A = SE.getWrapPredicate(AR, AddedFlags);
12110 return addOverflowAssumption(A);
12111 }
12112
12113 // If \p Expr represents a PHINode, we try to see if it can be represented
12114 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12115 // to add this predicate as a runtime overflow check, we return the AddRec.
12116 // If \p Expr does not meet these conditions (is not a PHI node, or we
12117 // couldn't create an AddRec for it, or couldn't add the predicate), we just
12118 // return \p Expr.
convertToAddRecWithPreds(const SCEVUnknown * Expr)12119 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12120 if (!isa<PHINode>(Expr->getValue()))
12121 return Expr;
12122 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12123 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12124 if (!PredicatedRewrite)
12125 return Expr;
12126 for (auto *P : PredicatedRewrite->second){
12127 // Wrap predicates from outer loops are not supported.
12128 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12129 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12130 if (L != AR->getLoop())
12131 return Expr;
12132 }
12133 if (!addOverflowAssumption(P))
12134 return Expr;
12135 }
12136 return PredicatedRewrite->first;
12137 }
12138
12139 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12140 SCEVUnionPredicate *Pred;
12141 const Loop *L;
12142 };
12143
12144 } // end anonymous namespace
12145
rewriteUsingPredicate(const SCEV * S,const Loop * L,SCEVUnionPredicate & Preds)12146 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12147 SCEVUnionPredicate &Preds) {
12148 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12149 }
12150
convertSCEVToAddRecWithPredicates(const SCEV * S,const Loop * L,SmallPtrSetImpl<const SCEVPredicate * > & Preds)12151 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12152 const SCEV *S, const Loop *L,
12153 SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12154 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12155 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12156 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12157
12158 if (!AddRec)
12159 return nullptr;
12160
12161 // Since the transformation was successful, we can now transfer the SCEV
12162 // predicates.
12163 for (auto *P : TransformPreds)
12164 Preds.insert(P);
12165
12166 return AddRec;
12167 }
12168
12169 /// SCEV predicates
SCEVPredicate(const FoldingSetNodeIDRef ID,SCEVPredicateKind Kind)12170 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12171 SCEVPredicateKind Kind)
12172 : FastID(ID), Kind(Kind) {}
12173
SCEVEqualPredicate(const FoldingSetNodeIDRef ID,const SCEV * LHS,const SCEV * RHS)12174 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12175 const SCEV *LHS, const SCEV *RHS)
12176 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12177 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12178 assert(LHS != RHS && "LHS and RHS are the same SCEV");
12179 }
12180
implies(const SCEVPredicate * N) const12181 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12182 const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12183
12184 if (!Op)
12185 return false;
12186
12187 return Op->LHS == LHS && Op->RHS == RHS;
12188 }
12189
isAlwaysTrue() const12190 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12191
getExpr() const12192 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12193
print(raw_ostream & OS,unsigned Depth) const12194 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12195 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12196 }
12197
SCEVWrapPredicate(const FoldingSetNodeIDRef ID,const SCEVAddRecExpr * AR,IncrementWrapFlags Flags)12198 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12199 const SCEVAddRecExpr *AR,
12200 IncrementWrapFlags Flags)
12201 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12202
getExpr() const12203 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12204
implies(const SCEVPredicate * N) const12205 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12206 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12207
12208 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12209 }
12210
isAlwaysTrue() const12211 bool SCEVWrapPredicate::isAlwaysTrue() const {
12212 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12213 IncrementWrapFlags IFlags = Flags;
12214
12215 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12216 IFlags = clearFlags(IFlags, IncrementNSSW);
12217
12218 return IFlags == IncrementAnyWrap;
12219 }
12220
print(raw_ostream & OS,unsigned Depth) const12221 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12222 OS.indent(Depth) << *getExpr() << " Added Flags: ";
12223 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12224 OS << "<nusw>";
12225 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12226 OS << "<nssw>";
12227 OS << "\n";
12228 }
12229
12230 SCEVWrapPredicate::IncrementWrapFlags
getImpliedFlags(const SCEVAddRecExpr * AR,ScalarEvolution & SE)12231 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12232 ScalarEvolution &SE) {
12233 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12234 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12235
12236 // We can safely transfer the NSW flag as NSSW.
12237 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12238 ImpliedFlags = IncrementNSSW;
12239
12240 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12241 // If the increment is positive, the SCEV NUW flag will also imply the
12242 // WrapPredicate NUSW flag.
12243 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12244 if (Step->getValue()->getValue().isNonNegative())
12245 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12246 }
12247
12248 return ImpliedFlags;
12249 }
12250
12251 /// Union predicates don't get cached so create a dummy set ID for it.
SCEVUnionPredicate()12252 SCEVUnionPredicate::SCEVUnionPredicate()
12253 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12254
isAlwaysTrue() const12255 bool SCEVUnionPredicate::isAlwaysTrue() const {
12256 return all_of(Preds,
12257 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12258 }
12259
12260 ArrayRef<const SCEVPredicate *>
getPredicatesForExpr(const SCEV * Expr)12261 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12262 auto I = SCEVToPreds.find(Expr);
12263 if (I == SCEVToPreds.end())
12264 return ArrayRef<const SCEVPredicate *>();
12265 return I->second;
12266 }
12267
implies(const SCEVPredicate * N) const12268 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12269 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12270 return all_of(Set->Preds,
12271 [this](const SCEVPredicate *I) { return this->implies(I); });
12272
12273 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12274 if (ScevPredsIt == SCEVToPreds.end())
12275 return false;
12276 auto &SCEVPreds = ScevPredsIt->second;
12277
12278 return any_of(SCEVPreds,
12279 [N](const SCEVPredicate *I) { return I->implies(N); });
12280 }
12281
getExpr() const12282 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12283
print(raw_ostream & OS,unsigned Depth) const12284 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12285 for (auto Pred : Preds)
12286 Pred->print(OS, Depth);
12287 }
12288
add(const SCEVPredicate * N)12289 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12290 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12291 for (auto Pred : Set->Preds)
12292 add(Pred);
12293 return;
12294 }
12295
12296 if (implies(N))
12297 return;
12298
12299 const SCEV *Key = N->getExpr();
12300 assert(Key && "Only SCEVUnionPredicate doesn't have an "
12301 " associated expression!");
12302
12303 SCEVToPreds[Key].push_back(N);
12304 Preds.push_back(N);
12305 }
12306
PredicatedScalarEvolution(ScalarEvolution & SE,Loop & L)12307 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12308 Loop &L)
12309 : SE(SE), L(L) {}
12310
getSCEV(Value * V)12311 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12312 const SCEV *Expr = SE.getSCEV(V);
12313 RewriteEntry &Entry = RewriteMap[Expr];
12314
12315 // If we already have an entry and the version matches, return it.
12316 if (Entry.second && Generation == Entry.first)
12317 return Entry.second;
12318
12319 // We found an entry but it's stale. Rewrite the stale entry
12320 // according to the current predicate.
12321 if (Entry.second)
12322 Expr = Entry.second;
12323
12324 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12325 Entry = {Generation, NewSCEV};
12326
12327 return NewSCEV;
12328 }
12329
getBackedgeTakenCount()12330 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12331 if (!BackedgeCount) {
12332 SCEVUnionPredicate BackedgePred;
12333 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12334 addPredicate(BackedgePred);
12335 }
12336 return BackedgeCount;
12337 }
12338
addPredicate(const SCEVPredicate & Pred)12339 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12340 if (Preds.implies(&Pred))
12341 return;
12342 Preds.add(&Pred);
12343 updateGeneration();
12344 }
12345
getUnionPredicate() const12346 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12347 return Preds;
12348 }
12349
updateGeneration()12350 void PredicatedScalarEvolution::updateGeneration() {
12351 // If the generation number wrapped recompute everything.
12352 if (++Generation == 0) {
12353 for (auto &II : RewriteMap) {
12354 const SCEV *Rewritten = II.second.second;
12355 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12356 }
12357 }
12358 }
12359
setNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)12360 void PredicatedScalarEvolution::setNoOverflow(
12361 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12362 const SCEV *Expr = getSCEV(V);
12363 const auto *AR = cast<SCEVAddRecExpr>(Expr);
12364
12365 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12366
12367 // Clear the statically implied flags.
12368 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12369 addPredicate(*SE.getWrapPredicate(AR, Flags));
12370
12371 auto II = FlagsMap.insert({V, Flags});
12372 if (!II.second)
12373 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12374 }
12375
hasNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)12376 bool PredicatedScalarEvolution::hasNoOverflow(
12377 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12378 const SCEV *Expr = getSCEV(V);
12379 const auto *AR = cast<SCEVAddRecExpr>(Expr);
12380
12381 Flags = SCEVWrapPredicate::clearFlags(
12382 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12383
12384 auto II = FlagsMap.find(V);
12385
12386 if (II != FlagsMap.end())
12387 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12388
12389 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12390 }
12391
getAsAddRec(Value * V)12392 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12393 const SCEV *Expr = this->getSCEV(V);
12394 SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12395 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12396
12397 if (!New)
12398 return nullptr;
12399
12400 for (auto *P : NewPreds)
12401 Preds.add(P);
12402
12403 updateGeneration();
12404 RewriteMap[SE.getSCEV(V)] = {Generation, New};
12405 return New;
12406 }
12407
PredicatedScalarEvolution(const PredicatedScalarEvolution & Init)12408 PredicatedScalarEvolution::PredicatedScalarEvolution(
12409 const PredicatedScalarEvolution &Init)
12410 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12411 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12412 for (auto I : Init.FlagsMap)
12413 FlagsMap.insert(I);
12414 }
12415
print(raw_ostream & OS,unsigned Depth) const12416 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12417 // For each block.
12418 for (auto *BB : L.getBlocks())
12419 for (auto &I : *BB) {
12420 if (!SE.isSCEVable(I.getType()))
12421 continue;
12422
12423 auto *Expr = SE.getSCEV(&I);
12424 auto II = RewriteMap.find(Expr);
12425
12426 if (II == RewriteMap.end())
12427 continue;
12428
12429 // Don't print things that are not interesting.
12430 if (II->second.second == Expr)
12431 continue;
12432
12433 OS.indent(Depth) << "[PSE]" << I << ":\n";
12434 OS.indent(Depth + 2) << *Expr << "\n";
12435 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12436 }
12437 }
12438
12439 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12440 // arbitrary expressions.
12441 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12442 // 4, A / B becomes X / 8).
matchURem(const SCEV * Expr,const SCEV * & LHS,const SCEV * & RHS)12443 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12444 const SCEV *&RHS) {
12445 const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12446 if (Add == nullptr || Add->getNumOperands() != 2)
12447 return false;
12448
12449 const SCEV *A = Add->getOperand(1);
12450 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12451
12452 if (Mul == nullptr)
12453 return false;
12454
12455 const auto MatchURemWithDivisor = [&](const SCEV *B) {
12456 // (SomeExpr + (-(SomeExpr / B) * B)).
12457 if (Expr == getURemExpr(A, B)) {
12458 LHS = A;
12459 RHS = B;
12460 return true;
12461 }
12462 return false;
12463 };
12464
12465 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12466 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12467 return MatchURemWithDivisor(Mul->getOperand(1)) ||
12468 MatchURemWithDivisor(Mul->getOperand(2));
12469
12470 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12471 if (Mul->getNumOperands() == 2)
12472 return MatchURemWithDivisor(Mul->getOperand(1)) ||
12473 MatchURemWithDivisor(Mul->getOperand(0)) ||
12474 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12475 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12476 return false;
12477 }
12478