1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The inline spiller modifies the machine function directly instead of
10 // inserting spills and restores in VirtRegMap.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/LiveIntervalCalc.h"
27 #include "llvm/CodeGen/LiveIntervals.h"
28 #include "llvm/CodeGen/LiveRangeEdit.h"
29 #include "llvm/CodeGen/LiveStacks.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineInstrBundle.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/Spiller.h"
43 #include "llvm/CodeGen/StackMaps.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/CodeGen/VirtRegMap.h"
49 #include "llvm/Config/llvm-config.h"
50 #include "llvm/Support/BlockFrequency.h"
51 #include "llvm/Support/BranchProbability.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <cassert>
58 #include <iterator>
59 #include <tuple>
60 #include <utility>
61 #include <vector>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "regalloc"
66 
67 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
68 STATISTIC(NumSnippets,        "Number of spilled snippets");
69 STATISTIC(NumSpills,          "Number of spills inserted");
70 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
71 STATISTIC(NumReloads,         "Number of reloads inserted");
72 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
73 STATISTIC(NumFolded,          "Number of folded stack accesses");
74 STATISTIC(NumFoldedLoads,     "Number of folded loads");
75 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
76 
77 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
78                                      cl::desc("Disable inline spill hoisting"));
79 static cl::opt<bool>
80 RestrictStatepointRemat("restrict-statepoint-remat",
81                        cl::init(false), cl::Hidden,
82                        cl::desc("Restrict remat for statepoint operands"));
83 
84 namespace {
85 
86 class HoistSpillHelper : private LiveRangeEdit::Delegate {
87   MachineFunction &MF;
88   LiveIntervals &LIS;
89   LiveStacks &LSS;
90   AliasAnalysis *AA;
91   MachineDominatorTree &MDT;
92   MachineLoopInfo &Loops;
93   VirtRegMap &VRM;
94   MachineRegisterInfo &MRI;
95   const TargetInstrInfo &TII;
96   const TargetRegisterInfo &TRI;
97   const MachineBlockFrequencyInfo &MBFI;
98 
99   InsertPointAnalysis IPA;
100 
101   // Map from StackSlot to the LiveInterval of the original register.
102   // Note the LiveInterval of the original register may have been deleted
103   // after it is spilled. We keep a copy here to track the range where
104   // spills can be moved.
105   DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
106 
107   // Map from pair of (StackSlot and Original VNI) to a set of spills which
108   // have the same stackslot and have equal values defined by Original VNI.
109   // These spills are mergeable and are hoist candiates.
110   using MergeableSpillsMap =
111       MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
112   MergeableSpillsMap MergeableSpills;
113 
114   /// This is the map from original register to a set containing all its
115   /// siblings. To hoist a spill to another BB, we need to find out a live
116   /// sibling there and use it as the source of the new spill.
117   DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;
118 
119   bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
120                      MachineBasicBlock &BB, Register &LiveReg);
121 
122   void rmRedundantSpills(
123       SmallPtrSet<MachineInstr *, 16> &Spills,
124       SmallVectorImpl<MachineInstr *> &SpillsToRm,
125       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
126 
127   void getVisitOrders(
128       MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
129       SmallVectorImpl<MachineDomTreeNode *> &Orders,
130       SmallVectorImpl<MachineInstr *> &SpillsToRm,
131       DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
132       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
133 
134   void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
135                       SmallPtrSet<MachineInstr *, 16> &Spills,
136                       SmallVectorImpl<MachineInstr *> &SpillsToRm,
137                       DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
138 
139 public:
HoistSpillHelper(MachineFunctionPass & pass,MachineFunction & mf,VirtRegMap & vrm)140   HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
141                    VirtRegMap &vrm)
142       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
143         LSS(pass.getAnalysis<LiveStacks>()),
144         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
145         MDT(pass.getAnalysis<MachineDominatorTree>()),
146         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
147         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
148         TRI(*mf.getSubtarget().getRegisterInfo()),
149         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
150         IPA(LIS, mf.getNumBlockIDs()) {}
151 
152   void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
153                             unsigned Original);
154   bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
155   void hoistAllSpills();
156   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
157 };
158 
159 class InlineSpiller : public Spiller {
160   MachineFunction &MF;
161   LiveIntervals &LIS;
162   LiveStacks &LSS;
163   AliasAnalysis *AA;
164   MachineDominatorTree &MDT;
165   MachineLoopInfo &Loops;
166   VirtRegMap &VRM;
167   MachineRegisterInfo &MRI;
168   const TargetInstrInfo &TII;
169   const TargetRegisterInfo &TRI;
170   const MachineBlockFrequencyInfo &MBFI;
171 
172   // Variables that are valid during spill(), but used by multiple methods.
173   LiveRangeEdit *Edit;
174   LiveInterval *StackInt;
175   int StackSlot;
176   unsigned Original;
177 
178   // All registers to spill to StackSlot, including the main register.
179   SmallVector<Register, 8> RegsToSpill;
180 
181   // All COPY instructions to/from snippets.
182   // They are ignored since both operands refer to the same stack slot.
183   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
184 
185   // Values that failed to remat at some point.
186   SmallPtrSet<VNInfo*, 8> UsedValues;
187 
188   // Dead defs generated during spilling.
189   SmallVector<MachineInstr*, 8> DeadDefs;
190 
191   // Object records spills information and does the hoisting.
192   HoistSpillHelper HSpiller;
193 
194   ~InlineSpiller() override = default;
195 
196 public:
InlineSpiller(MachineFunctionPass & pass,MachineFunction & mf,VirtRegMap & vrm)197   InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
198       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
199         LSS(pass.getAnalysis<LiveStacks>()),
200         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
201         MDT(pass.getAnalysis<MachineDominatorTree>()),
202         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
203         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
204         TRI(*mf.getSubtarget().getRegisterInfo()),
205         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
206         HSpiller(pass, mf, vrm) {}
207 
208   void spill(LiveRangeEdit &) override;
209   void postOptimization() override;
210 
211 private:
212   bool isSnippet(const LiveInterval &SnipLI);
213   void collectRegsToSpill();
214 
isRegToSpill(Register Reg)215   bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }
216 
217   bool isSibling(Register Reg);
218   bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
219   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
220 
221   void markValueUsed(LiveInterval*, VNInfo*);
222   bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
223   bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
224   void reMaterializeAll();
225 
226   bool coalesceStackAccess(MachineInstr *MI, Register Reg);
227   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
228                          MachineInstr *LoadMI = nullptr);
229   void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
230   void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);
231 
232   void spillAroundUses(Register Reg);
233   void spillAll();
234 };
235 
236 } // end anonymous namespace
237 
238 Spiller::~Spiller() = default;
239 
anchor()240 void Spiller::anchor() {}
241 
createInlineSpiller(MachineFunctionPass & pass,MachineFunction & mf,VirtRegMap & vrm)242 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass,
243                                    MachineFunction &mf,
244                                    VirtRegMap &vrm) {
245   return new InlineSpiller(pass, mf, vrm);
246 }
247 
248 //===----------------------------------------------------------------------===//
249 //                                Snippets
250 //===----------------------------------------------------------------------===//
251 
252 // When spilling a virtual register, we also spill any snippets it is connected
253 // to. The snippets are small live ranges that only have a single real use,
254 // leftovers from live range splitting. Spilling them enables memory operand
255 // folding or tightens the live range around the single use.
256 //
257 // This minimizes register pressure and maximizes the store-to-load distance for
258 // spill slots which can be important in tight loops.
259 
260 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
261 /// otherwise return 0.
isFullCopyOf(const MachineInstr & MI,Register Reg)262 static Register isFullCopyOf(const MachineInstr &MI, Register Reg) {
263   if (!MI.isFullCopy())
264     return Register();
265   if (MI.getOperand(0).getReg() == Reg)
266     return MI.getOperand(1).getReg();
267   if (MI.getOperand(1).getReg() == Reg)
268     return MI.getOperand(0).getReg();
269   return Register();
270 }
271 
272 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
273 /// It is assumed that SnipLI is a virtual register with the same original as
274 /// Edit->getReg().
isSnippet(const LiveInterval & SnipLI)275 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
276   Register Reg = Edit->getReg();
277 
278   // A snippet is a tiny live range with only a single instruction using it
279   // besides copies to/from Reg or spills/fills. We accept:
280   //
281   //   %snip = COPY %Reg / FILL fi#
282   //   %snip = USE %snip
283   //   %Reg = COPY %snip / SPILL %snip, fi#
284   //
285   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
286     return false;
287 
288   MachineInstr *UseMI = nullptr;
289 
290   // Check that all uses satisfy our criteria.
291   for (MachineRegisterInfo::reg_instr_nodbg_iterator
292        RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
293        E = MRI.reg_instr_nodbg_end(); RI != E; ) {
294     MachineInstr &MI = *RI++;
295 
296     // Allow copies to/from Reg.
297     if (isFullCopyOf(MI, Reg))
298       continue;
299 
300     // Allow stack slot loads.
301     int FI;
302     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
303       continue;
304 
305     // Allow stack slot stores.
306     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
307       continue;
308 
309     // Allow a single additional instruction.
310     if (UseMI && &MI != UseMI)
311       return false;
312     UseMI = &MI;
313   }
314   return true;
315 }
316 
317 /// collectRegsToSpill - Collect live range snippets that only have a single
318 /// real use.
collectRegsToSpill()319 void InlineSpiller::collectRegsToSpill() {
320   Register Reg = Edit->getReg();
321 
322   // Main register always spills.
323   RegsToSpill.assign(1, Reg);
324   SnippetCopies.clear();
325 
326   // Snippets all have the same original, so there can't be any for an original
327   // register.
328   if (Original == Reg)
329     return;
330 
331   for (MachineRegisterInfo::reg_instr_iterator
332        RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
333     MachineInstr &MI = *RI++;
334     Register SnipReg = isFullCopyOf(MI, Reg);
335     if (!isSibling(SnipReg))
336       continue;
337     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
338     if (!isSnippet(SnipLI))
339       continue;
340     SnippetCopies.insert(&MI);
341     if (isRegToSpill(SnipReg))
342       continue;
343     RegsToSpill.push_back(SnipReg);
344     LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
345     ++NumSnippets;
346   }
347 }
348 
isSibling(Register Reg)349 bool InlineSpiller::isSibling(Register Reg) {
350   return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
351 }
352 
353 /// It is beneficial to spill to earlier place in the same BB in case
354 /// as follows:
355 /// There is an alternative def earlier in the same MBB.
356 /// Hoist the spill as far as possible in SpillMBB. This can ease
357 /// register pressure:
358 ///
359 ///   x = def
360 ///   y = use x
361 ///   s = copy x
362 ///
363 /// Hoisting the spill of s to immediately after the def removes the
364 /// interference between x and y:
365 ///
366 ///   x = def
367 ///   spill x
368 ///   y = use killed x
369 ///
370 /// This hoist only helps when the copy kills its source.
371 ///
hoistSpillInsideBB(LiveInterval & SpillLI,MachineInstr & CopyMI)372 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
373                                        MachineInstr &CopyMI) {
374   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
375 #ifndef NDEBUG
376   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
377   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
378 #endif
379 
380   Register SrcReg = CopyMI.getOperand(1).getReg();
381   LiveInterval &SrcLI = LIS.getInterval(SrcReg);
382   VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
383   LiveQueryResult SrcQ = SrcLI.Query(Idx);
384   MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
385   if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
386     return false;
387 
388   // Conservatively extend the stack slot range to the range of the original
389   // value. We may be able to do better with stack slot coloring by being more
390   // careful here.
391   assert(StackInt && "No stack slot assigned yet.");
392   LiveInterval &OrigLI = LIS.getInterval(Original);
393   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
394   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
395   LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
396                     << *StackInt << '\n');
397 
398   // We are going to spill SrcVNI immediately after its def, so clear out
399   // any later spills of the same value.
400   eliminateRedundantSpills(SrcLI, SrcVNI);
401 
402   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
403   MachineBasicBlock::iterator MII;
404   if (SrcVNI->isPHIDef())
405     MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
406   else {
407     MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
408     assert(DefMI && "Defining instruction disappeared");
409     MII = DefMI;
410     ++MII;
411   }
412   // Insert spill without kill flag immediately after def.
413   TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
414                           MRI.getRegClass(SrcReg), &TRI);
415   --MII; // Point to store instruction.
416   LIS.InsertMachineInstrInMaps(*MII);
417 #if 0
418   // CHERI, with hardware floating point, lacks instructions for storing
419   // floating point via a capability.  As such, the storeRegToStackSlot call
420   // will insert two instructions and we must update the maps for both of them.
421   if (MII != MBB->begin()) {
422     --MII; // Point to the instruction before the store instruction.
423     if (LIS.isNotInMIMap(*MII))
424       LIS.InsertMachineInstrInMaps(*MII);
425   }
426 #endif
427   LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
428 
429   HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
430   ++NumSpills;
431   return true;
432 }
433 
434 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
435 /// redundant spills of this value in SLI.reg and sibling copies.
eliminateRedundantSpills(LiveInterval & SLI,VNInfo * VNI)436 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
437   assert(VNI && "Missing value");
438   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
439   WorkList.push_back(std::make_pair(&SLI, VNI));
440   assert(StackInt && "No stack slot assigned yet.");
441 
442   do {
443     LiveInterval *LI;
444     std::tie(LI, VNI) = WorkList.pop_back_val();
445     Register Reg = LI->reg;
446     LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
447                       << VNI->def << " in " << *LI << '\n');
448 
449     // Regs to spill are taken care of.
450     if (isRegToSpill(Reg))
451       continue;
452 
453     // Add all of VNI's live range to StackInt.
454     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
455     LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
456 
457     // Find all spills and copies of VNI.
458     for (MachineRegisterInfo::use_instr_nodbg_iterator
459          UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
460          UI != E; ) {
461       MachineInstr &MI = *UI++;
462       if (!MI.isCopy() && !MI.mayStore())
463         continue;
464       SlotIndex Idx = LIS.getInstructionIndex(MI);
465       if (LI->getVNInfoAt(Idx) != VNI)
466         continue;
467 
468       // Follow sibling copies down the dominator tree.
469       if (Register DstReg = isFullCopyOf(MI, Reg)) {
470         if (isSibling(DstReg)) {
471            LiveInterval &DstLI = LIS.getInterval(DstReg);
472            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
473            assert(DstVNI && "Missing defined value");
474            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
475            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
476         }
477         continue;
478       }
479 
480       // Erase spills.
481       int FI;
482       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
483         LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
484         // eliminateDeadDefs won't normally remove stores, so switch opcode.
485         MI.setDesc(TII.get(TargetOpcode::KILL));
486         DeadDefs.push_back(&MI);
487         ++NumSpillsRemoved;
488         if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
489           --NumSpills;
490       }
491     }
492   } while (!WorkList.empty());
493 }
494 
495 //===----------------------------------------------------------------------===//
496 //                            Rematerialization
497 //===----------------------------------------------------------------------===//
498 
499 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
500 /// instruction cannot be eliminated. See through snippet copies
markValueUsed(LiveInterval * LI,VNInfo * VNI)501 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
502   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
503   WorkList.push_back(std::make_pair(LI, VNI));
504   do {
505     std::tie(LI, VNI) = WorkList.pop_back_val();
506     if (!UsedValues.insert(VNI).second)
507       continue;
508 
509     if (VNI->isPHIDef()) {
510       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
511       for (MachineBasicBlock *P : MBB->predecessors()) {
512         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
513         if (PVNI)
514           WorkList.push_back(std::make_pair(LI, PVNI));
515       }
516       continue;
517     }
518 
519     // Follow snippet copies.
520     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
521     if (!SnippetCopies.count(MI))
522       continue;
523     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
524     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
525     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
526     assert(SnipVNI && "Snippet undefined before copy");
527     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
528   } while (!WorkList.empty());
529 }
530 
canGuaranteeAssignmentAfterRemat(Register VReg,MachineInstr & MI)531 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
532                                                      MachineInstr &MI) {
533   if (!RestrictStatepointRemat)
534     return true;
535   // Here's a quick explanation of the problem we're trying to handle here:
536   // * There are some pseudo instructions with more vreg uses than there are
537   //   physical registers on the machine.
538   // * This is normally handled by spilling the vreg, and folding the reload
539   //   into the user instruction.  (Thus decreasing the number of used vregs
540   //   until the remainder can be assigned to physregs.)
541   // * However, since we may try to spill vregs in any order, we can end up
542   //   trying to spill each operand to the instruction, and then rematting it
543   //   instead.  When that happens, the new live intervals (for the remats) are
544   //   expected to be trivially assignable (i.e. RS_Done).  However, since we
545   //   may have more remats than physregs, we're guaranteed to fail to assign
546   //   one.
547   // At the moment, we only handle this for STATEPOINTs since they're the only
548   // pseudo op where we've seen this.  If we start seeing other instructions
549   // with the same problem, we need to revisit this.
550   if (MI.getOpcode() != TargetOpcode::STATEPOINT)
551     return true;
552   // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
553   // that number of physical registers is enough to cover all fixed arguments.
554   // If it is not true we need to revisit it.
555   for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
556                 EndIdx = MI.getNumOperands();
557        Idx < EndIdx; ++Idx) {
558     MachineOperand &MO = MI.getOperand(Idx);
559     if (MO.isReg() && MO.getReg() == VReg)
560       return false;
561   }
562   return true;
563 }
564 
565 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
reMaterializeFor(LiveInterval & VirtReg,MachineInstr & MI)566 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
567   // Analyze instruction
568   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
569   VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg, &Ops);
570 
571   if (!RI.Reads)
572     return false;
573 
574   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
575   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
576 
577   if (!ParentVNI) {
578     LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
579     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
580       MachineOperand &MO = MI.getOperand(i);
581       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
582         MO.setIsUndef();
583     }
584     LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
585     return true;
586   }
587 
588   if (SnippetCopies.count(&MI))
589     return false;
590 
591   LiveInterval &OrigLI = LIS.getInterval(Original);
592   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
593   LiveRangeEdit::Remat RM(ParentVNI);
594   RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
595 
596   if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
597     markValueUsed(&VirtReg, ParentVNI);
598     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
599     return false;
600   }
601 
602   // If the instruction also writes VirtReg.reg, it had better not require the
603   // same register for uses and defs.
604   if (RI.Tied) {
605     markValueUsed(&VirtReg, ParentVNI);
606     LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
607     return false;
608   }
609 
610   // Before rematerializing into a register for a single instruction, try to
611   // fold a load into the instruction. That avoids allocating a new register.
612   if (RM.OrigMI->canFoldAsLoad() &&
613       foldMemoryOperand(Ops, RM.OrigMI)) {
614     Edit->markRematerialized(RM.ParentVNI);
615     ++NumFoldedLoads;
616     return true;
617   }
618 
619   // If we can't guarantee that we'll be able to actually assign the new vreg,
620   // we can't remat.
621   if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg, MI)) {
622     markValueUsed(&VirtReg, ParentVNI);
623     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
624     return false;
625   }
626 
627   // Allocate a new register for the remat.
628   Register NewVReg = Edit->createFrom(Original);
629 
630   // Finally we can rematerialize OrigMI before MI.
631   SlotIndex DefIdx =
632       Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
633 
634   // We take the DebugLoc from MI, since OrigMI may be attributed to a
635   // different source location.
636   auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
637   NewMI->setDebugLoc(MI.getDebugLoc());
638 
639   (void)DefIdx;
640   LLVM_DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
641                     << *LIS.getInstructionFromIndex(DefIdx));
642 
643   // Replace operands
644   for (const auto &OpPair : Ops) {
645     MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
646     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
647       MO.setReg(NewVReg);
648       MO.setIsKill();
649     }
650   }
651   LLVM_DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
652 
653   ++NumRemats;
654   return true;
655 }
656 
657 /// reMaterializeAll - Try to rematerialize as many uses as possible,
658 /// and trim the live ranges after.
reMaterializeAll()659 void InlineSpiller::reMaterializeAll() {
660   if (!Edit->anyRematerializable(AA))
661     return;
662 
663   UsedValues.clear();
664 
665   // Try to remat before all uses of snippets.
666   bool anyRemat = false;
667   for (Register Reg : RegsToSpill) {
668     LiveInterval &LI = LIS.getInterval(Reg);
669     for (MachineRegisterInfo::reg_bundle_iterator
670            RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
671          RegI != E; ) {
672       MachineInstr &MI = *RegI++;
673 
674       // Debug values are not allowed to affect codegen.
675       if (MI.isDebugValue())
676         continue;
677 
678       assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
679              "instruction that isn't a DBG_VALUE");
680 
681       anyRemat |= reMaterializeFor(LI, MI);
682     }
683   }
684   if (!anyRemat)
685     return;
686 
687   // Remove any values that were completely rematted.
688   for (Register Reg : RegsToSpill) {
689     LiveInterval &LI = LIS.getInterval(Reg);
690     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
691          I != E; ++I) {
692       VNInfo *VNI = *I;
693       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
694         continue;
695       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
696       MI->addRegisterDead(Reg, &TRI);
697       if (!MI->allDefsAreDead())
698         continue;
699       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
700       DeadDefs.push_back(MI);
701     }
702   }
703 
704   // Eliminate dead code after remat. Note that some snippet copies may be
705   // deleted here.
706   if (DeadDefs.empty())
707     return;
708   LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
709   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
710 
711   // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
712   // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
713   // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
714   // removed, PHI VNI are still left in the LiveInterval.
715   // So to get rid of unused reg, we need to check whether it has non-dbg
716   // reference instead of whether it has non-empty interval.
717   unsigned ResultPos = 0;
718   for (Register Reg : RegsToSpill) {
719     if (MRI.reg_nodbg_empty(Reg)) {
720       Edit->eraseVirtReg(Reg);
721       continue;
722     }
723 
724     assert(LIS.hasInterval(Reg) &&
725            (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
726            "Empty and not used live-range?!");
727 
728     RegsToSpill[ResultPos++] = Reg;
729   }
730   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
731   LLVM_DEBUG(dbgs() << RegsToSpill.size()
732                     << " registers to spill after remat.\n");
733 }
734 
735 //===----------------------------------------------------------------------===//
736 //                                 Spilling
737 //===----------------------------------------------------------------------===//
738 
739 /// If MI is a load or store of StackSlot, it can be removed.
coalesceStackAccess(MachineInstr * MI,Register Reg)740 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
741   int FI = 0;
742   Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
743   bool IsLoad = InstrReg;
744   if (!IsLoad)
745     InstrReg = TII.isStoreToStackSlot(*MI, FI);
746 
747   // We have a stack access. Is it the right register and slot?
748   if (InstrReg != Reg || FI != StackSlot)
749     return false;
750 
751   if (!IsLoad)
752     HSpiller.rmFromMergeableSpills(*MI, StackSlot);
753 
754   LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
755   LIS.RemoveMachineInstrFromMaps(*MI);
756   MI->eraseFromParent();
757 
758   if (IsLoad) {
759     ++NumReloadsRemoved;
760     --NumReloads;
761   } else {
762     ++NumSpillsRemoved;
763     --NumSpills;
764   }
765 
766   return true;
767 }
768 
769 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
770 LLVM_DUMP_METHOD
771 // Dump the range of instructions from B to E with their slot indexes.
dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,MachineBasicBlock::iterator E,LiveIntervals const & LIS,const char * const header,Register VReg=Register ())772 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
773                                                MachineBasicBlock::iterator E,
774                                                LiveIntervals const &LIS,
775                                                const char *const header,
776                                                Register VReg = Register()) {
777   char NextLine = '\n';
778   char SlotIndent = '\t';
779 
780   if (std::next(B) == E) {
781     NextLine = ' ';
782     SlotIndent = ' ';
783   }
784 
785   dbgs() << '\t' << header << ": " << NextLine;
786 
787   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
788     SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
789 
790     // If a register was passed in and this instruction has it as a
791     // destination that is marked as an early clobber, print the
792     // early-clobber slot index.
793     if (VReg) {
794       MachineOperand *MO = I->findRegisterDefOperand(VReg);
795       if (MO && MO->isEarlyClobber())
796         Idx = Idx.getRegSlot(true);
797     }
798 
799     dbgs() << SlotIndent << Idx << '\t' << *I;
800   }
801 }
802 #endif
803 
804 /// foldMemoryOperand - Try folding stack slot references in Ops into their
805 /// instructions.
806 ///
807 /// @param Ops    Operand indices from AnalyzeVirtRegInBundle().
808 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
809 /// @return       True on success.
810 bool InlineSpiller::
foldMemoryOperand(ArrayRef<std::pair<MachineInstr *,unsigned>> Ops,MachineInstr * LoadMI)811 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
812                   MachineInstr *LoadMI) {
813   if (Ops.empty())
814     return false;
815   // Don't attempt folding in bundles.
816   MachineInstr *MI = Ops.front().first;
817   if (Ops.back().first != MI || MI->isBundled())
818     return false;
819 
820   bool WasCopy = MI->isCopy();
821   Register ImpReg;
822 
823   // Spill subregs if the target allows it.
824   // We always want to spill subregs for stackmap/patchpoint pseudos.
825   bool SpillSubRegs = TII.isSubregFoldable() ||
826                       MI->getOpcode() == TargetOpcode::STATEPOINT ||
827                       MI->getOpcode() == TargetOpcode::PATCHPOINT ||
828                       MI->getOpcode() == TargetOpcode::STACKMAP;
829 
830   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
831   // operands.
832   SmallVector<unsigned, 8> FoldOps;
833   for (const auto &OpPair : Ops) {
834     unsigned Idx = OpPair.second;
835     assert(MI == OpPair.first && "Instruction conflict during operand folding");
836     MachineOperand &MO = MI->getOperand(Idx);
837     if (MO.isImplicit()) {
838       ImpReg = MO.getReg();
839       continue;
840     }
841 
842     if (!SpillSubRegs && MO.getSubReg())
843       return false;
844     // We cannot fold a load instruction into a def.
845     if (LoadMI && MO.isDef())
846       return false;
847     // Tied use operands should not be passed to foldMemoryOperand.
848     if (!MI->isRegTiedToDefOperand(Idx))
849       FoldOps.push_back(Idx);
850   }
851 
852   // If we only have implicit uses, we won't be able to fold that.
853   // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
854   if (FoldOps.empty())
855     return false;
856 
857   MachineInstrSpan MIS(MI, MI->getParent());
858 
859   MachineInstr *FoldMI =
860       LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
861              : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
862   if (!FoldMI)
863     return false;
864 
865   // Remove LIS for any dead defs in the original MI not in FoldMI.
866   for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
867     if (!MO->isReg())
868       continue;
869     Register Reg = MO->getReg();
870     if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) {
871       continue;
872     }
873     // Skip non-Defs, including undef uses and internal reads.
874     if (MO->isUse())
875       continue;
876     PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
877     if (RI.FullyDefined)
878       continue;
879     // FoldMI does not define this physreg. Remove the LI segment.
880     assert(MO->isDead() && "Cannot fold physreg def");
881     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
882     LIS.removePhysRegDefAt(Reg, Idx);
883   }
884 
885   int FI;
886   if (TII.isStoreToStackSlot(*MI, FI) &&
887       HSpiller.rmFromMergeableSpills(*MI, FI))
888     --NumSpills;
889   LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
890   // Update the call site info.
891   if (MI->isCandidateForCallSiteEntry())
892     MI->getMF()->moveCallSiteInfo(MI, FoldMI);
893   MI->eraseFromParent();
894 
895   // Insert any new instructions other than FoldMI into the LIS maps.
896   assert(!MIS.empty() && "Unexpected empty span of instructions!");
897   for (MachineInstr &MI : MIS)
898     if (&MI != FoldMI)
899       LIS.InsertMachineInstrInMaps(MI);
900 
901   // TII.foldMemoryOperand may have left some implicit operands on the
902   // instruction.  Strip them.
903   if (ImpReg)
904     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
905       MachineOperand &MO = FoldMI->getOperand(i - 1);
906       if (!MO.isReg() || !MO.isImplicit())
907         break;
908       if (MO.getReg() == ImpReg)
909         FoldMI->RemoveOperand(i - 1);
910     }
911 
912   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
913                                                 "folded"));
914 
915   if (!WasCopy)
916     ++NumFolded;
917   else if (Ops.front().second == 0) {
918     ++NumSpills;
919     HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
920   } else
921     ++NumReloads;
922   return true;
923 }
924 
insertReload(Register NewVReg,SlotIndex Idx,MachineBasicBlock::iterator MI)925 void InlineSpiller::insertReload(Register NewVReg,
926                                  SlotIndex Idx,
927                                  MachineBasicBlock::iterator MI) {
928   MachineBasicBlock &MBB = *MI->getParent();
929 
930   MachineInstrSpan MIS(MI, &MBB);
931   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
932                            MRI.getRegClass(NewVReg), &TRI);
933 
934   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
935 
936   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
937                                                 NewVReg));
938   ++NumReloads;
939 }
940 
941 /// Check if \p Def fully defines a VReg with an undefined value.
942 /// If that's the case, that means the value of VReg is actually
943 /// not relevant.
isRealSpill(const MachineInstr & Def)944 static bool isRealSpill(const MachineInstr &Def) {
945   if (!Def.isImplicitDef())
946     return true;
947   assert(Def.getNumOperands() == 1 &&
948          "Implicit def with more than one definition");
949   // We can say that the VReg defined by Def is undef, only if it is
950   // fully defined by Def. Otherwise, some of the lanes may not be
951   // undef and the value of the VReg matters.
952   return Def.getOperand(0).getSubReg();
953 }
954 
955 /// insertSpill - Insert a spill of NewVReg after MI.
insertSpill(Register NewVReg,bool isKill,MachineBasicBlock::iterator MI)956 void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
957                                  MachineBasicBlock::iterator MI) {
958   // Spill are not terminators, so inserting spills after terminators will
959   // violate invariants in MachineVerifier.
960   assert(!MI->isTerminator() && "Inserting a spill after a terminator");
961   MachineBasicBlock &MBB = *MI->getParent();
962 
963   MachineInstrSpan MIS(MI, &MBB);
964   MachineBasicBlock::iterator SpillBefore = std::next(MI);
965   bool IsRealSpill = isRealSpill(*MI);
966   if (IsRealSpill)
967     TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
968                             MRI.getRegClass(NewVReg), &TRI);
969   else
970     // Don't spill undef value.
971     // Anything works for undef, in particular keeping the memory
972     // uninitialized is a viable option and it saves code size and
973     // run time.
974     BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
975         .addReg(NewVReg, getKillRegState(isKill));
976 
977   MachineBasicBlock::iterator Spill = std::next(MI);
978   LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());
979 
980   LLVM_DEBUG(
981       dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"));
982   ++NumSpills;
983   if (IsRealSpill)
984     HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
985 }
986 
987 /// spillAroundUses - insert spill code around each use of Reg.
spillAroundUses(Register Reg)988 void InlineSpiller::spillAroundUses(Register Reg) {
989   LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
990   LiveInterval &OldLI = LIS.getInterval(Reg);
991 
992   // Iterate over instructions using Reg.
993   for (MachineRegisterInfo::reg_bundle_iterator
994        RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
995        RegI != E; ) {
996     MachineInstr *MI = &*(RegI++);
997 
998     // Debug values are not allowed to affect codegen.
999     if (MI->isDebugValue()) {
1000       // Modify DBG_VALUE now that the value is in a spill slot.
1001       MachineBasicBlock *MBB = MI->getParent();
1002       LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI);
1003       buildDbgValueForSpill(*MBB, MI, *MI, StackSlot);
1004       MBB->erase(MI);
1005       continue;
1006     }
1007 
1008     assert(!MI->isDebugInstr() && "Did not expect to find a use in debug "
1009            "instruction that isn't a DBG_VALUE");
1010 
1011     // Ignore copies to/from snippets. We'll delete them.
1012     if (SnippetCopies.count(MI))
1013       continue;
1014 
1015     // Stack slot accesses may coalesce away.
1016     if (coalesceStackAccess(MI, Reg))
1017       continue;
1018 
1019     // Analyze instruction.
1020     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1021     VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops);
1022 
1023     // Find the slot index where this instruction reads and writes OldLI.
1024     // This is usually the def slot, except for tied early clobbers.
1025     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
1026     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1027       if (SlotIndex::isSameInstr(Idx, VNI->def))
1028         Idx = VNI->def;
1029 
1030     // Check for a sibling copy.
1031     Register SibReg = isFullCopyOf(*MI, Reg);
1032     if (SibReg && isSibling(SibReg)) {
1033       // This may actually be a copy between snippets.
1034       if (isRegToSpill(SibReg)) {
1035         LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1036         SnippetCopies.insert(MI);
1037         continue;
1038       }
1039       if (RI.Writes) {
1040         if (hoistSpillInsideBB(OldLI, *MI)) {
1041           // This COPY is now dead, the value is already in the stack slot.
1042           MI->getOperand(0).setIsDead();
1043           DeadDefs.push_back(MI);
1044           continue;
1045         }
1046       } else {
1047         // This is a reload for a sib-reg copy. Drop spills downstream.
1048         LiveInterval &SibLI = LIS.getInterval(SibReg);
1049         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1050         // The COPY will fold to a reload below.
1051       }
1052     }
1053 
1054     // Attempt to fold memory ops.
1055     if (foldMemoryOperand(Ops))
1056       continue;
1057 
1058     // Create a new virtual register for spill/fill.
1059     // FIXME: Infer regclass from instruction alone.
1060     Register NewVReg = Edit->createFrom(Reg);
1061 
1062     if (RI.Reads)
1063       insertReload(NewVReg, Idx, MI);
1064 
1065     // Rewrite instruction operands.
1066     bool hasLiveDef = false;
1067     for (const auto &OpPair : Ops) {
1068       MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1069       MO.setReg(NewVReg);
1070       if (MO.isUse()) {
1071         if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1072           MO.setIsKill();
1073       } else {
1074         if (!MO.isDead())
1075           hasLiveDef = true;
1076       }
1077     }
1078     LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
1079 
1080     // FIXME: Use a second vreg if instruction has no tied ops.
1081     if (RI.Writes)
1082       if (hasLiveDef)
1083         insertSpill(NewVReg, true, MI);
1084   }
1085 }
1086 
1087 /// spillAll - Spill all registers remaining after rematerialization.
spillAll()1088 void InlineSpiller::spillAll() {
1089   // Update LiveStacks now that we are committed to spilling.
1090   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1091     StackSlot = VRM.assignVirt2StackSlot(Original);
1092     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1093     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1094   } else
1095     StackInt = &LSS.getInterval(StackSlot);
1096 
1097   if (Original != Edit->getReg())
1098     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1099 
1100   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1101   for (Register Reg : RegsToSpill)
1102     StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1103                                      StackInt->getValNumInfo(0));
1104   LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1105 
1106   // Spill around uses of all RegsToSpill.
1107   for (Register Reg : RegsToSpill)
1108     spillAroundUses(Reg);
1109 
1110   // Hoisted spills may cause dead code.
1111   if (!DeadDefs.empty()) {
1112     LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1113     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
1114   }
1115 
1116   // Finally delete the SnippetCopies.
1117   for (Register Reg : RegsToSpill) {
1118     for (MachineRegisterInfo::reg_instr_iterator
1119          RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
1120          RI != E; ) {
1121       MachineInstr &MI = *(RI++);
1122       assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1123       // FIXME: Do this with a LiveRangeEdit callback.
1124       LIS.RemoveMachineInstrFromMaps(MI);
1125       MI.eraseFromParent();
1126     }
1127   }
1128 
1129   // Delete all spilled registers.
1130   for (Register Reg : RegsToSpill)
1131     Edit->eraseVirtReg(Reg);
1132 }
1133 
spill(LiveRangeEdit & edit)1134 void InlineSpiller::spill(LiveRangeEdit &edit) {
1135   ++NumSpilledRanges;
1136   Edit = &edit;
1137   assert(!Register::isStackSlot(edit.getReg()) &&
1138          "Trying to spill a stack slot.");
1139   // Share a stack slot among all descendants of Original.
1140   Original = VRM.getOriginal(edit.getReg());
1141   StackSlot = VRM.getStackSlot(Original);
1142   StackInt = nullptr;
1143 
1144   LLVM_DEBUG(dbgs() << "Inline spilling "
1145                     << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1146                     << ':' << edit.getParent() << "\nFrom original "
1147                     << printReg(Original) << '\n');
1148   assert(edit.getParent().isSpillable() &&
1149          "Attempting to spill already spilled value.");
1150   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1151 
1152   collectRegsToSpill();
1153   reMaterializeAll();
1154 
1155   // Remat may handle everything.
1156   if (!RegsToSpill.empty())
1157     spillAll();
1158 
1159   Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1160 }
1161 
1162 /// Optimizations after all the reg selections and spills are done.
postOptimization()1163 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1164 
1165 /// When a spill is inserted, add the spill to MergeableSpills map.
addToMergeableSpills(MachineInstr & Spill,int StackSlot,unsigned Original)1166 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1167                                             unsigned Original) {
1168   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1169   LiveInterval &OrigLI = LIS.getInterval(Original);
1170   // save a copy of LiveInterval in StackSlotToOrigLI because the original
1171   // LiveInterval may be cleared after all its references are spilled.
1172   if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1173     auto LI = std::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight);
1174     LI->assign(OrigLI, Allocator);
1175     StackSlotToOrigLI[StackSlot] = std::move(LI);
1176   }
1177   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1178   VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1179   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1180   MergeableSpills[MIdx].insert(&Spill);
1181 }
1182 
1183 /// When a spill is removed, remove the spill from MergeableSpills map.
1184 /// Return true if the spill is removed successfully.
rmFromMergeableSpills(MachineInstr & Spill,int StackSlot)1185 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1186                                              int StackSlot) {
1187   auto It = StackSlotToOrigLI.find(StackSlot);
1188   if (It == StackSlotToOrigLI.end())
1189     return false;
1190   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1191   VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1192   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1193   return MergeableSpills[MIdx].erase(&Spill);
1194 }
1195 
1196 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1197 /// i.e., there should be a living sibling of OrigReg at the insert point.
isSpillCandBB(LiveInterval & OrigLI,VNInfo & OrigVNI,MachineBasicBlock & BB,Register & LiveReg)1198 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1199                                      MachineBasicBlock &BB, Register &LiveReg) {
1200   SlotIndex Idx;
1201   Register OrigReg = OrigLI.reg;
1202   MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB);
1203   if (MI != BB.end())
1204     Idx = LIS.getInstructionIndex(*MI);
1205   else
1206     Idx = LIS.getMBBEndIdx(&BB).getPrevSlot();
1207   SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1208   assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1209 
1210   for (const Register &SibReg : Siblings) {
1211     LiveInterval &LI = LIS.getInterval(SibReg);
1212     VNInfo *VNI = LI.getVNInfoAt(Idx);
1213     if (VNI) {
1214       LiveReg = SibReg;
1215       return true;
1216     }
1217   }
1218   return false;
1219 }
1220 
1221 /// Remove redundant spills in the same BB. Save those redundant spills in
1222 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
rmRedundantSpills(SmallPtrSet<MachineInstr *,16> & Spills,SmallVectorImpl<MachineInstr * > & SpillsToRm,DenseMap<MachineDomTreeNode *,MachineInstr * > & SpillBBToSpill)1223 void HoistSpillHelper::rmRedundantSpills(
1224     SmallPtrSet<MachineInstr *, 16> &Spills,
1225     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1226     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1227   // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1228   // another spill inside. If a BB contains more than one spill, only keep the
1229   // earlier spill with smaller SlotIndex.
1230   for (const auto CurrentSpill : Spills) {
1231     MachineBasicBlock *Block = CurrentSpill->getParent();
1232     MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1233     MachineInstr *PrevSpill = SpillBBToSpill[Node];
1234     if (PrevSpill) {
1235       SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1236       SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1237       MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1238       MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1239       SpillsToRm.push_back(SpillToRm);
1240       SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1241     } else {
1242       SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1243     }
1244   }
1245   for (const auto SpillToRm : SpillsToRm)
1246     Spills.erase(SpillToRm);
1247 }
1248 
1249 /// Starting from \p Root find a top-down traversal order of the dominator
1250 /// tree to visit all basic blocks containing the elements of \p Spills.
1251 /// Redundant spills will be found and put into \p SpillsToRm at the same
1252 /// time. \p SpillBBToSpill will be populated as part of the process and
1253 /// maps a basic block to the first store occurring in the basic block.
1254 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
getVisitOrders(MachineBasicBlock * Root,SmallPtrSet<MachineInstr *,16> & Spills,SmallVectorImpl<MachineDomTreeNode * > & Orders,SmallVectorImpl<MachineInstr * > & SpillsToRm,DenseMap<MachineDomTreeNode *,unsigned> & SpillsToKeep,DenseMap<MachineDomTreeNode *,MachineInstr * > & SpillBBToSpill)1255 void HoistSpillHelper::getVisitOrders(
1256     MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1257     SmallVectorImpl<MachineDomTreeNode *> &Orders,
1258     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1259     DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1260     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1261   // The set contains all the possible BB nodes to which we may hoist
1262   // original spills.
1263   SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1264   // Save the BB nodes on the path from the first BB node containing
1265   // non-redundant spill to the Root node.
1266   SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1267   // All the spills to be hoisted must originate from a single def instruction
1268   // to the OrigReg. It means the def instruction should dominate all the spills
1269   // to be hoisted. We choose the BB where the def instruction is located as
1270   // the Root.
1271   MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1272   // For every node on the dominator tree with spill, walk up on the dominator
1273   // tree towards the Root node until it is reached. If there is other node
1274   // containing spill in the middle of the path, the previous spill saw will
1275   // be redundant and the node containing it will be removed. All the nodes on
1276   // the path starting from the first node with non-redundant spill to the Root
1277   // node will be added to the WorkSet, which will contain all the possible
1278   // locations where spills may be hoisted to after the loop below is done.
1279   for (const auto Spill : Spills) {
1280     MachineBasicBlock *Block = Spill->getParent();
1281     MachineDomTreeNode *Node = MDT[Block];
1282     MachineInstr *SpillToRm = nullptr;
1283     while (Node != RootIDomNode) {
1284       // If Node dominates Block, and it already contains a spill, the spill in
1285       // Block will be redundant.
1286       if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1287         SpillToRm = SpillBBToSpill[MDT[Block]];
1288         break;
1289         /// If we see the Node already in WorkSet, the path from the Node to
1290         /// the Root node must already be traversed by another spill.
1291         /// Then no need to repeat.
1292       } else if (WorkSet.count(Node)) {
1293         break;
1294       } else {
1295         NodesOnPath.insert(Node);
1296       }
1297       Node = Node->getIDom();
1298     }
1299     if (SpillToRm) {
1300       SpillsToRm.push_back(SpillToRm);
1301     } else {
1302       // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1303       // set the initial status before hoisting start. The value of BBs
1304       // containing original spills is set to 0, in order to descriminate
1305       // with BBs containing hoisted spills which will be inserted to
1306       // SpillsToKeep later during hoisting.
1307       SpillsToKeep[MDT[Block]] = 0;
1308       WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1309     }
1310     NodesOnPath.clear();
1311   }
1312 
1313   // Sort the nodes in WorkSet in top-down order and save the nodes
1314   // in Orders. Orders will be used for hoisting in runHoistSpills.
1315   unsigned idx = 0;
1316   Orders.push_back(MDT.getBase().getNode(Root));
1317   do {
1318     MachineDomTreeNode *Node = Orders[idx++];
1319     for (MachineDomTreeNode *Child : Node->children()) {
1320       if (WorkSet.count(Child))
1321         Orders.push_back(Child);
1322     }
1323   } while (idx != Orders.size());
1324   assert(Orders.size() == WorkSet.size() &&
1325          "Orders have different size with WorkSet");
1326 
1327 #ifndef NDEBUG
1328   LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1329   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1330   for (; RIt != Orders.rend(); RIt++)
1331     LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1332   LLVM_DEBUG(dbgs() << "\n");
1333 #endif
1334 }
1335 
1336 /// Try to hoist spills according to BB hotness. The spills to removed will
1337 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1338 /// \p SpillsToIns.
runHoistSpills(LiveInterval & OrigLI,VNInfo & OrigVNI,SmallPtrSet<MachineInstr *,16> & Spills,SmallVectorImpl<MachineInstr * > & SpillsToRm,DenseMap<MachineBasicBlock *,unsigned> & SpillsToIns)1339 void HoistSpillHelper::runHoistSpills(
1340     LiveInterval &OrigLI, VNInfo &OrigVNI,
1341     SmallPtrSet<MachineInstr *, 16> &Spills,
1342     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1343     DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1344   // Visit order of dominator tree nodes.
1345   SmallVector<MachineDomTreeNode *, 32> Orders;
1346   // SpillsToKeep contains all the nodes where spills are to be inserted
1347   // during hoisting. If the spill to be inserted is an original spill
1348   // (not a hoisted one), the value of the map entry is 0. If the spill
1349   // is a hoisted spill, the value of the map entry is the VReg to be used
1350   // as the source of the spill.
1351   DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1352   // Map from BB to the first spill inside of it.
1353   DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1354 
1355   rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1356 
1357   MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1358   getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1359                  SpillBBToSpill);
1360 
1361   // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1362   // nodes set and the cost of all the spills inside those nodes.
1363   // The nodes set are the locations where spills are to be inserted
1364   // in the subtree of current node.
1365   using NodesCostPair =
1366       std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1367   DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1368 
1369   // Iterate Orders set in reverse order, which will be a bottom-up order
1370   // in the dominator tree. Once we visit a dom tree node, we know its
1371   // children have already been visited and the spill locations in the
1372   // subtrees of all the children have been determined.
1373   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1374   for (; RIt != Orders.rend(); RIt++) {
1375     MachineBasicBlock *Block = (*RIt)->getBlock();
1376 
1377     // If Block contains an original spill, simply continue.
1378     if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1379       SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1380       // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1381       SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1382       continue;
1383     }
1384 
1385     // Collect spills in subtree of current node (*RIt) to
1386     // SpillsInSubTreeMap[*RIt].first.
1387     for (MachineDomTreeNode *Child : (*RIt)->children()) {
1388       if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1389         continue;
1390       // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1391       // should be placed before getting the begin and end iterators of
1392       // SpillsInSubTreeMap[Child].first, or else the iterators may be
1393       // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1394       // and the map grows and then the original buckets in the map are moved.
1395       SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1396           SpillsInSubTreeMap[*RIt].first;
1397       BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1398       SubTreeCost += SpillsInSubTreeMap[Child].second;
1399       auto BI = SpillsInSubTreeMap[Child].first.begin();
1400       auto EI = SpillsInSubTreeMap[Child].first.end();
1401       SpillsInSubTree.insert(BI, EI);
1402       SpillsInSubTreeMap.erase(Child);
1403     }
1404 
1405     SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1406           SpillsInSubTreeMap[*RIt].first;
1407     BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1408     // No spills in subtree, simply continue.
1409     if (SpillsInSubTree.empty())
1410       continue;
1411 
1412     // Check whether Block is a possible candidate to insert spill.
1413     Register LiveReg;
1414     if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1415       continue;
1416 
1417     // If there are multiple spills that could be merged, bias a little
1418     // to hoist the spill.
1419     BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1420                                        ? BranchProbability(9, 10)
1421                                        : BranchProbability(1, 1);
1422     if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1423       // Hoist: Move spills to current Block.
1424       for (const auto SpillBB : SpillsInSubTree) {
1425         // When SpillBB is a BB contains original spill, insert the spill
1426         // to SpillsToRm.
1427         if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1428             !SpillsToKeep[SpillBB]) {
1429           MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1430           SpillsToRm.push_back(SpillToRm);
1431         }
1432         // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1433         SpillsToKeep.erase(SpillBB);
1434       }
1435       // Current Block is the BB containing the new hoisted spill. Add it to
1436       // SpillsToKeep. LiveReg is the source of the new spill.
1437       SpillsToKeep[*RIt] = LiveReg;
1438       LLVM_DEBUG({
1439         dbgs() << "spills in BB: ";
1440         for (const auto Rspill : SpillsInSubTree)
1441           dbgs() << Rspill->getBlock()->getNumber() << " ";
1442         dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1443                << "\n";
1444       });
1445       SpillsInSubTree.clear();
1446       SpillsInSubTree.insert(*RIt);
1447       SubTreeCost = MBFI.getBlockFreq(Block);
1448     }
1449   }
1450   // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1451   // save them to SpillsToIns.
1452   for (const auto &Ent : SpillsToKeep) {
1453     if (Ent.second)
1454       SpillsToIns[Ent.first->getBlock()] = Ent.second;
1455   }
1456 }
1457 
1458 /// For spills with equal values, remove redundant spills and hoist those left
1459 /// to less hot spots.
1460 ///
1461 /// Spills with equal values will be collected into the same set in
1462 /// MergeableSpills when spill is inserted. These equal spills are originated
1463 /// from the same defining instruction and are dominated by the instruction.
1464 /// Before hoisting all the equal spills, redundant spills inside in the same
1465 /// BB are first marked to be deleted. Then starting from the spills left, walk
1466 /// up on the dominator tree towards the Root node where the define instruction
1467 /// is located, mark the dominated spills to be deleted along the way and
1468 /// collect the BB nodes on the path from non-dominated spills to the define
1469 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1470 /// where we are considering to hoist the spills. We iterate the WorkSet in
1471 /// bottom-up order, and for each node, we will decide whether to hoist spills
1472 /// inside its subtree to that node. In this way, we can get benefit locally
1473 /// even if hoisting all the equal spills to one cold place is impossible.
hoistAllSpills()1474 void HoistSpillHelper::hoistAllSpills() {
1475   SmallVector<Register, 4> NewVRegs;
1476   LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1477 
1478   for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1479     Register Reg = Register::index2VirtReg(i);
1480     Register Original = VRM.getPreSplitReg(Reg);
1481     if (!MRI.def_empty(Reg))
1482       Virt2SiblingsMap[Original].insert(Reg);
1483   }
1484 
1485   // Each entry in MergeableSpills contains a spill set with equal values.
1486   for (auto &Ent : MergeableSpills) {
1487     int Slot = Ent.first.first;
1488     LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1489     VNInfo *OrigVNI = Ent.first.second;
1490     SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1491     if (Ent.second.empty())
1492       continue;
1493 
1494     LLVM_DEBUG({
1495       dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1496              << "Equal spills in BB: ";
1497       for (const auto spill : EqValSpills)
1498         dbgs() << spill->getParent()->getNumber() << " ";
1499       dbgs() << "\n";
1500     });
1501 
1502     // SpillsToRm is the spill set to be removed from EqValSpills.
1503     SmallVector<MachineInstr *, 16> SpillsToRm;
1504     // SpillsToIns is the spill set to be newly inserted after hoisting.
1505     DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1506 
1507     runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1508 
1509     LLVM_DEBUG({
1510       dbgs() << "Finally inserted spills in BB: ";
1511       for (const auto &Ispill : SpillsToIns)
1512         dbgs() << Ispill.first->getNumber() << " ";
1513       dbgs() << "\nFinally removed spills in BB: ";
1514       for (const auto Rspill : SpillsToRm)
1515         dbgs() << Rspill->getParent()->getNumber() << " ";
1516       dbgs() << "\n";
1517     });
1518 
1519     // Stack live range update.
1520     LiveInterval &StackIntvl = LSS.getInterval(Slot);
1521     if (!SpillsToIns.empty() || !SpillsToRm.empty())
1522       StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1523                                      StackIntvl.getValNumInfo(0));
1524 
1525     // Insert hoisted spills.
1526     for (auto const &Insert : SpillsToIns) {
1527       MachineBasicBlock *BB = Insert.first;
1528       Register LiveReg = Insert.second;
1529       MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB);
1530       TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot,
1531                               MRI.getRegClass(LiveReg), &TRI);
1532       LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI);
1533       ++NumSpills;
1534     }
1535 
1536     // Remove redundant spills or change them to dead instructions.
1537     NumSpills -= SpillsToRm.size();
1538     for (auto const RMEnt : SpillsToRm) {
1539       RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1540       for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1541         MachineOperand &MO = RMEnt->getOperand(i - 1);
1542         if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1543           RMEnt->RemoveOperand(i - 1);
1544       }
1545     }
1546     Edit.eliminateDeadDefs(SpillsToRm, None, AA);
1547   }
1548 }
1549 
1550 /// For VirtReg clone, the \p New register should have the same physreg or
1551 /// stackslot as the \p old register.
LRE_DidCloneVirtReg(unsigned New,unsigned Old)1552 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
1553   if (VRM.hasPhys(Old))
1554     VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1555   else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1556     VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1557   else
1558     llvm_unreachable("VReg should be assigned either physreg or stackslot");
1559 }
1560