1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/FormattedStream.h"
65 #include "llvm/Support/LowLevelTypeImpl.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetIntrinsicInfo.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <cstring>
75 #include <iterator>
76 #include <utility>
77 
78 using namespace llvm;
79 
getMFIfAvailable(const MachineInstr & MI)80 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
81   if (const MachineBasicBlock *MBB = MI.getParent())
82     if (const MachineFunction *MF = MBB->getParent())
83       return MF;
84   return nullptr;
85 }
86 
87 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
88 // it.
tryToGetTargetInfo(const MachineInstr & MI,const TargetRegisterInfo * & TRI,const MachineRegisterInfo * & MRI,const TargetIntrinsicInfo * & IntrinsicInfo,const TargetInstrInfo * & TII)89 static void tryToGetTargetInfo(const MachineInstr &MI,
90                                const TargetRegisterInfo *&TRI,
91                                const MachineRegisterInfo *&MRI,
92                                const TargetIntrinsicInfo *&IntrinsicInfo,
93                                const TargetInstrInfo *&TII) {
94 
95   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
96     TRI = MF->getSubtarget().getRegisterInfo();
97     MRI = &MF->getRegInfo();
98     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
99     TII = MF->getSubtarget().getInstrInfo();
100   }
101 }
102 
addImplicitDefUseOperands(MachineFunction & MF)103 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
104   if (MCID->ImplicitDefs)
105     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
106            ++ImpDefs)
107       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
108   if (MCID->ImplicitUses)
109     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
110            ++ImpUses)
111       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
112 }
113 
114 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
115 /// implicit operands. It reserves space for the number of operands specified by
116 /// the MCInstrDesc.
MachineInstr(MachineFunction & MF,const MCInstrDesc & tid,DebugLoc dl,bool NoImp)117 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
118                            DebugLoc dl, bool NoImp)
119     : MCID(&tid), debugLoc(std::move(dl)) {
120   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
121 
122   // Reserve space for the expected number of operands.
123   if (unsigned NumOps = MCID->getNumOperands() +
124     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
125     CapOperands = OperandCapacity::get(NumOps);
126     Operands = MF.allocateOperandArray(CapOperands);
127   }
128 
129   if (!NoImp)
130     addImplicitDefUseOperands(MF);
131 }
132 
133 /// MachineInstr ctor - Copies MachineInstr arg exactly
134 ///
MachineInstr(MachineFunction & MF,const MachineInstr & MI)135 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
136     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
137   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
138 
139   CapOperands = OperandCapacity::get(MI.getNumOperands());
140   Operands = MF.allocateOperandArray(CapOperands);
141 
142   // Copy operands.
143   for (const MachineOperand &MO : MI.operands())
144     addOperand(MF, MO);
145 
146   // Copy all the sensible flags.
147   setFlags(MI.Flags);
148 }
149 
150 /// getRegInfo - If this instruction is embedded into a MachineFunction,
151 /// return the MachineRegisterInfo object for the current function, otherwise
152 /// return null.
getRegInfo()153 MachineRegisterInfo *MachineInstr::getRegInfo() {
154   if (MachineBasicBlock *MBB = getParent())
155     return &MBB->getParent()->getRegInfo();
156   return nullptr;
157 }
158 
159 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
160 /// this instruction from their respective use lists.  This requires that the
161 /// operands already be on their use lists.
RemoveRegOperandsFromUseLists(MachineRegisterInfo & MRI)162 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
163   for (MachineOperand &MO : operands())
164     if (MO.isReg())
165       MRI.removeRegOperandFromUseList(&MO);
166 }
167 
168 /// AddRegOperandsToUseLists - Add all of the register operands in
169 /// this instruction from their respective use lists.  This requires that the
170 /// operands not be on their use lists yet.
AddRegOperandsToUseLists(MachineRegisterInfo & MRI)171 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
172   for (MachineOperand &MO : operands())
173     if (MO.isReg())
174       MRI.addRegOperandToUseList(&MO);
175 }
176 
addOperand(const MachineOperand & Op)177 void MachineInstr::addOperand(const MachineOperand &Op) {
178   MachineBasicBlock *MBB = getParent();
179   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
180   MachineFunction *MF = MBB->getParent();
181   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
182   addOperand(*MF, Op);
183 }
184 
185 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
186 /// ranges. If MRI is non-null also update use-def chains.
moveOperands(MachineOperand * Dst,MachineOperand * Src,unsigned NumOps,MachineRegisterInfo * MRI)187 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
188                          unsigned NumOps, MachineRegisterInfo *MRI) {
189   if (MRI)
190     return MRI->moveOperands(Dst, Src, NumOps);
191   // MachineOperand is a trivially copyable type so we can just use memmove.
192   assert(Dst && Src && "Unknown operands");
193   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
194 }
195 
196 /// addOperand - Add the specified operand to the instruction.  If it is an
197 /// implicit operand, it is added to the end of the operand list.  If it is
198 /// an explicit operand it is added at the end of the explicit operand list
199 /// (before the first implicit operand).
addOperand(MachineFunction & MF,const MachineOperand & Op)200 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
201   assert(MCID && "Cannot add operands before providing an instr descriptor");
202 
203   // Check if we're adding one of our existing operands.
204   if (&Op >= Operands && &Op < Operands + NumOperands) {
205     // This is unusual: MI->addOperand(MI->getOperand(i)).
206     // If adding Op requires reallocating or moving existing operands around,
207     // the Op reference could go stale. Support it by copying Op.
208     MachineOperand CopyOp(Op);
209     return addOperand(MF, CopyOp);
210   }
211 
212   // Find the insert location for the new operand.  Implicit registers go at
213   // the end, everything else goes before the implicit regs.
214   //
215   // FIXME: Allow mixed explicit and implicit operands on inline asm.
216   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
217   // implicit-defs, but they must not be moved around.  See the FIXME in
218   // InstrEmitter.cpp.
219   unsigned OpNo = getNumOperands();
220   bool isImpReg = Op.isReg() && Op.isImplicit();
221   if (!isImpReg && !isInlineAsm()) {
222     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
223       --OpNo;
224       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
225     }
226   }
227 
228 #ifndef NDEBUG
229   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
230                    Op.getType() == MachineOperand::MO_MCSymbol;
231   // OpNo now points as the desired insertion point.  Unless this is a variadic
232   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
233   // RegMask operands go between the explicit and implicit operands.
234   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
235           OpNo < MCID->getNumOperands() || isDebugOp) &&
236          "Trying to add an operand to a machine instr that is already done!");
237 #endif
238 
239   MachineRegisterInfo *MRI = getRegInfo();
240 
241   // Determine if the Operands array needs to be reallocated.
242   // Save the old capacity and operand array.
243   OperandCapacity OldCap = CapOperands;
244   MachineOperand *OldOperands = Operands;
245   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
246     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
247     Operands = MF.allocateOperandArray(CapOperands);
248     // Move the operands before the insertion point.
249     if (OpNo)
250       moveOperands(Operands, OldOperands, OpNo, MRI);
251   }
252 
253   // Move the operands following the insertion point.
254   if (OpNo != NumOperands)
255     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
256                  MRI);
257   ++NumOperands;
258 
259   // Deallocate the old operand array.
260   if (OldOperands != Operands && OldOperands)
261     MF.deallocateOperandArray(OldCap, OldOperands);
262 
263   // Copy Op into place. It still needs to be inserted into the MRI use lists.
264   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
265   NewMO->ParentMI = this;
266 
267   // When adding a register operand, tell MRI about it.
268   if (NewMO->isReg()) {
269     // Ensure isOnRegUseList() returns false, regardless of Op's status.
270     NewMO->Contents.Reg.Prev = nullptr;
271     // Ignore existing ties. This is not a property that can be copied.
272     NewMO->TiedTo = 0;
273     // Add the new operand to MRI, but only for instructions in an MBB.
274     if (MRI)
275       MRI->addRegOperandToUseList(NewMO);
276     // The MCID operand information isn't accurate until we start adding
277     // explicit operands. The implicit operands are added first, then the
278     // explicits are inserted before them.
279     if (!isImpReg) {
280       // Tie uses to defs as indicated in MCInstrDesc.
281       if (NewMO->isUse()) {
282         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
283         if (DefIdx != -1)
284           tieOperands(DefIdx, OpNo);
285       }
286       // If the register operand is flagged as early, mark the operand as such.
287       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
288         NewMO->setIsEarlyClobber(true);
289     }
290   }
291 }
292 
293 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
294 /// fewer operand than it started with.
295 ///
RemoveOperand(unsigned OpNo)296 void MachineInstr::RemoveOperand(unsigned OpNo) {
297   assert(OpNo < getNumOperands() && "Invalid operand number");
298   untieRegOperand(OpNo);
299 
300 #ifndef NDEBUG
301   // Moving tied operands would break the ties.
302   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
303     if (Operands[i].isReg())
304       assert(!Operands[i].isTied() && "Cannot move tied operands");
305 #endif
306 
307   MachineRegisterInfo *MRI = getRegInfo();
308   if (MRI && Operands[OpNo].isReg())
309     MRI->removeRegOperandFromUseList(Operands + OpNo);
310 
311   // Don't call the MachineOperand destructor. A lot of this code depends on
312   // MachineOperand having a trivial destructor anyway, and adding a call here
313   // wouldn't make it 'destructor-correct'.
314 
315   if (unsigned N = NumOperands - 1 - OpNo)
316     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
317   --NumOperands;
318 }
319 
setExtraInfo(MachineFunction & MF,ArrayRef<MachineMemOperand * > MMOs,MCSymbol * PreInstrSymbol,MCSymbol * PostInstrSymbol,MDNode * HeapAllocMarker)320 void MachineInstr::setExtraInfo(MachineFunction &MF,
321                                 ArrayRef<MachineMemOperand *> MMOs,
322                                 MCSymbol *PreInstrSymbol,
323                                 MCSymbol *PostInstrSymbol,
324                                 MDNode *HeapAllocMarker) {
325   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
326   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
327   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
328   int NumPointers =
329       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
330 
331   // Drop all extra info if there is none.
332   if (NumPointers <= 0) {
333     Info.clear();
334     return;
335   }
336 
337   // If more than one pointer, then store out of line. Store heap alloc markers
338   // out of line because PointerSumType cannot hold more than 4 tag types with
339   // 32-bit pointers.
340   // FIXME: Maybe we should make the symbols in the extra info mutable?
341   else if (NumPointers > 1 || HasHeapAllocMarker) {
342     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
343         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
344     return;
345   }
346 
347   // Otherwise store the single pointer inline.
348   if (HasPreInstrSymbol)
349     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
350   else if (HasPostInstrSymbol)
351     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
352   else
353     Info.set<EIIK_MMO>(MMOs[0]);
354 }
355 
dropMemRefs(MachineFunction & MF)356 void MachineInstr::dropMemRefs(MachineFunction &MF) {
357   if (memoperands_empty())
358     return;
359 
360   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
361                getHeapAllocMarker());
362 }
363 
setMemRefs(MachineFunction & MF,ArrayRef<MachineMemOperand * > MMOs)364 void MachineInstr::setMemRefs(MachineFunction &MF,
365                               ArrayRef<MachineMemOperand *> MMOs) {
366   if (MMOs.empty()) {
367     dropMemRefs(MF);
368     return;
369   }
370 
371   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
372                getHeapAllocMarker());
373 }
374 
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)375 void MachineInstr::addMemOperand(MachineFunction &MF,
376                                  MachineMemOperand *MO) {
377   SmallVector<MachineMemOperand *, 2> MMOs;
378   MMOs.append(memoperands_begin(), memoperands_end());
379   MMOs.push_back(MO);
380   setMemRefs(MF, MMOs);
381 }
382 
cloneMemRefs(MachineFunction & MF,const MachineInstr & MI)383 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
384   if (this == &MI)
385     // Nothing to do for a self-clone!
386     return;
387 
388   assert(&MF == MI.getMF() &&
389          "Invalid machine functions when cloning memory refrences!");
390   // See if we can just steal the extra info already allocated for the
391   // instruction. We can do this whenever the pre- and post-instruction symbols
392   // are the same (including null).
393   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
394       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
395       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
396     Info = MI.Info;
397     return;
398   }
399 
400   // Otherwise, fall back on a copy-based clone.
401   setMemRefs(MF, MI.memoperands());
402 }
403 
404 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
405 /// identical.
hasIdenticalMMOs(ArrayRef<MachineMemOperand * > LHS,ArrayRef<MachineMemOperand * > RHS)406 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
407                              ArrayRef<MachineMemOperand *> RHS) {
408   if (LHS.size() != RHS.size())
409     return false;
410 
411   auto LHSPointees = make_pointee_range(LHS);
412   auto RHSPointees = make_pointee_range(RHS);
413   return std::equal(LHSPointees.begin(), LHSPointees.end(),
414                     RHSPointees.begin());
415 }
416 
cloneMergedMemRefs(MachineFunction & MF,ArrayRef<const MachineInstr * > MIs)417 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
418                                       ArrayRef<const MachineInstr *> MIs) {
419   // Try handling easy numbers of MIs with simpler mechanisms.
420   if (MIs.empty()) {
421     dropMemRefs(MF);
422     return;
423   }
424   if (MIs.size() == 1) {
425     cloneMemRefs(MF, *MIs[0]);
426     return;
427   }
428   // Because an empty memoperands list provides *no* information and must be
429   // handled conservatively (assuming the instruction can do anything), the only
430   // way to merge with it is to drop all other memoperands.
431   if (MIs[0]->memoperands_empty()) {
432     dropMemRefs(MF);
433     return;
434   }
435 
436   // Handle the general case.
437   SmallVector<MachineMemOperand *, 2> MergedMMOs;
438   // Start with the first instruction.
439   assert(&MF == MIs[0]->getMF() &&
440          "Invalid machine functions when cloning memory references!");
441   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
442   // Now walk all the other instructions and accumulate any different MMOs.
443   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
444     assert(&MF == MI.getMF() &&
445            "Invalid machine functions when cloning memory references!");
446 
447     // Skip MIs with identical operands to the first. This is a somewhat
448     // arbitrary hack but will catch common cases without being quadratic.
449     // TODO: We could fully implement merge semantics here if needed.
450     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
451       continue;
452 
453     // Because an empty memoperands list provides *no* information and must be
454     // handled conservatively (assuming the instruction can do anything), the
455     // only way to merge with it is to drop all other memoperands.
456     if (MI.memoperands_empty()) {
457       dropMemRefs(MF);
458       return;
459     }
460 
461     // Otherwise accumulate these into our temporary buffer of the merged state.
462     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
463   }
464 
465   setMemRefs(MF, MergedMMOs);
466 }
467 
setPreInstrSymbol(MachineFunction & MF,MCSymbol * Symbol)468 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
469   // Do nothing if old and new symbols are the same.
470   if (Symbol == getPreInstrSymbol())
471     return;
472 
473   // If there was only one symbol and we're removing it, just clear info.
474   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
475     Info.clear();
476     return;
477   }
478 
479   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
480                getHeapAllocMarker());
481 }
482 
setPostInstrSymbol(MachineFunction & MF,MCSymbol * Symbol)483 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
484   // Do nothing if old and new symbols are the same.
485   if (Symbol == getPostInstrSymbol())
486     return;
487 
488   // If there was only one symbol and we're removing it, just clear info.
489   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
490     Info.clear();
491     return;
492   }
493 
494   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
495                getHeapAllocMarker());
496 }
497 
setHeapAllocMarker(MachineFunction & MF,MDNode * Marker)498 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
499   // Do nothing if old and new symbols are the same.
500   if (Marker == getHeapAllocMarker())
501     return;
502 
503   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
504                Marker);
505 }
506 
cloneInstrSymbols(MachineFunction & MF,const MachineInstr & MI)507 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
508                                      const MachineInstr &MI) {
509   if (this == &MI)
510     // Nothing to do for a self-clone!
511     return;
512 
513   assert(&MF == MI.getMF() &&
514          "Invalid machine functions when cloning instruction symbols!");
515 
516   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
517   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
518   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
519 }
520 
mergeFlagsWith(const MachineInstr & Other) const521 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
522   // For now, the just return the union of the flags. If the flags get more
523   // complicated over time, we might need more logic here.
524   return getFlags() | Other.getFlags();
525 }
526 
copyFlagsFromInstruction(const Instruction & I)527 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
528   uint16_t MIFlags = 0;
529   // Copy the wrapping flags.
530   if (const OverflowingBinaryOperator *OB =
531           dyn_cast<OverflowingBinaryOperator>(&I)) {
532     if (OB->hasNoSignedWrap())
533       MIFlags |= MachineInstr::MIFlag::NoSWrap;
534     if (OB->hasNoUnsignedWrap())
535       MIFlags |= MachineInstr::MIFlag::NoUWrap;
536   }
537 
538   // Copy the exact flag.
539   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
540     if (PE->isExact())
541       MIFlags |= MachineInstr::MIFlag::IsExact;
542 
543   // Copy the fast-math flags.
544   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
545     const FastMathFlags Flags = FP->getFastMathFlags();
546     if (Flags.noNaNs())
547       MIFlags |= MachineInstr::MIFlag::FmNoNans;
548     if (Flags.noInfs())
549       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
550     if (Flags.noSignedZeros())
551       MIFlags |= MachineInstr::MIFlag::FmNsz;
552     if (Flags.allowReciprocal())
553       MIFlags |= MachineInstr::MIFlag::FmArcp;
554     if (Flags.allowContract())
555       MIFlags |= MachineInstr::MIFlag::FmContract;
556     if (Flags.approxFunc())
557       MIFlags |= MachineInstr::MIFlag::FmAfn;
558     if (Flags.allowReassoc())
559       MIFlags |= MachineInstr::MIFlag::FmReassoc;
560   }
561 
562   return MIFlags;
563 }
564 
copyIRFlags(const Instruction & I)565 void MachineInstr::copyIRFlags(const Instruction &I) {
566   Flags = copyFlagsFromInstruction(I);
567 }
568 
hasPropertyInBundle(uint64_t Mask,QueryType Type) const569 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
570   assert(!isBundledWithPred() && "Must be called on bundle header");
571   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
572     if (MII->getDesc().getFlags() & Mask) {
573       if (Type == AnyInBundle)
574         return true;
575     } else {
576       if (Type == AllInBundle && !MII->isBundle())
577         return false;
578     }
579     // This was the last instruction in the bundle.
580     if (!MII->isBundledWithSucc())
581       return Type == AllInBundle;
582   }
583 }
584 
isIdenticalTo(const MachineInstr & Other,MICheckType Check) const585 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
586                                  MICheckType Check) const {
587   // If opcodes or number of operands are not the same then the two
588   // instructions are obviously not identical.
589   if (Other.getOpcode() != getOpcode() ||
590       Other.getNumOperands() != getNumOperands())
591     return false;
592 
593   if (isBundle()) {
594     // We have passed the test above that both instructions have the same
595     // opcode, so we know that both instructions are bundles here. Let's compare
596     // MIs inside the bundle.
597     assert(Other.isBundle() && "Expected that both instructions are bundles.");
598     MachineBasicBlock::const_instr_iterator I1 = getIterator();
599     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
600     // Loop until we analysed the last intruction inside at least one of the
601     // bundles.
602     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
603       ++I1;
604       ++I2;
605       if (!I1->isIdenticalTo(*I2, Check))
606         return false;
607     }
608     // If we've reached the end of just one of the two bundles, but not both,
609     // the instructions are not identical.
610     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
611       return false;
612   }
613 
614   // Check operands to make sure they match.
615   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
616     const MachineOperand &MO = getOperand(i);
617     const MachineOperand &OMO = Other.getOperand(i);
618     if (!MO.isReg()) {
619       if (!MO.isIdenticalTo(OMO))
620         return false;
621       continue;
622     }
623 
624     // Clients may or may not want to ignore defs when testing for equality.
625     // For example, machine CSE pass only cares about finding common
626     // subexpressions, so it's safe to ignore virtual register defs.
627     if (MO.isDef()) {
628       if (Check == IgnoreDefs)
629         continue;
630       else if (Check == IgnoreVRegDefs) {
631         if (!Register::isVirtualRegister(MO.getReg()) ||
632             !Register::isVirtualRegister(OMO.getReg()))
633           if (!MO.isIdenticalTo(OMO))
634             return false;
635       } else {
636         if (!MO.isIdenticalTo(OMO))
637           return false;
638         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
639           return false;
640       }
641     } else {
642       if (!MO.isIdenticalTo(OMO))
643         return false;
644       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
645         return false;
646     }
647   }
648   // If DebugLoc does not match then two debug instructions are not identical.
649   if (isDebugInstr())
650     if (getDebugLoc() && Other.getDebugLoc() &&
651         getDebugLoc() != Other.getDebugLoc())
652       return false;
653   return true;
654 }
655 
getMF() const656 const MachineFunction *MachineInstr::getMF() const {
657   return getParent()->getParent();
658 }
659 
removeFromParent()660 MachineInstr *MachineInstr::removeFromParent() {
661   assert(getParent() && "Not embedded in a basic block!");
662   return getParent()->remove(this);
663 }
664 
removeFromBundle()665 MachineInstr *MachineInstr::removeFromBundle() {
666   assert(getParent() && "Not embedded in a basic block!");
667   return getParent()->remove_instr(this);
668 }
669 
eraseFromParent()670 void MachineInstr::eraseFromParent() {
671   assert(getParent() && "Not embedded in a basic block!");
672   getParent()->erase(this);
673 }
674 
eraseFromParentAndMarkDBGValuesForRemoval()675 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
676   assert(getParent() && "Not embedded in a basic block!");
677   MachineBasicBlock *MBB = getParent();
678   MachineFunction *MF = MBB->getParent();
679   assert(MF && "Not embedded in a function!");
680 
681   MachineInstr *MI = (MachineInstr *)this;
682   MachineRegisterInfo &MRI = MF->getRegInfo();
683 
684   for (const MachineOperand &MO : MI->operands()) {
685     if (!MO.isReg() || !MO.isDef())
686       continue;
687     Register Reg = MO.getReg();
688     if (!Reg.isVirtual())
689       continue;
690     MRI.markUsesInDebugValueAsUndef(Reg);
691   }
692   MI->eraseFromParent();
693 }
694 
eraseFromBundle()695 void MachineInstr::eraseFromBundle() {
696   assert(getParent() && "Not embedded in a basic block!");
697   getParent()->erase_instr(this);
698 }
699 
isCandidateForCallSiteEntry(QueryType Type) const700 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
701   if (!isCall(Type))
702     return false;
703   switch (getOpcode()) {
704   case TargetOpcode::PATCHABLE_EVENT_CALL:
705   case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
706   case TargetOpcode::PATCHPOINT:
707   case TargetOpcode::STACKMAP:
708   case TargetOpcode::STATEPOINT:
709     return false;
710   }
711   return true;
712 }
713 
shouldUpdateCallSiteInfo() const714 bool MachineInstr::shouldUpdateCallSiteInfo() const {
715   if (isBundle())
716     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
717   return isCandidateForCallSiteEntry();
718 }
719 
getNumExplicitOperands() const720 unsigned MachineInstr::getNumExplicitOperands() const {
721   unsigned NumOperands = MCID->getNumOperands();
722   if (!MCID->isVariadic())
723     return NumOperands;
724 
725   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
726     const MachineOperand &MO = getOperand(I);
727     // The operands must always be in the following order:
728     // - explicit reg defs,
729     // - other explicit operands (reg uses, immediates, etc.),
730     // - implicit reg defs
731     // - implicit reg uses
732     if (MO.isReg() && MO.isImplicit())
733       break;
734     ++NumOperands;
735   }
736   return NumOperands;
737 }
738 
getNumExplicitDefs() const739 unsigned MachineInstr::getNumExplicitDefs() const {
740   unsigned NumDefs = MCID->getNumDefs();
741   if (!MCID->isVariadic())
742     return NumDefs;
743 
744   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
745     const MachineOperand &MO = getOperand(I);
746     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
747       break;
748     ++NumDefs;
749   }
750   return NumDefs;
751 }
752 
bundleWithPred()753 void MachineInstr::bundleWithPred() {
754   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
755   setFlag(BundledPred);
756   MachineBasicBlock::instr_iterator Pred = getIterator();
757   --Pred;
758   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
759   Pred->setFlag(BundledSucc);
760 }
761 
bundleWithSucc()762 void MachineInstr::bundleWithSucc() {
763   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
764   setFlag(BundledSucc);
765   MachineBasicBlock::instr_iterator Succ = getIterator();
766   ++Succ;
767   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
768   Succ->setFlag(BundledPred);
769 }
770 
unbundleFromPred()771 void MachineInstr::unbundleFromPred() {
772   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
773   clearFlag(BundledPred);
774   MachineBasicBlock::instr_iterator Pred = getIterator();
775   --Pred;
776   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
777   Pred->clearFlag(BundledSucc);
778 }
779 
unbundleFromSucc()780 void MachineInstr::unbundleFromSucc() {
781   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
782   clearFlag(BundledSucc);
783   MachineBasicBlock::instr_iterator Succ = getIterator();
784   ++Succ;
785   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
786   Succ->clearFlag(BundledPred);
787 }
788 
isStackAligningInlineAsm() const789 bool MachineInstr::isStackAligningInlineAsm() const {
790   if (isInlineAsm()) {
791     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
792     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
793       return true;
794   }
795   return false;
796 }
797 
getInlineAsmDialect() const798 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
799   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
800   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
801   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
802 }
803 
findInlineAsmFlagIdx(unsigned OpIdx,unsigned * GroupNo) const804 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
805                                        unsigned *GroupNo) const {
806   assert(isInlineAsm() && "Expected an inline asm instruction");
807   assert(OpIdx < getNumOperands() && "OpIdx out of range");
808 
809   // Ignore queries about the initial operands.
810   if (OpIdx < InlineAsm::MIOp_FirstOperand)
811     return -1;
812 
813   unsigned Group = 0;
814   unsigned NumOps;
815   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
816        i += NumOps) {
817     const MachineOperand &FlagMO = getOperand(i);
818     // If we reach the implicit register operands, stop looking.
819     if (!FlagMO.isImm())
820       return -1;
821     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
822     if (i + NumOps > OpIdx) {
823       if (GroupNo)
824         *GroupNo = Group;
825       return i;
826     }
827     ++Group;
828   }
829   return -1;
830 }
831 
getDebugLabel() const832 const DILabel *MachineInstr::getDebugLabel() const {
833   assert(isDebugLabel() && "not a DBG_LABEL");
834   return cast<DILabel>(getOperand(0).getMetadata());
835 }
836 
getDebugVariableOp() const837 const MachineOperand &MachineInstr::getDebugVariableOp() const {
838   assert(isDebugValue() && "not a DBG_VALUE");
839   return getOperand(2);
840 }
841 
getDebugVariableOp()842 MachineOperand &MachineInstr::getDebugVariableOp() {
843   assert(isDebugValue() && "not a DBG_VALUE");
844   return getOperand(2);
845 }
846 
getDebugVariable() const847 const DILocalVariable *MachineInstr::getDebugVariable() const {
848   assert(isDebugValue() && "not a DBG_VALUE");
849   return cast<DILocalVariable>(getOperand(2).getMetadata());
850 }
851 
getDebugExpressionOp()852 MachineOperand &MachineInstr::getDebugExpressionOp() {
853   assert(isDebugValue() && "not a DBG_VALUE");
854   return getOperand(3);
855 }
856 
getDebugExpression() const857 const DIExpression *MachineInstr::getDebugExpression() const {
858   assert(isDebugValue() && "not a DBG_VALUE");
859   return cast<DIExpression>(getOperand(3).getMetadata());
860 }
861 
isDebugEntryValue() const862 bool MachineInstr::isDebugEntryValue() const {
863   return isDebugValue() && getDebugExpression()->isEntryValue();
864 }
865 
866 const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const867 MachineInstr::getRegClassConstraint(unsigned OpIdx,
868                                     const TargetInstrInfo *TII,
869                                     const TargetRegisterInfo *TRI) const {
870   assert(getParent() && "Can't have an MBB reference here!");
871   assert(getMF() && "Can't have an MF reference here!");
872   const MachineFunction &MF = *getMF();
873 
874   // Most opcodes have fixed constraints in their MCInstrDesc.
875   if (!isInlineAsm())
876     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
877 
878   if (!getOperand(OpIdx).isReg())
879     return nullptr;
880 
881   // For tied uses on inline asm, get the constraint from the def.
882   unsigned DefIdx;
883   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
884     OpIdx = DefIdx;
885 
886   // Inline asm stores register class constraints in the flag word.
887   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
888   if (FlagIdx < 0)
889     return nullptr;
890 
891   unsigned Flag = getOperand(FlagIdx).getImm();
892   unsigned RCID;
893   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
894        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
895        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
896       InlineAsm::hasRegClassConstraint(Flag, RCID))
897     return TRI->getRegClass(RCID);
898 
899   // Assume that all registers in a memory operand are pointers.
900   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
901     return TRI->getPointerRegClass(MF);
902 
903   return nullptr;
904 }
905 
getRegClassConstraintEffectForVReg(Register Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,bool ExploreBundle) const906 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
907     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
908     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
909   // Check every operands inside the bundle if we have
910   // been asked to.
911   if (ExploreBundle)
912     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
913          ++OpndIt)
914       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
915           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
916   else
917     // Otherwise, just check the current operands.
918     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
919       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
920   return CurRC;
921 }
922 
getRegClassConstraintEffectForVRegImpl(unsigned OpIdx,Register Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const923 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
924     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
925     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
926   assert(CurRC && "Invalid initial register class");
927   // Check if Reg is constrained by some of its use/def from MI.
928   const MachineOperand &MO = getOperand(OpIdx);
929   if (!MO.isReg() || MO.getReg() != Reg)
930     return CurRC;
931   // If yes, accumulate the constraints through the operand.
932   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
933 }
934 
getRegClassConstraintEffect(unsigned OpIdx,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const935 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
936     unsigned OpIdx, const TargetRegisterClass *CurRC,
937     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
938   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
939   const MachineOperand &MO = getOperand(OpIdx);
940   assert(MO.isReg() &&
941          "Cannot get register constraints for non-register operand");
942   assert(CurRC && "Invalid initial register class");
943   if (unsigned SubIdx = MO.getSubReg()) {
944     if (OpRC)
945       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
946     else
947       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
948   } else if (OpRC)
949     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
950   return CurRC;
951 }
952 
953 /// Return the number of instructions inside the MI bundle, not counting the
954 /// header instruction.
getBundleSize() const955 unsigned MachineInstr::getBundleSize() const {
956   MachineBasicBlock::const_instr_iterator I = getIterator();
957   unsigned Size = 0;
958   while (I->isBundledWithSucc()) {
959     ++Size;
960     ++I;
961   }
962   return Size;
963 }
964 
965 /// Returns true if the MachineInstr has an implicit-use operand of exactly
966 /// the given register (not considering sub/super-registers).
hasRegisterImplicitUseOperand(Register Reg) const967 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
968   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
969     const MachineOperand &MO = getOperand(i);
970     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
971       return true;
972   }
973   return false;
974 }
975 
976 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
977 /// the specific register or -1 if it is not found. It further tightens
978 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(Register Reg,bool isKill,const TargetRegisterInfo * TRI) const979 int MachineInstr::findRegisterUseOperandIdx(
980     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
981   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
982     const MachineOperand &MO = getOperand(i);
983     if (!MO.isReg() || !MO.isUse())
984       continue;
985     Register MOReg = MO.getReg();
986     if (!MOReg)
987       continue;
988     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
989       if (!isKill || MO.isKill())
990         return i;
991   }
992   return -1;
993 }
994 
995 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
996 /// indicating if this instruction reads or writes Reg. This also considers
997 /// partial defines.
998 std::pair<bool,bool>
readsWritesVirtualRegister(Register Reg,SmallVectorImpl<unsigned> * Ops) const999 MachineInstr::readsWritesVirtualRegister(Register Reg,
1000                                          SmallVectorImpl<unsigned> *Ops) const {
1001   bool PartDef = false; // Partial redefine.
1002   bool FullDef = false; // Full define.
1003   bool Use = false;
1004 
1005   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1006     const MachineOperand &MO = getOperand(i);
1007     if (!MO.isReg() || MO.getReg() != Reg)
1008       continue;
1009     if (Ops)
1010       Ops->push_back(i);
1011     if (MO.isUse())
1012       Use |= !MO.isUndef();
1013     else if (MO.getSubReg() && !MO.isUndef())
1014       // A partial def undef doesn't count as reading the register.
1015       PartDef = true;
1016     else
1017       FullDef = true;
1018   }
1019   // A partial redefine uses Reg unless there is also a full define.
1020   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1021 }
1022 
1023 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1024 /// the specified register or -1 if it is not found. If isDead is true, defs
1025 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1026 /// also checks if there is a def of a super-register.
1027 int
findRegisterDefOperandIdx(Register Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const1028 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1029                                         const TargetRegisterInfo *TRI) const {
1030   bool isPhys = Register::isPhysicalRegister(Reg);
1031   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1032     const MachineOperand &MO = getOperand(i);
1033     // Accept regmask operands when Overlap is set.
1034     // Ignore them when looking for a specific def operand (Overlap == false).
1035     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1036       return i;
1037     if (!MO.isReg() || !MO.isDef())
1038       continue;
1039     Register MOReg = MO.getReg();
1040     bool Found = (MOReg == Reg);
1041     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1042       if (Overlap)
1043         Found = TRI->regsOverlap(MOReg, Reg);
1044       else
1045         Found = TRI->isSubRegister(MOReg, Reg);
1046     }
1047     if (Found && (!isDead || MO.isDead()))
1048       return i;
1049   }
1050   return -1;
1051 }
1052 
1053 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1054 /// operand list that is used to represent the predicate. It returns -1 if
1055 /// none is found.
findFirstPredOperandIdx() const1056 int MachineInstr::findFirstPredOperandIdx() const {
1057   // Don't call MCID.findFirstPredOperandIdx() because this variant
1058   // is sometimes called on an instruction that's not yet complete, and
1059   // so the number of operands is less than the MCID indicates. In
1060   // particular, the PTX target does this.
1061   const MCInstrDesc &MCID = getDesc();
1062   if (MCID.isPredicable()) {
1063     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1064       if (MCID.OpInfo[i].isPredicate())
1065         return i;
1066   }
1067 
1068   return -1;
1069 }
1070 
1071 // MachineOperand::TiedTo is 4 bits wide.
1072 const unsigned TiedMax = 15;
1073 
1074 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1075 ///
1076 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1077 /// field. TiedTo can have these values:
1078 ///
1079 /// 0:              Operand is not tied to anything.
1080 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1081 /// TiedMax:        Tied to an operand >= TiedMax-1.
1082 ///
1083 /// The tied def must be one of the first TiedMax operands on a normal
1084 /// instruction. INLINEASM instructions allow more tied defs.
1085 ///
tieOperands(unsigned DefIdx,unsigned UseIdx)1086 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1087   MachineOperand &DefMO = getOperand(DefIdx);
1088   MachineOperand &UseMO = getOperand(UseIdx);
1089   assert(DefMO.isDef() && "DefIdx must be a def operand");
1090   assert(UseMO.isUse() && "UseIdx must be a use operand");
1091   assert(!DefMO.isTied() && "Def is already tied to another use");
1092   assert(!UseMO.isTied() && "Use is already tied to another def");
1093 
1094   if (DefIdx < TiedMax)
1095     UseMO.TiedTo = DefIdx + 1;
1096   else {
1097     // Inline asm can use the group descriptors to find tied operands, but on
1098     // normal instruction, the tied def must be within the first TiedMax
1099     // operands.
1100     assert(isInlineAsm() && "DefIdx out of range");
1101     UseMO.TiedTo = TiedMax;
1102   }
1103 
1104   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1105   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1106 }
1107 
1108 /// Given the index of a tied register operand, find the operand it is tied to.
1109 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1110 /// which must exist.
findTiedOperandIdx(unsigned OpIdx) const1111 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1112   const MachineOperand &MO = getOperand(OpIdx);
1113   assert(MO.isTied() && "Operand isn't tied");
1114 
1115   // Normally TiedTo is in range.
1116   if (MO.TiedTo < TiedMax)
1117     return MO.TiedTo - 1;
1118 
1119   // Uses on normal instructions can be out of range.
1120   if (!isInlineAsm()) {
1121     // Normal tied defs must be in the 0..TiedMax-1 range.
1122     if (MO.isUse())
1123       return TiedMax - 1;
1124     // MO is a def. Search for the tied use.
1125     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1126       const MachineOperand &UseMO = getOperand(i);
1127       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1128         return i;
1129     }
1130     llvm_unreachable("Can't find tied use");
1131   }
1132 
1133   // Now deal with inline asm by parsing the operand group descriptor flags.
1134   // Find the beginning of each operand group.
1135   SmallVector<unsigned, 8> GroupIdx;
1136   unsigned OpIdxGroup = ~0u;
1137   unsigned NumOps;
1138   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1139        i += NumOps) {
1140     const MachineOperand &FlagMO = getOperand(i);
1141     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1142     unsigned CurGroup = GroupIdx.size();
1143     GroupIdx.push_back(i);
1144     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1145     // OpIdx belongs to this operand group.
1146     if (OpIdx > i && OpIdx < i + NumOps)
1147       OpIdxGroup = CurGroup;
1148     unsigned TiedGroup;
1149     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1150       continue;
1151     // Operands in this group are tied to operands in TiedGroup which must be
1152     // earlier. Find the number of operands between the two groups.
1153     unsigned Delta = i - GroupIdx[TiedGroup];
1154 
1155     // OpIdx is a use tied to TiedGroup.
1156     if (OpIdxGroup == CurGroup)
1157       return OpIdx - Delta;
1158 
1159     // OpIdx is a def tied to this use group.
1160     if (OpIdxGroup == TiedGroup)
1161       return OpIdx + Delta;
1162   }
1163   llvm_unreachable("Invalid tied operand on inline asm");
1164 }
1165 
1166 /// clearKillInfo - Clears kill flags on all operands.
1167 ///
clearKillInfo()1168 void MachineInstr::clearKillInfo() {
1169   for (MachineOperand &MO : operands()) {
1170     if (MO.isReg() && MO.isUse())
1171       MO.setIsKill(false);
1172   }
1173 }
1174 
substituteRegister(Register FromReg,Register ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1175 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1176                                       unsigned SubIdx,
1177                                       const TargetRegisterInfo &RegInfo) {
1178   if (Register::isPhysicalRegister(ToReg)) {
1179     if (SubIdx)
1180       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1181     for (MachineOperand &MO : operands()) {
1182       if (!MO.isReg() || MO.getReg() != FromReg)
1183         continue;
1184       MO.substPhysReg(ToReg, RegInfo);
1185     }
1186   } else {
1187     for (MachineOperand &MO : operands()) {
1188       if (!MO.isReg() || MO.getReg() != FromReg)
1189         continue;
1190       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1191     }
1192   }
1193 }
1194 
1195 /// isSafeToMove - Return true if it is safe to move this instruction. If
1196 /// SawStore is set to true, it means that there is a store (or call) between
1197 /// the instruction's location and its intended destination.
isSafeToMove(AAResults * AA,bool & SawStore) const1198 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1199   // Ignore stuff that we obviously can't move.
1200   //
1201   // Treat volatile loads as stores. This is not strictly necessary for
1202   // volatiles, but it is required for atomic loads. It is not allowed to move
1203   // a load across an atomic load with Ordering > Monotonic.
1204   if (mayStore() || isCall() || isPHI() ||
1205       (mayLoad() && hasOrderedMemoryRef())) {
1206     SawStore = true;
1207     return false;
1208   }
1209 
1210   if (isPosition() || isDebugInstr() || isTerminator() ||
1211       mayRaiseFPException() || hasUnmodeledSideEffects())
1212     return false;
1213 
1214   // See if this instruction does a load.  If so, we have to guarantee that the
1215   // loaded value doesn't change between the load and the its intended
1216   // destination. The check for isInvariantLoad gives the targe the chance to
1217   // classify the load as always returning a constant, e.g. a constant pool
1218   // load.
1219   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1220     // Otherwise, this is a real load.  If there is a store between the load and
1221     // end of block, we can't move it.
1222     return !SawStore;
1223 
1224   return true;
1225 }
1226 
mayAlias(AAResults * AA,const MachineInstr & Other,bool UseTBAA) const1227 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1228                             bool UseTBAA) const {
1229   const MachineFunction *MF = getMF();
1230   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1231   const MachineFrameInfo &MFI = MF->getFrameInfo();
1232 
1233   // If neither instruction stores to memory, they can't alias in any
1234   // meaningful way, even if they read from the same address.
1235   if (!mayStore() && !Other.mayStore())
1236     return false;
1237 
1238   // Both instructions must be memory operations to be able to alias.
1239   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1240     return false;
1241 
1242   // Let the target decide if memory accesses cannot possibly overlap.
1243   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1244     return false;
1245 
1246   // FIXME: Need to handle multiple memory operands to support all targets.
1247   if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1248     return true;
1249 
1250   MachineMemOperand *MMOa = *memoperands_begin();
1251   MachineMemOperand *MMOb = *Other.memoperands_begin();
1252 
1253   // The following interface to AA is fashioned after DAGCombiner::isAlias
1254   // and operates with MachineMemOperand offset with some important
1255   // assumptions:
1256   //   - LLVM fundamentally assumes flat address spaces.
1257   //   - MachineOperand offset can *only* result from legalization and
1258   //     cannot affect queries other than the trivial case of overlap
1259   //     checking.
1260   //   - These offsets never wrap and never step outside
1261   //     of allocated objects.
1262   //   - There should never be any negative offsets here.
1263   //
1264   // FIXME: Modify API to hide this math from "user"
1265   // Even before we go to AA we can reason locally about some
1266   // memory objects. It can save compile time, and possibly catch some
1267   // corner cases not currently covered.
1268 
1269   int64_t OffsetA = MMOa->getOffset();
1270   int64_t OffsetB = MMOb->getOffset();
1271   int64_t MinOffset = std::min(OffsetA, OffsetB);
1272 
1273   uint64_t WidthA = MMOa->getSize();
1274   uint64_t WidthB = MMOb->getSize();
1275   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1276   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1277 
1278   const Value *ValA = MMOa->getValue();
1279   const Value *ValB = MMOb->getValue();
1280   bool SameVal = (ValA && ValB && (ValA == ValB));
1281   if (!SameVal) {
1282     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1283     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1284     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1285       return false;
1286     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1287       return false;
1288     if (PSVa && PSVb && (PSVa == PSVb))
1289       SameVal = true;
1290   }
1291 
1292   if (SameVal) {
1293     if (!KnownWidthA || !KnownWidthB)
1294       return true;
1295     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1296     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1297     return (MinOffset + LowWidth > MaxOffset);
1298   }
1299 
1300   if (!AA)
1301     return true;
1302 
1303   if (!ValA || !ValB)
1304     return true;
1305 
1306   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1307   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1308 
1309   int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1310                                  : MemoryLocation::UnknownSize;
1311   int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1312                                  : MemoryLocation::UnknownSize;
1313 
1314   AliasResult AAResult = AA->alias(
1315       MemoryLocation(ValA, OverlapA,
1316                      UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1317       MemoryLocation(ValB, OverlapB,
1318                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1319 
1320   return (AAResult != NoAlias);
1321 }
1322 
1323 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1324 /// or volatile memory reference, or if the information describing the memory
1325 /// reference is not available. Return false if it is known to have no ordered
1326 /// memory references.
hasOrderedMemoryRef() const1327 bool MachineInstr::hasOrderedMemoryRef() const {
1328   // An instruction known never to access memory won't have a volatile access.
1329   if (!mayStore() &&
1330       !mayLoad() &&
1331       !isCall() &&
1332       !hasUnmodeledSideEffects())
1333     return false;
1334 
1335   // Otherwise, if the instruction has no memory reference information,
1336   // conservatively assume it wasn't preserved.
1337   if (memoperands_empty())
1338     return true;
1339 
1340   // Check if any of our memory operands are ordered.
1341   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1342     return !MMO->isUnordered();
1343   });
1344 }
1345 
1346 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1347 /// trap and is loading from a location whose value is invariant across a run of
1348 /// this function.
isDereferenceableInvariantLoad(AAResults * AA) const1349 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1350   // If the instruction doesn't load at all, it isn't an invariant load.
1351   if (!mayLoad())
1352     return false;
1353 
1354   // If the instruction has lost its memoperands, conservatively assume that
1355   // it may not be an invariant load.
1356   if (memoperands_empty())
1357     return false;
1358 
1359   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1360 
1361   for (MachineMemOperand *MMO : memoperands()) {
1362     if (!MMO->isUnordered())
1363       // If the memory operand has ordering side effects, we can't move the
1364       // instruction.  Such an instruction is technically an invariant load,
1365       // but the caller code would need updated to expect that.
1366       return false;
1367     if (MMO->isStore()) return false;
1368     if (MMO->isInvariant() && MMO->isDereferenceable())
1369       continue;
1370 
1371     // A load from a constant PseudoSourceValue is invariant.
1372     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1373       if (PSV->isConstant(&MFI))
1374         continue;
1375 
1376     if (const Value *V = MMO->getValue()) {
1377       // If we have an AliasAnalysis, ask it whether the memory is constant.
1378       if (AA &&
1379           AA->pointsToConstantMemory(
1380               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1381         continue;
1382     }
1383 
1384     // Otherwise assume conservatively.
1385     return false;
1386   }
1387 
1388   // Everything checks out.
1389   return true;
1390 }
1391 
1392 /// isConstantValuePHI - If the specified instruction is a PHI that always
1393 /// merges together the same virtual register, return the register, otherwise
1394 /// return 0.
isConstantValuePHI() const1395 unsigned MachineInstr::isConstantValuePHI() const {
1396   if (!isPHI())
1397     return 0;
1398   assert(getNumOperands() >= 3 &&
1399          "It's illegal to have a PHI without source operands");
1400 
1401   Register Reg = getOperand(1).getReg();
1402   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1403     if (getOperand(i).getReg() != Reg)
1404       return 0;
1405   return Reg;
1406 }
1407 
hasUnmodeledSideEffects() const1408 bool MachineInstr::hasUnmodeledSideEffects() const {
1409   if (hasProperty(MCID::UnmodeledSideEffects))
1410     return true;
1411   if (isInlineAsm()) {
1412     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1413     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1414       return true;
1415   }
1416   return false;
1417 }
1418 
mayTrap() const1419 bool MachineInstr::mayTrap() const {
1420   if (hasProperty(MCID::MayTrap)) {
1421     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1422       auto *TII = MF->getSubtarget().getInstrInfo();
1423       if (TII->isGuaranteedNotToTrap(*this))
1424         return false;
1425     }
1426     return true;
1427   }
1428   if (hasProperty(MCID::MayTrapOnSealedInput)) {
1429     for (const auto &Op : explicit_uses()) {
1430       auto &OpInfo = getDesc().OpInfo[getOperandNo(&Op)];
1431       if (OpInfo.mustBeUnsealedCapability() && Op.maybeSealed()) {
1432         // TODO: Check whether the def is safe (e.g. produced by a previous
1433         // CIncOffset, etc).
1434         if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1435           auto *TII = MF->getSubtarget().getInstrInfo();
1436           if (Op.isReg()) {
1437             // Check if the def can be sealed:
1438             auto &MRI = MF->getRegInfo();
1439             Register Reg = Op.getReg();
1440             if (Reg.isVirtual()) {
1441               auto *Def = MRI.getUniqueVRegDef(Reg);
1442               if (isTargetSpecificOpcode(Def->getOpcode()) &&
1443                   !Def->hasProperty(MCID::DefsCanBeSealed)) {
1444                 // Input is a target-specific opcode that doesn't have the may
1445                 // be sealed flag set -> cannot be sealed.
1446                 continue;
1447               }
1448             } else if (Reg.isPhysical() && MRI.isConstantPhysReg(Reg)) {
1449               // Only CNULL is constant and that can never be sealed.
1450               continue;
1451             }
1452           }
1453           if (TII->isGuaranteedNotToTrap(*this)) {
1454             return false;
1455           }
1456         }
1457         return true;
1458       }
1459     }
1460   }
1461   return false;
1462 }
1463 
isLoadFoldBarrier() const1464 bool MachineInstr::isLoadFoldBarrier() const {
1465   return mayStore() || isCall() || hasUnmodeledSideEffects();
1466 }
1467 
1468 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1469 ///
allDefsAreDead() const1470 bool MachineInstr::allDefsAreDead() const {
1471   for (const MachineOperand &MO : operands()) {
1472     if (!MO.isReg() || MO.isUse())
1473       continue;
1474     if (!MO.isDead())
1475       return false;
1476   }
1477   return true;
1478 }
1479 
1480 /// copyImplicitOps - Copy implicit register operands from specified
1481 /// instruction to this instruction.
copyImplicitOps(MachineFunction & MF,const MachineInstr & MI)1482 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1483                                    const MachineInstr &MI) {
1484   for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1485        i != e; ++i) {
1486     const MachineOperand &MO = MI.getOperand(i);
1487     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1488       addOperand(MF, MO);
1489   }
1490 }
1491 
hasComplexRegisterTies() const1492 bool MachineInstr::hasComplexRegisterTies() const {
1493   const MCInstrDesc &MCID = getDesc();
1494   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1495     const auto &Operand = getOperand(I);
1496     if (!Operand.isReg() || Operand.isDef())
1497       // Ignore the defined registers as MCID marks only the uses as tied.
1498       continue;
1499     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1500     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1501     if (ExpectedTiedIdx != TiedIdx)
1502       return true;
1503   }
1504   return false;
1505 }
1506 
getTypeToPrint(unsigned OpIdx,SmallBitVector & PrintedTypes,const MachineRegisterInfo & MRI) const1507 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1508                                  const MachineRegisterInfo &MRI) const {
1509   const MachineOperand &Op = getOperand(OpIdx);
1510   if (!Op.isReg())
1511     return LLT{};
1512 
1513   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1514     return MRI.getType(Op.getReg());
1515 
1516   auto &OpInfo = getDesc().OpInfo[OpIdx];
1517   if (!OpInfo.isGenericType())
1518     return MRI.getType(Op.getReg());
1519 
1520   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1521     return LLT{};
1522 
1523   LLT TypeToPrint = MRI.getType(Op.getReg());
1524   // Don't mark the type index printed if it wasn't actually printed: maybe
1525   // another operand with the same type index has an actual type attached:
1526   if (TypeToPrint.isValid())
1527     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1528   return TypeToPrint;
1529 }
1530 
1531 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1532 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1533   dbgs() << "  ";
1534   print(dbgs());
1535 }
1536 
dumprImpl(const MachineRegisterInfo & MRI,unsigned Depth,unsigned MaxDepth,SmallPtrSetImpl<const MachineInstr * > & AlreadySeenInstrs) const1537 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1538     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1539     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1540   if (Depth >= MaxDepth)
1541     return;
1542   if (!AlreadySeenInstrs.insert(this).second)
1543     return;
1544   // PadToColumn always inserts at least one space.
1545   // Don't mess up the alignment if we don't want any space.
1546   if (Depth)
1547     fdbgs().PadToColumn(Depth * 2);
1548   print(fdbgs());
1549   for (const MachineOperand &MO : operands()) {
1550     if (!MO.isReg() || MO.isDef())
1551       continue;
1552     Register Reg = MO.getReg();
1553     if (Reg.isPhysical())
1554       continue;
1555     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1556     if (NewMI == nullptr)
1557       continue;
1558     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1559   }
1560 }
1561 
dumpr(const MachineRegisterInfo & MRI,unsigned MaxDepth) const1562 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1563                                           unsigned MaxDepth) const {
1564   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1565   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1566 }
1567 #endif
1568 
print(raw_ostream & OS,bool IsStandalone,bool SkipOpers,bool SkipDebugLoc,bool AddNewLine,const TargetInstrInfo * TII) const1569 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1570                          bool SkipDebugLoc, bool AddNewLine,
1571                          const TargetInstrInfo *TII) const {
1572   const Module *M = nullptr;
1573   const Function *F = nullptr;
1574   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1575     F = &MF->getFunction();
1576     M = F->getParent();
1577     if (!TII)
1578       TII = MF->getSubtarget().getInstrInfo();
1579   }
1580 
1581   ModuleSlotTracker MST(M);
1582   if (F)
1583     MST.incorporateFunction(*F);
1584   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1585 }
1586 
print(raw_ostream & OS,ModuleSlotTracker & MST,bool IsStandalone,bool SkipOpers,bool SkipDebugLoc,bool AddNewLine,const TargetInstrInfo * TII) const1587 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1588                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1589                          bool AddNewLine, const TargetInstrInfo *TII) const {
1590   // We can be a bit tidier if we know the MachineFunction.
1591   const TargetRegisterInfo *TRI = nullptr;
1592   const MachineRegisterInfo *MRI = nullptr;
1593   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1594   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1595 
1596   if (isCFIInstruction())
1597     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1598 
1599   SmallBitVector PrintedTypes(8);
1600   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1601   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1602     if (!ShouldPrintRegisterTies)
1603       return 0U;
1604     const MachineOperand &MO = getOperand(OpIdx);
1605     if (MO.isReg() && MO.isTied() && !MO.isDef())
1606       return findTiedOperandIdx(OpIdx);
1607     return 0U;
1608   };
1609   unsigned StartOp = 0;
1610   unsigned e = getNumOperands();
1611 
1612   // Print explicitly defined operands on the left of an assignment syntax.
1613   while (StartOp < e) {
1614     const MachineOperand &MO = getOperand(StartOp);
1615     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1616       break;
1617 
1618     if (StartOp != 0)
1619       OS << ", ";
1620 
1621     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1622     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1623     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1624              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1625     ++StartOp;
1626   }
1627 
1628   if (StartOp != 0)
1629     OS << " = ";
1630 
1631   if (getFlag(MachineInstr::FrameSetup))
1632     OS << "frame-setup ";
1633   if (getFlag(MachineInstr::FrameDestroy))
1634     OS << "frame-destroy ";
1635   if (getFlag(MachineInstr::FmNoNans))
1636     OS << "nnan ";
1637   if (getFlag(MachineInstr::FmNoInfs))
1638     OS << "ninf ";
1639   if (getFlag(MachineInstr::FmNsz))
1640     OS << "nsz ";
1641   if (getFlag(MachineInstr::FmArcp))
1642     OS << "arcp ";
1643   if (getFlag(MachineInstr::FmContract))
1644     OS << "contract ";
1645   if (getFlag(MachineInstr::FmAfn))
1646     OS << "afn ";
1647   if (getFlag(MachineInstr::FmReassoc))
1648     OS << "reassoc ";
1649   if (getFlag(MachineInstr::NoUWrap))
1650     OS << "nuw ";
1651   if (getFlag(MachineInstr::NoSWrap))
1652     OS << "nsw ";
1653   if (getFlag(MachineInstr::IsExact))
1654     OS << "exact ";
1655   if (getFlag(MachineInstr::NoFPExcept))
1656     OS << "nofpexcept ";
1657   if (getFlag(MachineInstr::NoMerge))
1658     OS << "nomerge ";
1659 
1660   // Print the opcode name.
1661   if (TII)
1662     OS << TII->getName(getOpcode());
1663   else
1664     OS << "UNKNOWN";
1665 
1666   if (SkipOpers)
1667     return;
1668 
1669   // Print the rest of the operands.
1670   bool FirstOp = true;
1671   unsigned AsmDescOp = ~0u;
1672   unsigned AsmOpCount = 0;
1673 
1674   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1675     // Print asm string.
1676     OS << " ";
1677     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1678     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1679     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1680     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1681                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1682                             IntrinsicInfo);
1683 
1684     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1685     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1686     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1687       OS << " [sideeffect]";
1688     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1689       OS << " [mayload]";
1690     if (ExtraInfo & InlineAsm::Extra_MayStore)
1691       OS << " [maystore]";
1692     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1693       OS << " [isconvergent]";
1694     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1695       OS << " [alignstack]";
1696     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1697       OS << " [attdialect]";
1698     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1699       OS << " [inteldialect]";
1700 
1701     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1702     FirstOp = false;
1703   }
1704 
1705   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1706     const MachineOperand &MO = getOperand(i);
1707 
1708     if (FirstOp) FirstOp = false; else OS << ",";
1709     OS << " ";
1710 
1711     if (isDebugValue() && MO.isMetadata()) {
1712       // Pretty print DBG_VALUE instructions.
1713       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1714       if (DIV && !DIV->getName().empty())
1715         OS << "!\"" << DIV->getName() << '\"';
1716       else {
1717         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1718         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1719         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1720                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1721       }
1722     } else if (isDebugLabel() && MO.isMetadata()) {
1723       // Pretty print DBG_LABEL instructions.
1724       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1725       if (DIL && !DIL->getName().empty())
1726         OS << "\"" << DIL->getName() << '\"';
1727       else {
1728         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1729         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1730         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1731                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1732       }
1733     } else if (i == AsmDescOp && MO.isImm()) {
1734       // Pretty print the inline asm operand descriptor.
1735       OS << '$' << AsmOpCount++;
1736       unsigned Flag = MO.getImm();
1737       OS << ":[";
1738       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1739 
1740       unsigned RCID = 0;
1741       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1742           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1743         if (TRI) {
1744           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1745         } else
1746           OS << ":RC" << RCID;
1747       }
1748 
1749       if (InlineAsm::isMemKind(Flag)) {
1750         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1751         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1752       }
1753 
1754       unsigned TiedTo = 0;
1755       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1756         OS << " tiedto:$" << TiedTo;
1757 
1758       OS << ']';
1759 
1760       // Compute the index of the next operand descriptor.
1761       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1762     } else {
1763       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1764       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1765       if (MO.isImm() && isOperandSubregIdx(i))
1766         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1767       else
1768         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1769                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1770     }
1771   }
1772 
1773   // Print any optional symbols attached to this instruction as-if they were
1774   // operands.
1775   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1776     if (!FirstOp) {
1777       FirstOp = false;
1778       OS << ',';
1779     }
1780     OS << " pre-instr-symbol ";
1781     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1782   }
1783   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1784     if (!FirstOp) {
1785       FirstOp = false;
1786       OS << ',';
1787     }
1788     OS << " post-instr-symbol ";
1789     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1790   }
1791   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1792     if (!FirstOp) {
1793       FirstOp = false;
1794       OS << ',';
1795     }
1796     OS << " heap-alloc-marker ";
1797     HeapAllocMarker->printAsOperand(OS, MST);
1798   }
1799 
1800   if (!SkipDebugLoc) {
1801     if (const DebugLoc &DL = getDebugLoc()) {
1802       if (!FirstOp)
1803         OS << ',';
1804       OS << " debug-location ";
1805       DL->printAsOperand(OS, MST);
1806     }
1807   }
1808 
1809   if (!memoperands_empty()) {
1810     SmallVector<StringRef, 0> SSNs;
1811     const LLVMContext *Context = nullptr;
1812     std::unique_ptr<LLVMContext> CtxPtr;
1813     const MachineFrameInfo *MFI = nullptr;
1814     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1815       MFI = &MF->getFrameInfo();
1816       Context = &MF->getFunction().getContext();
1817     } else {
1818       CtxPtr = std::make_unique<LLVMContext>();
1819       Context = CtxPtr.get();
1820     }
1821 
1822     OS << " :: ";
1823     bool NeedComma = false;
1824     for (const MachineMemOperand *Op : memoperands()) {
1825       if (NeedComma)
1826         OS << ", ";
1827       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1828       NeedComma = true;
1829     }
1830   }
1831 
1832   if (SkipDebugLoc)
1833     return;
1834 
1835   bool HaveSemi = false;
1836 
1837   // Print debug location information.
1838   if (const DebugLoc &DL = getDebugLoc()) {
1839     if (!HaveSemi) {
1840       OS << ';';
1841       HaveSemi = true;
1842     }
1843     OS << ' ';
1844     DL.print(OS);
1845   }
1846 
1847   // Print extra comments for DEBUG_VALUE.
1848   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1849     if (!HaveSemi) {
1850       OS << ";";
1851       HaveSemi = true;
1852     }
1853     auto *DV = getDebugVariable();
1854     OS << " line no:" <<  DV->getLine();
1855     if (isIndirectDebugValue())
1856       OS << " indirect";
1857   }
1858   // TODO: DBG_LABEL
1859 
1860   if (AddNewLine)
1861     OS << '\n';
1862 }
1863 
addRegisterKilled(Register IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1864 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1865                                      const TargetRegisterInfo *RegInfo,
1866                                      bool AddIfNotFound) {
1867   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1868   bool hasAliases = isPhysReg &&
1869     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1870   bool Found = false;
1871   SmallVector<unsigned,4> DeadOps;
1872   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1873     MachineOperand &MO = getOperand(i);
1874     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1875       continue;
1876 
1877     // DEBUG_VALUE nodes do not contribute to code generation and should
1878     // always be ignored. Failure to do so may result in trying to modify
1879     // KILL flags on DEBUG_VALUE nodes.
1880     if (MO.isDebug())
1881       continue;
1882 
1883     Register Reg = MO.getReg();
1884     if (!Reg)
1885       continue;
1886 
1887     if (Reg == IncomingReg) {
1888       if (!Found) {
1889         if (MO.isKill())
1890           // The register is already marked kill.
1891           return true;
1892         if (isPhysReg && isRegTiedToDefOperand(i))
1893           // Two-address uses of physregs must not be marked kill.
1894           return true;
1895         MO.setIsKill();
1896         Found = true;
1897       }
1898     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1899       // A super-register kill already exists.
1900       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1901         return true;
1902       if (RegInfo->isSubRegister(IncomingReg, Reg))
1903         DeadOps.push_back(i);
1904     }
1905   }
1906 
1907   // Trim unneeded kill operands.
1908   while (!DeadOps.empty()) {
1909     unsigned OpIdx = DeadOps.back();
1910     if (getOperand(OpIdx).isImplicit() &&
1911         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1912       RemoveOperand(OpIdx);
1913     else
1914       getOperand(OpIdx).setIsKill(false);
1915     DeadOps.pop_back();
1916   }
1917 
1918   // If not found, this means an alias of one of the operands is killed. Add a
1919   // new implicit operand if required.
1920   if (!Found && AddIfNotFound) {
1921     addOperand(MachineOperand::CreateReg(IncomingReg,
1922                                          false /*IsDef*/,
1923                                          true  /*IsImp*/,
1924                                          true  /*IsKill*/));
1925     return true;
1926   }
1927   return Found;
1928 }
1929 
clearRegisterKills(Register Reg,const TargetRegisterInfo * RegInfo)1930 void MachineInstr::clearRegisterKills(Register Reg,
1931                                       const TargetRegisterInfo *RegInfo) {
1932   if (!Register::isPhysicalRegister(Reg))
1933     RegInfo = nullptr;
1934   for (MachineOperand &MO : operands()) {
1935     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1936       continue;
1937     Register OpReg = MO.getReg();
1938     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1939       MO.setIsKill(false);
1940   }
1941 }
1942 
addRegisterDead(Register Reg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1943 bool MachineInstr::addRegisterDead(Register Reg,
1944                                    const TargetRegisterInfo *RegInfo,
1945                                    bool AddIfNotFound) {
1946   bool isPhysReg = Register::isPhysicalRegister(Reg);
1947   bool hasAliases = isPhysReg &&
1948     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1949   bool Found = false;
1950   SmallVector<unsigned,4> DeadOps;
1951   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1952     MachineOperand &MO = getOperand(i);
1953     if (!MO.isReg() || !MO.isDef())
1954       continue;
1955     Register MOReg = MO.getReg();
1956     if (!MOReg)
1957       continue;
1958 
1959     if (MOReg == Reg) {
1960       MO.setIsDead();
1961       Found = true;
1962     } else if (hasAliases && MO.isDead() &&
1963                Register::isPhysicalRegister(MOReg)) {
1964       // There exists a super-register that's marked dead.
1965       if (RegInfo->isSuperRegister(Reg, MOReg))
1966         return true;
1967       if (RegInfo->isSubRegister(Reg, MOReg))
1968         DeadOps.push_back(i);
1969     }
1970   }
1971 
1972   // Trim unneeded dead operands.
1973   while (!DeadOps.empty()) {
1974     unsigned OpIdx = DeadOps.back();
1975     if (getOperand(OpIdx).isImplicit() &&
1976         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1977       RemoveOperand(OpIdx);
1978     else
1979       getOperand(OpIdx).setIsDead(false);
1980     DeadOps.pop_back();
1981   }
1982 
1983   // If not found, this means an alias of one of the operands is dead. Add a
1984   // new implicit operand if required.
1985   if (Found || !AddIfNotFound)
1986     return Found;
1987 
1988   addOperand(MachineOperand::CreateReg(Reg,
1989                                        true  /*IsDef*/,
1990                                        true  /*IsImp*/,
1991                                        false /*IsKill*/,
1992                                        true  /*IsDead*/));
1993   return true;
1994 }
1995 
clearRegisterDeads(Register Reg)1996 void MachineInstr::clearRegisterDeads(Register Reg) {
1997   for (MachineOperand &MO : operands()) {
1998     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1999       continue;
2000     MO.setIsDead(false);
2001   }
2002 }
2003 
setRegisterDefReadUndef(Register Reg,bool IsUndef)2004 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2005   for (MachineOperand &MO : operands()) {
2006     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2007       continue;
2008     MO.setIsUndef(IsUndef);
2009   }
2010 }
2011 
addRegisterDefined(Register Reg,const TargetRegisterInfo * RegInfo)2012 void MachineInstr::addRegisterDefined(Register Reg,
2013                                       const TargetRegisterInfo *RegInfo) {
2014   if (Register::isPhysicalRegister(Reg)) {
2015     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2016     if (MO)
2017       return;
2018   } else {
2019     for (const MachineOperand &MO : operands()) {
2020       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2021           MO.getSubReg() == 0)
2022         return;
2023     }
2024   }
2025   addOperand(MachineOperand::CreateReg(Reg,
2026                                        true  /*IsDef*/,
2027                                        true  /*IsImp*/));
2028 }
2029 
setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,const TargetRegisterInfo & TRI)2030 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2031                                          const TargetRegisterInfo &TRI) {
2032   bool HasRegMask = false;
2033   for (MachineOperand &MO : operands()) {
2034     if (MO.isRegMask()) {
2035       HasRegMask = true;
2036       continue;
2037     }
2038     if (!MO.isReg() || !MO.isDef()) continue;
2039     Register Reg = MO.getReg();
2040     if (!Reg.isPhysical())
2041       continue;
2042     // If there are no uses, including partial uses, the def is dead.
2043     if (llvm::none_of(UsedRegs,
2044                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2045       MO.setIsDead();
2046   }
2047 
2048   // This is a call with a register mask operand.
2049   // Mask clobbers are always dead, so add defs for the non-dead defines.
2050   if (HasRegMask)
2051     for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2052          I != E; ++I)
2053       addRegisterDefined(*I, &TRI);
2054 }
2055 
2056 unsigned
getHashValue(const MachineInstr * const & MI)2057 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2058   // Build up a buffer of hash code components.
2059   SmallVector<size_t, 16> HashComponents;
2060   HashComponents.reserve(MI->getNumOperands() + 1);
2061   HashComponents.push_back(MI->getOpcode());
2062   for (const MachineOperand &MO : MI->operands()) {
2063     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2064       continue;  // Skip virtual register defs.
2065 
2066     HashComponents.push_back(hash_value(MO));
2067   }
2068   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2069 }
2070 
emitError(StringRef Msg) const2071 void MachineInstr::emitError(StringRef Msg) const {
2072   // Find the source location cookie.
2073   unsigned LocCookie = 0;
2074   const MDNode *LocMD = nullptr;
2075   for (unsigned i = getNumOperands(); i != 0; --i) {
2076     if (getOperand(i-1).isMetadata() &&
2077         (LocMD = getOperand(i-1).getMetadata()) &&
2078         LocMD->getNumOperands() != 0) {
2079       if (const ConstantInt *CI =
2080               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2081         LocCookie = CI->getZExtValue();
2082         break;
2083       }
2084     }
2085   }
2086 
2087   if (const MachineBasicBlock *MBB = getParent())
2088     if (const MachineFunction *MF = MBB->getParent())
2089       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2090   report_fatal_error(Msg);
2091 }
2092 
BuildMI(MachineFunction & MF,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,Register Reg,const MDNode * Variable,const MDNode * Expr)2093 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2094                                   const MCInstrDesc &MCID, bool IsIndirect,
2095                                   Register Reg, const MDNode *Variable,
2096                                   const MDNode *Expr) {
2097   assert(isa<DILocalVariable>(Variable) && "not a variable");
2098   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2099   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2100          "Expected inlined-at fields to agree");
2101   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2102   if (IsIndirect)
2103     MIB.addImm(0U);
2104   else
2105     MIB.addReg(0U, RegState::Debug);
2106   return MIB.addMetadata(Variable).addMetadata(Expr);
2107 }
2108 
BuildMI(MachineFunction & MF,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,MachineOperand & MO,const MDNode * Variable,const MDNode * Expr)2109 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2110                                   const MCInstrDesc &MCID, bool IsIndirect,
2111                                   MachineOperand &MO, const MDNode *Variable,
2112                                   const MDNode *Expr) {
2113   assert(isa<DILocalVariable>(Variable) && "not a variable");
2114   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2115   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2116          "Expected inlined-at fields to agree");
2117   if (MO.isReg())
2118     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2119 
2120   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2121   if (IsIndirect)
2122     MIB.addImm(0U);
2123   else
2124     MIB.addReg(0U, RegState::Debug);
2125   return MIB.addMetadata(Variable).addMetadata(Expr);
2126  }
2127 
BuildMI(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,Register Reg,const MDNode * Variable,const MDNode * Expr)2128 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2129                                   MachineBasicBlock::iterator I,
2130                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2131                                   bool IsIndirect, Register Reg,
2132                                   const MDNode *Variable, const MDNode *Expr) {
2133   MachineFunction &MF = *BB.getParent();
2134   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2135   BB.insert(I, MI);
2136   return MachineInstrBuilder(MF, MI);
2137 }
2138 
BuildMI(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const DebugLoc & DL,const MCInstrDesc & MCID,bool IsIndirect,MachineOperand & MO,const MDNode * Variable,const MDNode * Expr)2139 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2140                                   MachineBasicBlock::iterator I,
2141                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2142                                   bool IsIndirect, MachineOperand &MO,
2143                                   const MDNode *Variable, const MDNode *Expr) {
2144   MachineFunction &MF = *BB.getParent();
2145   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2146   BB.insert(I, MI);
2147   return MachineInstrBuilder(MF, *MI);
2148 }
2149 
2150 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2151 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
computeExprForSpill(const MachineInstr & MI)2152 static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2153   assert(MI.getOperand(0).isReg() && "can't spill non-register");
2154   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2155          "Expected inlined-at fields to agree");
2156 
2157   const DIExpression *Expr = MI.getDebugExpression();
2158   if (MI.isIndirectDebugValue()) {
2159     assert(MI.getDebugOffset().getImm() == 0 &&
2160            "DBG_VALUE with nonzero offset");
2161     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2162   }
2163   return Expr;
2164 }
2165 
buildDbgValueForSpill(MachineBasicBlock & BB,MachineBasicBlock::iterator I,const MachineInstr & Orig,int FrameIndex)2166 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2167                                           MachineBasicBlock::iterator I,
2168                                           const MachineInstr &Orig,
2169                                           int FrameIndex) {
2170   const DIExpression *Expr = computeExprForSpill(Orig);
2171   return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2172       .addFrameIndex(FrameIndex)
2173       .addImm(0U)
2174       .addMetadata(Orig.getDebugVariable())
2175       .addMetadata(Expr);
2176 }
2177 
updateDbgValueForSpill(MachineInstr & Orig,int FrameIndex)2178 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2179   const DIExpression *Expr = computeExprForSpill(Orig);
2180   Orig.getDebugOperand(0).ChangeToFrameIndex(FrameIndex);
2181   Orig.getDebugOffset().ChangeToImmediate(0U);
2182   Orig.getDebugExpressionOp().setMetadata(Expr);
2183 }
2184 
collectDebugValues(SmallVectorImpl<MachineInstr * > & DbgValues)2185 void MachineInstr::collectDebugValues(
2186                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2187   MachineInstr &MI = *this;
2188   if (!MI.getOperand(0).isReg())
2189     return;
2190 
2191   MachineBasicBlock::iterator DI = MI; ++DI;
2192   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2193        DI != DE; ++DI) {
2194     if (!DI->isDebugValue())
2195       return;
2196     if (DI->getDebugOperandForReg(MI.getOperand(0).getReg()))
2197       DbgValues.push_back(&*DI);
2198   }
2199 }
2200 
changeDebugValuesDefReg(Register Reg)2201 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2202   // Collect matching debug values.
2203   SmallVector<MachineInstr *, 2> DbgValues;
2204 
2205   if (!getOperand(0).isReg())
2206     return;
2207 
2208   Register DefReg = getOperand(0).getReg();
2209   auto *MRI = getRegInfo();
2210   for (auto &MO : MRI->use_operands(DefReg)) {
2211     auto *DI = MO.getParent();
2212     if (!DI->isDebugValue())
2213       continue;
2214     if (DI->getDebugOperandForReg(DefReg)) {
2215       DbgValues.push_back(DI);
2216     }
2217   }
2218 
2219   // Propagate Reg to debug value instructions.
2220   for (auto *DBI : DbgValues)
2221     DBI->getDebugOperandForReg(DefReg)->setReg(Reg);
2222 }
2223 
2224 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2225 
getSpillSlotSize(const MMOList & Accesses,const MachineFrameInfo & MFI)2226 static unsigned getSpillSlotSize(const MMOList &Accesses,
2227                                  const MachineFrameInfo &MFI) {
2228   unsigned Size = 0;
2229   for (auto A : Accesses)
2230     if (MFI.isSpillSlotObjectIndex(
2231             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2232                 ->getFrameIndex()))
2233       Size += A->getSize();
2234   return Size;
2235 }
2236 
2237 Optional<unsigned>
getSpillSize(const TargetInstrInfo * TII) const2238 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2239   int FI;
2240   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2241     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2242     if (MFI.isSpillSlotObjectIndex(FI))
2243       return (*memoperands_begin())->getSize();
2244   }
2245   return None;
2246 }
2247 
2248 Optional<unsigned>
getFoldedSpillSize(const TargetInstrInfo * TII) const2249 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2250   MMOList Accesses;
2251   if (TII->hasStoreToStackSlot(*this, Accesses))
2252     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2253   return None;
2254 }
2255 
2256 Optional<unsigned>
getRestoreSize(const TargetInstrInfo * TII) const2257 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2258   int FI;
2259   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2260     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2261     if (MFI.isSpillSlotObjectIndex(FI))
2262       return (*memoperands_begin())->getSize();
2263   }
2264   return None;
2265 }
2266 
2267 Optional<unsigned>
getFoldedRestoreSize(const TargetInstrInfo * TII) const2268 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2269   MMOList Accesses;
2270   if (TII->hasLoadFromStackSlot(*this, Accesses))
2271     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2272   return None;
2273 }
2274