1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the SelectionDAG class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineConstantPool.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/RuntimeLibcalls.h"
38 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
41 #include "llvm/CodeGen/TargetFrameLowering.h"
42 #include "llvm/CodeGen/TargetLowering.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSubtargetInfo.h"
45 #include "llvm/CodeGen/ValueTypes.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/DiagnosticInfo.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/KnownBits.h"
64 #include "llvm/Support/MachineValueType.h"
65 #include "llvm/Support/ManagedStatic.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/Mutex.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetOptions.h"
71 #include "llvm/Transforms/Utils/CheriSetBounds.h"
72 #include "llvm/Transforms/Utils/SizeOpts.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <cstdlib>
77 #include <limits>
78 #include <set>
79 #include <string>
80 #include <utility>
81 #include <vector>
82
83 using namespace llvm;
84
85 /// makeVTList - Return an instance of the SDVTList struct initialized with the
86 /// specified members.
makeVTList(const EVT * VTs,unsigned NumVTs)87 static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
88 SDVTList Res = {VTs, NumVTs};
89 return Res;
90 }
91
92 // Default null implementations of the callbacks.
NodeDeleted(SDNode *,SDNode *)93 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
NodeUpdated(SDNode *)94 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
NodeInserted(SDNode *)95 void SelectionDAG::DAGUpdateListener::NodeInserted(SDNode *) {}
96
anchor()97 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
98
99 #define DEBUG_TYPE "selectiondag"
100
101 static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
102 cl::Hidden, cl::init(true),
103 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
104
105 static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
106 cl::desc("Number limit for gluing ld/st of memcpy."),
107 cl::Hidden, cl::init(0));
108
NewSDValueDbgMsg(SDValue V,StringRef Msg,SelectionDAG * G)109 static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G) {
110 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
111 }
112
113 //===----------------------------------------------------------------------===//
114 // ConstantFPSDNode Class
115 //===----------------------------------------------------------------------===//
116
117 /// isExactlyValue - We don't rely on operator== working on double values, as
118 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
119 /// As such, this method can be used to do an exact bit-for-bit comparison of
120 /// two floating point values.
isExactlyValue(const APFloat & V) const121 bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
122 return getValueAPF().bitwiseIsEqual(V);
123 }
124
isValueValidForType(EVT VT,const APFloat & Val)125 bool ConstantFPSDNode::isValueValidForType(EVT VT,
126 const APFloat& Val) {
127 assert(VT.isFloatingPoint() && "Can only convert between FP types");
128
129 // convert modifies in place, so make a copy.
130 APFloat Val2 = APFloat(Val);
131 bool losesInfo;
132 (void) Val2.convert(SelectionDAG::EVTToAPFloatSemantics(VT),
133 APFloat::rmNearestTiesToEven,
134 &losesInfo);
135 return !losesInfo;
136 }
137
138 //===----------------------------------------------------------------------===//
139 // ISD Namespace
140 //===----------------------------------------------------------------------===//
141
isConstantSplatVector(const SDNode * N,APInt & SplatVal)142 bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
143 auto *BV = dyn_cast<BuildVectorSDNode>(N);
144 if (!BV)
145 return false;
146
147 APInt SplatUndef;
148 unsigned SplatBitSize;
149 bool HasUndefs;
150 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
151 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
152 EltSize) &&
153 EltSize == SplatBitSize;
154 }
155
156 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
157 // specializations of the more general isConstantSplatVector()?
158
isBuildVectorAllOnes(const SDNode * N)159 bool ISD::isBuildVectorAllOnes(const SDNode *N) {
160 // Look through a bit convert.
161 while (N->getOpcode() == ISD::BITCAST)
162 N = N->getOperand(0).getNode();
163
164 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
165
166 unsigned i = 0, e = N->getNumOperands();
167
168 // Skip over all of the undef values.
169 while (i != e && N->getOperand(i).isUndef())
170 ++i;
171
172 // Do not accept an all-undef vector.
173 if (i == e) return false;
174
175 // Do not accept build_vectors that aren't all constants or which have non-~0
176 // elements. We have to be a bit careful here, as the type of the constant
177 // may not be the same as the type of the vector elements due to type
178 // legalization (the elements are promoted to a legal type for the target and
179 // a vector of a type may be legal when the base element type is not).
180 // We only want to check enough bits to cover the vector elements, because
181 // we care if the resultant vector is all ones, not whether the individual
182 // constants are.
183 SDValue NotZero = N->getOperand(i);
184 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
185 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
186 if (CN->getAPIntValue().countTrailingOnes() < EltSize)
187 return false;
188 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
189 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
190 return false;
191 } else
192 return false;
193
194 // Okay, we have at least one ~0 value, check to see if the rest match or are
195 // undefs. Even with the above element type twiddling, this should be OK, as
196 // the same type legalization should have applied to all the elements.
197 for (++i; i != e; ++i)
198 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
199 return false;
200 return true;
201 }
202
isBuildVectorAllZeros(const SDNode * N)203 bool ISD::isBuildVectorAllZeros(const SDNode *N) {
204 // Look through a bit convert.
205 while (N->getOpcode() == ISD::BITCAST)
206 N = N->getOperand(0).getNode();
207
208 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
209
210 bool IsAllUndef = true;
211 for (const SDValue &Op : N->op_values()) {
212 if (Op.isUndef())
213 continue;
214 IsAllUndef = false;
215 // Do not accept build_vectors that aren't all constants or which have non-0
216 // elements. We have to be a bit careful here, as the type of the constant
217 // may not be the same as the type of the vector elements due to type
218 // legalization (the elements are promoted to a legal type for the target
219 // and a vector of a type may be legal when the base element type is not).
220 // We only want to check enough bits to cover the vector elements, because
221 // we care if the resultant vector is all zeros, not whether the individual
222 // constants are.
223 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
224 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Op)) {
225 if (CN->getAPIntValue().countTrailingZeros() < EltSize)
226 return false;
227 } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Op)) {
228 if (CFPN->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize)
229 return false;
230 } else
231 return false;
232 }
233
234 // Do not accept an all-undef vector.
235 if (IsAllUndef)
236 return false;
237 return true;
238 }
239
isBuildVectorOfConstantSDNodes(const SDNode * N)240 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode *N) {
241 if (N->getOpcode() != ISD::BUILD_VECTOR)
242 return false;
243
244 for (const SDValue &Op : N->op_values()) {
245 if (Op.isUndef())
246 continue;
247 if (!isa<ConstantSDNode>(Op))
248 return false;
249 }
250 return true;
251 }
252
isBuildVectorOfConstantFPSDNodes(const SDNode * N)253 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode *N) {
254 if (N->getOpcode() != ISD::BUILD_VECTOR)
255 return false;
256
257 for (const SDValue &Op : N->op_values()) {
258 if (Op.isUndef())
259 continue;
260 if (!isa<ConstantFPSDNode>(Op))
261 return false;
262 }
263 return true;
264 }
265
allOperandsUndef(const SDNode * N)266 bool ISD::allOperandsUndef(const SDNode *N) {
267 // Return false if the node has no operands.
268 // This is "logically inconsistent" with the definition of "all" but
269 // is probably the desired behavior.
270 if (N->getNumOperands() == 0)
271 return false;
272 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
273 }
274
matchUnaryPredicate(SDValue Op,std::function<bool (ConstantSDNode *)> Match,bool AllowUndefs)275 bool ISD::matchUnaryPredicate(SDValue Op,
276 std::function<bool(ConstantSDNode *)> Match,
277 bool AllowUndefs) {
278 // FIXME: Add support for scalar UNDEF cases?
279 if (auto *Cst = dyn_cast<ConstantSDNode>(Op))
280 return Match(Cst);
281
282 // FIXME: Add support for vector UNDEF cases?
283 if (ISD::BUILD_VECTOR != Op.getOpcode())
284 return false;
285
286 EVT SVT = Op.getValueType().getScalarType();
287 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
288 if (AllowUndefs && Op.getOperand(i).isUndef()) {
289 if (!Match(nullptr))
290 return false;
291 continue;
292 }
293
294 auto *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(i));
295 if (!Cst || Cst->getValueType(0) != SVT || !Match(Cst))
296 return false;
297 }
298 return true;
299 }
300
matchBinaryPredicate(SDValue LHS,SDValue RHS,std::function<bool (ConstantSDNode *,ConstantSDNode *)> Match,bool AllowUndefs,bool AllowTypeMismatch)301 bool ISD::matchBinaryPredicate(
302 SDValue LHS, SDValue RHS,
303 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
304 bool AllowUndefs, bool AllowTypeMismatch) {
305 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
306 return false;
307
308 // TODO: Add support for scalar UNDEF cases?
309 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
310 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
311 return Match(LHSCst, RHSCst);
312
313 // TODO: Add support for vector UNDEF cases?
314 if (ISD::BUILD_VECTOR != LHS.getOpcode() ||
315 ISD::BUILD_VECTOR != RHS.getOpcode())
316 return false;
317
318 EVT SVT = LHS.getValueType().getScalarType();
319 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
320 SDValue LHSOp = LHS.getOperand(i);
321 SDValue RHSOp = RHS.getOperand(i);
322 bool LHSUndef = AllowUndefs && LHSOp.isUndef();
323 bool RHSUndef = AllowUndefs && RHSOp.isUndef();
324 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
325 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
326 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
327 return false;
328 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
329 LHSOp.getValueType() != RHSOp.getValueType()))
330 return false;
331 if (!Match(LHSCst, RHSCst))
332 return false;
333 }
334 return true;
335 }
336
getExtForLoadExtType(bool IsFP,ISD::LoadExtType ExtType)337 ISD::NodeType ISD::getExtForLoadExtType(bool IsFP, ISD::LoadExtType ExtType) {
338 switch (ExtType) {
339 case ISD::EXTLOAD:
340 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
341 case ISD::SEXTLOAD:
342 return ISD::SIGN_EXTEND;
343 case ISD::ZEXTLOAD:
344 return ISD::ZERO_EXTEND;
345 default:
346 break;
347 }
348
349 llvm_unreachable("Invalid LoadExtType");
350 }
351
getSetCCSwappedOperands(ISD::CondCode Operation)352 ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
353 // To perform this operation, we just need to swap the L and G bits of the
354 // operation.
355 unsigned OldL = (Operation >> 2) & 1;
356 unsigned OldG = (Operation >> 1) & 1;
357 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
358 (OldL << 1) | // New G bit
359 (OldG << 2)); // New L bit.
360 }
361
getSetCCInverseImpl(ISD::CondCode Op,bool isIntegerLike)362 static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike) {
363 unsigned Operation = Op;
364 if (isIntegerLike)
365 Operation ^= 7; // Flip L, G, E bits, but not U.
366 else
367 Operation ^= 15; // Flip all of the condition bits.
368
369 if (Operation > ISD::SETTRUE2)
370 Operation &= ~8; // Don't let N and U bits get set.
371
372 return ISD::CondCode(Operation);
373 }
374
getSetCCInverse(ISD::CondCode Op,EVT Type)375 ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, EVT Type) {
376 return getSetCCInverseImpl(Op, Type.isInteger() || Type.isFatPointer());
377 }
378
getSetCCInverse(ISD::CondCode Op,bool isIntegerLike)379 ISD::CondCode ISD::GlobalISel::getSetCCInverse(ISD::CondCode Op,
380 bool isIntegerLike) {
381 return getSetCCInverseImpl(Op, isIntegerLike);
382 }
383
384 /// For an integer comparison, return 1 if the comparison is a signed operation
385 /// and 2 if the result is an unsigned comparison. Return zero if the operation
386 /// does not depend on the sign of the input (setne and seteq).
isSignedOp(ISD::CondCode Opcode)387 static int isSignedOp(ISD::CondCode Opcode) {
388 switch (Opcode) {
389 default: llvm_unreachable("Illegal integer setcc operation!");
390 case ISD::SETEQ:
391 case ISD::SETNE: return 0;
392 case ISD::SETLT:
393 case ISD::SETLE:
394 case ISD::SETGT:
395 case ISD::SETGE: return 1;
396 case ISD::SETULT:
397 case ISD::SETULE:
398 case ISD::SETUGT:
399 case ISD::SETUGE: return 2;
400 }
401 }
402
getSetCCOrOperation(ISD::CondCode Op1,ISD::CondCode Op2,EVT Type)403 ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
404 EVT Type) {
405 bool IsIntegerLike = Type.isInteger() || Type.isFatPointer();
406 if (IsIntegerLike && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
407 // Cannot fold a signed integer setcc with an unsigned integer setcc.
408 return ISD::SETCC_INVALID;
409
410 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
411
412 // If the N and U bits get set, then the resultant comparison DOES suddenly
413 // care about orderedness, and it is true when ordered.
414 if (Op > ISD::SETTRUE2)
415 Op &= ~16; // Clear the U bit if the N bit is set.
416
417 // Canonicalize illegal integer setcc's.
418 if (IsIntegerLike && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
419 Op = ISD::SETNE;
420
421 return ISD::CondCode(Op);
422 }
423
getSetCCAndOperation(ISD::CondCode Op1,ISD::CondCode Op2,EVT Type)424 ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
425 EVT Type) {
426 bool IsIntegerLike = Type.isInteger() || Type.isFatPointer();
427 if (IsIntegerLike && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
428 // Cannot fold a signed setcc with an unsigned setcc.
429 return ISD::SETCC_INVALID;
430
431 // Combine all of the condition bits.
432 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
433
434 // Canonicalize illegal integer setcc's.
435 if (IsIntegerLike) {
436 switch (Result) {
437 default: break;
438 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
439 case ISD::SETOEQ: // SETEQ & SETU[LG]E
440 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
441 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
442 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
443 }
444 }
445
446 return Result;
447 }
448
449 //===----------------------------------------------------------------------===//
450 // SDNode Profile Support
451 //===----------------------------------------------------------------------===//
452
453 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
AddNodeIDOpcode(FoldingSetNodeID & ID,unsigned OpC)454 static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
455 ID.AddInteger(OpC);
456 }
457
458 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
459 /// solely with their pointer.
AddNodeIDValueTypes(FoldingSetNodeID & ID,SDVTList VTList)460 static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
461 ID.AddPointer(VTList.VTs);
462 }
463
464 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
AddNodeIDOperands(FoldingSetNodeID & ID,ArrayRef<SDValue> Ops)465 static void AddNodeIDOperands(FoldingSetNodeID &ID,
466 ArrayRef<SDValue> Ops) {
467 for (auto& Op : Ops) {
468 ID.AddPointer(Op.getNode());
469 ID.AddInteger(Op.getResNo());
470 }
471 }
472
473 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
AddNodeIDOperands(FoldingSetNodeID & ID,ArrayRef<SDUse> Ops)474 static void AddNodeIDOperands(FoldingSetNodeID &ID,
475 ArrayRef<SDUse> Ops) {
476 for (auto& Op : Ops) {
477 ID.AddPointer(Op.getNode());
478 ID.AddInteger(Op.getResNo());
479 }
480 }
481
AddNodeIDNode(FoldingSetNodeID & ID,unsigned short OpC,SDVTList VTList,ArrayRef<SDValue> OpList)482 static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned short OpC,
483 SDVTList VTList, ArrayRef<SDValue> OpList) {
484 AddNodeIDOpcode(ID, OpC);
485 AddNodeIDValueTypes(ID, VTList);
486 AddNodeIDOperands(ID, OpList);
487 }
488
489 /// If this is an SDNode with special info, add this info to the NodeID data.
AddNodeIDCustom(FoldingSetNodeID & ID,const SDNode * N)490 static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
491 switch (N->getOpcode()) {
492 case ISD::TargetExternalSymbol:
493 case ISD::ExternalSymbol:
494 case ISD::MCSymbol:
495 llvm_unreachable("Should only be used on nodes with operands");
496 default: break; // Normal nodes don't need extra info.
497 case ISD::TargetConstant:
498 case ISD::Constant: {
499 const ConstantSDNode *C = cast<ConstantSDNode>(N);
500 ID.AddPointer(C->getConstantIntValue());
501 ID.AddBoolean(C->isOpaque());
502 break;
503 }
504 case ISD::TargetConstantFP:
505 case ISD::ConstantFP:
506 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
507 break;
508 case ISD::TargetGlobalAddress:
509 case ISD::GlobalAddress:
510 case ISD::TargetGlobalTLSAddress:
511 case ISD::GlobalTLSAddress: {
512 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
513 ID.AddPointer(GA->getGlobal());
514 ID.AddInteger(GA->getOffset());
515 ID.AddInteger(GA->getTargetFlags());
516 break;
517 }
518 case ISD::BasicBlock:
519 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
520 break;
521 case ISD::Register:
522 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
523 break;
524 case ISD::RegisterMask:
525 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
526 break;
527 case ISD::SRCVALUE:
528 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
529 break;
530 case ISD::FrameIndex:
531 case ISD::TargetFrameIndex:
532 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
533 break;
534 case ISD::LIFETIME_START:
535 case ISD::LIFETIME_END:
536 if (cast<LifetimeSDNode>(N)->hasOffset()) {
537 ID.AddInteger(cast<LifetimeSDNode>(N)->getSize());
538 ID.AddInteger(cast<LifetimeSDNode>(N)->getOffset());
539 }
540 break;
541 case ISD::JumpTable:
542 case ISD::TargetJumpTable:
543 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
544 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
545 break;
546 case ISD::ConstantPool:
547 case ISD::TargetConstantPool: {
548 const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
549 ID.AddInteger(CP->getAlign().value());
550 ID.AddInteger(CP->getOffset());
551 if (CP->isMachineConstantPoolEntry())
552 CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
553 else
554 ID.AddPointer(CP->getConstVal());
555 ID.AddInteger(CP->getTargetFlags());
556 break;
557 }
558 case ISD::TargetIndex: {
559 const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
560 ID.AddInteger(TI->getIndex());
561 ID.AddInteger(TI->getOffset());
562 ID.AddInteger(TI->getTargetFlags());
563 break;
564 }
565 case ISD::LOAD: {
566 const LoadSDNode *LD = cast<LoadSDNode>(N);
567 ID.AddInteger(LD->getMemoryVT().getRawBits());
568 ID.AddInteger(LD->getRawSubclassData());
569 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
570 break;
571 }
572 case ISD::STORE: {
573 const StoreSDNode *ST = cast<StoreSDNode>(N);
574 ID.AddInteger(ST->getMemoryVT().getRawBits());
575 ID.AddInteger(ST->getRawSubclassData());
576 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
577 break;
578 }
579 case ISD::MLOAD: {
580 const MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
581 ID.AddInteger(MLD->getMemoryVT().getRawBits());
582 ID.AddInteger(MLD->getRawSubclassData());
583 ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
584 break;
585 }
586 case ISD::MSTORE: {
587 const MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
588 ID.AddInteger(MST->getMemoryVT().getRawBits());
589 ID.AddInteger(MST->getRawSubclassData());
590 ID.AddInteger(MST->getPointerInfo().getAddrSpace());
591 break;
592 }
593 case ISD::MGATHER: {
594 const MaskedGatherSDNode *MG = cast<MaskedGatherSDNode>(N);
595 ID.AddInteger(MG->getMemoryVT().getRawBits());
596 ID.AddInteger(MG->getRawSubclassData());
597 ID.AddInteger(MG->getPointerInfo().getAddrSpace());
598 break;
599 }
600 case ISD::MSCATTER: {
601 const MaskedScatterSDNode *MS = cast<MaskedScatterSDNode>(N);
602 ID.AddInteger(MS->getMemoryVT().getRawBits());
603 ID.AddInteger(MS->getRawSubclassData());
604 ID.AddInteger(MS->getPointerInfo().getAddrSpace());
605 break;
606 }
607 case ISD::ATOMIC_CMP_SWAP:
608 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
609 case ISD::ATOMIC_SWAP:
610 case ISD::ATOMIC_LOAD_ADD:
611 case ISD::ATOMIC_LOAD_SUB:
612 case ISD::ATOMIC_LOAD_AND:
613 case ISD::ATOMIC_LOAD_CLR:
614 case ISD::ATOMIC_LOAD_OR:
615 case ISD::ATOMIC_LOAD_XOR:
616 case ISD::ATOMIC_LOAD_NAND:
617 case ISD::ATOMIC_LOAD_MIN:
618 case ISD::ATOMIC_LOAD_MAX:
619 case ISD::ATOMIC_LOAD_UMIN:
620 case ISD::ATOMIC_LOAD_UMAX:
621 case ISD::ATOMIC_LOAD:
622 case ISD::ATOMIC_STORE: {
623 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
624 ID.AddInteger(AT->getMemoryVT().getRawBits());
625 ID.AddInteger(AT->getRawSubclassData());
626 ID.AddInteger(AT->getPointerInfo().getAddrSpace());
627 break;
628 }
629 case ISD::PREFETCH: {
630 const MemSDNode *PF = cast<MemSDNode>(N);
631 ID.AddInteger(PF->getPointerInfo().getAddrSpace());
632 break;
633 }
634 case ISD::VECTOR_SHUFFLE: {
635 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
636 for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
637 i != e; ++i)
638 ID.AddInteger(SVN->getMaskElt(i));
639 break;
640 }
641 case ISD::TargetBlockAddress:
642 case ISD::BlockAddress: {
643 const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
644 ID.AddPointer(BA->getBlockAddress());
645 ID.AddInteger(BA->getOffset());
646 ID.AddInteger(BA->getTargetFlags());
647 break;
648 }
649 } // end switch (N->getOpcode())
650
651 // Target specific memory nodes could also have address spaces to check.
652 if (N->isTargetMemoryOpcode())
653 ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
654 }
655
656 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
657 /// data.
AddNodeIDNode(FoldingSetNodeID & ID,const SDNode * N)658 static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
659 AddNodeIDOpcode(ID, N->getOpcode());
660 // Add the return value info.
661 AddNodeIDValueTypes(ID, N->getVTList());
662 // Add the operand info.
663 AddNodeIDOperands(ID, N->ops());
664
665 // Handle SDNode leafs with special info.
666 AddNodeIDCustom(ID, N);
667 }
668
669 //===----------------------------------------------------------------------===//
670 // SelectionDAG Class
671 //===----------------------------------------------------------------------===//
672
673 /// doNotCSE - Return true if CSE should not be performed for this node.
doNotCSE(SDNode * N)674 static bool doNotCSE(SDNode *N) {
675 if (N->getValueType(0) == MVT::Glue)
676 return true; // Never CSE anything that produces a flag.
677
678 switch (N->getOpcode()) {
679 default: break;
680 case ISD::HANDLENODE:
681 case ISD::EH_LABEL:
682 return true; // Never CSE these nodes.
683 }
684
685 // Check that remaining values produced are not flags.
686 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
687 if (N->getValueType(i) == MVT::Glue)
688 return true; // Never CSE anything that produces a flag.
689
690 return false;
691 }
692
693 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
694 /// SelectionDAG.
RemoveDeadNodes()695 void SelectionDAG::RemoveDeadNodes() {
696 // Create a dummy node (which is not added to allnodes), that adds a reference
697 // to the root node, preventing it from being deleted.
698 HandleSDNode Dummy(getRoot());
699
700 SmallVector<SDNode*, 128> DeadNodes;
701
702 // Add all obviously-dead nodes to the DeadNodes worklist.
703 for (SDNode &Node : allnodes())
704 if (Node.use_empty())
705 DeadNodes.push_back(&Node);
706
707 RemoveDeadNodes(DeadNodes);
708
709 // If the root changed (e.g. it was a dead load, update the root).
710 setRoot(Dummy.getValue());
711 }
712
713 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
714 /// given list, and any nodes that become unreachable as a result.
RemoveDeadNodes(SmallVectorImpl<SDNode * > & DeadNodes)715 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
716
717 // Process the worklist, deleting the nodes and adding their uses to the
718 // worklist.
719 while (!DeadNodes.empty()) {
720 SDNode *N = DeadNodes.pop_back_val();
721 // Skip to next node if we've already managed to delete the node. This could
722 // happen if replacing a node causes a node previously added to the node to
723 // be deleted.
724 if (N->getOpcode() == ISD::DELETED_NODE)
725 continue;
726
727 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
728 DUL->NodeDeleted(N, nullptr);
729
730 // Take the node out of the appropriate CSE map.
731 RemoveNodeFromCSEMaps(N);
732
733 // Next, brutally remove the operand list. This is safe to do, as there are
734 // no cycles in the graph.
735 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
736 SDUse &Use = *I++;
737 SDNode *Operand = Use.getNode();
738 Use.set(SDValue());
739
740 // Now that we removed this operand, see if there are no uses of it left.
741 if (Operand->use_empty())
742 DeadNodes.push_back(Operand);
743 }
744
745 DeallocateNode(N);
746 }
747 }
748
RemoveDeadNode(SDNode * N)749 void SelectionDAG::RemoveDeadNode(SDNode *N){
750 SmallVector<SDNode*, 16> DeadNodes(1, N);
751
752 // Create a dummy node that adds a reference to the root node, preventing
753 // it from being deleted. (This matters if the root is an operand of the
754 // dead node.)
755 HandleSDNode Dummy(getRoot());
756
757 RemoveDeadNodes(DeadNodes);
758 }
759
DeleteNode(SDNode * N)760 void SelectionDAG::DeleteNode(SDNode *N) {
761 // First take this out of the appropriate CSE map.
762 RemoveNodeFromCSEMaps(N);
763
764 // Finally, remove uses due to operands of this node, remove from the
765 // AllNodes list, and delete the node.
766 DeleteNodeNotInCSEMaps(N);
767 }
768
DeleteNodeNotInCSEMaps(SDNode * N)769 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
770 assert(N->getIterator() != AllNodes.begin() &&
771 "Cannot delete the entry node!");
772 assert(N->use_empty() && "Cannot delete a node that is not dead!");
773
774 // Drop all of the operands and decrement used node's use counts.
775 N->DropOperands();
776
777 DeallocateNode(N);
778 }
779
erase(const SDNode * Node)780 void SDDbgInfo::erase(const SDNode *Node) {
781 DbgValMapType::iterator I = DbgValMap.find(Node);
782 if (I == DbgValMap.end())
783 return;
784 for (auto &Val: I->second)
785 Val->setIsInvalidated();
786 DbgValMap.erase(I);
787 }
788
DeallocateNode(SDNode * N)789 void SelectionDAG::DeallocateNode(SDNode *N) {
790 // If we have operands, deallocate them.
791 removeOperands(N);
792
793 NodeAllocator.Deallocate(AllNodes.remove(N));
794
795 // Set the opcode to DELETED_NODE to help catch bugs when node
796 // memory is reallocated.
797 // FIXME: There are places in SDag that have grown a dependency on the opcode
798 // value in the released node.
799 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
800 N->NodeType = ISD::DELETED_NODE;
801
802 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
803 // them and forget about that node.
804 DbgInfo->erase(N);
805 }
806
807 #ifndef NDEBUG
808 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
VerifySDNode(SDNode * N)809 static void VerifySDNode(SDNode *N) {
810 switch (N->getOpcode()) {
811 default:
812 break;
813 case ISD::BUILD_PAIR: {
814 EVT VT = N->getValueType(0);
815 assert(N->getNumValues() == 1 && "Too many results!");
816 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
817 "Wrong return type!");
818 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
819 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
820 "Mismatched operand types!");
821 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
822 "Wrong operand type!");
823 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
824 "Wrong return type size");
825 break;
826 }
827 case ISD::BUILD_VECTOR: {
828 assert(N->getNumValues() == 1 && "Too many results!");
829 assert(N->getValueType(0).isVector() && "Wrong return type!");
830 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
831 "Wrong number of operands!");
832 EVT EltVT = N->getValueType(0).getVectorElementType();
833 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
834 assert((I->getValueType() == EltVT ||
835 (EltVT.isInteger() && I->getValueType().isInteger() &&
836 EltVT.bitsLE(I->getValueType()))) &&
837 "Wrong operand type!");
838 assert(I->getValueType() == N->getOperand(0).getValueType() &&
839 "Operands must all have the same type");
840 }
841 break;
842 }
843 }
844 }
845 #endif // NDEBUG
846
847 /// Insert a newly allocated node into the DAG.
848 ///
849 /// Handles insertion into the all nodes list and CSE map, as well as
850 /// verification and other common operations when a new node is allocated.
InsertNode(SDNode * N)851 void SelectionDAG::InsertNode(SDNode *N) {
852 AllNodes.push_back(N);
853 #ifndef NDEBUG
854 N->PersistentId = NextPersistentId++;
855 VerifySDNode(N);
856 #endif
857 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
858 DUL->NodeInserted(N);
859 }
860
861 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
862 /// correspond to it. This is useful when we're about to delete or repurpose
863 /// the node. We don't want future request for structurally identical nodes
864 /// to return N anymore.
RemoveNodeFromCSEMaps(SDNode * N)865 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
866 bool Erased = false;
867 switch (N->getOpcode()) {
868 case ISD::HANDLENODE: return false; // noop.
869 case ISD::CONDCODE:
870 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
871 "Cond code doesn't exist!");
872 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
873 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
874 break;
875 case ISD::ExternalSymbol:
876 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
877 break;
878 case ISD::TargetExternalSymbol: {
879 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
880 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
881 ESN->getSymbol(), ESN->getTargetFlags()));
882 break;
883 }
884 case ISD::MCSymbol: {
885 auto *MCSN = cast<MCSymbolSDNode>(N);
886 Erased = MCSymbols.erase(MCSN->getMCSymbol());
887 break;
888 }
889 case ISD::VALUETYPE: {
890 EVT VT = cast<VTSDNode>(N)->getVT();
891 if (VT.isExtended()) {
892 Erased = ExtendedValueTypeNodes.erase(VT);
893 } else {
894 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
895 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
896 }
897 break;
898 }
899 default:
900 // Remove it from the CSE Map.
901 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
902 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
903 Erased = CSEMap.RemoveNode(N);
904 break;
905 }
906 #ifndef NDEBUG
907 // Verify that the node was actually in one of the CSE maps, unless it has a
908 // flag result (which cannot be CSE'd) or is one of the special cases that are
909 // not subject to CSE.
910 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
911 !N->isMachineOpcode() && !doNotCSE(N)) {
912 N->dump(this);
913 dbgs() << "\n";
914 llvm_unreachable("Node is not in map!");
915 }
916 #endif
917 return Erased;
918 }
919
920 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
921 /// maps and modified in place. Add it back to the CSE maps, unless an identical
922 /// node already exists, in which case transfer all its users to the existing
923 /// node. This transfer can potentially trigger recursive merging.
924 void
AddModifiedNodeToCSEMaps(SDNode * N)925 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
926 // For node types that aren't CSE'd, just act as if no identical node
927 // already exists.
928 if (!doNotCSE(N)) {
929 SDNode *Existing = CSEMap.GetOrInsertNode(N);
930 if (Existing != N) {
931 // If there was already an existing matching node, use ReplaceAllUsesWith
932 // to replace the dead one with the existing one. This can cause
933 // recursive merging of other unrelated nodes down the line.
934 ReplaceAllUsesWith(N, Existing);
935
936 // N is now dead. Inform the listeners and delete it.
937 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
938 DUL->NodeDeleted(N, Existing);
939 DeleteNodeNotInCSEMaps(N);
940 return;
941 }
942 }
943
944 // If the node doesn't already exist, we updated it. Inform listeners.
945 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
946 DUL->NodeUpdated(N);
947 }
948
949 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
950 /// were replaced with those specified. If this node is never memoized,
951 /// return null, otherwise return a pointer to the slot it would take. If a
952 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op,void * & InsertPos)953 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
954 void *&InsertPos) {
955 if (doNotCSE(N))
956 return nullptr;
957
958 SDValue Ops[] = { Op };
959 FoldingSetNodeID ID;
960 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
961 AddNodeIDCustom(ID, N);
962 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
963 if (Node)
964 Node->intersectFlagsWith(N->getFlags());
965 return Node;
966 }
967
968 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
969 /// were replaced with those specified. If this node is never memoized,
970 /// return null, otherwise return a pointer to the slot it would take. If a
971 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,SDValue Op1,SDValue Op2,void * & InsertPos)972 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
973 SDValue Op1, SDValue Op2,
974 void *&InsertPos) {
975 if (doNotCSE(N))
976 return nullptr;
977
978 SDValue Ops[] = { Op1, Op2 };
979 FoldingSetNodeID ID;
980 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
981 AddNodeIDCustom(ID, N);
982 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
983 if (Node)
984 Node->intersectFlagsWith(N->getFlags());
985 return Node;
986 }
987
988 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
989 /// were replaced with those specified. If this node is never memoized,
990 /// return null, otherwise return a pointer to the slot it would take. If a
991 /// node already exists with these operands, the slot will be non-null.
FindModifiedNodeSlot(SDNode * N,ArrayRef<SDValue> Ops,void * & InsertPos)992 SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
993 void *&InsertPos) {
994 if (doNotCSE(N))
995 return nullptr;
996
997 FoldingSetNodeID ID;
998 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
999 AddNodeIDCustom(ID, N);
1000 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1001 if (Node)
1002 Node->intersectFlagsWith(N->getFlags());
1003 return Node;
1004 }
1005
getEVTAlign(EVT VT) const1006 Align SelectionDAG::getEVTAlign(EVT VT) const {
1007 Type *Ty = VT == MVT::iPTR ?
1008 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
1009 VT.getTypeForEVT(*getContext());
1010
1011 return getDataLayout().getABITypeAlign(Ty);
1012 }
1013
1014 // EntryNode could meaningfully have debug info if we can find it...
SelectionDAG(const TargetMachine & tm,CodeGenOpt::Level OL)1015 SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
1016 : TM(tm), OptLevel(OL),
1017 EntryNode(ISD::EntryToken, 0, DebugLoc(), getVTList(MVT::Other)),
1018 Root(getEntryNode()) {
1019 InsertNode(&EntryNode);
1020 DbgInfo = new SDDbgInfo();
1021 }
1022
init(MachineFunction & NewMF,OptimizationRemarkEmitter & NewORE,Pass * PassPtr,const TargetLibraryInfo * LibraryInfo,LegacyDivergenceAnalysis * Divergence,ProfileSummaryInfo * PSIin,BlockFrequencyInfo * BFIin)1023 void SelectionDAG::init(MachineFunction &NewMF,
1024 OptimizationRemarkEmitter &NewORE,
1025 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
1026 LegacyDivergenceAnalysis * Divergence,
1027 ProfileSummaryInfo *PSIin,
1028 BlockFrequencyInfo *BFIin) {
1029 MF = &NewMF;
1030 SDAGISelPass = PassPtr;
1031 ORE = &NewORE;
1032 TLI = getSubtarget().getTargetLowering();
1033 TSI = getSubtarget().getSelectionDAGInfo();
1034 LibInfo = LibraryInfo;
1035 Context = &MF->getFunction().getContext();
1036 DA = Divergence;
1037 PSI = PSIin;
1038 BFI = BFIin;
1039 }
1040
~SelectionDAG()1041 SelectionDAG::~SelectionDAG() {
1042 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1043 allnodes_clear();
1044 OperandRecycler.clear(OperandAllocator);
1045 delete DbgInfo;
1046 }
1047
shouldOptForSize() const1048 bool SelectionDAG::shouldOptForSize() const {
1049 return MF->getFunction().hasOptSize() ||
1050 llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1051 }
1052
allnodes_clear()1053 void SelectionDAG::allnodes_clear() {
1054 assert(&*AllNodes.begin() == &EntryNode);
1055 AllNodes.remove(AllNodes.begin());
1056 while (!AllNodes.empty())
1057 DeallocateNode(&AllNodes.front());
1058 #ifndef NDEBUG
1059 NextPersistentId = 0;
1060 #endif
1061 }
1062
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)1063 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1064 void *&InsertPos) {
1065 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1066 if (N) {
1067 switch (N->getOpcode()) {
1068 default: break;
1069 case ISD::Constant:
1070 case ISD::ConstantFP:
1071 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1072 "debug location. Use another overload.");
1073 }
1074 }
1075 return N;
1076 }
1077
FindNodeOrInsertPos(const FoldingSetNodeID & ID,const SDLoc & DL,void * & InsertPos)1078 SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1079 const SDLoc &DL, void *&InsertPos) {
1080 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1081 if (N) {
1082 switch (N->getOpcode()) {
1083 case ISD::Constant:
1084 case ISD::ConstantFP:
1085 // Erase debug location from the node if the node is used at several
1086 // different places. Do not propagate one location to all uses as it
1087 // will cause a worse single stepping debugging experience.
1088 if (N->getDebugLoc() != DL.getDebugLoc())
1089 N->setDebugLoc(DebugLoc());
1090 break;
1091 default:
1092 // When the node's point of use is located earlier in the instruction
1093 // sequence than its prior point of use, update its debug info to the
1094 // earlier location.
1095 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1096 N->setDebugLoc(DL.getDebugLoc());
1097 break;
1098 }
1099 }
1100 return N;
1101 }
1102
clear()1103 void SelectionDAG::clear() {
1104 allnodes_clear();
1105 OperandRecycler.clear(OperandAllocator);
1106 OperandAllocator.Reset();
1107 CSEMap.clear();
1108
1109 ExtendedValueTypeNodes.clear();
1110 ExternalSymbols.clear();
1111 TargetExternalSymbols.clear();
1112 MCSymbols.clear();
1113 SDCallSiteDbgInfo.clear();
1114 std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
1115 static_cast<CondCodeSDNode*>(nullptr));
1116 std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
1117 static_cast<SDNode*>(nullptr));
1118
1119 EntryNode.UseList = nullptr;
1120 InsertNode(&EntryNode);
1121 Root = getEntryNode();
1122 DbgInfo->clear();
1123 }
1124
getFPExtendOrRound(SDValue Op,const SDLoc & DL,EVT VT)1125 SDValue SelectionDAG::getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT) {
1126 return VT.bitsGT(Op.getValueType())
1127 ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1128 : getNode(ISD::FP_ROUND, DL, VT, Op, getIntPtrConstant(0, DL));
1129 }
1130
1131 std::pair<SDValue, SDValue>
getStrictFPExtendOrRound(SDValue Op,SDValue Chain,const SDLoc & DL,EVT VT)1132 SelectionDAG::getStrictFPExtendOrRound(SDValue Op, SDValue Chain,
1133 const SDLoc &DL, EVT VT) {
1134 assert(!VT.bitsEq(Op.getValueType()) &&
1135 "Strict no-op FP extend/round not allowed.");
1136 SDValue Res =
1137 VT.bitsGT(Op.getValueType())
1138 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1139 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1140 {Chain, Op, getIntPtrConstant(0, DL)});
1141
1142 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1143 }
1144
getAnyExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1145 SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1146 return VT.bitsGT(Op.getValueType()) ?
1147 getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1148 getNode(ISD::TRUNCATE, DL, VT, Op);
1149 }
1150
getSExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1151 SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1152 return VT.bitsGT(Op.getValueType()) ?
1153 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1154 getNode(ISD::TRUNCATE, DL, VT, Op);
1155 }
1156
getZExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1157 SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1158 return VT.bitsGT(Op.getValueType()) ?
1159 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1160 getNode(ISD::TRUNCATE, DL, VT, Op);
1161 }
1162
getBoolExtOrTrunc(SDValue Op,const SDLoc & SL,EVT VT,EVT OpVT)1163 SDValue SelectionDAG::getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT,
1164 EVT OpVT) {
1165 if (VT.bitsLE(Op.getValueType()))
1166 return getNode(ISD::TRUNCATE, SL, VT, Op);
1167
1168 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1169 return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1170 }
1171
getZeroExtendInReg(SDValue Op,const SDLoc & DL,EVT VT)1172 SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1173 EVT OpVT = Op.getValueType();
1174 assert(VT.isInteger() && OpVT.isInteger() &&
1175 "Cannot getZeroExtendInReg FP types");
1176 assert(VT.isVector() == OpVT.isVector() &&
1177 "getZeroExtendInReg type should be vector iff the operand "
1178 "type is vector!");
1179 assert((!VT.isVector() ||
1180 VT.getVectorElementCount() == OpVT.getVectorElementCount()) &&
1181 "Vector element counts must match in getZeroExtendInReg");
1182 assert(VT.bitsLE(OpVT) && "Not extending!");
1183 if (OpVT == VT)
1184 return Op;
1185 APInt Imm = APInt::getLowBitsSet(OpVT.getScalarSizeInBits(),
1186 VT.getScalarSizeInBits());
1187 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1188 }
1189
getPtrExtOrTrunc(SDValue Op,const SDLoc & DL,EVT VT)1190 SDValue SelectionDAG::getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT) {
1191 // Only unsigned pointer semantics are supported right now. In the future this
1192 // might delegate to TLI to check pointer signedness.
1193 return getZExtOrTrunc(Op, DL, VT);
1194 }
1195
getPtrExtendInReg(SDValue Op,const SDLoc & DL,EVT VT)1196 SDValue SelectionDAG::getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT) {
1197 // Only unsigned pointer semantics are supported right now. In the future this
1198 // might delegate to TLI to check pointer signedness.
1199 return getZeroExtendInReg(Op, DL, VT);
1200 }
1201
1202 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
getNOT(const SDLoc & DL,SDValue Val,EVT VT)1203 SDValue SelectionDAG::getNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1204 EVT EltVT = VT.getScalarType();
1205 SDValue NegOne =
1206 getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), DL, VT);
1207 return getNode(ISD::XOR, DL, VT, Val, NegOne);
1208 }
1209
getLogicalNOT(const SDLoc & DL,SDValue Val,EVT VT)1210 SDValue SelectionDAG::getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT) {
1211 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1212 return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1213 }
1214
getBoolConstant(bool V,const SDLoc & DL,EVT VT,EVT OpVT)1215 SDValue SelectionDAG::getBoolConstant(bool V, const SDLoc &DL, EVT VT,
1216 EVT OpVT) {
1217 if (!V)
1218 return getConstant(0, DL, VT);
1219
1220 switch (TLI->getBooleanContents(OpVT)) {
1221 case TargetLowering::ZeroOrOneBooleanContent:
1222 case TargetLowering::UndefinedBooleanContent:
1223 return getConstant(1, DL, VT);
1224 case TargetLowering::ZeroOrNegativeOneBooleanContent:
1225 return getAllOnesConstant(DL, VT);
1226 }
1227 llvm_unreachable("Unexpected boolean content enum!");
1228 }
1229
getNullCapability(const SDLoc & DL)1230 SDValue SelectionDAG::getNullCapability(const SDLoc &DL) {
1231 return getConstant(0, DL, TLI->cheriCapabilityType());
1232 }
1233
getConstant(uint64_t Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1234 SDValue SelectionDAG::getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
1235 bool isT, bool isO) {
1236 EVT EltVT = VT.getScalarType();
1237 assert((EltVT.getSizeInBits() >= 64 ||
1238 (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
1239 "getConstant with a uint64_t value that doesn't fit in the type!");
1240 return getConstant(APInt(EltVT.getSizeInBits(), Val), DL, VT, isT, isO);
1241 }
1242
getConstant(const APInt & Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1243 SDValue SelectionDAG::getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
1244 bool isT, bool isO) {
1245 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1246 }
1247
getConstant(const ConstantInt & Val,const SDLoc & DL,EVT VT,bool isT,bool isO)1248 SDValue SelectionDAG::getConstant(const ConstantInt &Val, const SDLoc &DL,
1249 EVT VT, bool isT, bool isO) {
1250 if (VT.isFatPointer()) {
1251 unsigned AddrBitWidth = getDataLayout().getPointerSizeInBits(0);
1252 APInt Int = Val.getValue();
1253 if (Int.getBitWidth() > AddrBitWidth)
1254 Int = Int.trunc(AddrBitWidth);
1255 assert(APInt::isSameValue(Int, Val.getValue()));
1256 assert(!isT && "Cannot create INTTOPTR targetconstant");
1257 MVT IntVT = MVT::getIntegerVT(AddrBitWidth);
1258 // XXXAR: If this is actually needed somewhere we should add a
1259 // DAG.getIntCapConstant() helper function.
1260 assert(Int.isNullValue() && "Should not create non-zero capability "
1261 "constants with SelectionDAG::getConstant()");
1262 return getNode(ISD::INTTOPTR, DL, VT, getConstant(Int, DL, IntVT));
1263 }
1264 assert(VT.isInteger() && "Cannot create FP integer constant!");
1265
1266 EVT EltVT = VT.getScalarType();
1267 const ConstantInt *Elt = &Val;
1268
1269 // In some cases the vector type is legal but the element type is illegal and
1270 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1271 // inserted value (the type does not need to match the vector element type).
1272 // Any extra bits introduced will be truncated away.
1273 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1274 TargetLowering::TypePromoteInteger) {
1275 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1276 APInt NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1277 Elt = ConstantInt::get(*getContext(), NewVal);
1278 }
1279 // In other cases the element type is illegal and needs to be expanded, for
1280 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1281 // the value into n parts and use a vector type with n-times the elements.
1282 // Then bitcast to the type requested.
1283 // Legalizing constants too early makes the DAGCombiner's job harder so we
1284 // only legalize if the DAG tells us we must produce legal types.
1285 else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1286 TLI->getTypeAction(*getContext(), EltVT) ==
1287 TargetLowering::TypeExpandInteger) {
1288 const APInt &NewVal = Elt->getValue();
1289 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1290 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1291 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1292 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1293
1294 // Check the temporary vector is the correct size. If this fails then
1295 // getTypeToTransformTo() probably returned a type whose size (in bits)
1296 // isn't a power-of-2 factor of the requested type size.
1297 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1298
1299 SmallVector<SDValue, 2> EltParts;
1300 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i) {
1301 EltParts.push_back(getConstant(NewVal.lshr(i * ViaEltSizeInBits)
1302 .zextOrTrunc(ViaEltSizeInBits), DL,
1303 ViaEltVT, isT, isO));
1304 }
1305
1306 // EltParts is currently in little endian order. If we actually want
1307 // big-endian order then reverse it now.
1308 if (getDataLayout().isBigEndian())
1309 std::reverse(EltParts.begin(), EltParts.end());
1310
1311 // The elements must be reversed when the element order is different
1312 // to the endianness of the elements (because the BITCAST is itself a
1313 // vector shuffle in this situation). However, we do not need any code to
1314 // perform this reversal because getConstant() is producing a vector
1315 // splat.
1316 // This situation occurs in MIPS MSA.
1317
1318 SmallVector<SDValue, 8> Ops;
1319 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1320 Ops.insert(Ops.end(), EltParts.begin(), EltParts.end());
1321
1322 SDValue V = getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1323 return V;
1324 }
1325
1326 assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1327 "APInt size does not match type size!");
1328 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1329 FoldingSetNodeID ID;
1330 AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1331 ID.AddPointer(Elt);
1332 ID.AddBoolean(isO);
1333 void *IP = nullptr;
1334 SDNode *N = nullptr;
1335 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1336 if (!VT.isVector())
1337 return SDValue(N, 0);
1338
1339 if (!N) {
1340 N = newSDNode<ConstantSDNode>(isT, isO, Elt, EltVT);
1341 CSEMap.InsertNode(N, IP);
1342 InsertNode(N);
1343 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1344 }
1345
1346 SDValue Result(N, 0);
1347 if (VT.isScalableVector())
1348 Result = getSplatVector(VT, DL, Result);
1349 else if (VT.isVector())
1350 Result = getSplatBuildVector(VT, DL, Result);
1351
1352 return Result;
1353 }
1354
getIntPtrConstant(uint64_t Val,const SDLoc & DL,bool isTarget)1355 SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, const SDLoc &DL,
1356 bool isTarget) {
1357 return getConstant(Val, DL, TLI->getPointerRangeTy(getDataLayout()),
1358 isTarget);
1359 }
1360
getShiftAmountConstant(uint64_t Val,EVT VT,const SDLoc & DL,bool LegalTypes)1361 SDValue SelectionDAG::getShiftAmountConstant(uint64_t Val, EVT VT,
1362 const SDLoc &DL, bool LegalTypes) {
1363 assert(VT.isInteger() && "Shift amount is not an integer type!");
1364 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout(), LegalTypes);
1365 return getConstant(Val, DL, ShiftVT);
1366 }
1367
getVectorIdxConstant(uint64_t Val,const SDLoc & DL,bool isTarget)1368 SDValue SelectionDAG::getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
1369 bool isTarget) {
1370 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1371 }
1372
getConstantFP(const APFloat & V,const SDLoc & DL,EVT VT,bool isTarget)1373 SDValue SelectionDAG::getConstantFP(const APFloat &V, const SDLoc &DL, EVT VT,
1374 bool isTarget) {
1375 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1376 }
1377
getConstantFP(const ConstantFP & V,const SDLoc & DL,EVT VT,bool isTarget)1378 SDValue SelectionDAG::getConstantFP(const ConstantFP &V, const SDLoc &DL,
1379 EVT VT, bool isTarget) {
1380 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1381
1382 EVT EltVT = VT.getScalarType();
1383
1384 // Do the map lookup using the actual bit pattern for the floating point
1385 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1386 // we don't have issues with SNANs.
1387 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1388 FoldingSetNodeID ID;
1389 AddNodeIDNode(ID, Opc, getVTList(EltVT), None);
1390 ID.AddPointer(&V);
1391 void *IP = nullptr;
1392 SDNode *N = nullptr;
1393 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1394 if (!VT.isVector())
1395 return SDValue(N, 0);
1396
1397 if (!N) {
1398 N = newSDNode<ConstantFPSDNode>(isTarget, &V, EltVT);
1399 CSEMap.InsertNode(N, IP);
1400 InsertNode(N);
1401 }
1402
1403 SDValue Result(N, 0);
1404 if (VT.isVector())
1405 Result = getSplatBuildVector(VT, DL, Result);
1406 NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1407 return Result;
1408 }
1409
getConstantFP(double Val,const SDLoc & DL,EVT VT,bool isTarget)1410 SDValue SelectionDAG::getConstantFP(double Val, const SDLoc &DL, EVT VT,
1411 bool isTarget) {
1412 EVT EltVT = VT.getScalarType();
1413 if (EltVT == MVT::f32)
1414 return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1415 else if (EltVT == MVT::f64)
1416 return getConstantFP(APFloat(Val), DL, VT, isTarget);
1417 else if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1418 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1419 bool Ignored;
1420 APFloat APF = APFloat(Val);
1421 APF.convert(EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1422 &Ignored);
1423 return getConstantFP(APF, DL, VT, isTarget);
1424 } else
1425 llvm_unreachable("Unsupported type in getConstantFP");
1426 }
1427
getGlobalAddress(const GlobalValue * GV,const SDLoc & DL,EVT VT,int64_t Offset,bool isTargetGA,unsigned TargetFlags)1428 SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, const SDLoc &DL,
1429 EVT VT, int64_t Offset, bool isTargetGA,
1430 unsigned TargetFlags) {
1431 assert((TargetFlags == 0 || isTargetGA) &&
1432 "Cannot set target flags on target-independent globals");
1433
1434 // Truncate (with sign-extension) the offset value to the pointer size.
1435 unsigned BitWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
1436 if (BitWidth < 64)
1437 Offset = SignExtend64(Offset, BitWidth);
1438
1439 unsigned Opc;
1440 if (GV->isThreadLocal())
1441 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1442 else
1443 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1444
1445 FoldingSetNodeID ID;
1446 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1447 ID.AddPointer(GV);
1448 ID.AddInteger(Offset);
1449 ID.AddInteger(TargetFlags);
1450 void *IP = nullptr;
1451 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1452 return SDValue(E, 0);
1453
1454 auto *N = newSDNode<GlobalAddressSDNode>(
1455 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VT, Offset, TargetFlags);
1456 CSEMap.InsertNode(N, IP);
1457 InsertNode(N);
1458 return SDValue(N, 0);
1459 }
1460
getFrameIndex(int FI,EVT VT,bool isTarget)1461 SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1462 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1463 FoldingSetNodeID ID;
1464 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1465 ID.AddInteger(FI);
1466 void *IP = nullptr;
1467 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1468 return SDValue(E, 0);
1469
1470 auto *N = newSDNode<FrameIndexSDNode>(FI, VT, isTarget);
1471 CSEMap.InsertNode(N, IP);
1472 InsertNode(N);
1473 return SDValue(N, 0);
1474 }
1475
getJumpTable(int JTI,EVT VT,bool isTarget,unsigned TargetFlags)1476 SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1477 unsigned TargetFlags) {
1478 assert((TargetFlags == 0 || isTarget) &&
1479 "Cannot set target flags on target-independent jump tables");
1480 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1481 FoldingSetNodeID ID;
1482 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1483 ID.AddInteger(JTI);
1484 ID.AddInteger(TargetFlags);
1485 void *IP = nullptr;
1486 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1487 return SDValue(E, 0);
1488
1489 auto *N = newSDNode<JumpTableSDNode>(JTI, VT, isTarget, TargetFlags);
1490 CSEMap.InsertNode(N, IP);
1491 InsertNode(N);
1492 return SDValue(N, 0);
1493 }
1494
getConstantPool(const Constant * C,EVT VT,MaybeAlign Alignment,int Offset,bool isTarget,unsigned TargetFlags)1495 SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1496 MaybeAlign Alignment, int Offset,
1497 bool isTarget, unsigned TargetFlags) {
1498 assert((TargetFlags == 0 || isTarget) &&
1499 "Cannot set target flags on target-independent globals");
1500 if (!Alignment)
1501 Alignment = shouldOptForSize()
1502 ? getDataLayout().getABITypeAlign(C->getType())
1503 : getDataLayout().getPrefTypeAlign(C->getType());
1504 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1505 FoldingSetNodeID ID;
1506 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1507 ID.AddInteger(Alignment->value());
1508 ID.AddInteger(Offset);
1509 ID.AddPointer(C);
1510 ID.AddInteger(TargetFlags);
1511 void *IP = nullptr;
1512 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1513 return SDValue(E, 0);
1514
1515 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1516 TargetFlags);
1517 CSEMap.InsertNode(N, IP);
1518 InsertNode(N);
1519 SDValue V = SDValue(N, 0);
1520 NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1521 return V;
1522 }
1523
getConstantPool(MachineConstantPoolValue * C,EVT VT,MaybeAlign Alignment,int Offset,bool isTarget,unsigned TargetFlags)1524 SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1525 MaybeAlign Alignment, int Offset,
1526 bool isTarget, unsigned TargetFlags) {
1527 assert((TargetFlags == 0 || isTarget) &&
1528 "Cannot set target flags on target-independent globals");
1529 if (!Alignment)
1530 Alignment = getDataLayout().getPrefTypeAlign(C->getType());
1531 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1532 FoldingSetNodeID ID;
1533 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1534 ID.AddInteger(Alignment->value());
1535 ID.AddInteger(Offset);
1536 C->addSelectionDAGCSEId(ID);
1537 ID.AddInteger(TargetFlags);
1538 void *IP = nullptr;
1539 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1540 return SDValue(E, 0);
1541
1542 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VT, Offset, *Alignment,
1543 TargetFlags);
1544 CSEMap.InsertNode(N, IP);
1545 InsertNode(N);
1546 return SDValue(N, 0);
1547 }
1548
getTargetIndex(int Index,EVT VT,int64_t Offset,unsigned TargetFlags)1549 SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1550 unsigned TargetFlags) {
1551 FoldingSetNodeID ID;
1552 AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), None);
1553 ID.AddInteger(Index);
1554 ID.AddInteger(Offset);
1555 ID.AddInteger(TargetFlags);
1556 void *IP = nullptr;
1557 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1558 return SDValue(E, 0);
1559
1560 auto *N = newSDNode<TargetIndexSDNode>(Index, VT, Offset, TargetFlags);
1561 CSEMap.InsertNode(N, IP);
1562 InsertNode(N);
1563 return SDValue(N, 0);
1564 }
1565
getBasicBlock(MachineBasicBlock * MBB)1566 SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1567 FoldingSetNodeID ID;
1568 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), None);
1569 ID.AddPointer(MBB);
1570 void *IP = nullptr;
1571 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1572 return SDValue(E, 0);
1573
1574 auto *N = newSDNode<BasicBlockSDNode>(MBB);
1575 CSEMap.InsertNode(N, IP);
1576 InsertNode(N);
1577 return SDValue(N, 0);
1578 }
1579
getValueType(EVT VT)1580 SDValue SelectionDAG::getValueType(EVT VT) {
1581 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1582 ValueTypeNodes.size())
1583 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1584
1585 SDNode *&N = VT.isExtended() ?
1586 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1587
1588 if (N) return SDValue(N, 0);
1589 N = newSDNode<VTSDNode>(VT);
1590 InsertNode(N);
1591 return SDValue(N, 0);
1592 }
1593
getExternalSymbol(const char * Sym,EVT VT)1594 SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1595 SDNode *&N = ExternalSymbols[Sym];
1596 if (N) return SDValue(N, 0);
1597 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, VT);
1598 InsertNode(N);
1599 return SDValue(N, 0);
1600 }
1601
getExternalFunctionSymbol(const char * Sym)1602 SDValue SelectionDAG::getExternalFunctionSymbol(const char *Sym) {
1603 auto AddrSpace = getDataLayout().getProgramAddressSpace();
1604 return getExternalSymbol(Sym, TLI->getPointerTy(getDataLayout(), AddrSpace));
1605 }
1606
getMCSymbol(MCSymbol * Sym,EVT VT)1607 SDValue SelectionDAG::getMCSymbol(MCSymbol *Sym, EVT VT) {
1608 SDNode *&N = MCSymbols[Sym];
1609 if (N)
1610 return SDValue(N, 0);
1611 N = newSDNode<MCSymbolSDNode>(Sym, VT);
1612 InsertNode(N);
1613 return SDValue(N, 0);
1614 }
1615
getTargetExternalSymbol(const char * Sym,EVT VT,unsigned TargetFlags)1616 SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1617 unsigned TargetFlags) {
1618 SDNode *&N =
1619 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
1620 if (N) return SDValue(N, 0);
1621 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, VT);
1622 InsertNode(N);
1623 return SDValue(N, 0);
1624 }
1625
1626 SDValue
getTargetExternalFunctionSymbol(const char * Sym,unsigned TargetFlags)1627 SelectionDAG::getTargetExternalFunctionSymbol(const char *Sym,
1628 unsigned TargetFlags) {
1629 auto AddrSpace = getDataLayout().getProgramAddressSpace();
1630 return getTargetExternalSymbol(
1631 Sym, TLI->getPointerTy(getDataLayout(), AddrSpace), TargetFlags);
1632 }
1633
getCondCode(ISD::CondCode Cond)1634 SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1635 if ((unsigned)Cond >= CondCodeNodes.size())
1636 CondCodeNodes.resize(Cond+1);
1637
1638 if (!CondCodeNodes[Cond]) {
1639 auto *N = newSDNode<CondCodeSDNode>(Cond);
1640 CondCodeNodes[Cond] = N;
1641 InsertNode(N);
1642 }
1643
1644 return SDValue(CondCodeNodes[Cond], 0);
1645 }
1646
1647 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1648 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
commuteShuffle(SDValue & N1,SDValue & N2,MutableArrayRef<int> M)1649 static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef<int> M) {
1650 std::swap(N1, N2);
1651 ShuffleVectorSDNode::commuteMask(M);
1652 }
1653
getVectorShuffle(EVT VT,const SDLoc & dl,SDValue N1,SDValue N2,ArrayRef<int> Mask)1654 SDValue SelectionDAG::getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1,
1655 SDValue N2, ArrayRef<int> Mask) {
1656 assert(VT.getVectorNumElements() == Mask.size() &&
1657 "Must have the same number of vector elements as mask elements!");
1658 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1659 "Invalid VECTOR_SHUFFLE");
1660
1661 // Canonicalize shuffle undef, undef -> undef
1662 if (N1.isUndef() && N2.isUndef())
1663 return getUNDEF(VT);
1664
1665 // Validate that all indices in Mask are within the range of the elements
1666 // input to the shuffle.
1667 int NElts = Mask.size();
1668 assert(llvm::all_of(Mask,
1669 [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
1670 "Index out of range");
1671
1672 // Copy the mask so we can do any needed cleanup.
1673 SmallVector<int, 8> MaskVec(Mask.begin(), Mask.end());
1674
1675 // Canonicalize shuffle v, v -> v, undef
1676 if (N1 == N2) {
1677 N2 = getUNDEF(VT);
1678 for (int i = 0; i != NElts; ++i)
1679 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
1680 }
1681
1682 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1683 if (N1.isUndef())
1684 commuteShuffle(N1, N2, MaskVec);
1685
1686 if (TLI->hasVectorBlend()) {
1687 // If shuffling a splat, try to blend the splat instead. We do this here so
1688 // that even when this arises during lowering we don't have to re-handle it.
1689 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
1690 BitVector UndefElements;
1691 SDValue Splat = BV->getSplatValue(&UndefElements);
1692 if (!Splat)
1693 return;
1694
1695 for (int i = 0; i < NElts; ++i) {
1696 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
1697 continue;
1698
1699 // If this input comes from undef, mark it as such.
1700 if (UndefElements[MaskVec[i] - Offset]) {
1701 MaskVec[i] = -1;
1702 continue;
1703 }
1704
1705 // If we can blend a non-undef lane, use that instead.
1706 if (!UndefElements[i])
1707 MaskVec[i] = i + Offset;
1708 }
1709 };
1710 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
1711 BlendSplat(N1BV, 0);
1712 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
1713 BlendSplat(N2BV, NElts);
1714 }
1715
1716 // Canonicalize all index into lhs, -> shuffle lhs, undef
1717 // Canonicalize all index into rhs, -> shuffle rhs, undef
1718 bool AllLHS = true, AllRHS = true;
1719 bool N2Undef = N2.isUndef();
1720 for (int i = 0; i != NElts; ++i) {
1721 if (MaskVec[i] >= NElts) {
1722 if (N2Undef)
1723 MaskVec[i] = -1;
1724 else
1725 AllLHS = false;
1726 } else if (MaskVec[i] >= 0) {
1727 AllRHS = false;
1728 }
1729 }
1730 if (AllLHS && AllRHS)
1731 return getUNDEF(VT);
1732 if (AllLHS && !N2Undef)
1733 N2 = getUNDEF(VT);
1734 if (AllRHS) {
1735 N1 = getUNDEF(VT);
1736 commuteShuffle(N1, N2, MaskVec);
1737 }
1738 // Reset our undef status after accounting for the mask.
1739 N2Undef = N2.isUndef();
1740 // Re-check whether both sides ended up undef.
1741 if (N1.isUndef() && N2Undef)
1742 return getUNDEF(VT);
1743
1744 // If Identity shuffle return that node.
1745 bool Identity = true, AllSame = true;
1746 for (int i = 0; i != NElts; ++i) {
1747 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
1748 if (MaskVec[i] != MaskVec[0]) AllSame = false;
1749 }
1750 if (Identity && NElts)
1751 return N1;
1752
1753 // Shuffling a constant splat doesn't change the result.
1754 if (N2Undef) {
1755 SDValue V = N1;
1756
1757 // Look through any bitcasts. We check that these don't change the number
1758 // (and size) of elements and just changes their types.
1759 while (V.getOpcode() == ISD::BITCAST)
1760 V = V->getOperand(0);
1761
1762 // A splat should always show up as a build vector node.
1763 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1764 BitVector UndefElements;
1765 SDValue Splat = BV->getSplatValue(&UndefElements);
1766 // If this is a splat of an undef, shuffling it is also undef.
1767 if (Splat && Splat.isUndef())
1768 return getUNDEF(VT);
1769
1770 bool SameNumElts =
1771 V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
1772
1773 // We only have a splat which can skip shuffles if there is a splatted
1774 // value and no undef lanes rearranged by the shuffle.
1775 if (Splat && UndefElements.none()) {
1776 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1777 // number of elements match or the value splatted is a zero constant.
1778 if (SameNumElts)
1779 return N1;
1780 if (auto *C = dyn_cast<ConstantSDNode>(Splat))
1781 if (C->isNullValue())
1782 return N1;
1783 }
1784
1785 // If the shuffle itself creates a splat, build the vector directly.
1786 if (AllSame && SameNumElts) {
1787 EVT BuildVT = BV->getValueType(0);
1788 const SDValue &Splatted = BV->getOperand(MaskVec[0]);
1789 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
1790
1791 // We may have jumped through bitcasts, so the type of the
1792 // BUILD_VECTOR may not match the type of the shuffle.
1793 if (BuildVT != VT)
1794 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
1795 return NewBV;
1796 }
1797 }
1798 }
1799
1800 FoldingSetNodeID ID;
1801 SDValue Ops[2] = { N1, N2 };
1802 AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops);
1803 for (int i = 0; i != NElts; ++i)
1804 ID.AddInteger(MaskVec[i]);
1805
1806 void* IP = nullptr;
1807 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1808 return SDValue(E, 0);
1809
1810 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1811 // SDNode doesn't have access to it. This memory will be "leaked" when
1812 // the node is deallocated, but recovered when the NodeAllocator is released.
1813 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1814 llvm::copy(MaskVec, MaskAlloc);
1815
1816 auto *N = newSDNode<ShuffleVectorSDNode>(VT, dl.getIROrder(),
1817 dl.getDebugLoc(), MaskAlloc);
1818 createOperands(N, Ops);
1819
1820 CSEMap.InsertNode(N, IP);
1821 InsertNode(N);
1822 SDValue V = SDValue(N, 0);
1823 NewSDValueDbgMsg(V, "Creating new node: ", this);
1824 return V;
1825 }
1826
getCommutedVectorShuffle(const ShuffleVectorSDNode & SV)1827 SDValue SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode &SV) {
1828 EVT VT = SV.getValueType(0);
1829 SmallVector<int, 8> MaskVec(SV.getMask().begin(), SV.getMask().end());
1830 ShuffleVectorSDNode::commuteMask(MaskVec);
1831
1832 SDValue Op0 = SV.getOperand(0);
1833 SDValue Op1 = SV.getOperand(1);
1834 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
1835 }
1836
getRegister(unsigned RegNo,EVT VT)1837 SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1838 FoldingSetNodeID ID;
1839 AddNodeIDNode(ID, ISD::Register, getVTList(VT), None);
1840 ID.AddInteger(RegNo);
1841 void *IP = nullptr;
1842 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1843 return SDValue(E, 0);
1844
1845 auto *N = newSDNode<RegisterSDNode>(RegNo, VT);
1846 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
1847 CSEMap.InsertNode(N, IP);
1848 InsertNode(N);
1849 return SDValue(N, 0);
1850 }
1851
getRegisterMask(const uint32_t * RegMask)1852 SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1853 FoldingSetNodeID ID;
1854 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), None);
1855 ID.AddPointer(RegMask);
1856 void *IP = nullptr;
1857 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1858 return SDValue(E, 0);
1859
1860 auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
1861 CSEMap.InsertNode(N, IP);
1862 InsertNode(N);
1863 return SDValue(N, 0);
1864 }
1865
getEHLabel(const SDLoc & dl,SDValue Root,MCSymbol * Label)1866 SDValue SelectionDAG::getEHLabel(const SDLoc &dl, SDValue Root,
1867 MCSymbol *Label) {
1868 return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
1869 }
1870
getLabelNode(unsigned Opcode,const SDLoc & dl,SDValue Root,MCSymbol * Label)1871 SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
1872 SDValue Root, MCSymbol *Label) {
1873 FoldingSetNodeID ID;
1874 SDValue Ops[] = { Root };
1875 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
1876 ID.AddPointer(Label);
1877 void *IP = nullptr;
1878 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1879 return SDValue(E, 0);
1880
1881 auto *N =
1882 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
1883 createOperands(N, Ops);
1884
1885 CSEMap.InsertNode(N, IP);
1886 InsertNode(N);
1887 return SDValue(N, 0);
1888 }
1889
getBlockAddress(const BlockAddress * BA,EVT VT,int64_t Offset,bool isTarget,unsigned TargetFlags)1890 SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1891 int64_t Offset, bool isTarget,
1892 unsigned TargetFlags) {
1893 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1894
1895 FoldingSetNodeID ID;
1896 AddNodeIDNode(ID, Opc, getVTList(VT), None);
1897 ID.AddPointer(BA);
1898 ID.AddInteger(Offset);
1899 ID.AddInteger(TargetFlags);
1900 void *IP = nullptr;
1901 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1902 return SDValue(E, 0);
1903
1904 auto *N = newSDNode<BlockAddressSDNode>(Opc, VT, BA, Offset, TargetFlags);
1905 CSEMap.InsertNode(N, IP);
1906 InsertNode(N);
1907 return SDValue(N, 0);
1908 }
1909
getSrcValue(const Value * V)1910 SDValue SelectionDAG::getSrcValue(const Value *V) {
1911 FoldingSetNodeID ID;
1912 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), None);
1913 ID.AddPointer(V);
1914
1915 void *IP = nullptr;
1916 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1917 return SDValue(E, 0);
1918
1919 auto *N = newSDNode<SrcValueSDNode>(V);
1920 CSEMap.InsertNode(N, IP);
1921 InsertNode(N);
1922 return SDValue(N, 0);
1923 }
1924
getMDNode(const MDNode * MD)1925 SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1926 FoldingSetNodeID ID;
1927 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), None);
1928 ID.AddPointer(MD);
1929
1930 void *IP = nullptr;
1931 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1932 return SDValue(E, 0);
1933
1934 auto *N = newSDNode<MDNodeSDNode>(MD);
1935 CSEMap.InsertNode(N, IP);
1936 InsertNode(N);
1937 return SDValue(N, 0);
1938 }
1939
getBitcast(EVT VT,SDValue V)1940 SDValue SelectionDAG::getBitcast(EVT VT, SDValue V) {
1941 if (VT == V.getValueType())
1942 return V;
1943
1944 return getNode(ISD::BITCAST, SDLoc(V), VT, V);
1945 }
1946
getAddrSpaceCast(const SDLoc & dl,EVT VT,SDValue Ptr,unsigned SrcAS,unsigned DestAS)1947 SDValue SelectionDAG::getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr,
1948 unsigned SrcAS, unsigned DestAS) {
1949 SDValue Ops[] = {Ptr};
1950 FoldingSetNodeID ID;
1951 AddNodeIDNode(ID, ISD::ADDRSPACECAST, getVTList(VT), Ops);
1952 ID.AddInteger(SrcAS);
1953 ID.AddInteger(DestAS);
1954
1955 void *IP = nullptr;
1956 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
1957 return SDValue(E, 0);
1958
1959 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
1960 VT, SrcAS, DestAS);
1961 createOperands(N, Ops);
1962
1963 CSEMap.InsertNode(N, IP);
1964 InsertNode(N);
1965 return SDValue(N, 0);
1966 }
1967
getFreeze(SDValue V)1968 SDValue SelectionDAG::getFreeze(SDValue V) {
1969 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
1970 }
1971
1972 /// getShiftAmountOperand - Return the specified value casted to
1973 /// the target's desired shift amount type.
getShiftAmountOperand(EVT LHSTy,SDValue Op)1974 SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1975 EVT OpTy = Op.getValueType();
1976 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
1977 if (OpTy == ShTy || OpTy.isVector()) return Op;
1978
1979 return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
1980 }
1981
expandVAArg(SDNode * Node)1982 SDValue SelectionDAG::expandVAArg(SDNode *Node) {
1983 SDLoc dl(Node);
1984 const TargetLowering &TLI = getTargetLoweringInfo();
1985 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1986 EVT VT = Node->getValueType(0);
1987 SDValue Tmp1 = Node->getOperand(0);
1988 SDValue Tmp2 = Node->getOperand(1);
1989 const MaybeAlign MA(Node->getConstantOperandVal(3));
1990
1991 SDValue VAListLoad = getLoad(
1992 TLI.getPointerTy(getDataLayout(), getDataLayout().getAllocaAddrSpace()),
1993 dl, Tmp1, Tmp2, MachinePointerInfo(V));
1994 SDValue VAList = VAListLoad;
1995
1996 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
1997 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
1998 getConstant(MA->value() - 1, dl, VAList.getValueType()));
1999
2000 VAList =
2001 getNode(ISD::AND, dl, VAList.getValueType(), VAList,
2002 getConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2003 }
2004
2005 // Increment the pointer, VAList, to the next vaarg
2006 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2007 getConstant(getDataLayout().getTypeAllocSize(
2008 VT.getTypeForEVT(*getContext())),
2009 dl, VAList.getValueType()));
2010 // Store the incremented VAList to the legalized pointer
2011 Tmp1 =
2012 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2013 // Load the actual argument out of the pointer VAList
2014 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2015 }
2016
expandVACopy(SDNode * Node)2017 SDValue SelectionDAG::expandVACopy(SDNode *Node) {
2018 SDLoc dl(Node);
2019 const TargetLowering &TLI = getTargetLoweringInfo();
2020 // This defaults to loading a pointer from the input and storing it to the
2021 // output, returning the chain.
2022 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2023 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2024 SDValue Tmp1 = getLoad(
2025 TLI.getPointerTy(getDataLayout(), getDataLayout().getAllocaAddrSpace()),
2026 dl, Node->getOperand(0), Node->getOperand(2), MachinePointerInfo(VS));
2027 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2028 MachinePointerInfo(VD));
2029 }
2030
getReducedAlign(EVT VT,bool UseABI)2031 Align SelectionDAG::getReducedAlign(EVT VT, bool UseABI) {
2032 const DataLayout &DL = getDataLayout();
2033 Type *Ty = VT.getTypeForEVT(*getContext());
2034 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2035
2036 if (TLI->isTypeLegal(VT) || !VT.isVector())
2037 return RedAlign;
2038
2039 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2040 const Align StackAlign = TFI->getStackAlign();
2041
2042 // See if we can choose a smaller ABI alignment in cases where it's an
2043 // illegal vector type that will get broken down.
2044 if (RedAlign > StackAlign) {
2045 EVT IntermediateVT;
2046 MVT RegisterVT;
2047 unsigned NumIntermediates;
2048 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2049 NumIntermediates, RegisterVT);
2050 Ty = IntermediateVT.getTypeForEVT(*getContext());
2051 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2052 if (RedAlign2 < RedAlign)
2053 RedAlign = RedAlign2;
2054 }
2055
2056 return RedAlign;
2057 }
2058
CreateStackTemporary(TypeSize Bytes,Align Alignment)2059 SDValue SelectionDAG::CreateStackTemporary(TypeSize Bytes, Align Alignment) {
2060 MachineFrameInfo &MFI = MF->getFrameInfo();
2061 int FrameIdx = MFI.CreateStackObject(Bytes, Alignment, false);
2062 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2063 }
2064
CreateStackTemporary(EVT VT,unsigned minAlign)2065 SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
2066 Type *Ty = VT.getTypeForEVT(*getContext());
2067 Align StackAlign =
2068 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2069 return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2070 }
2071
CreateStackTemporary(EVT VT1,EVT VT2)2072 SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
2073 TypeSize Bytes = std::max(VT1.getStoreSize(), VT2.getStoreSize());
2074 Type *Ty1 = VT1.getTypeForEVT(*getContext());
2075 Type *Ty2 = VT2.getTypeForEVT(*getContext());
2076 const DataLayout &DL = getDataLayout();
2077 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2078 return CreateStackTemporary(Bytes, Align);
2079 }
2080
FoldSetCC(EVT VT,SDValue N1,SDValue N2,ISD::CondCode Cond,const SDLoc & dl)2081 SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1, SDValue N2,
2082 ISD::CondCode Cond, const SDLoc &dl) {
2083 EVT OpVT = N1.getValueType();
2084
2085 // These setcc operations always fold.
2086 switch (Cond) {
2087 default: break;
2088 case ISD::SETFALSE:
2089 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2090 case ISD::SETTRUE:
2091 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2092
2093 case ISD::SETOEQ:
2094 case ISD::SETOGT:
2095 case ISD::SETOGE:
2096 case ISD::SETOLT:
2097 case ISD::SETOLE:
2098 case ISD::SETONE:
2099 case ISD::SETO:
2100 case ISD::SETUO:
2101 case ISD::SETUEQ:
2102 case ISD::SETUNE:
2103 assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2104 break;
2105 }
2106
2107 if (OpVT.isInteger()) {
2108 // For EQ and NE, we can always pick a value for the undef to make the
2109 // predicate pass or fail, so we can return undef.
2110 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2111 // icmp eq/ne X, undef -> undef.
2112 if ((N1.isUndef() || N2.isUndef()) &&
2113 (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2114 return getUNDEF(VT);
2115
2116 // If both operands are undef, we can return undef for int comparison.
2117 // icmp undef, undef -> undef.
2118 if (N1.isUndef() && N2.isUndef())
2119 return getUNDEF(VT);
2120
2121 // icmp X, X -> true/false
2122 // icmp X, undef -> true/false because undef could be X.
2123 if (N1 == N2)
2124 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2125 }
2126
2127 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2)) {
2128 const APInt &C2 = N2C->getAPIntValue();
2129 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1)) {
2130 const APInt &C1 = N1C->getAPIntValue();
2131
2132 switch (Cond) {
2133 default: llvm_unreachable("Unknown integer setcc!");
2134 case ISD::SETEQ: return getBoolConstant(C1 == C2, dl, VT, OpVT);
2135 case ISD::SETNE: return getBoolConstant(C1 != C2, dl, VT, OpVT);
2136 case ISD::SETULT: return getBoolConstant(C1.ult(C2), dl, VT, OpVT);
2137 case ISD::SETUGT: return getBoolConstant(C1.ugt(C2), dl, VT, OpVT);
2138 case ISD::SETULE: return getBoolConstant(C1.ule(C2), dl, VT, OpVT);
2139 case ISD::SETUGE: return getBoolConstant(C1.uge(C2), dl, VT, OpVT);
2140 case ISD::SETLT: return getBoolConstant(C1.slt(C2), dl, VT, OpVT);
2141 case ISD::SETGT: return getBoolConstant(C1.sgt(C2), dl, VT, OpVT);
2142 case ISD::SETLE: return getBoolConstant(C1.sle(C2), dl, VT, OpVT);
2143 case ISD::SETGE: return getBoolConstant(C1.sge(C2), dl, VT, OpVT);
2144 }
2145 }
2146 }
2147
2148 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2149 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2150
2151 if (N1CFP && N2CFP) {
2152 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2153 switch (Cond) {
2154 default: break;
2155 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
2156 return getUNDEF(VT);
2157 LLVM_FALLTHROUGH;
2158 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2159 OpVT);
2160 case ISD::SETNE: if (R==APFloat::cmpUnordered)
2161 return getUNDEF(VT);
2162 LLVM_FALLTHROUGH;
2163 case ISD::SETONE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2164 R==APFloat::cmpLessThan, dl, VT,
2165 OpVT);
2166 case ISD::SETLT: if (R==APFloat::cmpUnordered)
2167 return getUNDEF(VT);
2168 LLVM_FALLTHROUGH;
2169 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2170 OpVT);
2171 case ISD::SETGT: if (R==APFloat::cmpUnordered)
2172 return getUNDEF(VT);
2173 LLVM_FALLTHROUGH;
2174 case ISD::SETOGT: return getBoolConstant(R==APFloat::cmpGreaterThan, dl,
2175 VT, OpVT);
2176 case ISD::SETLE: if (R==APFloat::cmpUnordered)
2177 return getUNDEF(VT);
2178 LLVM_FALLTHROUGH;
2179 case ISD::SETOLE: return getBoolConstant(R==APFloat::cmpLessThan ||
2180 R==APFloat::cmpEqual, dl, VT,
2181 OpVT);
2182 case ISD::SETGE: if (R==APFloat::cmpUnordered)
2183 return getUNDEF(VT);
2184 LLVM_FALLTHROUGH;
2185 case ISD::SETOGE: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2186 R==APFloat::cmpEqual, dl, VT, OpVT);
2187 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2188 OpVT);
2189 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2190 OpVT);
2191 case ISD::SETUEQ: return getBoolConstant(R==APFloat::cmpUnordered ||
2192 R==APFloat::cmpEqual, dl, VT,
2193 OpVT);
2194 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2195 OpVT);
2196 case ISD::SETULT: return getBoolConstant(R==APFloat::cmpUnordered ||
2197 R==APFloat::cmpLessThan, dl, VT,
2198 OpVT);
2199 case ISD::SETUGT: return getBoolConstant(R==APFloat::cmpGreaterThan ||
2200 R==APFloat::cmpUnordered, dl, VT,
2201 OpVT);
2202 case ISD::SETULE: return getBoolConstant(R!=APFloat::cmpGreaterThan, dl,
2203 VT, OpVT);
2204 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2205 OpVT);
2206 }
2207 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2208 // Ensure that the constant occurs on the RHS.
2209 ISD::CondCode SwappedCond = ISD::getSetCCSwappedOperands(Cond);
2210 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2211 return SDValue();
2212 return getSetCC(dl, VT, N2, N1, SwappedCond);
2213 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2214 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2215 // If an operand is known to be a nan (or undef that could be a nan), we can
2216 // fold it.
2217 // Choosing NaN for the undef will always make unordered comparison succeed
2218 // and ordered comparison fails.
2219 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2220 switch (ISD::getUnorderedFlavor(Cond)) {
2221 default:
2222 llvm_unreachable("Unknown flavor!");
2223 case 0: // Known false.
2224 return getBoolConstant(false, dl, VT, OpVT);
2225 case 1: // Known true.
2226 return getBoolConstant(true, dl, VT, OpVT);
2227 case 2: // Undefined.
2228 return getUNDEF(VT);
2229 }
2230 }
2231
2232 // Could not fold it.
2233 return SDValue();
2234 }
2235
2236 /// See if the specified operand can be simplified with the knowledge that only
2237 /// the bits specified by DemandedBits are used.
2238 /// TODO: really we should be making this into the DAG equivalent of
2239 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
GetDemandedBits(SDValue V,const APInt & DemandedBits)2240 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits) {
2241 EVT VT = V.getValueType();
2242 APInt DemandedElts = VT.isVector()
2243 ? APInt::getAllOnesValue(VT.getVectorNumElements())
2244 : APInt(1, 1);
2245 return GetDemandedBits(V, DemandedBits, DemandedElts);
2246 }
2247
2248 /// See if the specified operand can be simplified with the knowledge that only
2249 /// the bits specified by DemandedBits are used in the elements specified by
2250 /// DemandedElts.
2251 /// TODO: really we should be making this into the DAG equivalent of
2252 /// SimplifyMultipleUseDemandedBits and not generate any new nodes.
GetDemandedBits(SDValue V,const APInt & DemandedBits,const APInt & DemandedElts)2253 SDValue SelectionDAG::GetDemandedBits(SDValue V, const APInt &DemandedBits,
2254 const APInt &DemandedElts) {
2255 switch (V.getOpcode()) {
2256 default:
2257 return TLI->SimplifyMultipleUseDemandedBits(V, DemandedBits, DemandedElts,
2258 *this, 0);
2259 break;
2260 case ISD::Constant: {
2261 const APInt &CVal = cast<ConstantSDNode>(V)->getAPIntValue();
2262 APInt NewVal = CVal & DemandedBits;
2263 if (NewVal != CVal)
2264 return getConstant(NewVal, SDLoc(V), V.getValueType());
2265 break;
2266 }
2267 case ISD::SRL:
2268 // Only look at single-use SRLs.
2269 if (!V.getNode()->hasOneUse())
2270 break;
2271 if (auto *RHSC = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
2272 // See if we can recursively simplify the LHS.
2273 unsigned Amt = RHSC->getZExtValue();
2274
2275 // Watch out for shift count overflow though.
2276 if (Amt >= DemandedBits.getBitWidth())
2277 break;
2278 APInt SrcDemandedBits = DemandedBits << Amt;
2279 if (SDValue SimplifyLHS =
2280 GetDemandedBits(V.getOperand(0), SrcDemandedBits))
2281 return getNode(ISD::SRL, SDLoc(V), V.getValueType(), SimplifyLHS,
2282 V.getOperand(1));
2283 }
2284 break;
2285 case ISD::AND: {
2286 // X & -1 -> X (ignoring bits which aren't demanded).
2287 // Also handle the case where masked out bits in X are known to be zero.
2288 if (ConstantSDNode *RHSC = isConstOrConstSplat(V.getOperand(1))) {
2289 const APInt &AndVal = RHSC->getAPIntValue();
2290 if (DemandedBits.isSubsetOf(AndVal) ||
2291 DemandedBits.isSubsetOf(computeKnownBits(V.getOperand(0)).Zero |
2292 AndVal))
2293 return V.getOperand(0);
2294 }
2295 break;
2296 }
2297 }
2298 return SDValue();
2299 }
2300
2301 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2302 /// use this predicate to simplify operations downstream.
SignBitIsZero(SDValue Op,unsigned Depth) const2303 bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
2304 unsigned BitWidth = Op.getScalarValueSizeInBits();
2305 return MaskedValueIsZero(Op, APInt::getSignMask(BitWidth), Depth);
2306 }
2307
2308 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2309 /// this predicate to simplify operations downstream. Mask is known to be zero
2310 /// for bits that V cannot have.
MaskedValueIsZero(SDValue V,const APInt & Mask,unsigned Depth) const2311 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2312 unsigned Depth) const {
2313 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2314 }
2315
2316 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2317 /// DemandedElts. We use this predicate to simplify operations downstream.
2318 /// Mask is known to be zero for bits that V cannot have.
MaskedValueIsZero(SDValue V,const APInt & Mask,const APInt & DemandedElts,unsigned Depth) const2319 bool SelectionDAG::MaskedValueIsZero(SDValue V, const APInt &Mask,
2320 const APInt &DemandedElts,
2321 unsigned Depth) const {
2322 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2323 }
2324
2325 /// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
MaskedValueIsAllOnes(SDValue V,const APInt & Mask,unsigned Depth) const2326 bool SelectionDAG::MaskedValueIsAllOnes(SDValue V, const APInt &Mask,
2327 unsigned Depth) const {
2328 return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2329 }
2330
2331 /// isSplatValue - Return true if the vector V has the same value
2332 /// across all DemandedElts. For scalable vectors it does not make
2333 /// sense to specify which elements are demanded or undefined, therefore
2334 /// they are simply ignored.
isSplatValue(SDValue V,const APInt & DemandedElts,APInt & UndefElts)2335 bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2336 APInt &UndefElts) {
2337 EVT VT = V.getValueType();
2338 assert(VT.isVector() && "Vector type expected");
2339
2340 if (!VT.isScalableVector() && !DemandedElts)
2341 return false; // No demanded elts, better to assume we don't know anything.
2342
2343 // Deal with some common cases here that work for both fixed and scalable
2344 // vector types.
2345 switch (V.getOpcode()) {
2346 case ISD::SPLAT_VECTOR:
2347 return true;
2348 case ISD::ADD:
2349 case ISD::SUB:
2350 case ISD::AND: {
2351 APInt UndefLHS, UndefRHS;
2352 SDValue LHS = V.getOperand(0);
2353 SDValue RHS = V.getOperand(1);
2354 if (isSplatValue(LHS, DemandedElts, UndefLHS) &&
2355 isSplatValue(RHS, DemandedElts, UndefRHS)) {
2356 UndefElts = UndefLHS | UndefRHS;
2357 return true;
2358 }
2359 break;
2360 }
2361 }
2362
2363 // We don't support other cases than those above for scalable vectors at
2364 // the moment.
2365 if (VT.isScalableVector())
2366 return false;
2367
2368 unsigned NumElts = VT.getVectorNumElements();
2369 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
2370 UndefElts = APInt::getNullValue(NumElts);
2371
2372 switch (V.getOpcode()) {
2373 case ISD::BUILD_VECTOR: {
2374 SDValue Scl;
2375 for (unsigned i = 0; i != NumElts; ++i) {
2376 SDValue Op = V.getOperand(i);
2377 if (Op.isUndef()) {
2378 UndefElts.setBit(i);
2379 continue;
2380 }
2381 if (!DemandedElts[i])
2382 continue;
2383 if (Scl && Scl != Op)
2384 return false;
2385 Scl = Op;
2386 }
2387 return true;
2388 }
2389 case ISD::VECTOR_SHUFFLE: {
2390 // Check if this is a shuffle node doing a splat.
2391 // TODO: Do we need to handle shuffle(splat, undef, mask)?
2392 int SplatIndex = -1;
2393 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
2394 for (int i = 0; i != (int)NumElts; ++i) {
2395 int M = Mask[i];
2396 if (M < 0) {
2397 UndefElts.setBit(i);
2398 continue;
2399 }
2400 if (!DemandedElts[i])
2401 continue;
2402 if (0 <= SplatIndex && SplatIndex != M)
2403 return false;
2404 SplatIndex = M;
2405 }
2406 return true;
2407 }
2408 case ISD::EXTRACT_SUBVECTOR: {
2409 // Offset the demanded elts by the subvector index.
2410 SDValue Src = V.getOperand(0);
2411 uint64_t Idx = V.getConstantOperandVal(1);
2412 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2413 APInt UndefSrcElts;
2414 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2415 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts)) {
2416 UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
2417 return true;
2418 }
2419 break;
2420 }
2421 }
2422
2423 return false;
2424 }
2425
2426 /// Helper wrapper to main isSplatValue function.
isSplatValue(SDValue V,bool AllowUndefs)2427 bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) {
2428 EVT VT = V.getValueType();
2429 assert(VT.isVector() && "Vector type expected");
2430
2431 APInt UndefElts;
2432 APInt DemandedElts;
2433
2434 // For now we don't support this with scalable vectors.
2435 if (!VT.isScalableVector())
2436 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2437 return isSplatValue(V, DemandedElts, UndefElts) &&
2438 (AllowUndefs || !UndefElts);
2439 }
2440
getSplatSourceVector(SDValue V,int & SplatIdx)2441 SDValue SelectionDAG::getSplatSourceVector(SDValue V, int &SplatIdx) {
2442 V = peekThroughExtractSubvectors(V);
2443
2444 EVT VT = V.getValueType();
2445 unsigned Opcode = V.getOpcode();
2446 switch (Opcode) {
2447 default: {
2448 APInt UndefElts;
2449 APInt DemandedElts;
2450
2451 if (!VT.isScalableVector())
2452 DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
2453
2454 if (isSplatValue(V, DemandedElts, UndefElts)) {
2455 if (VT.isScalableVector()) {
2456 // DemandedElts and UndefElts are ignored for scalable vectors, since
2457 // the only supported cases are SPLAT_VECTOR nodes.
2458 SplatIdx = 0;
2459 } else {
2460 // Handle case where all demanded elements are UNDEF.
2461 if (DemandedElts.isSubsetOf(UndefElts)) {
2462 SplatIdx = 0;
2463 return getUNDEF(VT);
2464 }
2465 SplatIdx = (UndefElts & DemandedElts).countTrailingOnes();
2466 }
2467 return V;
2468 }
2469 break;
2470 }
2471 case ISD::SPLAT_VECTOR:
2472 SplatIdx = 0;
2473 return V;
2474 case ISD::VECTOR_SHUFFLE: {
2475 if (VT.isScalableVector())
2476 return SDValue();
2477
2478 // Check if this is a shuffle node doing a splat.
2479 // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
2480 // getTargetVShiftNode currently struggles without the splat source.
2481 auto *SVN = cast<ShuffleVectorSDNode>(V);
2482 if (!SVN->isSplat())
2483 break;
2484 int Idx = SVN->getSplatIndex();
2485 int NumElts = V.getValueType().getVectorNumElements();
2486 SplatIdx = Idx % NumElts;
2487 return V.getOperand(Idx / NumElts);
2488 }
2489 }
2490
2491 return SDValue();
2492 }
2493
getSplatValue(SDValue V)2494 SDValue SelectionDAG::getSplatValue(SDValue V) {
2495 int SplatIdx;
2496 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx))
2497 return getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V),
2498 SrcVector.getValueType().getScalarType(), SrcVector,
2499 getVectorIdxConstant(SplatIdx, SDLoc(V)));
2500 return SDValue();
2501 }
2502
2503 const APInt *
getValidShiftAmountConstant(SDValue V,const APInt & DemandedElts) const2504 SelectionDAG::getValidShiftAmountConstant(SDValue V,
2505 const APInt &DemandedElts) const {
2506 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2507 V.getOpcode() == ISD::SRA) &&
2508 "Unknown shift node");
2509 unsigned BitWidth = V.getScalarValueSizeInBits();
2510 if (ConstantSDNode *SA = isConstOrConstSplat(V.getOperand(1), DemandedElts)) {
2511 // Shifting more than the bitwidth is not valid.
2512 const APInt &ShAmt = SA->getAPIntValue();
2513 if (ShAmt.ult(BitWidth))
2514 return &ShAmt;
2515 }
2516 return nullptr;
2517 }
2518
getValidMinimumShiftAmountConstant(SDValue V,const APInt & DemandedElts) const2519 const APInt *SelectionDAG::getValidMinimumShiftAmountConstant(
2520 SDValue V, const APInt &DemandedElts) const {
2521 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2522 V.getOpcode() == ISD::SRA) &&
2523 "Unknown shift node");
2524 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2525 return ValidAmt;
2526 unsigned BitWidth = V.getScalarValueSizeInBits();
2527 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2528 if (!BV)
2529 return nullptr;
2530 const APInt *MinShAmt = nullptr;
2531 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2532 if (!DemandedElts[i])
2533 continue;
2534 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2535 if (!SA)
2536 return nullptr;
2537 // Shifting more than the bitwidth is not valid.
2538 const APInt &ShAmt = SA->getAPIntValue();
2539 if (ShAmt.uge(BitWidth))
2540 return nullptr;
2541 if (MinShAmt && MinShAmt->ule(ShAmt))
2542 continue;
2543 MinShAmt = &ShAmt;
2544 }
2545 return MinShAmt;
2546 }
2547
getValidMaximumShiftAmountConstant(SDValue V,const APInt & DemandedElts) const2548 const APInt *SelectionDAG::getValidMaximumShiftAmountConstant(
2549 SDValue V, const APInt &DemandedElts) const {
2550 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
2551 V.getOpcode() == ISD::SRA) &&
2552 "Unknown shift node");
2553 if (const APInt *ValidAmt = getValidShiftAmountConstant(V, DemandedElts))
2554 return ValidAmt;
2555 unsigned BitWidth = V.getScalarValueSizeInBits();
2556 auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1));
2557 if (!BV)
2558 return nullptr;
2559 const APInt *MaxShAmt = nullptr;
2560 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2561 if (!DemandedElts[i])
2562 continue;
2563 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
2564 if (!SA)
2565 return nullptr;
2566 // Shifting more than the bitwidth is not valid.
2567 const APInt &ShAmt = SA->getAPIntValue();
2568 if (ShAmt.uge(BitWidth))
2569 return nullptr;
2570 if (MaxShAmt && MaxShAmt->uge(ShAmt))
2571 continue;
2572 MaxShAmt = &ShAmt;
2573 }
2574 return MaxShAmt;
2575 }
2576
2577 /// Determine which bits of Op are known to be either zero or one and return
2578 /// them in Known. For vectors, the known bits are those that are shared by
2579 /// every vector element.
computeKnownBits(SDValue Op,unsigned Depth) const2580 KnownBits SelectionDAG::computeKnownBits(SDValue Op, unsigned Depth) const {
2581 EVT VT = Op.getValueType();
2582
2583 // TOOD: Until we have a plan for how to represent demanded elements for
2584 // scalable vectors, we can just bail out for now.
2585 if (Op.getValueType().isScalableVector()) {
2586 unsigned BitWidth = Op.getScalarValueSizeInBits();
2587 return KnownBits(BitWidth);
2588 }
2589
2590 APInt DemandedElts = VT.isVector()
2591 ? APInt::getAllOnesValue(VT.getVectorNumElements())
2592 : APInt(1, 1);
2593 return computeKnownBits(Op, DemandedElts, Depth);
2594 }
2595
2596 /// Determine which bits of Op are known to be either zero or one and return
2597 /// them in Known. The DemandedElts argument allows us to only collect the known
2598 /// bits that are shared by the requested vector elements.
computeKnownBits(SDValue Op,const APInt & DemandedElts,unsigned Depth) const2599 KnownBits SelectionDAG::computeKnownBits(SDValue Op, const APInt &DemandedElts,
2600 unsigned Depth) const {
2601 unsigned BitWidth = Op.getScalarValueSizeInBits();
2602
2603 KnownBits Known(BitWidth); // Don't know anything.
2604
2605 // TOOD: Until we have a plan for how to represent demanded elements for
2606 // scalable vectors, we can just bail out for now.
2607 if (Op.getValueType().isScalableVector())
2608 return Known;
2609
2610 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
2611 // We know all of the bits for a constant!
2612 Known.One = C->getAPIntValue();
2613 Known.Zero = ~Known.One;
2614 return Known;
2615 }
2616 if (auto *C = dyn_cast<ConstantFPSDNode>(Op)) {
2617 // We know all of the bits for a constant fp!
2618 Known.One = C->getValueAPF().bitcastToAPInt();
2619 Known.Zero = ~Known.One;
2620 return Known;
2621 }
2622
2623 if (Depth >= MaxRecursionDepth)
2624 return Known; // Limit search depth.
2625
2626 KnownBits Known2;
2627 unsigned NumElts = DemandedElts.getBitWidth();
2628 assert((!Op.getValueType().isVector() ||
2629 NumElts == Op.getValueType().getVectorNumElements()) &&
2630 "Unexpected vector size");
2631
2632 if (!DemandedElts)
2633 return Known; // No demanded elts, better to assume we don't know anything.
2634
2635 unsigned Opcode = Op.getOpcode();
2636 switch (Opcode) {
2637 case ISD::BUILD_VECTOR:
2638 // Collect the known bits that are shared by every demanded vector element.
2639 Known.Zero.setAllBits(); Known.One.setAllBits();
2640 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
2641 if (!DemandedElts[i])
2642 continue;
2643
2644 SDValue SrcOp = Op.getOperand(i);
2645 Known2 = computeKnownBits(SrcOp, Depth + 1);
2646
2647 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2648 if (SrcOp.getValueSizeInBits() != BitWidth) {
2649 assert(SrcOp.getValueSizeInBits() > BitWidth &&
2650 "Expected BUILD_VECTOR implicit truncation");
2651 Known2 = Known2.trunc(BitWidth);
2652 }
2653
2654 // Known bits are the values that are shared by every demanded element.
2655 Known.One &= Known2.One;
2656 Known.Zero &= Known2.Zero;
2657
2658 // If we don't know any bits, early out.
2659 if (Known.isUnknown())
2660 break;
2661 }
2662 break;
2663 case ISD::VECTOR_SHUFFLE: {
2664 // Collect the known bits that are shared by every vector element referenced
2665 // by the shuffle.
2666 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2667 Known.Zero.setAllBits(); Known.One.setAllBits();
2668 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
2669 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
2670 for (unsigned i = 0; i != NumElts; ++i) {
2671 if (!DemandedElts[i])
2672 continue;
2673
2674 int M = SVN->getMaskElt(i);
2675 if (M < 0) {
2676 // For UNDEF elements, we don't know anything about the common state of
2677 // the shuffle result.
2678 Known.resetAll();
2679 DemandedLHS.clearAllBits();
2680 DemandedRHS.clearAllBits();
2681 break;
2682 }
2683
2684 if ((unsigned)M < NumElts)
2685 DemandedLHS.setBit((unsigned)M % NumElts);
2686 else
2687 DemandedRHS.setBit((unsigned)M % NumElts);
2688 }
2689 // Known bits are the values that are shared by every demanded element.
2690 if (!!DemandedLHS) {
2691 SDValue LHS = Op.getOperand(0);
2692 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
2693 Known.One &= Known2.One;
2694 Known.Zero &= Known2.Zero;
2695 }
2696 // If we don't know any bits, early out.
2697 if (Known.isUnknown())
2698 break;
2699 if (!!DemandedRHS) {
2700 SDValue RHS = Op.getOperand(1);
2701 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
2702 Known.One &= Known2.One;
2703 Known.Zero &= Known2.Zero;
2704 }
2705 break;
2706 }
2707 case ISD::CONCAT_VECTORS: {
2708 // Split DemandedElts and test each of the demanded subvectors.
2709 Known.Zero.setAllBits(); Known.One.setAllBits();
2710 EVT SubVectorVT = Op.getOperand(0).getValueType();
2711 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
2712 unsigned NumSubVectors = Op.getNumOperands();
2713 for (unsigned i = 0; i != NumSubVectors; ++i) {
2714 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
2715 DemandedSub = DemandedSub.trunc(NumSubVectorElts);
2716 if (!!DemandedSub) {
2717 SDValue Sub = Op.getOperand(i);
2718 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
2719 Known.One &= Known2.One;
2720 Known.Zero &= Known2.Zero;
2721 }
2722 // If we don't know any bits, early out.
2723 if (Known.isUnknown())
2724 break;
2725 }
2726 break;
2727 }
2728 case ISD::INSERT_SUBVECTOR: {
2729 // Demand any elements from the subvector and the remainder from the src its
2730 // inserted into.
2731 SDValue Src = Op.getOperand(0);
2732 SDValue Sub = Op.getOperand(1);
2733 uint64_t Idx = Op.getConstantOperandVal(2);
2734 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2735 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2736 APInt DemandedSrcElts = DemandedElts;
2737 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2738
2739 Known.One.setAllBits();
2740 Known.Zero.setAllBits();
2741 if (!!DemandedSubElts) {
2742 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
2743 if (Known.isUnknown())
2744 break; // early-out.
2745 }
2746 if (!!DemandedSrcElts) {
2747 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2748 Known.One &= Known2.One;
2749 Known.Zero &= Known2.Zero;
2750 }
2751 break;
2752 }
2753 case ISD::EXTRACT_SUBVECTOR: {
2754 // Offset the demanded elts by the subvector index.
2755 SDValue Src = Op.getOperand(0);
2756 // Bail until we can represent demanded elements for scalable vectors.
2757 if (Src.getValueType().isScalableVector())
2758 break;
2759 uint64_t Idx = Op.getConstantOperandVal(1);
2760 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2761 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2762 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
2763 break;
2764 }
2765 case ISD::SCALAR_TO_VECTOR: {
2766 // We know about scalar_to_vector as much as we know about it source,
2767 // which becomes the first element of otherwise unknown vector.
2768 if (DemandedElts != 1)
2769 break;
2770
2771 SDValue N0 = Op.getOperand(0);
2772 Known = computeKnownBits(N0, Depth + 1);
2773 if (N0.getValueSizeInBits() != BitWidth)
2774 Known = Known.trunc(BitWidth);
2775
2776 break;
2777 }
2778 case ISD::BITCAST: {
2779 SDValue N0 = Op.getOperand(0);
2780 EVT SubVT = N0.getValueType();
2781 unsigned SubBitWidth = SubVT.getScalarSizeInBits();
2782
2783 // Ignore bitcasts from unsupported types.
2784 if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
2785 break;
2786
2787 // Fast handling of 'identity' bitcasts.
2788 if (BitWidth == SubBitWidth) {
2789 Known = computeKnownBits(N0, DemandedElts, Depth + 1);
2790 break;
2791 }
2792
2793 bool IsLE = getDataLayout().isLittleEndian();
2794
2795 // Bitcast 'small element' vector to 'large element' scalar/vector.
2796 if ((BitWidth % SubBitWidth) == 0) {
2797 assert(N0.getValueType().isVector() && "Expected bitcast from vector");
2798
2799 // Collect known bits for the (larger) output by collecting the known
2800 // bits from each set of sub elements and shift these into place.
2801 // We need to separately call computeKnownBits for each set of
2802 // sub elements as the knownbits for each is likely to be different.
2803 unsigned SubScale = BitWidth / SubBitWidth;
2804 APInt SubDemandedElts(NumElts * SubScale, 0);
2805 for (unsigned i = 0; i != NumElts; ++i)
2806 if (DemandedElts[i])
2807 SubDemandedElts.setBit(i * SubScale);
2808
2809 for (unsigned i = 0; i != SubScale; ++i) {
2810 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
2811 Depth + 1);
2812 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
2813 Known.One |= Known2.One.zext(BitWidth).shl(SubBitWidth * Shifts);
2814 Known.Zero |= Known2.Zero.zext(BitWidth).shl(SubBitWidth * Shifts);
2815 }
2816 }
2817
2818 // Bitcast 'large element' scalar/vector to 'small element' vector.
2819 if ((SubBitWidth % BitWidth) == 0) {
2820 assert(Op.getValueType().isVector() && "Expected bitcast to vector");
2821
2822 // Collect known bits for the (smaller) output by collecting the known
2823 // bits from the overlapping larger input elements and extracting the
2824 // sub sections we actually care about.
2825 unsigned SubScale = SubBitWidth / BitWidth;
2826 APInt SubDemandedElts(NumElts / SubScale, 0);
2827 for (unsigned i = 0; i != NumElts; ++i)
2828 if (DemandedElts[i])
2829 SubDemandedElts.setBit(i / SubScale);
2830
2831 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
2832
2833 Known.Zero.setAllBits(); Known.One.setAllBits();
2834 for (unsigned i = 0; i != NumElts; ++i)
2835 if (DemandedElts[i]) {
2836 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
2837 unsigned Offset = (Shifts % SubScale) * BitWidth;
2838 Known.One &= Known2.One.lshr(Offset).trunc(BitWidth);
2839 Known.Zero &= Known2.Zero.lshr(Offset).trunc(BitWidth);
2840 // If we don't know any bits, early out.
2841 if (Known.isUnknown())
2842 break;
2843 }
2844 }
2845 break;
2846 }
2847 case ISD::AND:
2848 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2849 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2850
2851 Known &= Known2;
2852 break;
2853 case ISD::OR:
2854 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2855 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2856
2857 Known |= Known2;
2858 break;
2859 case ISD::XOR:
2860 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2861 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2862
2863 Known ^= Known2;
2864 break;
2865 case ISD::MUL: {
2866 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2867 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2868
2869 // If low bits are zero in either operand, output low known-0 bits.
2870 // Also compute a conservative estimate for high known-0 bits.
2871 // More trickiness is possible, but this is sufficient for the
2872 // interesting case of alignment computation.
2873 unsigned TrailZ = Known.countMinTrailingZeros() +
2874 Known2.countMinTrailingZeros();
2875 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
2876 Known2.countMinLeadingZeros(),
2877 BitWidth) - BitWidth;
2878
2879 Known.resetAll();
2880 Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
2881 Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
2882 break;
2883 }
2884 case ISD::UDIV: {
2885 // For the purposes of computing leading zeros we can conservatively
2886 // treat a udiv as a logical right shift by the power of 2 known to
2887 // be less than the denominator.
2888 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2889 unsigned LeadZ = Known2.countMinLeadingZeros();
2890
2891 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
2892 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
2893 if (RHSMaxLeadingZeros != BitWidth)
2894 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
2895
2896 Known.Zero.setHighBits(LeadZ);
2897 break;
2898 }
2899 case ISD::SELECT:
2900 case ISD::VSELECT:
2901 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2902 // If we don't know any bits, early out.
2903 if (Known.isUnknown())
2904 break;
2905 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
2906
2907 // Only known if known in both the LHS and RHS.
2908 Known.One &= Known2.One;
2909 Known.Zero &= Known2.Zero;
2910 break;
2911 case ISD::SELECT_CC:
2912 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
2913 // If we don't know any bits, early out.
2914 if (Known.isUnknown())
2915 break;
2916 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
2917
2918 // Only known if known in both the LHS and RHS.
2919 Known.One &= Known2.One;
2920 Known.Zero &= Known2.Zero;
2921 break;
2922 case ISD::SMULO:
2923 case ISD::UMULO:
2924 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2925 if (Op.getResNo() != 1)
2926 break;
2927 // The boolean result conforms to getBooleanContents.
2928 // If we know the result of a setcc has the top bits zero, use this info.
2929 // We know that we have an integer-based boolean since these operations
2930 // are only available for integer.
2931 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
2932 TargetLowering::ZeroOrOneBooleanContent &&
2933 BitWidth > 1)
2934 Known.Zero.setBitsFrom(1);
2935 break;
2936 case ISD::SETCC:
2937 case ISD::STRICT_FSETCC:
2938 case ISD::STRICT_FSETCCS: {
2939 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
2940 // If we know the result of a setcc has the top bits zero, use this info.
2941 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
2942 TargetLowering::ZeroOrOneBooleanContent &&
2943 BitWidth > 1)
2944 Known.Zero.setBitsFrom(1);
2945 break;
2946 }
2947 case ISD::SHL:
2948 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2949
2950 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2951 unsigned Shift = ShAmt->getZExtValue();
2952 Known.Zero <<= Shift;
2953 Known.One <<= Shift;
2954 // Low bits are known zero.
2955 Known.Zero.setLowBits(Shift);
2956 break;
2957 }
2958
2959 // No matter the shift amount, the trailing zeros will stay zero.
2960 Known.Zero = APInt::getLowBitsSet(BitWidth, Known.countMinTrailingZeros());
2961 Known.One.clearAllBits();
2962
2963 // Minimum shift low bits are known zero.
2964 if (const APInt *ShMinAmt =
2965 getValidMinimumShiftAmountConstant(Op, DemandedElts))
2966 Known.Zero.setLowBits(ShMinAmt->getZExtValue());
2967 break;
2968 case ISD::SRL:
2969 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2970
2971 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2972 unsigned Shift = ShAmt->getZExtValue();
2973 Known.Zero.lshrInPlace(Shift);
2974 Known.One.lshrInPlace(Shift);
2975 // High bits are known zero.
2976 Known.Zero.setHighBits(Shift);
2977 break;
2978 }
2979
2980 // No matter the shift amount, the leading zeros will stay zero.
2981 Known.Zero = APInt::getHighBitsSet(BitWidth, Known.countMinLeadingZeros());
2982 Known.One.clearAllBits();
2983
2984 // Minimum shift high bits are known zero.
2985 if (const APInt *ShMinAmt =
2986 getValidMinimumShiftAmountConstant(Op, DemandedElts))
2987 Known.Zero.setHighBits(ShMinAmt->getZExtValue());
2988 break;
2989 case ISD::SRA:
2990 if (const APInt *ShAmt = getValidShiftAmountConstant(Op, DemandedElts)) {
2991 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
2992 unsigned Shift = ShAmt->getZExtValue();
2993 // Sign extend known zero/one bit (else is unknown).
2994 Known.Zero.ashrInPlace(Shift);
2995 Known.One.ashrInPlace(Shift);
2996 }
2997 break;
2998 case ISD::FSHL:
2999 case ISD::FSHR:
3000 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3001 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3002
3003 // For fshl, 0-shift returns the 1st arg.
3004 // For fshr, 0-shift returns the 2nd arg.
3005 if (Amt == 0) {
3006 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3007 DemandedElts, Depth + 1);
3008 break;
3009 }
3010
3011 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3012 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3013 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3014 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3015 if (Opcode == ISD::FSHL) {
3016 Known.One <<= Amt;
3017 Known.Zero <<= Amt;
3018 Known2.One.lshrInPlace(BitWidth - Amt);
3019 Known2.Zero.lshrInPlace(BitWidth - Amt);
3020 } else {
3021 Known.One <<= BitWidth - Amt;
3022 Known.Zero <<= BitWidth - Amt;
3023 Known2.One.lshrInPlace(Amt);
3024 Known2.Zero.lshrInPlace(Amt);
3025 }
3026 Known.One |= Known2.One;
3027 Known.Zero |= Known2.Zero;
3028 }
3029 break;
3030 case ISD::SIGN_EXTEND_INREG: {
3031 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3032 unsigned EBits = EVT.getScalarSizeInBits();
3033
3034 // Sign extension. Compute the demanded bits in the result that are not
3035 // present in the input.
3036 APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
3037
3038 APInt InSignMask = APInt::getSignMask(EBits);
3039 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
3040
3041 // If the sign extended bits are demanded, we know that the sign
3042 // bit is demanded.
3043 InSignMask = InSignMask.zext(BitWidth);
3044 if (NewBits.getBoolValue())
3045 InputDemandedBits |= InSignMask;
3046
3047 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3048 Known.One &= InputDemandedBits;
3049 Known.Zero &= InputDemandedBits;
3050
3051 // If the sign bit of the input is known set or clear, then we know the
3052 // top bits of the result.
3053 if (Known.Zero.intersects(InSignMask)) { // Input sign bit known clear
3054 Known.Zero |= NewBits;
3055 Known.One &= ~NewBits;
3056 } else if (Known.One.intersects(InSignMask)) { // Input sign bit known set
3057 Known.One |= NewBits;
3058 Known.Zero &= ~NewBits;
3059 } else { // Input sign bit unknown
3060 Known.Zero &= ~NewBits;
3061 Known.One &= ~NewBits;
3062 }
3063 break;
3064 }
3065 case ISD::CTTZ:
3066 case ISD::CTTZ_ZERO_UNDEF: {
3067 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3068 // If we have a known 1, its position is our upper bound.
3069 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3070 unsigned LowBits = Log2_32(PossibleTZ) + 1;
3071 Known.Zero.setBitsFrom(LowBits);
3072 break;
3073 }
3074 case ISD::CTLZ:
3075 case ISD::CTLZ_ZERO_UNDEF: {
3076 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3077 // If we have a known 1, its position is our upper bound.
3078 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3079 unsigned LowBits = Log2_32(PossibleLZ) + 1;
3080 Known.Zero.setBitsFrom(LowBits);
3081 break;
3082 }
3083 case ISD::CTPOP: {
3084 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3085 // If we know some of the bits are zero, they can't be one.
3086 unsigned PossibleOnes = Known2.countMaxPopulation();
3087 Known.Zero.setBitsFrom(Log2_32(PossibleOnes) + 1);
3088 break;
3089 }
3090 case ISD::LOAD: {
3091 LoadSDNode *LD = cast<LoadSDNode>(Op);
3092 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3093 if (ISD::isNON_EXTLoad(LD) && Cst) {
3094 // Determine any common known bits from the loaded constant pool value.
3095 Type *CstTy = Cst->getType();
3096 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits()) {
3097 // If its a vector splat, then we can (quickly) reuse the scalar path.
3098 // NOTE: We assume all elements match and none are UNDEF.
3099 if (CstTy->isVectorTy()) {
3100 if (const Constant *Splat = Cst->getSplatValue()) {
3101 Cst = Splat;
3102 CstTy = Cst->getType();
3103 }
3104 }
3105 // TODO - do we need to handle different bitwidths?
3106 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3107 // Iterate across all vector elements finding common known bits.
3108 Known.One.setAllBits();
3109 Known.Zero.setAllBits();
3110 for (unsigned i = 0; i != NumElts; ++i) {
3111 if (!DemandedElts[i])
3112 continue;
3113 if (Constant *Elt = Cst->getAggregateElement(i)) {
3114 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
3115 const APInt &Value = CInt->getValue();
3116 Known.One &= Value;
3117 Known.Zero &= ~Value;
3118 continue;
3119 }
3120 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
3121 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3122 Known.One &= Value;
3123 Known.Zero &= ~Value;
3124 continue;
3125 }
3126 }
3127 Known.One.clearAllBits();
3128 Known.Zero.clearAllBits();
3129 break;
3130 }
3131 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
3132 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
3133 const APInt &Value = CInt->getValue();
3134 Known.One = Value;
3135 Known.Zero = ~Value;
3136 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
3137 APInt Value = CFP->getValueAPF().bitcastToAPInt();
3138 Known.One = Value;
3139 Known.Zero = ~Value;
3140 }
3141 }
3142 }
3143 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
3144 // If this is a ZEXTLoad and we are looking at the loaded value.
3145 EVT VT = LD->getMemoryVT();
3146 unsigned MemBits = VT.getScalarSizeInBits();
3147 Known.Zero.setBitsFrom(MemBits);
3148 } else if (const MDNode *Ranges = LD->getRanges()) {
3149 if (LD->getExtensionType() == ISD::NON_EXTLOAD)
3150 computeKnownBitsFromRangeMetadata(*Ranges, Known);
3151 }
3152 break;
3153 }
3154 case ISD::ZERO_EXTEND_VECTOR_INREG: {
3155 EVT InVT = Op.getOperand(0).getValueType();
3156 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3157 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3158 Known = Known.zext(BitWidth);
3159 break;
3160 }
3161 case ISD::ZERO_EXTEND: {
3162 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3163 Known = Known.zext(BitWidth);
3164 break;
3165 }
3166 case ISD::SIGN_EXTEND_VECTOR_INREG: {
3167 EVT InVT = Op.getOperand(0).getValueType();
3168 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3169 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3170 // If the sign bit is known to be zero or one, then sext will extend
3171 // it to the top bits, else it will just zext.
3172 Known = Known.sext(BitWidth);
3173 break;
3174 }
3175 case ISD::SIGN_EXTEND: {
3176 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3177 // If the sign bit is known to be zero or one, then sext will extend
3178 // it to the top bits, else it will just zext.
3179 Known = Known.sext(BitWidth);
3180 break;
3181 }
3182 case ISD::ANY_EXTEND_VECTOR_INREG: {
3183 EVT InVT = Op.getOperand(0).getValueType();
3184 APInt InDemandedElts = DemandedElts.zextOrSelf(InVT.getVectorNumElements());
3185 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
3186 Known = Known.anyext(BitWidth);
3187 break;
3188 }
3189 case ISD::ANY_EXTEND: {
3190 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3191 Known = Known.anyext(BitWidth);
3192 break;
3193 }
3194 case ISD::TRUNCATE: {
3195 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3196 Known = Known.trunc(BitWidth);
3197 break;
3198 }
3199 case ISD::AssertZext: {
3200 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3201 APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
3202 Known = computeKnownBits(Op.getOperand(0), Depth+1);
3203 Known.Zero |= (~InMask);
3204 Known.One &= (~Known.Zero);
3205 break;
3206 }
3207 case ISD::AssertAlign: {
3208 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
3209 assert(LogOfAlign != 0);
3210 // If a node is guaranteed to be aligned, set low zero bits accordingly as
3211 // well as clearing one bits.
3212 Known.Zero.setLowBits(LogOfAlign);
3213 Known.One.clearLowBits(LogOfAlign);
3214 break;
3215 }
3216 case ISD::FGETSIGN:
3217 // All bits are zero except the low bit.
3218 Known.Zero.setBitsFrom(1);
3219 break;
3220 case ISD::USUBO:
3221 case ISD::SSUBO:
3222 if (Op.getResNo() == 1) {
3223 // If we know the result of a setcc has the top bits zero, use this info.
3224 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3225 TargetLowering::ZeroOrOneBooleanContent &&
3226 BitWidth > 1)
3227 Known.Zero.setBitsFrom(1);
3228 break;
3229 }
3230 LLVM_FALLTHROUGH;
3231 case ISD::SUB:
3232 case ISD::SUBC: {
3233 assert(Op.getResNo() == 0 &&
3234 "We only compute knownbits for the difference here.");
3235
3236 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3237 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3238 Known = KnownBits::computeForAddSub(/* Add */ false, /* NSW */ false,
3239 Known, Known2);
3240 break;
3241 }
3242 case ISD::UADDO:
3243 case ISD::SADDO:
3244 case ISD::ADDCARRY:
3245 if (Op.getResNo() == 1) {
3246 // If we know the result of a setcc has the top bits zero, use this info.
3247 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
3248 TargetLowering::ZeroOrOneBooleanContent &&
3249 BitWidth > 1)
3250 Known.Zero.setBitsFrom(1);
3251 break;
3252 }
3253 LLVM_FALLTHROUGH;
3254 case ISD::ADD:
3255 case ISD::ADDC:
3256 case ISD::ADDE: {
3257 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
3258
3259 // With ADDE and ADDCARRY, a carry bit may be added in.
3260 KnownBits Carry(1);
3261 if (Opcode == ISD::ADDE)
3262 // Can't track carry from glue, set carry to unknown.
3263 Carry.resetAll();
3264 else if (Opcode == ISD::ADDCARRY)
3265 // TODO: Compute known bits for the carry operand. Not sure if it is worth
3266 // the trouble (how often will we find a known carry bit). And I haven't
3267 // tested this very much yet, but something like this might work:
3268 // Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3269 // Carry = Carry.zextOrTrunc(1, false);
3270 Carry.resetAll();
3271 else
3272 Carry.setAllZero();
3273
3274 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3275 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3276 Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
3277 break;
3278 }
3279 case ISD::SREM:
3280 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3281 const APInt &RA = Rem->getAPIntValue().abs();
3282 if (RA.isPowerOf2()) {
3283 APInt LowBits = RA - 1;
3284 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3285
3286 // The low bits of the first operand are unchanged by the srem.
3287 Known.Zero = Known2.Zero & LowBits;
3288 Known.One = Known2.One & LowBits;
3289
3290 // If the first operand is non-negative or has all low bits zero, then
3291 // the upper bits are all zero.
3292 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
3293 Known.Zero |= ~LowBits;
3294
3295 // If the first operand is negative and not all low bits are zero, then
3296 // the upper bits are all one.
3297 if (Known2.isNegative() && LowBits.intersects(Known2.One))
3298 Known.One |= ~LowBits;
3299 assert((Known.Zero & Known.One) == 0&&"Bits known to be one AND zero?");
3300 }
3301 }
3302 break;
3303 case ISD::UREM: {
3304 if (ConstantSDNode *Rem = isConstOrConstSplat(Op.getOperand(1))) {
3305 const APInt &RA = Rem->getAPIntValue();
3306 if (RA.isPowerOf2()) {
3307 APInt LowBits = (RA - 1);
3308 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3309
3310 // The upper bits are all zero, the lower ones are unchanged.
3311 Known.Zero = Known2.Zero | ~LowBits;
3312 Known.One = Known2.One & LowBits;
3313 break;
3314 }
3315 }
3316
3317 // Since the result is less than or equal to either operand, any leading
3318 // zero bits in either operand must also exist in the result.
3319 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3320 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3321
3322 uint32_t Leaders =
3323 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
3324 Known.resetAll();
3325 Known.Zero.setHighBits(Leaders);
3326 break;
3327 }
3328 case ISD::EXTRACT_ELEMENT: {
3329 Known = computeKnownBits(Op.getOperand(0), Depth+1);
3330 const unsigned Index = Op.getConstantOperandVal(1);
3331 const unsigned EltBitWidth = Op.getValueSizeInBits();
3332
3333 // Remove low part of known bits mask
3334 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3335 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
3336
3337 // Remove high part of known bit mask
3338 Known = Known.trunc(EltBitWidth);
3339 break;
3340 }
3341 case ISD::EXTRACT_VECTOR_ELT: {
3342 SDValue InVec = Op.getOperand(0);
3343 SDValue EltNo = Op.getOperand(1);
3344 EVT VecVT = InVec.getValueType();
3345 const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
3346 const unsigned NumSrcElts = VecVT.getVectorNumElements();
3347
3348 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3349 // anything about the extended bits.
3350 if (BitWidth > EltBitWidth)
3351 Known = Known.trunc(EltBitWidth);
3352
3353 // If we know the element index, just demand that vector element, else for
3354 // an unknown element index, ignore DemandedElts and demand them all.
3355 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
3356 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
3357 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
3358 DemandedSrcElts =
3359 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
3360
3361 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
3362 if (BitWidth > EltBitWidth)
3363 Known = Known.anyext(BitWidth);
3364 break;
3365 }
3366 case ISD::INSERT_VECTOR_ELT: {
3367 // If we know the element index, split the demand between the
3368 // source vector and the inserted element, otherwise assume we need
3369 // the original demanded vector elements and the value.
3370 SDValue InVec = Op.getOperand(0);
3371 SDValue InVal = Op.getOperand(1);
3372 SDValue EltNo = Op.getOperand(2);
3373 bool DemandedVal = true;
3374 APInt DemandedVecElts = DemandedElts;
3375 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3376 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3377 unsigned EltIdx = CEltNo->getZExtValue();
3378 DemandedVal = !!DemandedElts[EltIdx];
3379 DemandedVecElts.clearBit(EltIdx);
3380 }
3381 Known.One.setAllBits();
3382 Known.Zero.setAllBits();
3383 if (DemandedVal) {
3384 Known2 = computeKnownBits(InVal, Depth + 1);
3385 Known.One &= Known2.One.zextOrTrunc(BitWidth);
3386 Known.Zero &= Known2.Zero.zextOrTrunc(BitWidth);
3387 }
3388 if (!!DemandedVecElts) {
3389 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
3390 Known.One &= Known2.One;
3391 Known.Zero &= Known2.Zero;
3392 }
3393 break;
3394 }
3395 case ISD::BITREVERSE: {
3396 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3397 Known.Zero = Known2.Zero.reverseBits();
3398 Known.One = Known2.One.reverseBits();
3399 break;
3400 }
3401 case ISD::BSWAP: {
3402 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3403 Known.Zero = Known2.Zero.byteSwap();
3404 Known.One = Known2.One.byteSwap();
3405 break;
3406 }
3407 case ISD::ABS: {
3408 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3409
3410 // If the source's MSB is zero then we know the rest of the bits already.
3411 if (Known2.isNonNegative()) {
3412 Known.Zero = Known2.Zero;
3413 Known.One = Known2.One;
3414 break;
3415 }
3416
3417 // We only know that the absolute values's MSB will be zero iff there is
3418 // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3419 Known2.One.clearSignBit();
3420 if (Known2.One.getBoolValue()) {
3421 Known.Zero = APInt::getSignMask(BitWidth);
3422 break;
3423 }
3424 break;
3425 }
3426 case ISD::UMIN: {
3427 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3428 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3429
3430 // UMIN - we know that the result will have the maximum of the
3431 // known zero leading bits of the inputs.
3432 unsigned LeadZero = Known.countMinLeadingZeros();
3433 LeadZero = std::max(LeadZero, Known2.countMinLeadingZeros());
3434
3435 Known.Zero &= Known2.Zero;
3436 Known.One &= Known2.One;
3437 Known.Zero.setHighBits(LeadZero);
3438 break;
3439 }
3440 case ISD::UMAX: {
3441 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3442 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3443
3444 // UMAX - we know that the result will have the maximum of the
3445 // known one leading bits of the inputs.
3446 unsigned LeadOne = Known.countMinLeadingOnes();
3447 LeadOne = std::max(LeadOne, Known2.countMinLeadingOnes());
3448
3449 Known.Zero &= Known2.Zero;
3450 Known.One &= Known2.One;
3451 Known.One.setHighBits(LeadOne);
3452 break;
3453 }
3454 case ISD::SMIN:
3455 case ISD::SMAX: {
3456 // If we have a clamp pattern, we know that the number of sign bits will be
3457 // the minimum of the clamp min/max range.
3458 bool IsMax = (Opcode == ISD::SMAX);
3459 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3460 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3461 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3462 CstHigh =
3463 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3464 if (CstLow && CstHigh) {
3465 if (!IsMax)
3466 std::swap(CstLow, CstHigh);
3467
3468 const APInt &ValueLow = CstLow->getAPIntValue();
3469 const APInt &ValueHigh = CstHigh->getAPIntValue();
3470 if (ValueLow.sle(ValueHigh)) {
3471 unsigned LowSignBits = ValueLow.getNumSignBits();
3472 unsigned HighSignBits = ValueHigh.getNumSignBits();
3473 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
3474 if (ValueLow.isNegative() && ValueHigh.isNegative()) {
3475 Known.One.setHighBits(MinSignBits);
3476 break;
3477 }
3478 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
3479 Known.Zero.setHighBits(MinSignBits);
3480 break;
3481 }
3482 }
3483 }
3484
3485 // Fallback - just get the shared known bits of the operands.
3486 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3487 if (Known.isUnknown()) break; // Early-out
3488 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3489 Known.Zero &= Known2.Zero;
3490 Known.One &= Known2.One;
3491 break;
3492 }
3493 case ISD::FrameIndex:
3494 case ISD::TargetFrameIndex:
3495 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
3496 Known, getMachineFunction());
3497 break;
3498
3499 default:
3500 if (Opcode < ISD::BUILTIN_OP_END)
3501 break;
3502 LLVM_FALLTHROUGH;
3503 case ISD::INTRINSIC_WO_CHAIN:
3504 case ISD::INTRINSIC_W_CHAIN:
3505 case ISD::INTRINSIC_VOID:
3506 // Allow the target to implement this method for its nodes.
3507 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
3508 break;
3509 }
3510
3511 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
3512 return Known;
3513 }
3514
computeOverflowKind(SDValue N0,SDValue N1) const3515 SelectionDAG::OverflowKind SelectionDAG::computeOverflowKind(SDValue N0,
3516 SDValue N1) const {
3517 // X + 0 never overflow
3518 if (isNullConstant(N1))
3519 return OFK_Never;
3520
3521 KnownBits N1Known = computeKnownBits(N1);
3522 if (N1Known.Zero.getBoolValue()) {
3523 KnownBits N0Known = computeKnownBits(N0);
3524
3525 bool overflow;
3526 (void)N0Known.getMaxValue().uadd_ov(N1Known.getMaxValue(), overflow);
3527 if (!overflow)
3528 return OFK_Never;
3529 }
3530
3531 // mulhi + 1 never overflow
3532 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
3533 (N1Known.getMaxValue() & 0x01) == N1Known.getMaxValue())
3534 return OFK_Never;
3535
3536 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1) {
3537 KnownBits N0Known = computeKnownBits(N0);
3538
3539 if ((N0Known.getMaxValue() & 0x01) == N0Known.getMaxValue())
3540 return OFK_Never;
3541 }
3542
3543 return OFK_Sometime;
3544 }
3545
isKnownToBeAPowerOfTwo(SDValue Val) const3546 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val) const {
3547 EVT OpVT = Val.getValueType();
3548 unsigned BitWidth = OpVT.getScalarSizeInBits();
3549
3550 // Is the constant a known power of 2?
3551 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Val))
3552 return Const->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3553
3554 // A left-shift of a constant one will have exactly one bit set because
3555 // shifting the bit off the end is undefined.
3556 if (Val.getOpcode() == ISD::SHL) {
3557 auto *C = isConstOrConstSplat(Val.getOperand(0));
3558 if (C && C->getAPIntValue() == 1)
3559 return true;
3560 }
3561
3562 // Similarly, a logical right-shift of a constant sign-bit will have exactly
3563 // one bit set.
3564 if (Val.getOpcode() == ISD::SRL) {
3565 auto *C = isConstOrConstSplat(Val.getOperand(0));
3566 if (C && C->getAPIntValue().isSignMask())
3567 return true;
3568 }
3569
3570 // Are all operands of a build vector constant powers of two?
3571 if (Val.getOpcode() == ISD::BUILD_VECTOR)
3572 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
3573 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
3574 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
3575 return false;
3576 }))
3577 return true;
3578
3579 // More could be done here, though the above checks are enough
3580 // to handle some common cases.
3581
3582 // Fall back to computeKnownBits to catch other known cases.
3583 KnownBits Known = computeKnownBits(Val);
3584 return (Known.countMaxPopulation() == 1) && (Known.countMinPopulation() == 1);
3585 }
3586
ComputeNumSignBits(SDValue Op,unsigned Depth) const3587 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const {
3588 EVT VT = Op.getValueType();
3589
3590 // TODO: Assume we don't know anything for now.
3591 if (VT.isScalableVector())
3592 return 1;
3593
3594 APInt DemandedElts = VT.isVector()
3595 ? APInt::getAllOnesValue(VT.getVectorNumElements())
3596 : APInt(1, 1);
3597 return ComputeNumSignBits(Op, DemandedElts, Depth);
3598 }
3599
ComputeNumSignBits(SDValue Op,const APInt & DemandedElts,unsigned Depth) const3600 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
3601 unsigned Depth) const {
3602 EVT VT = Op.getValueType();
3603 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
3604 unsigned VTBits = VT.getScalarSizeInBits();
3605 unsigned NumElts = DemandedElts.getBitWidth();
3606 unsigned Tmp, Tmp2;
3607 unsigned FirstAnswer = 1;
3608
3609 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
3610 const APInt &Val = C->getAPIntValue();
3611 return Val.getNumSignBits();
3612 }
3613
3614 if (Depth >= MaxRecursionDepth)
3615 return 1; // Limit search depth.
3616
3617 if (!DemandedElts || VT.isScalableVector())
3618 return 1; // No demanded elts, better to assume we don't know anything.
3619
3620 unsigned Opcode = Op.getOpcode();
3621 switch (Opcode) {
3622 default: break;
3623 case ISD::AssertSext:
3624 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3625 return VTBits-Tmp+1;
3626 case ISD::AssertZext:
3627 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
3628 return VTBits-Tmp;
3629
3630 case ISD::BUILD_VECTOR:
3631 Tmp = VTBits;
3632 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
3633 if (!DemandedElts[i])
3634 continue;
3635
3636 SDValue SrcOp = Op.getOperand(i);
3637 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
3638
3639 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3640 if (SrcOp.getValueSizeInBits() != VTBits) {
3641 assert(SrcOp.getValueSizeInBits() > VTBits &&
3642 "Expected BUILD_VECTOR implicit truncation");
3643 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
3644 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
3645 }
3646 Tmp = std::min(Tmp, Tmp2);
3647 }
3648 return Tmp;
3649
3650 case ISD::VECTOR_SHUFFLE: {
3651 // Collect the minimum number of sign bits that are shared by every vector
3652 // element referenced by the shuffle.
3653 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
3654 const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
3655 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3656 for (unsigned i = 0; i != NumElts; ++i) {
3657 int M = SVN->getMaskElt(i);
3658 if (!DemandedElts[i])
3659 continue;
3660 // For UNDEF elements, we don't know anything about the common state of
3661 // the shuffle result.
3662 if (M < 0)
3663 return 1;
3664 if ((unsigned)M < NumElts)
3665 DemandedLHS.setBit((unsigned)M % NumElts);
3666 else
3667 DemandedRHS.setBit((unsigned)M % NumElts);
3668 }
3669 Tmp = std::numeric_limits<unsigned>::max();
3670 if (!!DemandedLHS)
3671 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
3672 if (!!DemandedRHS) {
3673 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
3674 Tmp = std::min(Tmp, Tmp2);
3675 }
3676 // If we don't know anything, early out and try computeKnownBits fall-back.
3677 if (Tmp == 1)
3678 break;
3679 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3680 return Tmp;
3681 }
3682
3683 case ISD::BITCAST: {
3684 SDValue N0 = Op.getOperand(0);
3685 EVT SrcVT = N0.getValueType();
3686 unsigned SrcBits = SrcVT.getScalarSizeInBits();
3687
3688 // Ignore bitcasts from unsupported types..
3689 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
3690 break;
3691
3692 // Fast handling of 'identity' bitcasts.
3693 if (VTBits == SrcBits)
3694 return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
3695
3696 bool IsLE = getDataLayout().isLittleEndian();
3697
3698 // Bitcast 'large element' scalar/vector to 'small element' vector.
3699 if ((SrcBits % VTBits) == 0) {
3700 assert(VT.isVector() && "Expected bitcast to vector");
3701
3702 unsigned Scale = SrcBits / VTBits;
3703 APInt SrcDemandedElts(NumElts / Scale, 0);
3704 for (unsigned i = 0; i != NumElts; ++i)
3705 if (DemandedElts[i])
3706 SrcDemandedElts.setBit(i / Scale);
3707
3708 // Fast case - sign splat can be simply split across the small elements.
3709 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
3710 if (Tmp == SrcBits)
3711 return VTBits;
3712
3713 // Slow case - determine how far the sign extends into each sub-element.
3714 Tmp2 = VTBits;
3715 for (unsigned i = 0; i != NumElts; ++i)
3716 if (DemandedElts[i]) {
3717 unsigned SubOffset = i % Scale;
3718 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
3719 SubOffset = SubOffset * VTBits;
3720 if (Tmp <= SubOffset)
3721 return 1;
3722 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
3723 }
3724 return Tmp2;
3725 }
3726 break;
3727 }
3728
3729 case ISD::SIGN_EXTEND:
3730 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
3731 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
3732 case ISD::SIGN_EXTEND_INREG:
3733 // Max of the input and what this extends.
3734 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
3735 Tmp = VTBits-Tmp+1;
3736 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3737 return std::max(Tmp, Tmp2);
3738 case ISD::SIGN_EXTEND_VECTOR_INREG: {
3739 SDValue Src = Op.getOperand(0);
3740 EVT SrcVT = Src.getValueType();
3741 APInt DemandedSrcElts = DemandedElts.zextOrSelf(SrcVT.getVectorNumElements());
3742 Tmp = VTBits - SrcVT.getScalarSizeInBits();
3743 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
3744 }
3745 case ISD::SRA:
3746 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3747 // SRA X, C -> adds C sign bits.
3748 if (const APInt *ShAmt =
3749 getValidMinimumShiftAmountConstant(Op, DemandedElts))
3750 Tmp = std::min<uint64_t>(Tmp + ShAmt->getZExtValue(), VTBits);
3751 return Tmp;
3752 case ISD::SHL:
3753 if (const APInt *ShAmt =
3754 getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
3755 // shl destroys sign bits, ensure it doesn't shift out all sign bits.
3756 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3757 if (ShAmt->ult(Tmp))
3758 return Tmp - ShAmt->getZExtValue();
3759 }
3760 break;
3761 case ISD::AND:
3762 case ISD::OR:
3763 case ISD::XOR: // NOT is handled here.
3764 // Logical binary ops preserve the number of sign bits at the worst.
3765 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
3766 if (Tmp != 1) {
3767 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3768 FirstAnswer = std::min(Tmp, Tmp2);
3769 // We computed what we know about the sign bits as our first
3770 // answer. Now proceed to the generic code that uses
3771 // computeKnownBits, and pick whichever answer is better.
3772 }
3773 break;
3774
3775 case ISD::SELECT:
3776 case ISD::VSELECT:
3777 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
3778 if (Tmp == 1) return 1; // Early out.
3779 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3780 return std::min(Tmp, Tmp2);
3781 case ISD::SELECT_CC:
3782 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
3783 if (Tmp == 1) return 1; // Early out.
3784 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
3785 return std::min(Tmp, Tmp2);
3786
3787 case ISD::SMIN:
3788 case ISD::SMAX: {
3789 // If we have a clamp pattern, we know that the number of sign bits will be
3790 // the minimum of the clamp min/max range.
3791 bool IsMax = (Opcode == ISD::SMAX);
3792 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
3793 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
3794 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
3795 CstHigh =
3796 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
3797 if (CstLow && CstHigh) {
3798 if (!IsMax)
3799 std::swap(CstLow, CstHigh);
3800 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
3801 Tmp = CstLow->getAPIntValue().getNumSignBits();
3802 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
3803 return std::min(Tmp, Tmp2);
3804 }
3805 }
3806
3807 // Fallback - just get the minimum number of sign bits of the operands.
3808 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3809 if (Tmp == 1)
3810 return 1; // Early out.
3811 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3812 return std::min(Tmp, Tmp2);
3813 }
3814 case ISD::UMIN:
3815 case ISD::UMAX:
3816 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3817 if (Tmp == 1)
3818 return 1; // Early out.
3819 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3820 return std::min(Tmp, Tmp2);
3821 case ISD::SADDO:
3822 case ISD::UADDO:
3823 case ISD::SSUBO:
3824 case ISD::USUBO:
3825 case ISD::SMULO:
3826 case ISD::UMULO:
3827 if (Op.getResNo() != 1)
3828 break;
3829 // The boolean result conforms to getBooleanContents. Fall through.
3830 // If setcc returns 0/-1, all bits are sign bits.
3831 // We know that we have an integer-based boolean since these operations
3832 // are only available for integer.
3833 if (TLI->getBooleanContents(VT.isVector(), false) ==
3834 TargetLowering::ZeroOrNegativeOneBooleanContent)
3835 return VTBits;
3836 break;
3837 case ISD::SETCC:
3838 case ISD::STRICT_FSETCC:
3839 case ISD::STRICT_FSETCCS: {
3840 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3841 // If setcc returns 0/-1, all bits are sign bits.
3842 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3843 TargetLowering::ZeroOrNegativeOneBooleanContent)
3844 return VTBits;
3845 break;
3846 }
3847 case ISD::ROTL:
3848 case ISD::ROTR:
3849 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3850
3851 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
3852 if (Tmp == VTBits)
3853 return VTBits;
3854
3855 if (ConstantSDNode *C =
3856 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3857 unsigned RotAmt = C->getAPIntValue().urem(VTBits);
3858
3859 // Handle rotate right by N like a rotate left by 32-N.
3860 if (Opcode == ISD::ROTR)
3861 RotAmt = (VTBits - RotAmt) % VTBits;
3862
3863 // If we aren't rotating out all of the known-in sign bits, return the
3864 // number that are left. This handles rotl(sext(x), 1) for example.
3865 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
3866 }
3867 break;
3868 case ISD::ADD:
3869 case ISD::ADDC:
3870 // Add can have at most one carry bit. Thus we know that the output
3871 // is, at worst, one more bit than the inputs.
3872 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3873 if (Tmp == 1) return 1; // Early out.
3874
3875 // Special case decrementing a value (ADD X, -1):
3876 if (ConstantSDNode *CRHS =
3877 isConstOrConstSplat(Op.getOperand(1), DemandedElts))
3878 if (CRHS->isAllOnesValue()) {
3879 KnownBits Known =
3880 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3881
3882 // If the input is known to be 0 or 1, the output is 0/-1, which is all
3883 // sign bits set.
3884 if ((Known.Zero | 1).isAllOnesValue())
3885 return VTBits;
3886
3887 // If we are subtracting one from a positive number, there is no carry
3888 // out of the result.
3889 if (Known.isNonNegative())
3890 return Tmp;
3891 }
3892
3893 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3894 if (Tmp2 == 1) return 1; // Early out.
3895 return std::min(Tmp, Tmp2) - 1;
3896 case ISD::SUB:
3897 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3898 if (Tmp2 == 1) return 1; // Early out.
3899
3900 // Handle NEG.
3901 if (ConstantSDNode *CLHS =
3902 isConstOrConstSplat(Op.getOperand(0), DemandedElts))
3903 if (CLHS->isNullValue()) {
3904 KnownBits Known =
3905 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3906 // If the input is known to be 0 or 1, the output is 0/-1, which is all
3907 // sign bits set.
3908 if ((Known.Zero | 1).isAllOnesValue())
3909 return VTBits;
3910
3911 // If the input is known to be positive (the sign bit is known clear),
3912 // the output of the NEG has the same number of sign bits as the input.
3913 if (Known.isNonNegative())
3914 return Tmp2;
3915
3916 // Otherwise, we treat this like a SUB.
3917 }
3918
3919 // Sub can have at most one carry bit. Thus we know that the output
3920 // is, at worst, one more bit than the inputs.
3921 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3922 if (Tmp == 1) return 1; // Early out.
3923 return std::min(Tmp, Tmp2) - 1;
3924 case ISD::MUL: {
3925 // The output of the Mul can be at most twice the valid bits in the inputs.
3926 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3927 if (SignBitsOp0 == 1)
3928 break;
3929 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
3930 if (SignBitsOp1 == 1)
3931 break;
3932 unsigned OutValidBits =
3933 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
3934 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
3935 }
3936 case ISD::TRUNCATE: {
3937 // Check if the sign bits of source go down as far as the truncated value.
3938 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
3939 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
3940 if (NumSrcSignBits > (NumSrcBits - VTBits))
3941 return NumSrcSignBits - (NumSrcBits - VTBits);
3942 break;
3943 }
3944 case ISD::EXTRACT_ELEMENT: {
3945 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
3946 const int BitWidth = Op.getValueSizeInBits();
3947 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
3948
3949 // Get reverse index (starting from 1), Op1 value indexes elements from
3950 // little end. Sign starts at big end.
3951 const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
3952
3953 // If the sign portion ends in our element the subtraction gives correct
3954 // result. Otherwise it gives either negative or > bitwidth result
3955 return std::max(std::min(KnownSign - rIndex * BitWidth, BitWidth), 0);
3956 }
3957 case ISD::INSERT_VECTOR_ELT: {
3958 // If we know the element index, split the demand between the
3959 // source vector and the inserted element, otherwise assume we need
3960 // the original demanded vector elements and the value.
3961 SDValue InVec = Op.getOperand(0);
3962 SDValue InVal = Op.getOperand(1);
3963 SDValue EltNo = Op.getOperand(2);
3964 bool DemandedVal = true;
3965 APInt DemandedVecElts = DemandedElts;
3966 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
3967 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
3968 unsigned EltIdx = CEltNo->getZExtValue();
3969 DemandedVal = !!DemandedElts[EltIdx];
3970 DemandedVecElts.clearBit(EltIdx);
3971 }
3972 Tmp = std::numeric_limits<unsigned>::max();
3973 if (DemandedVal) {
3974 // TODO - handle implicit truncation of inserted elements.
3975 if (InVal.getScalarValueSizeInBits() != VTBits)
3976 break;
3977 Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
3978 Tmp = std::min(Tmp, Tmp2);
3979 }
3980 if (!!DemandedVecElts) {
3981 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
3982 Tmp = std::min(Tmp, Tmp2);
3983 }
3984 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
3985 return Tmp;
3986 }
3987 case ISD::EXTRACT_VECTOR_ELT: {
3988 SDValue InVec = Op.getOperand(0);
3989 SDValue EltNo = Op.getOperand(1);
3990 EVT VecVT = InVec.getValueType();
3991 const unsigned BitWidth = Op.getValueSizeInBits();
3992 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
3993 const unsigned NumSrcElts = VecVT.getVectorNumElements();
3994
3995 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3996 // anything about sign bits. But if the sizes match we can derive knowledge
3997 // about sign bits from the vector operand.
3998 if (BitWidth != EltBitWidth)
3999 break;
4000
4001 // If we know the element index, just demand that vector element, else for
4002 // an unknown element index, ignore DemandedElts and demand them all.
4003 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
4004 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4005 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4006 DemandedSrcElts =
4007 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4008
4009 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
4010 }
4011 case ISD::EXTRACT_SUBVECTOR: {
4012 // Offset the demanded elts by the subvector index.
4013 SDValue Src = Op.getOperand(0);
4014 // Bail until we can represent demanded elements for scalable vectors.
4015 if (Src.getValueType().isScalableVector())
4016 break;
4017 uint64_t Idx = Op.getConstantOperandVal(1);
4018 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
4019 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
4020 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4021 }
4022 case ISD::CONCAT_VECTORS: {
4023 // Determine the minimum number of sign bits across all demanded
4024 // elts of the input vectors. Early out if the result is already 1.
4025 Tmp = std::numeric_limits<unsigned>::max();
4026 EVT SubVectorVT = Op.getOperand(0).getValueType();
4027 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
4028 unsigned NumSubVectors = Op.getNumOperands();
4029 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
4030 APInt DemandedSub = DemandedElts.lshr(i * NumSubVectorElts);
4031 DemandedSub = DemandedSub.trunc(NumSubVectorElts);
4032 if (!DemandedSub)
4033 continue;
4034 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
4035 Tmp = std::min(Tmp, Tmp2);
4036 }
4037 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4038 return Tmp;
4039 }
4040 case ISD::INSERT_SUBVECTOR: {
4041 // Demand any elements from the subvector and the remainder from the src its
4042 // inserted into.
4043 SDValue Src = Op.getOperand(0);
4044 SDValue Sub = Op.getOperand(1);
4045 uint64_t Idx = Op.getConstantOperandVal(2);
4046 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
4047 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
4048 APInt DemandedSrcElts = DemandedElts;
4049 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
4050
4051 Tmp = std::numeric_limits<unsigned>::max();
4052 if (!!DemandedSubElts) {
4053 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
4054 if (Tmp == 1)
4055 return 1; // early-out
4056 }
4057 if (!!DemandedSrcElts) {
4058 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
4059 Tmp = std::min(Tmp, Tmp2);
4060 }
4061 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4062 return Tmp;
4063 }
4064 }
4065
4066 // If we are looking at the loaded value of the SDNode.
4067 if (Op.getResNo() == 0) {
4068 // Handle LOADX separately here. EXTLOAD case will fallthrough.
4069 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
4070 unsigned ExtType = LD->getExtensionType();
4071 switch (ExtType) {
4072 default: break;
4073 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
4074 Tmp = LD->getMemoryVT().getScalarSizeInBits();
4075 return VTBits - Tmp + 1;
4076 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
4077 Tmp = LD->getMemoryVT().getScalarSizeInBits();
4078 return VTBits - Tmp;
4079 case ISD::NON_EXTLOAD:
4080 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
4081 // We only need to handle vectors - computeKnownBits should handle
4082 // scalar cases.
4083 Type *CstTy = Cst->getType();
4084 if (CstTy->isVectorTy() &&
4085 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits()) {
4086 Tmp = VTBits;
4087 for (unsigned i = 0; i != NumElts; ++i) {
4088 if (!DemandedElts[i])
4089 continue;
4090 if (Constant *Elt = Cst->getAggregateElement(i)) {
4091 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4092 const APInt &Value = CInt->getValue();
4093 Tmp = std::min(Tmp, Value.getNumSignBits());
4094 continue;
4095 }
4096 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4097 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4098 Tmp = std::min(Tmp, Value.getNumSignBits());
4099 continue;
4100 }
4101 }
4102 // Unknown type. Conservatively assume no bits match sign bit.
4103 return 1;
4104 }
4105 return Tmp;
4106 }
4107 }
4108 break;
4109 }
4110 }
4111 }
4112
4113 // Allow the target to implement this method for its nodes.
4114 if (Opcode >= ISD::BUILTIN_OP_END ||
4115 Opcode == ISD::INTRINSIC_WO_CHAIN ||
4116 Opcode == ISD::INTRINSIC_W_CHAIN ||
4117 Opcode == ISD::INTRINSIC_VOID) {
4118 unsigned NumBits =
4119 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
4120 if (NumBits > 1)
4121 FirstAnswer = std::max(FirstAnswer, NumBits);
4122 }
4123
4124 // Finally, if we can prove that the top bits of the result are 0's or 1's,
4125 // use this information.
4126 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
4127
4128 APInt Mask;
4129 if (Known.isNonNegative()) { // sign bit is 0
4130 Mask = Known.Zero;
4131 } else if (Known.isNegative()) { // sign bit is 1;
4132 Mask = Known.One;
4133 } else {
4134 // Nothing known.
4135 return FirstAnswer;
4136 }
4137
4138 // Okay, we know that the sign bit in Mask is set. Use CLO to determine
4139 // the number of identical bits in the top of the input value.
4140 Mask <<= Mask.getBitWidth()-VTBits;
4141 return std::max(FirstAnswer, Mask.countLeadingOnes());
4142 }
4143
isBaseWithConstantOffset(SDValue Op) const4144 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
4145 switch (Op.getOpcode()) {
4146 case ISD::ADD:
4147 case ISD::OR:
4148 case ISD::PTRADD:
4149 if (isa<ConstantSDNode>(Op.getOperand(1)))
4150 break;
4151 LLVM_FALLTHROUGH;
4152 default:
4153 return false;
4154 }
4155
4156 if (Op.getOpcode() == ISD::OR &&
4157 !MaskedValueIsZero(Op.getOperand(0), Op.getConstantOperandAPInt(1)))
4158 return false;
4159
4160 return true;
4161 }
4162
isKnownNeverNaN(SDValue Op,bool SNaN,unsigned Depth) const4163 bool SelectionDAG::isKnownNeverNaN(SDValue Op, bool SNaN, unsigned Depth) const {
4164 // If we're told that NaNs won't happen, assume they won't.
4165 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
4166 return true;
4167
4168 if (Depth >= MaxRecursionDepth)
4169 return false; // Limit search depth.
4170
4171 // TODO: Handle vectors.
4172 // If the value is a constant, we can obviously see if it is a NaN or not.
4173 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
4174 return !C->getValueAPF().isNaN() ||
4175 (SNaN && !C->getValueAPF().isSignaling());
4176 }
4177
4178 unsigned Opcode = Op.getOpcode();
4179 switch (Opcode) {
4180 case ISD::FADD:
4181 case ISD::FSUB:
4182 case ISD::FMUL:
4183 case ISD::FDIV:
4184 case ISD::FREM:
4185 case ISD::FSIN:
4186 case ISD::FCOS: {
4187 if (SNaN)
4188 return true;
4189 // TODO: Need isKnownNeverInfinity
4190 return false;
4191 }
4192 case ISD::FCANONICALIZE:
4193 case ISD::FEXP:
4194 case ISD::FEXP2:
4195 case ISD::FTRUNC:
4196 case ISD::FFLOOR:
4197 case ISD::FCEIL:
4198 case ISD::FROUND:
4199 case ISD::FROUNDEVEN:
4200 case ISD::FRINT:
4201 case ISD::FNEARBYINT: {
4202 if (SNaN)
4203 return true;
4204 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4205 }
4206 case ISD::FABS:
4207 case ISD::FNEG:
4208 case ISD::FCOPYSIGN: {
4209 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4210 }
4211 case ISD::SELECT:
4212 return isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4213 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4214 case ISD::FP_EXTEND:
4215 case ISD::FP_ROUND: {
4216 if (SNaN)
4217 return true;
4218 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4219 }
4220 case ISD::SINT_TO_FP:
4221 case ISD::UINT_TO_FP:
4222 return true;
4223 case ISD::FMA:
4224 case ISD::FMAD: {
4225 if (SNaN)
4226 return true;
4227 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4228 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4229 isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4230 }
4231 case ISD::FSQRT: // Need is known positive
4232 case ISD::FLOG:
4233 case ISD::FLOG2:
4234 case ISD::FLOG10:
4235 case ISD::FPOWI:
4236 case ISD::FPOW: {
4237 if (SNaN)
4238 return true;
4239 // TODO: Refine on operand
4240 return false;
4241 }
4242 case ISD::FMINNUM:
4243 case ISD::FMAXNUM: {
4244 // Only one needs to be known not-nan, since it will be returned if the
4245 // other ends up being one.
4246 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) ||
4247 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4248 }
4249 case ISD::FMINNUM_IEEE:
4250 case ISD::FMAXNUM_IEEE: {
4251 if (SNaN)
4252 return true;
4253 // This can return a NaN if either operand is an sNaN, or if both operands
4254 // are NaN.
4255 return (isKnownNeverNaN(Op.getOperand(0), false, Depth + 1) &&
4256 isKnownNeverSNaN(Op.getOperand(1), Depth + 1)) ||
4257 (isKnownNeverNaN(Op.getOperand(1), false, Depth + 1) &&
4258 isKnownNeverSNaN(Op.getOperand(0), Depth + 1));
4259 }
4260 case ISD::FMINIMUM:
4261 case ISD::FMAXIMUM: {
4262 // TODO: Does this quiet or return the origina NaN as-is?
4263 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4264 isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4265 }
4266 case ISD::EXTRACT_VECTOR_ELT: {
4267 return isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4268 }
4269 default:
4270 if (Opcode >= ISD::BUILTIN_OP_END ||
4271 Opcode == ISD::INTRINSIC_WO_CHAIN ||
4272 Opcode == ISD::INTRINSIC_W_CHAIN ||
4273 Opcode == ISD::INTRINSIC_VOID) {
4274 return TLI->isKnownNeverNaNForTargetNode(Op, *this, SNaN, Depth);
4275 }
4276
4277 return false;
4278 }
4279 }
4280
isKnownNeverZeroFloat(SDValue Op) const4281 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op) const {
4282 assert(Op.getValueType().isFloatingPoint() &&
4283 "Floating point type expected");
4284
4285 // If the value is a constant, we can obviously see if it is a zero or not.
4286 // TODO: Add BuildVector support.
4287 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
4288 return !C->isZero();
4289 return false;
4290 }
4291
isKnownNeverZero(SDValue Op) const4292 bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
4293 assert(!Op.getValueType().isFloatingPoint() &&
4294 "Floating point types unsupported - use isKnownNeverZeroFloat");
4295
4296 // If the value is a constant, we can obviously see if it is a zero or not.
4297 if (ISD::matchUnaryPredicate(
4298 Op, [](ConstantSDNode *C) { return !C->isNullValue(); }))
4299 return true;
4300
4301 // TODO: Recognize more cases here.
4302 switch (Op.getOpcode()) {
4303 default: break;
4304 case ISD::OR:
4305 if (isKnownNeverZero(Op.getOperand(1)) ||
4306 isKnownNeverZero(Op.getOperand(0)))
4307 return true;
4308 break;
4309 }
4310
4311 return false;
4312 }
4313
isEqualTo(SDValue A,SDValue B) const4314 bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
4315 // Check the obvious case.
4316 if (A == B) return true;
4317
4318 // For for negative and positive zero.
4319 if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
4320 if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
4321 if (CA->isZero() && CB->isZero()) return true;
4322
4323 // Otherwise they may not be equal.
4324 return false;
4325 }
4326
4327 // FIXME: unify with llvm::haveNoCommonBitsSet.
4328 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
haveNoCommonBitsSet(SDValue A,SDValue B) const4329 bool SelectionDAG::haveNoCommonBitsSet(SDValue A, SDValue B) const {
4330 assert(A.getValueType() == B.getValueType() &&
4331 "Values must have the same type");
4332 return (computeKnownBits(A).Zero | computeKnownBits(B).Zero).isAllOnesValue();
4333 }
4334
FoldBUILD_VECTOR(const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,SelectionDAG & DAG)4335 static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT,
4336 ArrayRef<SDValue> Ops,
4337 SelectionDAG &DAG) {
4338 int NumOps = Ops.size();
4339 assert(NumOps != 0 && "Can't build an empty vector!");
4340 assert(!VT.isScalableVector() &&
4341 "BUILD_VECTOR cannot be used with scalable types");
4342 assert(VT.getVectorNumElements() == (unsigned)NumOps &&
4343 "Incorrect element count in BUILD_VECTOR!");
4344
4345 // BUILD_VECTOR of UNDEFs is UNDEF.
4346 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4347 return DAG.getUNDEF(VT);
4348
4349 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
4350 SDValue IdentitySrc;
4351 bool IsIdentity = true;
4352 for (int i = 0; i != NumOps; ++i) {
4353 if (Ops[i].getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4354 Ops[i].getOperand(0).getValueType() != VT ||
4355 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
4356 !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
4357 cast<ConstantSDNode>(Ops[i].getOperand(1))->getAPIntValue() != i) {
4358 IsIdentity = false;
4359 break;
4360 }
4361 IdentitySrc = Ops[i].getOperand(0);
4362 }
4363 if (IsIdentity)
4364 return IdentitySrc;
4365
4366 return SDValue();
4367 }
4368
4369 /// Try to simplify vector concatenation to an input value, undef, or build
4370 /// vector.
foldCONCAT_VECTORS(const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,SelectionDAG & DAG)4371 static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT,
4372 ArrayRef<SDValue> Ops,
4373 SelectionDAG &DAG) {
4374 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
4375 assert(llvm::all_of(Ops,
4376 [Ops](SDValue Op) {
4377 return Ops[0].getValueType() == Op.getValueType();
4378 }) &&
4379 "Concatenation of vectors with inconsistent value types!");
4380 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
4381 VT.getVectorElementCount() &&
4382 "Incorrect element count in vector concatenation!");
4383
4384 if (Ops.size() == 1)
4385 return Ops[0];
4386
4387 // Concat of UNDEFs is UNDEF.
4388 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
4389 return DAG.getUNDEF(VT);
4390
4391 // Scan the operands and look for extract operations from a single source
4392 // that correspond to insertion at the same location via this concatenation:
4393 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
4394 SDValue IdentitySrc;
4395 bool IsIdentity = true;
4396 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
4397 SDValue Op = Ops[i];
4398 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
4399 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
4400 Op.getOperand(0).getValueType() != VT ||
4401 (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
4402 Op.getConstantOperandVal(1) != IdentityIndex) {
4403 IsIdentity = false;
4404 break;
4405 }
4406 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
4407 "Unexpected identity source vector for concat of extracts");
4408 IdentitySrc = Op.getOperand(0);
4409 }
4410 if (IsIdentity) {
4411 assert(IdentitySrc && "Failed to set source vector of extracts");
4412 return IdentitySrc;
4413 }
4414
4415 // The code below this point is only designed to work for fixed width
4416 // vectors, so we bail out for now.
4417 if (VT.isScalableVector())
4418 return SDValue();
4419
4420 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4421 // simplified to one big BUILD_VECTOR.
4422 // FIXME: Add support for SCALAR_TO_VECTOR as well.
4423 EVT SVT = VT.getScalarType();
4424 SmallVector<SDValue, 16> Elts;
4425 for (SDValue Op : Ops) {
4426 EVT OpVT = Op.getValueType();
4427 if (Op.isUndef())
4428 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
4429 else if (Op.getOpcode() == ISD::BUILD_VECTOR)
4430 Elts.append(Op->op_begin(), Op->op_end());
4431 else
4432 return SDValue();
4433 }
4434
4435 // BUILD_VECTOR requires all inputs to be of the same type, find the
4436 // maximum type and extend them all.
4437 for (SDValue Op : Elts)
4438 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
4439
4440 if (SVT.bitsGT(VT.getScalarType()))
4441 for (SDValue &Op : Elts)
4442 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
4443 ? DAG.getZExtOrTrunc(Op, DL, SVT)
4444 : DAG.getSExtOrTrunc(Op, DL, SVT);
4445
4446 SDValue V = DAG.getBuildVector(VT, DL, Elts);
4447 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
4448 return V;
4449 }
4450
4451 /// Gets or creates the specified node.
getNode(unsigned Opcode,const SDLoc & DL,EVT VT)4452 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
4453 FoldingSetNodeID ID;
4454 AddNodeIDNode(ID, Opcode, getVTList(VT), None);
4455 void *IP = nullptr;
4456 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
4457 return SDValue(E, 0);
4458
4459 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(),
4460 getVTList(VT));
4461 CSEMap.InsertNode(N, IP);
4462
4463 InsertNode(N);
4464 SDValue V = SDValue(N, 0);
4465 NewSDValueDbgMsg(V, "Creating new node: ", this);
4466 return V;
4467 }
4468
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue Operand,const SDNodeFlags Flags)4469 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
4470 SDValue Operand, const SDNodeFlags Flags) {
4471 // Constant fold unary operations with an integer constant operand. Even
4472 // opaque constant will be folded, because the folding of unary operations
4473 // doesn't create new constants with different values. Nevertheless, the
4474 // opaque flag is preserved during folding to prevent future folding with
4475 // other constants.
4476 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand)) {
4477 const APInt &Val = C->getAPIntValue();
4478 switch (Opcode) {
4479 default: break;
4480 case ISD::SIGN_EXTEND:
4481 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
4482 C->isTargetOpcode(), C->isOpaque());
4483 case ISD::TRUNCATE:
4484 if (C->isOpaque())
4485 break;
4486 LLVM_FALLTHROUGH;
4487 case ISD::ANY_EXTEND:
4488 case ISD::ZERO_EXTEND:
4489 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
4490 C->isTargetOpcode(), C->isOpaque());
4491 case ISD::UINT_TO_FP:
4492 case ISD::SINT_TO_FP: {
4493 APFloat apf(EVTToAPFloatSemantics(VT),
4494 APInt::getNullValue(VT.getSizeInBits()));
4495 (void)apf.convertFromAPInt(Val,
4496 Opcode==ISD::SINT_TO_FP,
4497 APFloat::rmNearestTiesToEven);
4498 return getConstantFP(apf, DL, VT);
4499 }
4500 case ISD::BITCAST:
4501 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
4502 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
4503 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
4504 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
4505 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
4506 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
4507 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
4508 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
4509 break;
4510 case ISD::ABS:
4511 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
4512 C->isOpaque());
4513 case ISD::BITREVERSE:
4514 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
4515 C->isOpaque());
4516 case ISD::BSWAP:
4517 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
4518 C->isOpaque());
4519 case ISD::CTPOP:
4520 return getConstant(Val.countPopulation(), DL, VT, C->isTargetOpcode(),
4521 C->isOpaque());
4522 case ISD::CTLZ:
4523 case ISD::CTLZ_ZERO_UNDEF:
4524 return getConstant(Val.countLeadingZeros(), DL, VT, C->isTargetOpcode(),
4525 C->isOpaque());
4526 case ISD::CTTZ:
4527 case ISD::CTTZ_ZERO_UNDEF:
4528 return getConstant(Val.countTrailingZeros(), DL, VT, C->isTargetOpcode(),
4529 C->isOpaque());
4530 case ISD::FP16_TO_FP: {
4531 bool Ignored;
4532 APFloat FPV(APFloat::IEEEhalf(),
4533 (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
4534
4535 // This can return overflow, underflow, or inexact; we don't care.
4536 // FIXME need to be more flexible about rounding mode.
4537 (void)FPV.convert(EVTToAPFloatSemantics(VT),
4538 APFloat::rmNearestTiesToEven, &Ignored);
4539 return getConstantFP(FPV, DL, VT);
4540 }
4541 }
4542 }
4543
4544 // Constant fold unary operations with a floating point constant operand.
4545 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand)) {
4546 APFloat V = C->getValueAPF(); // make copy
4547 switch (Opcode) {
4548 case ISD::FNEG:
4549 V.changeSign();
4550 return getConstantFP(V, DL, VT);
4551 case ISD::FABS:
4552 V.clearSign();
4553 return getConstantFP(V, DL, VT);
4554 case ISD::FCEIL: {
4555 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
4556 if (fs == APFloat::opOK || fs == APFloat::opInexact)
4557 return getConstantFP(V, DL, VT);
4558 break;
4559 }
4560 case ISD::FTRUNC: {
4561 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
4562 if (fs == APFloat::opOK || fs == APFloat::opInexact)
4563 return getConstantFP(V, DL, VT);
4564 break;
4565 }
4566 case ISD::FFLOOR: {
4567 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
4568 if (fs == APFloat::opOK || fs == APFloat::opInexact)
4569 return getConstantFP(V, DL, VT);
4570 break;
4571 }
4572 case ISD::FP_EXTEND: {
4573 bool ignored;
4574 // This can return overflow, underflow, or inexact; we don't care.
4575 // FIXME need to be more flexible about rounding mode.
4576 (void)V.convert(EVTToAPFloatSemantics(VT),
4577 APFloat::rmNearestTiesToEven, &ignored);
4578 return getConstantFP(V, DL, VT);
4579 }
4580 case ISD::FP_TO_SINT:
4581 case ISD::FP_TO_UINT: {
4582 bool ignored;
4583 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
4584 // FIXME need to be more flexible about rounding mode.
4585 APFloat::opStatus s =
4586 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
4587 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
4588 break;
4589 return getConstant(IntVal, DL, VT);
4590 }
4591 case ISD::BITCAST:
4592 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
4593 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4594 else if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
4595 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL, VT);
4596 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
4597 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4598 break;
4599 case ISD::FP_TO_FP16: {
4600 bool Ignored;
4601 // This can return overflow, underflow, or inexact; we don't care.
4602 // FIXME need to be more flexible about rounding mode.
4603 (void)V.convert(APFloat::IEEEhalf(),
4604 APFloat::rmNearestTiesToEven, &Ignored);
4605 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
4606 }
4607 }
4608 }
4609
4610 // Constant fold unary operations with a vector integer or float operand.
4611 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Operand)) {
4612 if (BV->isConstant()) {
4613 switch (Opcode) {
4614 default:
4615 // FIXME: Entirely reasonable to perform folding of other unary
4616 // operations here as the need arises.
4617 break;
4618 case ISD::FNEG:
4619 case ISD::FABS:
4620 case ISD::FCEIL:
4621 case ISD::FTRUNC:
4622 case ISD::FFLOOR:
4623 case ISD::FP_EXTEND:
4624 case ISD::FP_TO_SINT:
4625 case ISD::FP_TO_UINT:
4626 case ISD::TRUNCATE:
4627 case ISD::ANY_EXTEND:
4628 case ISD::ZERO_EXTEND:
4629 case ISD::SIGN_EXTEND:
4630 case ISD::UINT_TO_FP:
4631 case ISD::SINT_TO_FP:
4632 case ISD::ABS:
4633 case ISD::BITREVERSE:
4634 case ISD::BSWAP:
4635 case ISD::CTLZ:
4636 case ISD::CTLZ_ZERO_UNDEF:
4637 case ISD::CTTZ:
4638 case ISD::CTTZ_ZERO_UNDEF:
4639 case ISD::CTPOP: {
4640 SDValue Ops = { Operand };
4641 if (SDValue Fold = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops))
4642 return Fold;
4643 }
4644 }
4645 }
4646 }
4647
4648 unsigned OpOpcode = Operand.getNode()->getOpcode();
4649 switch (Opcode) {
4650 case ISD::FREEZE:
4651 assert(VT == Operand.getValueType() && "Unexpected VT!");
4652 break;
4653 case ISD::TokenFactor:
4654 case ISD::MERGE_VALUES:
4655 case ISD::CONCAT_VECTORS:
4656 return Operand; // Factor, merge or concat of one node? No need.
4657 case ISD::BUILD_VECTOR: {
4658 // Attempt to simplify BUILD_VECTOR.
4659 SDValue Ops[] = {Operand};
4660 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
4661 return V;
4662 break;
4663 }
4664 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
4665 case ISD::FP_EXTEND:
4666 assert(VT.isFloatingPoint() &&
4667 Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
4668 if (Operand.getValueType() == VT) return Operand; // noop conversion.
4669 assert((!VT.isVector() ||
4670 VT.getVectorNumElements() ==
4671 Operand.getValueType().getVectorNumElements()) &&
4672 "Vector element count mismatch!");
4673 assert(Operand.getValueType().bitsLT(VT) &&
4674 "Invalid fpext node, dst < src!");
4675 if (Operand.isUndef())
4676 return getUNDEF(VT);
4677 break;
4678 case ISD::FP_TO_SINT:
4679 case ISD::FP_TO_UINT:
4680 if (Operand.isUndef())
4681 return getUNDEF(VT);
4682 break;
4683 case ISD::SINT_TO_FP:
4684 case ISD::UINT_TO_FP:
4685 // [us]itofp(undef) = 0, because the result value is bounded.
4686 if (Operand.isUndef())
4687 return getConstantFP(0.0, DL, VT);
4688 break;
4689 case ISD::SIGN_EXTEND:
4690 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4691 "Invalid SIGN_EXTEND!");
4692 assert(VT.isVector() == Operand.getValueType().isVector() &&
4693 "SIGN_EXTEND result type type should be vector iff the operand "
4694 "type is vector!");
4695 if (Operand.getValueType() == VT) return Operand; // noop extension
4696 assert((!VT.isVector() ||
4697 VT.getVectorElementCount() ==
4698 Operand.getValueType().getVectorElementCount()) &&
4699 "Vector element count mismatch!");
4700 assert(Operand.getValueType().bitsLT(VT) &&
4701 "Invalid sext node, dst < src!");
4702 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
4703 return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4704 else if (OpOpcode == ISD::UNDEF)
4705 // sext(undef) = 0, because the top bits will all be the same.
4706 return getConstant(0, DL, VT);
4707 break;
4708 case ISD::ZERO_EXTEND:
4709 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4710 "Invalid ZERO_EXTEND!");
4711 assert(VT.isVector() == Operand.getValueType().isVector() &&
4712 "ZERO_EXTEND result type type should be vector iff the operand "
4713 "type is vector!");
4714 if (Operand.getValueType() == VT) return Operand; // noop extension
4715 assert((!VT.isVector() ||
4716 VT.getVectorElementCount() ==
4717 Operand.getValueType().getVectorElementCount()) &&
4718 "Vector element count mismatch!");
4719 assert(Operand.getValueType().bitsLT(VT) &&
4720 "Invalid zext node, dst < src!");
4721 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
4722 return getNode(ISD::ZERO_EXTEND, DL, VT, Operand.getOperand(0));
4723 else if (OpOpcode == ISD::UNDEF)
4724 // zext(undef) = 0, because the top bits will be zero.
4725 return getConstant(0, DL, VT);
4726 break;
4727 case ISD::ANY_EXTEND:
4728 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4729 "Invalid ANY_EXTEND!");
4730 assert(VT.isVector() == Operand.getValueType().isVector() &&
4731 "ANY_EXTEND result type type should be vector iff the operand "
4732 "type is vector!");
4733 if (Operand.getValueType() == VT) return Operand; // noop extension
4734 assert((!VT.isVector() ||
4735 VT.getVectorElementCount() ==
4736 Operand.getValueType().getVectorElementCount()) &&
4737 "Vector element count mismatch!");
4738 assert(Operand.getValueType().bitsLT(VT) &&
4739 "Invalid anyext node, dst < src!");
4740
4741 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4742 OpOpcode == ISD::ANY_EXTEND)
4743 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
4744 return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4745 else if (OpOpcode == ISD::UNDEF)
4746 return getUNDEF(VT);
4747
4748 // (ext (trunc x)) -> x
4749 if (OpOpcode == ISD::TRUNCATE) {
4750 SDValue OpOp = Operand.getOperand(0);
4751 if (OpOp.getValueType() == VT) {
4752 transferDbgValues(Operand, OpOp);
4753 return OpOp;
4754 }
4755 }
4756 break;
4757 case ISD::TRUNCATE:
4758 assert(VT.isInteger() && Operand.getValueType().isInteger() &&
4759 "Invalid TRUNCATE!");
4760 assert(VT.isVector() == Operand.getValueType().isVector() &&
4761 "TRUNCATE result type type should be vector iff the operand "
4762 "type is vector!");
4763 if (Operand.getValueType() == VT) return Operand; // noop truncate
4764 assert((!VT.isVector() ||
4765 VT.getVectorElementCount() ==
4766 Operand.getValueType().getVectorElementCount()) &&
4767 "Vector element count mismatch!");
4768 assert(Operand.getValueType().bitsGT(VT) &&
4769 "Invalid truncate node, src < dst!");
4770 if (OpOpcode == ISD::TRUNCATE)
4771 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4772 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
4773 OpOpcode == ISD::ANY_EXTEND) {
4774 // If the source is smaller than the dest, we still need an extend.
4775 if (Operand.getOperand(0).getValueType().getScalarType()
4776 .bitsLT(VT.getScalarType()))
4777 return getNode(OpOpcode, DL, VT, Operand.getOperand(0));
4778 if (Operand.getOperand(0).getValueType().bitsGT(VT))
4779 return getNode(ISD::TRUNCATE, DL, VT, Operand.getOperand(0));
4780 return Operand.getOperand(0);
4781 }
4782 if (OpOpcode == ISD::UNDEF)
4783 return getUNDEF(VT);
4784 break;
4785 case ISD::ANY_EXTEND_VECTOR_INREG:
4786 case ISD::ZERO_EXTEND_VECTOR_INREG:
4787 case ISD::SIGN_EXTEND_VECTOR_INREG:
4788 assert(VT.isVector() && "This DAG node is restricted to vector types.");
4789 assert(Operand.getValueType().bitsLE(VT) &&
4790 "The input must be the same size or smaller than the result.");
4791 assert(VT.getVectorNumElements() <
4792 Operand.getValueType().getVectorNumElements() &&
4793 "The destination vector type must have fewer lanes than the input.");
4794 break;
4795 case ISD::ABS:
4796 assert(VT.isInteger() && VT == Operand.getValueType() &&
4797 "Invalid ABS!");
4798 if (OpOpcode == ISD::UNDEF)
4799 return getUNDEF(VT);
4800 break;
4801 case ISD::BSWAP:
4802 assert(VT.isInteger() && VT == Operand.getValueType() &&
4803 "Invalid BSWAP!");
4804 assert((VT.getScalarSizeInBits() % 16 == 0) &&
4805 "BSWAP types must be a multiple of 16 bits!");
4806 if (OpOpcode == ISD::UNDEF)
4807 return getUNDEF(VT);
4808 break;
4809 case ISD::BITREVERSE:
4810 assert(VT.isInteger() && VT == Operand.getValueType() &&
4811 "Invalid BITREVERSE!");
4812 if (OpOpcode == ISD::UNDEF)
4813 return getUNDEF(VT);
4814 break;
4815 case ISD::BITCAST:
4816 // Basic sanity checking.
4817 assert(VT.getSizeInBits() == Operand.getValueSizeInBits() &&
4818 "Cannot BITCAST between types of different sizes!");
4819 if (VT == Operand.getValueType()) return Operand; // noop conversion.
4820 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
4821 return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
4822 if (OpOpcode == ISD::UNDEF)
4823 return getUNDEF(VT);
4824 break;
4825 case ISD::SCALAR_TO_VECTOR:
4826 assert(VT.isVector() && !Operand.getValueType().isVector() &&
4827 (VT.getVectorElementType() == Operand.getValueType() ||
4828 (VT.getVectorElementType().isInteger() &&
4829 Operand.getValueType().isInteger() &&
4830 VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
4831 "Illegal SCALAR_TO_VECTOR node!");
4832 if (OpOpcode == ISD::UNDEF)
4833 return getUNDEF(VT);
4834 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4835 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
4836 isa<ConstantSDNode>(Operand.getOperand(1)) &&
4837 Operand.getConstantOperandVal(1) == 0 &&
4838 Operand.getOperand(0).getValueType() == VT)
4839 return Operand.getOperand(0);
4840 break;
4841 case ISD::FNEG:
4842 // Negation of an unknown bag of bits is still completely undefined.
4843 if (OpOpcode == ISD::UNDEF)
4844 return getUNDEF(VT);
4845
4846 if (OpOpcode == ISD::FNEG) // --X -> X
4847 return Operand.getOperand(0);
4848 break;
4849 case ISD::FABS:
4850 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
4851 return getNode(ISD::FABS, DL, VT, Operand.getOperand(0));
4852 break;
4853 case ISD::VSCALE:
4854 assert(VT == Operand.getValueType() && "Unexpected VT!");
4855 break;
4856 }
4857
4858 SDNode *N;
4859 SDVTList VTs = getVTList(VT);
4860 SDValue Ops[] = {Operand};
4861 if (VT != MVT::Glue) { // Don't CSE flag producing nodes
4862 FoldingSetNodeID ID;
4863 AddNodeIDNode(ID, Opcode, VTs, Ops);
4864 void *IP = nullptr;
4865 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
4866 E->intersectFlagsWith(Flags);
4867 return SDValue(E, 0);
4868 }
4869
4870 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4871 N->setFlags(Flags);
4872 createOperands(N, Ops);
4873 CSEMap.InsertNode(N, IP);
4874 } else {
4875 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
4876 createOperands(N, Ops);
4877 }
4878
4879 InsertNode(N);
4880 SDValue V = SDValue(N, 0);
4881 NewSDValueDbgMsg(V, "Creating new node: ", this);
4882 return V;
4883 }
4884
FoldValue(unsigned Opcode,const APInt & C1,const APInt & C2)4885 static llvm::Optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
4886 const APInt &C2) {
4887 switch (Opcode) {
4888 case ISD::ADD: return C1 + C2;
4889 case ISD::SUB: return C1 - C2;
4890 case ISD::MUL: return C1 * C2;
4891 case ISD::AND: return C1 & C2;
4892 case ISD::OR: return C1 | C2;
4893 case ISD::XOR: return C1 ^ C2;
4894 case ISD::SHL: return C1 << C2;
4895 case ISD::SRL: return C1.lshr(C2);
4896 case ISD::SRA: return C1.ashr(C2);
4897 case ISD::ROTL: return C1.rotl(C2);
4898 case ISD::ROTR: return C1.rotr(C2);
4899 case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
4900 case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
4901 case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
4902 case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
4903 case ISD::SADDSAT: return C1.sadd_sat(C2);
4904 case ISD::UADDSAT: return C1.uadd_sat(C2);
4905 case ISD::SSUBSAT: return C1.ssub_sat(C2);
4906 case ISD::USUBSAT: return C1.usub_sat(C2);
4907 case ISD::UDIV:
4908 if (!C2.getBoolValue())
4909 break;
4910 return C1.udiv(C2);
4911 case ISD::UREM:
4912 if (!C2.getBoolValue())
4913 break;
4914 return C1.urem(C2);
4915 case ISD::SDIV:
4916 if (!C2.getBoolValue())
4917 break;
4918 return C1.sdiv(C2);
4919 case ISD::SREM:
4920 if (!C2.getBoolValue())
4921 break;
4922 return C1.srem(C2);
4923 }
4924 return llvm::None;
4925 }
4926
FoldSymbolOffset(unsigned Opcode,EVT VT,const GlobalAddressSDNode * GA,const SDNode * N2)4927 SDValue SelectionDAG::FoldSymbolOffset(unsigned Opcode, EVT VT,
4928 const GlobalAddressSDNode *GA,
4929 const SDNode *N2) {
4930 if (GA->getOpcode() != ISD::GlobalAddress)
4931 return SDValue();
4932 if (!TLI->isOffsetFoldingLegal(GA))
4933 return SDValue();
4934 auto *C2 = dyn_cast<ConstantSDNode>(N2);
4935 if (!C2)
4936 return SDValue();
4937 int64_t Offset = C2->getSExtValue();
4938 switch (Opcode) {
4939 case ISD::ADD: break;
4940 case ISD::SUB: Offset = -uint64_t(Offset); break;
4941 default: return SDValue();
4942 }
4943 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
4944 GA->getOffset() + uint64_t(Offset));
4945 }
4946
isUndef(unsigned Opcode,ArrayRef<SDValue> Ops)4947 bool SelectionDAG::isUndef(unsigned Opcode, ArrayRef<SDValue> Ops) {
4948 switch (Opcode) {
4949 case ISD::SDIV:
4950 case ISD::UDIV:
4951 case ISD::SREM:
4952 case ISD::UREM: {
4953 // If a divisor is zero/undef or any element of a divisor vector is
4954 // zero/undef, the whole op is undef.
4955 assert(Ops.size() == 2 && "Div/rem should have 2 operands");
4956 SDValue Divisor = Ops[1];
4957 if (Divisor.isUndef() || isNullConstant(Divisor))
4958 return true;
4959
4960 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
4961 llvm::any_of(Divisor->op_values(),
4962 [](SDValue V) { return V.isUndef() ||
4963 isNullConstant(V); });
4964 // TODO: Handle signed overflow.
4965 }
4966 // TODO: Handle oversized shifts.
4967 default:
4968 return false;
4969 }
4970 }
4971
FoldConstantArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops)4972 SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL,
4973 EVT VT, ArrayRef<SDValue> Ops) {
4974 // If the opcode is a target-specific ISD node, there's nothing we can
4975 // do here and the operand rules may not line up with the below, so
4976 // bail early.
4977 if (Opcode >= ISD::BUILTIN_OP_END)
4978 return SDValue();
4979
4980 // For now, the array Ops should only contain two values.
4981 // This enforcement will be removed once this function is merged with
4982 // FoldConstantVectorArithmetic
4983 if (Ops.size() != 2)
4984 return SDValue();
4985
4986 if (isUndef(Opcode, Ops))
4987 return getUNDEF(VT);
4988
4989 SDNode *N1 = Ops[0].getNode();
4990 SDNode *N2 = Ops[1].getNode();
4991
4992 // Handle the case of two scalars.
4993 if (auto *C1 = dyn_cast<ConstantSDNode>(N1)) {
4994 if (auto *C2 = dyn_cast<ConstantSDNode>(N2)) {
4995 if (C1->isOpaque() || C2->isOpaque())
4996 return SDValue();
4997
4998 Optional<APInt> FoldAttempt =
4999 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
5000 if (!FoldAttempt)
5001 return SDValue();
5002
5003 SDValue Folded = getConstant(FoldAttempt.getValue(), DL, VT);
5004 assert((!Folded || !VT.isVector()) &&
5005 "Can't fold vectors ops with scalar operands");
5006 return Folded;
5007 }
5008 }
5009
5010 // fold (add Sym, c) -> Sym+c
5011 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N1))
5012 return FoldSymbolOffset(Opcode, VT, GA, N2);
5013 if (TLI->isCommutativeBinOp(Opcode))
5014 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N2))
5015 return FoldSymbolOffset(Opcode, VT, GA, N1);
5016
5017 // TODO: All the folds below are performed lane-by-lane and assume a fixed
5018 // vector width, however we should be able to do constant folds involving
5019 // splat vector nodes too.
5020 if (VT.isScalableVector())
5021 return SDValue();
5022
5023 // For fixed width vectors, extract each constant element and fold them
5024 // individually. Either input may be an undef value.
5025 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
5026 if (!BV1 && !N1->isUndef())
5027 return SDValue();
5028 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
5029 if (!BV2 && !N2->isUndef())
5030 return SDValue();
5031 // If both operands are undef, that's handled the same way as scalars.
5032 if (!BV1 && !BV2)
5033 return SDValue();
5034
5035 assert((!BV1 || !BV2 || BV1->getNumOperands() == BV2->getNumOperands()) &&
5036 "Vector binop with different number of elements in operands?");
5037
5038 EVT SVT = VT.getScalarType();
5039 EVT LegalSVT = SVT;
5040 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5041 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5042 if (LegalSVT.bitsLT(SVT))
5043 return SDValue();
5044 }
5045 SmallVector<SDValue, 4> Outputs;
5046 unsigned NumOps = BV1 ? BV1->getNumOperands() : BV2->getNumOperands();
5047 for (unsigned I = 0; I != NumOps; ++I) {
5048 SDValue V1 = BV1 ? BV1->getOperand(I) : getUNDEF(SVT);
5049 SDValue V2 = BV2 ? BV2->getOperand(I) : getUNDEF(SVT);
5050 if (SVT.isInteger()) {
5051 if (V1->getValueType(0).bitsGT(SVT))
5052 V1 = getNode(ISD::TRUNCATE, DL, SVT, V1);
5053 if (V2->getValueType(0).bitsGT(SVT))
5054 V2 = getNode(ISD::TRUNCATE, DL, SVT, V2);
5055 }
5056
5057 if (V1->getValueType(0) != SVT || V2->getValueType(0) != SVT)
5058 return SDValue();
5059
5060 // Fold one vector element.
5061 SDValue ScalarResult = getNode(Opcode, DL, SVT, V1, V2);
5062 if (LegalSVT != SVT)
5063 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5064
5065 // Scalar folding only succeeded if the result is a constant or UNDEF.
5066 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5067 ScalarResult.getOpcode() != ISD::ConstantFP)
5068 return SDValue();
5069 Outputs.push_back(ScalarResult);
5070 }
5071
5072 assert(VT.getVectorNumElements() == Outputs.size() &&
5073 "Vector size mismatch!");
5074
5075 // We may have a vector type but a scalar result. Create a splat.
5076 Outputs.resize(VT.getVectorNumElements(), Outputs.back());
5077
5078 // Build a big vector out of the scalar elements we generated.
5079 return getBuildVector(VT, SDLoc(), Outputs);
5080 }
5081
5082 // TODO: Merge with FoldConstantArithmetic
FoldConstantVectorArithmetic(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)5083 SDValue SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode,
5084 const SDLoc &DL, EVT VT,
5085 ArrayRef<SDValue> Ops,
5086 const SDNodeFlags Flags) {
5087 // If the opcode is a target-specific ISD node, there's nothing we can
5088 // do here and the operand rules may not line up with the below, so
5089 // bail early.
5090 if (Opcode >= ISD::BUILTIN_OP_END)
5091 return SDValue();
5092
5093 if (isUndef(Opcode, Ops))
5094 return getUNDEF(VT);
5095
5096 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
5097 if (!VT.isVector())
5098 return SDValue();
5099
5100 // TODO: All the folds below are performed lane-by-lane and assume a fixed
5101 // vector width, however we should be able to do constant folds involving
5102 // splat vector nodes too.
5103 if (VT.isScalableVector())
5104 return SDValue();
5105
5106 // From this point onwards all vectors are assumed to be fixed width.
5107 unsigned NumElts = VT.getVectorNumElements();
5108
5109 auto IsScalarOrSameVectorSize = [&](const SDValue &Op) {
5110 return !Op.getValueType().isVector() ||
5111 Op.getValueType().getVectorNumElements() == NumElts;
5112 };
5113
5114 auto IsConstantBuildVectorOrUndef = [&](const SDValue &Op) {
5115 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op);
5116 return (Op.isUndef()) || (Op.getOpcode() == ISD::CONDCODE) ||
5117 (BV && BV->isConstant());
5118 };
5119
5120 // All operands must be vector types with the same number of elements as
5121 // the result type and must be either UNDEF or a build vector of constant
5122 // or UNDEF scalars.
5123 if (!llvm::all_of(Ops, IsConstantBuildVectorOrUndef) ||
5124 !llvm::all_of(Ops, IsScalarOrSameVectorSize))
5125 return SDValue();
5126
5127 // If we are comparing vectors, then the result needs to be a i1 boolean
5128 // that is then sign-extended back to the legal result type.
5129 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
5130
5131 // Find legal integer scalar type for constant promotion and
5132 // ensure that its scalar size is at least as large as source.
5133 EVT LegalSVT = VT.getScalarType();
5134 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
5135 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
5136 if (LegalSVT.bitsLT(VT.getScalarType()))
5137 return SDValue();
5138 }
5139
5140 // Constant fold each scalar lane separately.
5141 SmallVector<SDValue, 4> ScalarResults;
5142 for (unsigned i = 0; i != NumElts; i++) {
5143 SmallVector<SDValue, 4> ScalarOps;
5144 for (SDValue Op : Ops) {
5145 EVT InSVT = Op.getValueType().getScalarType();
5146 BuildVectorSDNode *InBV = dyn_cast<BuildVectorSDNode>(Op);
5147 if (!InBV) {
5148 // We've checked that this is UNDEF or a constant of some kind.
5149 if (Op.isUndef())
5150 ScalarOps.push_back(getUNDEF(InSVT));
5151 else
5152 ScalarOps.push_back(Op);
5153 continue;
5154 }
5155
5156 SDValue ScalarOp = InBV->getOperand(i);
5157 EVT ScalarVT = ScalarOp.getValueType();
5158
5159 // Build vector (integer) scalar operands may need implicit
5160 // truncation - do this before constant folding.
5161 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT))
5162 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
5163
5164 ScalarOps.push_back(ScalarOp);
5165 }
5166
5167 // Constant fold the scalar operands.
5168 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
5169
5170 // Legalize the (integer) scalar constant if necessary.
5171 if (LegalSVT != SVT)
5172 ScalarResult = getNode(ISD::SIGN_EXTEND, DL, LegalSVT, ScalarResult);
5173
5174 // Scalar folding only succeeded if the result is a constant or UNDEF.
5175 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
5176 ScalarResult.getOpcode() != ISD::ConstantFP)
5177 return SDValue();
5178 ScalarResults.push_back(ScalarResult);
5179 }
5180
5181 SDValue V = getBuildVector(VT, DL, ScalarResults);
5182 NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
5183 return V;
5184 }
5185
foldConstantFPMath(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2)5186 SDValue SelectionDAG::foldConstantFPMath(unsigned Opcode, const SDLoc &DL,
5187 EVT VT, SDValue N1, SDValue N2) {
5188 // TODO: We don't do any constant folding for strict FP opcodes here, but we
5189 // should. That will require dealing with a potentially non-default
5190 // rounding mode, checking the "opStatus" return value from the APFloat
5191 // math calculations, and possibly other variations.
5192 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
5193 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
5194 if (N1CFP && N2CFP) {
5195 APFloat C1 = N1CFP->getValueAPF(), C2 = N2CFP->getValueAPF();
5196 switch (Opcode) {
5197 case ISD::FADD:
5198 C1.add(C2, APFloat::rmNearestTiesToEven);
5199 return getConstantFP(C1, DL, VT);
5200 case ISD::FSUB:
5201 C1.subtract(C2, APFloat::rmNearestTiesToEven);
5202 return getConstantFP(C1, DL, VT);
5203 case ISD::FMUL:
5204 C1.multiply(C2, APFloat::rmNearestTiesToEven);
5205 return getConstantFP(C1, DL, VT);
5206 case ISD::FDIV:
5207 C1.divide(C2, APFloat::rmNearestTiesToEven);
5208 return getConstantFP(C1, DL, VT);
5209 case ISD::FREM:
5210 C1.mod(C2);
5211 return getConstantFP(C1, DL, VT);
5212 case ISD::FCOPYSIGN:
5213 C1.copySign(C2);
5214 return getConstantFP(C1, DL, VT);
5215 default: break;
5216 }
5217 }
5218 if (N1CFP && Opcode == ISD::FP_ROUND) {
5219 APFloat C1 = N1CFP->getValueAPF(); // make copy
5220 bool Unused;
5221 // This can return overflow, underflow, or inexact; we don't care.
5222 // FIXME need to be more flexible about rounding mode.
5223 (void) C1.convert(EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
5224 &Unused);
5225 return getConstantFP(C1, DL, VT);
5226 }
5227
5228 switch (Opcode) {
5229 case ISD::FSUB:
5230 // -0.0 - undef --> undef (consistent with "fneg undef")
5231 if (N1CFP && N1CFP->getValueAPF().isNegZero() && N2.isUndef())
5232 return getUNDEF(VT);
5233 LLVM_FALLTHROUGH;
5234
5235 case ISD::FADD:
5236 case ISD::FMUL:
5237 case ISD::FDIV:
5238 case ISD::FREM:
5239 // If both operands are undef, the result is undef. If 1 operand is undef,
5240 // the result is NaN. This should match the behavior of the IR optimizer.
5241 if (N1.isUndef() && N2.isUndef())
5242 return getUNDEF(VT);
5243 if (N1.isUndef() || N2.isUndef())
5244 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT)), DL, VT);
5245 }
5246 return SDValue();
5247 }
5248
getAssertAlign(const SDLoc & DL,SDValue Val,Align A)5249 SDValue SelectionDAG::getAssertAlign(const SDLoc &DL, SDValue Val, Align A) {
5250 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
5251
5252 // There's no need to assert on a byte-aligned pointer. All pointers are at
5253 // least byte aligned.
5254 if (A == Align(1))
5255 return Val;
5256
5257 FoldingSetNodeID ID;
5258 AddNodeIDNode(ID, ISD::AssertAlign, getVTList(Val.getValueType()), {Val});
5259 ID.AddInteger(A.value());
5260
5261 void *IP = nullptr;
5262 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
5263 return SDValue(E, 0);
5264
5265 auto *N = newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(),
5266 Val.getValueType(), A);
5267 createOperands(N, {Val});
5268
5269 CSEMap.InsertNode(N, IP);
5270 InsertNode(N);
5271
5272 SDValue V(N, 0);
5273 NewSDValueDbgMsg(V, "Creating new node: ", this);
5274 return V;
5275 }
5276
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,const SDNodeFlags Flags)5277 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5278 SDValue N1, SDValue N2, const SDNodeFlags Flags) {
5279 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
5280 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
5281 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5282 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5283
5284 // Canonicalize constant to RHS if commutative.
5285 if (TLI->isCommutativeBinOp(Opcode)) {
5286 if (N1C && !N2C) {
5287 std::swap(N1C, N2C);
5288 std::swap(N1, N2);
5289 } else if (N1CFP && !N2CFP) {
5290 std::swap(N1CFP, N2CFP);
5291 std::swap(N1, N2);
5292 }
5293 }
5294
5295 switch (Opcode) {
5296 default: break;
5297 case ISD::TokenFactor:
5298 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
5299 N2.getValueType() == MVT::Other && "Invalid token factor!");
5300 // Fold trivial token factors.
5301 if (N1.getOpcode() == ISD::EntryToken) return N2;
5302 if (N2.getOpcode() == ISD::EntryToken) return N1;
5303 if (N1 == N2) return N1;
5304 break;
5305 case ISD::BUILD_VECTOR: {
5306 // Attempt to simplify BUILD_VECTOR.
5307 SDValue Ops[] = {N1, N2};
5308 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5309 return V;
5310 break;
5311 }
5312 case ISD::CONCAT_VECTORS: {
5313 SDValue Ops[] = {N1, N2};
5314 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5315 return V;
5316 break;
5317 }
5318 case ISD::PTRADD:
5319 assert(VT.isFatPointer() && "PTRADD result must be a capability type!");
5320 assert(N1.getValueType().isFatPointer() &&
5321 "First PTRADD argument must be a capability type!");
5322 assert(N2.getValueType().isInteger() &&
5323 "Second PTRADD argument must be an integer type!");
5324 // ptradd(X, 0) -> X.
5325 if (N2C && N2C->isNullValue())
5326 return N1;
5327 break;
5328 case ISD::AND:
5329 assert(VT.isInteger() && "This operator does not apply to FP types!");
5330 assert(N1.getValueType() == N2.getValueType() &&
5331 N1.getValueType() == VT && "Binary operator types must match!");
5332 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
5333 // worth handling here.
5334 if (N2C && N2C->isNullValue())
5335 return N2;
5336 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
5337 return N1;
5338 break;
5339 case ISD::OR:
5340 case ISD::XOR:
5341 case ISD::ADD:
5342 case ISD::SUB:
5343 assert(!VT.isFatPointer() &&
5344 "This operator does not apply to capability types!");
5345 assert(VT.isInteger() && "This operator does not apply to FP types!");
5346 assert(N1.getValueType() == N2.getValueType() &&
5347 N1.getValueType() == VT && "Binary operator types must match!");
5348 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
5349 // it's worth handling here.
5350 if (N2C && N2C->isNullValue())
5351 return N1;
5352 break;
5353 case ISD::MUL:
5354 assert(VT.isInteger() && "This operator does not apply to FP types!");
5355 assert(N1.getValueType() == N2.getValueType() &&
5356 N1.getValueType() == VT && "Binary operator types must match!");
5357 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5358 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5359 APInt N2CImm = N2C->getAPIntValue();
5360 return getVScale(DL, VT, MulImm * N2CImm);
5361 }
5362 break;
5363 case ISD::UDIV:
5364 case ISD::UREM:
5365 case ISD::MULHU:
5366 case ISD::MULHS:
5367 case ISD::SDIV:
5368 case ISD::SREM:
5369 case ISD::SMIN:
5370 case ISD::SMAX:
5371 case ISD::UMIN:
5372 case ISD::UMAX:
5373 case ISD::SADDSAT:
5374 case ISD::SSUBSAT:
5375 case ISD::UADDSAT:
5376 case ISD::USUBSAT:
5377 assert(VT.isInteger() && "This operator does not apply to FP types!");
5378 assert(N1.getValueType() == N2.getValueType() &&
5379 N1.getValueType() == VT && "Binary operator types must match!");
5380 break;
5381 case ISD::FADD:
5382 case ISD::FSUB:
5383 case ISD::FMUL:
5384 case ISD::FDIV:
5385 case ISD::FREM:
5386 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5387 assert(N1.getValueType() == N2.getValueType() &&
5388 N1.getValueType() == VT && "Binary operator types must match!");
5389 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
5390 return V;
5391 break;
5392 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
5393 assert(N1.getValueType() == VT &&
5394 N1.getValueType().isFloatingPoint() &&
5395 N2.getValueType().isFloatingPoint() &&
5396 "Invalid FCOPYSIGN!");
5397 break;
5398 case ISD::SHL:
5399 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
5400 APInt MulImm = cast<ConstantSDNode>(N1->getOperand(0))->getAPIntValue();
5401 APInt ShiftImm = N2C->getAPIntValue();
5402 return getVScale(DL, VT, MulImm << ShiftImm);
5403 }
5404 LLVM_FALLTHROUGH;
5405 case ISD::SRA:
5406 case ISD::SRL:
5407 if (SDValue V = simplifyShift(N1, N2))
5408 return V;
5409 LLVM_FALLTHROUGH;
5410 case ISD::ROTL:
5411 case ISD::ROTR:
5412 assert(VT == N1.getValueType() &&
5413 "Shift operators return type must be the same as their first arg");
5414 assert(VT.isInteger() && N2.getValueType().isInteger() &&
5415 "Shifts only work on integers");
5416 assert((!VT.isVector() || VT == N2.getValueType()) &&
5417 "Vector shift amounts must be in the same as their first arg");
5418 // Verify that the shift amount VT is big enough to hold valid shift
5419 // amounts. This catches things like trying to shift an i1024 value by an
5420 // i8, which is easy to fall into in generic code that uses
5421 // TLI.getShiftAmount().
5422 assert(N2.getValueType().getScalarSizeInBits().getFixedSize() >=
5423 Log2_32_Ceil(VT.getScalarSizeInBits().getFixedSize()) &&
5424 "Invalid use of small shift amount with oversized value!");
5425
5426 // Always fold shifts of i1 values so the code generator doesn't need to
5427 // handle them. Since we know the size of the shift has to be less than the
5428 // size of the value, the shift/rotate count is guaranteed to be zero.
5429 if (VT == MVT::i1)
5430 return N1;
5431 if (N2C && N2C->isNullValue())
5432 return N1;
5433 break;
5434 case ISD::FP_ROUND:
5435 assert(VT.isFloatingPoint() &&
5436 N1.getValueType().isFloatingPoint() &&
5437 VT.bitsLE(N1.getValueType()) &&
5438 N2C && (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
5439 "Invalid FP_ROUND!");
5440 if (N1.getValueType() == VT) return N1; // noop conversion.
5441 break;
5442 case ISD::AssertSext:
5443 case ISD::AssertZext: {
5444 EVT EVT = cast<VTSDNode>(N2)->getVT();
5445 assert(VT == N1.getValueType() && "Not an inreg extend!");
5446 assert(VT.isInteger() && EVT.isInteger() &&
5447 "Cannot *_EXTEND_INREG FP types");
5448 assert(!EVT.isVector() &&
5449 "AssertSExt/AssertZExt type should be the vector element type "
5450 "rather than the vector type!");
5451 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
5452 if (VT.getScalarType() == EVT) return N1; // noop assertion.
5453 break;
5454 }
5455 case ISD::SIGN_EXTEND_INREG: {
5456 EVT EVT = cast<VTSDNode>(N2)->getVT();
5457 assert(VT == N1.getValueType() && "Not an inreg extend!");
5458 assert(VT.isInteger() && EVT.isInteger() &&
5459 "Cannot *_EXTEND_INREG FP types");
5460 assert(EVT.isVector() == VT.isVector() &&
5461 "SIGN_EXTEND_INREG type should be vector iff the operand "
5462 "type is vector!");
5463 assert((!EVT.isVector() ||
5464 EVT.getVectorElementCount() == VT.getVectorElementCount()) &&
5465 "Vector element counts must match in SIGN_EXTEND_INREG");
5466 assert(EVT.bitsLE(VT) && "Not extending!");
5467 if (EVT == VT) return N1; // Not actually extending
5468
5469 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
5470 unsigned FromBits = EVT.getScalarSizeInBits();
5471 Val <<= Val.getBitWidth() - FromBits;
5472 Val.ashrInPlace(Val.getBitWidth() - FromBits);
5473 return getConstant(Val, DL, ConstantVT);
5474 };
5475
5476 if (N1C) {
5477 const APInt &Val = N1C->getAPIntValue();
5478 return SignExtendInReg(Val, VT);
5479 }
5480 if (ISD::isBuildVectorOfConstantSDNodes(N1.getNode())) {
5481 SmallVector<SDValue, 8> Ops;
5482 llvm::EVT OpVT = N1.getOperand(0).getValueType();
5483 for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5484 SDValue Op = N1.getOperand(i);
5485 if (Op.isUndef()) {
5486 Ops.push_back(getUNDEF(OpVT));
5487 continue;
5488 }
5489 ConstantSDNode *C = cast<ConstantSDNode>(Op);
5490 APInt Val = C->getAPIntValue();
5491 Ops.push_back(SignExtendInReg(Val, OpVT));
5492 }
5493 return getBuildVector(VT, DL, Ops);
5494 }
5495 break;
5496 }
5497 case ISD::EXTRACT_VECTOR_ELT:
5498 assert(VT.getSizeInBits() >= N1.getValueType().getScalarSizeInBits() &&
5499 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
5500 element type of the vector.");
5501
5502 // Extract from an undefined value or using an undefined index is undefined.
5503 if (N1.isUndef() || N2.isUndef())
5504 return getUNDEF(VT);
5505
5506 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
5507 // vectors. For scalable vectors we will provide appropriate support for
5508 // dealing with arbitrary indices.
5509 if (N2C && N1.getValueType().isFixedLengthVector() &&
5510 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
5511 return getUNDEF(VT);
5512
5513 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
5514 // expanding copies of large vectors from registers. This only works for
5515 // fixed length vectors, since we need to know the exact number of
5516 // elements.
5517 if (N2C && N1.getOperand(0).getValueType().isFixedLengthVector() &&
5518 N1.getOpcode() == ISD::CONCAT_VECTORS && N1.getNumOperands() > 0) {
5519 unsigned Factor =
5520 N1.getOperand(0).getValueType().getVectorNumElements();
5521 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
5522 N1.getOperand(N2C->getZExtValue() / Factor),
5523 getVectorIdxConstant(N2C->getZExtValue() % Factor, DL));
5524 }
5525
5526 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
5527 // lowering is expanding large vector constants.
5528 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
5529 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
5530 assert((N1.getOpcode() != ISD::BUILD_VECTOR ||
5531 N1.getValueType().isFixedLengthVector()) &&
5532 "BUILD_VECTOR used for scalable vectors");
5533 unsigned Index =
5534 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
5535 SDValue Elt = N1.getOperand(Index);
5536
5537 if (VT != Elt.getValueType())
5538 // If the vector element type is not legal, the BUILD_VECTOR operands
5539 // are promoted and implicitly truncated, and the result implicitly
5540 // extended. Make that explicit here.
5541 Elt = getAnyExtOrTrunc(Elt, DL, VT);
5542
5543 return Elt;
5544 }
5545
5546 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5547 // operations are lowered to scalars.
5548 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
5549 // If the indices are the same, return the inserted element else
5550 // if the indices are known different, extract the element from
5551 // the original vector.
5552 SDValue N1Op2 = N1.getOperand(2);
5553 ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2);
5554
5555 if (N1Op2C && N2C) {
5556 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
5557 if (VT == N1.getOperand(1).getValueType())
5558 return N1.getOperand(1);
5559 else
5560 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
5561 }
5562
5563 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
5564 }
5565 }
5566
5567 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5568 // when vector types are scalarized and v1iX is legal.
5569 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
5570 // Here we are completely ignoring the extract element index (N2),
5571 // which is fine for fixed width vectors, since any index other than 0
5572 // is undefined anyway. However, this cannot be ignored for scalable
5573 // vectors - in theory we could support this, but we don't want to do this
5574 // without a profitability check.
5575 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5576 N1.getValueType().isFixedLengthVector() &&
5577 N1.getValueType().getVectorNumElements() == 1) {
5578 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
5579 N1.getOperand(1));
5580 }
5581 break;
5582 case ISD::EXTRACT_ELEMENT:
5583 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5584 assert(!N1.getValueType().isVector() && !VT.isVector() &&
5585 (N1.getValueType().isInteger() == VT.isInteger()) &&
5586 N1.getValueType() != VT &&
5587 "Wrong types for EXTRACT_ELEMENT!");
5588
5589 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5590 // 64-bit integers into 32-bit parts. Instead of building the extract of
5591 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5592 if (N1.getOpcode() == ISD::BUILD_PAIR)
5593 return N1.getOperand(N2C->getZExtValue());
5594
5595 // EXTRACT_ELEMENT of a constant int is also very common.
5596 if (N1C) {
5597 unsigned ElementSize = VT.getSizeInBits();
5598 unsigned Shift = ElementSize * N2C->getZExtValue();
5599 APInt ShiftedVal = N1C->getAPIntValue().lshr(Shift);
5600 return getConstant(ShiftedVal.trunc(ElementSize), DL, VT);
5601 }
5602 break;
5603 case ISD::EXTRACT_SUBVECTOR:
5604 EVT N1VT = N1.getValueType();
5605 assert(VT.isVector() && N1VT.isVector() &&
5606 "Extract subvector VTs must be vectors!");
5607 assert(VT.getVectorElementType() == N1VT.getVectorElementType() &&
5608 "Extract subvector VTs must have the same element type!");
5609 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
5610 "Cannot extract a scalable vector from a fixed length vector!");
5611 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5612 VT.getVectorMinNumElements() <= N1VT.getVectorMinNumElements()) &&
5613 "Extract subvector must be from larger vector to smaller vector!");
5614 assert(N2C && "Extract subvector index must be a constant");
5615 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
5616 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
5617 N1VT.getVectorMinNumElements()) &&
5618 "Extract subvector overflow!");
5619
5620 // Trivial extraction.
5621 if (VT == N1VT)
5622 return N1;
5623
5624 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5625 if (N1.isUndef())
5626 return getUNDEF(VT);
5627
5628 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5629 // the concat have the same type as the extract.
5630 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
5631 N1.getNumOperands() > 0 && VT == N1.getOperand(0).getValueType()) {
5632 unsigned Factor = VT.getVectorMinNumElements();
5633 return N1.getOperand(N2C->getZExtValue() / Factor);
5634 }
5635
5636 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5637 // during shuffle legalization.
5638 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
5639 VT == N1.getOperand(1).getValueType())
5640 return N1.getOperand(1);
5641 break;
5642 }
5643
5644 // Perform trivial constant folding.
5645 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}))
5646 return SV;
5647
5648 if (SDValue V = foldConstantFPMath(Opcode, DL, VT, N1, N2))
5649 return V;
5650
5651 // Canonicalize an UNDEF to the RHS, even over a constant.
5652 if (N1.isUndef()) {
5653 if (TLI->isCommutativeBinOp(Opcode)) {
5654 std::swap(N1, N2);
5655 } else {
5656 switch (Opcode) {
5657 case ISD::SIGN_EXTEND_INREG:
5658 case ISD::SUB:
5659 return getUNDEF(VT); // fold op(undef, arg2) -> undef
5660 case ISD::UDIV:
5661 case ISD::SDIV:
5662 case ISD::UREM:
5663 case ISD::SREM:
5664 case ISD::SSUBSAT:
5665 case ISD::USUBSAT:
5666 return getConstant(0, DL, VT); // fold op(undef, arg2) -> 0
5667 }
5668 }
5669 }
5670
5671 // Fold a bunch of operators when the RHS is undef.
5672 if (N2.isUndef()) {
5673 switch (Opcode) {
5674 case ISD::XOR:
5675 if (N1.isUndef())
5676 // Handle undef ^ undef -> 0 special case. This is a common
5677 // idiom (misuse).
5678 return getConstant(0, DL, VT);
5679 LLVM_FALLTHROUGH;
5680 case ISD::ADD:
5681 case ISD::SUB:
5682 case ISD::UDIV:
5683 case ISD::SDIV:
5684 case ISD::UREM:
5685 case ISD::SREM:
5686 return getUNDEF(VT); // fold op(arg1, undef) -> undef
5687 case ISD::MUL:
5688 case ISD::AND:
5689 case ISD::SSUBSAT:
5690 case ISD::USUBSAT:
5691 return getConstant(0, DL, VT); // fold op(arg1, undef) -> 0
5692 case ISD::OR:
5693 case ISD::SADDSAT:
5694 case ISD::UADDSAT:
5695 return getAllOnesConstant(DL, VT);
5696 }
5697 }
5698
5699 // Memoize this node if possible.
5700 SDNode *N;
5701 SDVTList VTs = getVTList(VT);
5702 SDValue Ops[] = {N1, N2};
5703 if (VT != MVT::Glue) {
5704 FoldingSetNodeID ID;
5705 AddNodeIDNode(ID, Opcode, VTs, Ops);
5706 void *IP = nullptr;
5707 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5708 E->intersectFlagsWith(Flags);
5709 return SDValue(E, 0);
5710 }
5711
5712 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5713 N->setFlags(Flags);
5714 createOperands(N, Ops);
5715 CSEMap.InsertNode(N, IP);
5716 } else {
5717 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5718 createOperands(N, Ops);
5719 }
5720
5721 InsertNode(N);
5722 SDValue V = SDValue(N, 0);
5723 NewSDValueDbgMsg(V, "Creating new node: ", this);
5724 return V;
5725 }
5726
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,const SDNodeFlags Flags)5727 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5728 SDValue N1, SDValue N2, SDValue N3,
5729 const SDNodeFlags Flags) {
5730 // Perform various simplifications.
5731 switch (Opcode) {
5732 case ISD::FMA: {
5733 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
5734 assert(N1.getValueType() == VT && N2.getValueType() == VT &&
5735 N3.getValueType() == VT && "FMA types must match!");
5736 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
5737 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
5738 ConstantFPSDNode *N3CFP = dyn_cast<ConstantFPSDNode>(N3);
5739 if (N1CFP && N2CFP && N3CFP) {
5740 APFloat V1 = N1CFP->getValueAPF();
5741 const APFloat &V2 = N2CFP->getValueAPF();
5742 const APFloat &V3 = N3CFP->getValueAPF();
5743 V1.fusedMultiplyAdd(V2, V3, APFloat::rmNearestTiesToEven);
5744 return getConstantFP(V1, DL, VT);
5745 }
5746 break;
5747 }
5748 case ISD::BUILD_VECTOR: {
5749 // Attempt to simplify BUILD_VECTOR.
5750 SDValue Ops[] = {N1, N2, N3};
5751 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
5752 return V;
5753 break;
5754 }
5755 case ISD::CONCAT_VECTORS: {
5756 SDValue Ops[] = {N1, N2, N3};
5757 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
5758 return V;
5759 break;
5760 }
5761 case ISD::SETCC: {
5762 assert(VT.isInteger() && "SETCC result type must be an integer!");
5763 assert(N1.getValueType() == N2.getValueType() &&
5764 "SETCC operands must have the same type!");
5765 assert(VT.isVector() == N1.getValueType().isVector() &&
5766 "SETCC type should be vector iff the operand type is vector!");
5767 assert((!VT.isVector() || VT.getVectorElementCount() ==
5768 N1.getValueType().getVectorElementCount()) &&
5769 "SETCC vector element counts must match!");
5770 // Use FoldSetCC to simplify SETCC's.
5771 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
5772 return V;
5773 // Vector constant folding.
5774 SDValue Ops[] = {N1, N2, N3};
5775 if (SDValue V = FoldConstantVectorArithmetic(Opcode, DL, VT, Ops)) {
5776 NewSDValueDbgMsg(V, "New node vector constant folding: ", this);
5777 return V;
5778 }
5779 break;
5780 }
5781 case ISD::SELECT:
5782 case ISD::VSELECT:
5783 if (SDValue V = simplifySelect(N1, N2, N3))
5784 return V;
5785 break;
5786 case ISD::VECTOR_SHUFFLE:
5787 llvm_unreachable("should use getVectorShuffle constructor!");
5788 case ISD::INSERT_VECTOR_ELT: {
5789 ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3);
5790 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
5791 // for scalable vectors where we will generate appropriate code to
5792 // deal with out-of-bounds cases correctly.
5793 if (N3C && N1.getValueType().isFixedLengthVector() &&
5794 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
5795 return getUNDEF(VT);
5796
5797 // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
5798 if (N3.isUndef())
5799 return getUNDEF(VT);
5800
5801 // If the inserted element is an UNDEF, just use the input vector.
5802 if (N2.isUndef())
5803 return N1;
5804
5805 break;
5806 }
5807 case ISD::INSERT_SUBVECTOR: {
5808 // Inserting undef into undef is still undef.
5809 if (N1.isUndef() && N2.isUndef())
5810 return getUNDEF(VT);
5811
5812 EVT N2VT = N2.getValueType();
5813 assert(VT == N1.getValueType() &&
5814 "Dest and insert subvector source types must match!");
5815 assert(VT.isVector() && N2VT.isVector() &&
5816 "Insert subvector VTs must be vectors!");
5817 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
5818 "Cannot insert a scalable vector into a fixed length vector!");
5819 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5820 VT.getVectorMinNumElements() >= N2VT.getVectorMinNumElements()) &&
5821 "Insert subvector must be from smaller vector to larger vector!");
5822 assert(isa<ConstantSDNode>(N3) &&
5823 "Insert subvector index must be constant");
5824 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
5825 (N2VT.getVectorMinNumElements() +
5826 cast<ConstantSDNode>(N3)->getZExtValue()) <=
5827 VT.getVectorMinNumElements()) &&
5828 "Insert subvector overflow!");
5829
5830 // Trivial insertion.
5831 if (VT == N2VT)
5832 return N2;
5833
5834 // If this is an insert of an extracted vector into an undef vector, we
5835 // can just use the input to the extract.
5836 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
5837 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
5838 return N2.getOperand(0);
5839 break;
5840 }
5841 case ISD::BITCAST:
5842 // Fold bit_convert nodes from a type to themselves.
5843 if (N1.getValueType() == VT)
5844 return N1;
5845 break;
5846 }
5847
5848 // Memoize node if it doesn't produce a flag.
5849 SDNode *N;
5850 SDVTList VTs = getVTList(VT);
5851 SDValue Ops[] = {N1, N2, N3};
5852 if (VT != MVT::Glue) {
5853 FoldingSetNodeID ID;
5854 AddNodeIDNode(ID, Opcode, VTs, Ops);
5855 void *IP = nullptr;
5856 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
5857 E->intersectFlagsWith(Flags);
5858 return SDValue(E, 0);
5859 }
5860
5861 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5862 N->setFlags(Flags);
5863 createOperands(N, Ops);
5864 CSEMap.InsertNode(N, IP);
5865 } else {
5866 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
5867 createOperands(N, Ops);
5868 }
5869
5870 InsertNode(N);
5871 SDValue V = SDValue(N, 0);
5872 NewSDValueDbgMsg(V, "Creating new node: ", this);
5873 return V;
5874 }
5875
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4)5876 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5877 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
5878 SDValue Ops[] = { N1, N2, N3, N4 };
5879 return getNode(Opcode, DL, VT, Ops);
5880 }
5881
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)5882 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
5883 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
5884 SDValue N5) {
5885 SDValue Ops[] = { N1, N2, N3, N4, N5 };
5886 return getNode(Opcode, DL, VT, Ops);
5887 }
5888
5889 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5890 /// the incoming stack arguments to be loaded from the stack.
getStackArgumentTokenFactor(SDValue Chain)5891 SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
5892 SmallVector<SDValue, 8> ArgChains;
5893
5894 // Include the original chain at the beginning of the list. When this is
5895 // used by target LowerCall hooks, this helps legalize find the
5896 // CALLSEQ_BEGIN node.
5897 ArgChains.push_back(Chain);
5898
5899 // Add a chain value for each stack argument.
5900 for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
5901 UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
5902 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
5903 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
5904 if (FI->getIndex() < 0)
5905 ArgChains.push_back(SDValue(L, 1));
5906
5907 // Build a tokenfactor for all the chains.
5908 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
5909 }
5910
5911 /// getMemsetValue - Vectorized representation of the memset value
5912 /// operand.
getMemsetValue(SDValue Value,EVT VT,SelectionDAG & DAG,const SDLoc & dl)5913 static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
5914 const SDLoc &dl) {
5915 assert(!Value.isUndef());
5916
5917 unsigned NumBits = VT.getScalarSizeInBits();
5918 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
5919 assert(C->getAPIntValue().getBitWidth() == 8);
5920 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
5921 if (VT.isInteger() || VT.isFatPointer()) {
5922 bool IsOpaque = VT.getSizeInBits() > 64 ||
5923 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
5924 return DAG.getConstant(Val, dl, VT, false, IsOpaque);
5925 }
5926 return DAG.getConstantFP(APFloat(DAG.EVTToAPFloatSemantics(VT), Val), dl,
5927 VT);
5928 }
5929
5930 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
5931 EVT IntVT = VT.getScalarType();
5932 if (!IntVT.isInteger())
5933 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
5934
5935 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
5936 if (NumBits > 8) {
5937 // Use a multiplication with 0x010101... to extend the input to the
5938 // required length.
5939 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
5940 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
5941 DAG.getConstant(Magic, dl, IntVT));
5942 }
5943
5944 if (VT != Value.getValueType() && !VT.isInteger())
5945 Value = DAG.getBitcast(VT.getScalarType(), Value);
5946 if (VT != Value.getValueType())
5947 Value = DAG.getSplatBuildVector(VT, dl, Value);
5948
5949 return Value;
5950 }
5951
5952 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5953 /// used when a memcpy is turned into a memset when the source is a constant
5954 /// string ptr.
getMemsetStringVal(EVT VT,const SDLoc & dl,SelectionDAG & DAG,const TargetLowering & TLI,const ConstantDataArraySlice & Slice)5955 static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG,
5956 const TargetLowering &TLI,
5957 const ConstantDataArraySlice &Slice) {
5958 // Handle vector with all elements zero.
5959 if (Slice.Array == nullptr) {
5960 if (VT.isFatPointer())
5961 return DAG.getNullCapability(dl);
5962 if (VT.isInteger())
5963 return DAG.getConstant(0, dl, VT);
5964 else if (VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
5965 return DAG.getConstantFP(0.0, dl, VT);
5966 else if (VT.isVector()) {
5967 unsigned NumElts = VT.getVectorNumElements();
5968 MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
5969 return DAG.getNode(ISD::BITCAST, dl, VT,
5970 DAG.getConstant(0, dl,
5971 EVT::getVectorVT(*DAG.getContext(),
5972 EltVT, NumElts)));
5973 } else
5974 llvm_unreachable("Expected type!");
5975 }
5976
5977 assert(!VT.isVector() && "Can't handle vector type here!");
5978 unsigned NumVTBits = VT.getSizeInBits();
5979 unsigned NumVTBytes = NumVTBits / 8;
5980 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
5981
5982 APInt Val(NumVTBits, 0);
5983 if (DAG.getDataLayout().isLittleEndian()) {
5984 for (unsigned i = 0; i != NumBytes; ++i)
5985 Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
5986 } else {
5987 for (unsigned i = 0; i != NumBytes; ++i)
5988 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
5989 }
5990
5991 // If the "cost" of materializing the integer immediate is less than the cost
5992 // of a load, then it is cost effective to turn the load into the immediate.
5993 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
5994 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
5995 return DAG.getConstant(Val, dl, VT);
5996 return SDValue(nullptr, 0);
5997 }
5998
getMemBasePlusOffset(SDValue Base,int64_t Offset,const SDLoc & DL,const SDNodeFlags Flags)5999 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Base, int64_t Offset,
6000 const SDLoc &DL,
6001 const SDNodeFlags Flags) {
6002 if (Offset == 0)
6003 return Base;
6004
6005 // For integer pointers the offset and pointer type must be identical
6006 // (otherwise we assert later). For CHERI capabilities we use the the pointer
6007 // range type as the offset type.
6008 EVT OffsetVT = Base.getValueType();
6009 if (Base.getValueType().isFatPointer()) {
6010 OffsetVT = TLI->getPointerRangeTy(getDataLayout());
6011 }
6012 return getMemBasePlusOffset(Base, getConstant(Offset, DL, OffsetVT), DL,
6013 Flags);
6014 }
6015
getMemBasePlusOffset(SDValue Ptr,SDValue Offset,const SDLoc & DL,const SDNodeFlags Flags)6016 SDValue SelectionDAG::getMemBasePlusOffset(SDValue Ptr, SDValue Offset,
6017 const SDLoc &DL,
6018 const SDNodeFlags Flags) {
6019 assert(Offset.getValueType().isInteger());
6020 if (auto *Constant = dyn_cast<ConstantSDNode>(Offset.getNode())) {
6021 if (Constant->isNullValue())
6022 return Ptr;
6023 }
6024 EVT BasePtrVT = Ptr.getValueType();
6025 if (BasePtrVT.isFatPointer()) {
6026 return getNode(ISD::PTRADD, DL, BasePtrVT, Ptr, Offset, Flags);
6027 }
6028 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
6029 }
6030
6031 /// Returns true if memcpy source is constant data.
isMemSrcFromConstant(SDValue Src,ConstantDataArraySlice & Slice)6032 static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice) {
6033 uint64_t SrcDelta = 0;
6034 GlobalAddressSDNode *G = nullptr;
6035 if (Src.getOpcode() == ISD::GlobalAddress)
6036 G = cast<GlobalAddressSDNode>(Src);
6037 else if (Src.getOpcode() == ISD::ADD &&
6038 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
6039 Src.getOperand(1).getOpcode() == ISD::Constant) {
6040 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
6041 SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
6042 }
6043 if (!G)
6044 return false;
6045
6046 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
6047 SrcDelta + G->getOffset());
6048 }
6049
shouldLowerMemFuncForSize(const MachineFunction & MF,SelectionDAG & DAG)6050 static bool shouldLowerMemFuncForSize(const MachineFunction &MF,
6051 SelectionDAG &DAG) {
6052 // On Darwin, -Os means optimize for size without hurting performance, so
6053 // only really optimize for size when -Oz (MinSize) is used.
6054 if (MF.getTarget().getTargetTriple().isOSDarwin())
6055 return MF.getFunction().hasMinSize();
6056 return DAG.shouldOptForSize();
6057 }
6058
chainLoadsAndStoresForMemcpy(SelectionDAG & DAG,const SDLoc & dl,SmallVector<SDValue,32> & OutChains,unsigned From,unsigned To,SmallVector<SDValue,16> & OutLoadChains,SmallVector<SDValue,16> & OutStoreChains)6059 static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl,
6060 SmallVector<SDValue, 32> &OutChains, unsigned From,
6061 unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
6062 SmallVector<SDValue, 16> &OutStoreChains) {
6063 assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
6064 assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
6065 SmallVector<SDValue, 16> GluedLoadChains;
6066 for (unsigned i = From; i < To; ++i) {
6067 OutChains.push_back(OutLoadChains[i]);
6068 GluedLoadChains.push_back(OutLoadChains[i]);
6069 }
6070
6071 // Chain for all loads.
6072 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6073 GluedLoadChains);
6074
6075 for (unsigned i = From; i < To; ++i) {
6076 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
6077 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
6078 ST->getBasePtr(), ST->getMemoryVT(),
6079 ST->getMemOperand());
6080 OutChains.push_back(NewStore);
6081 }
6082 }
6083
6084 static void
diagnoseInefficientCheriMemOp(SelectionDAG & DAG,const DiagnosticLocation & Loc,const Twine & MemOp,CodeGenOpt::Level OptLevel,StringRef Type,unsigned Align,uint64_t Size,uint64_t CapSize)6085 diagnoseInefficientCheriMemOp(SelectionDAG &DAG, const DiagnosticLocation &Loc,
6086 const Twine &MemOp, CodeGenOpt::Level OptLevel,
6087 StringRef Type, unsigned Align, uint64_t Size,
6088 uint64_t CapSize) {
6089 assert(Align < CapSize);
6090 assert(Size >= CapSize);
6091 if (OptLevel == CodeGenOpt::None)
6092 return; // Don't bother warning about inefficient code at -O0
6093 // Skip the memcpy/memmove diag if we have already diagnosed something else
6094 if (Type == "!!<CHERI-NODIAG>!!")
6095 return;
6096
6097 DiagnosticInfoCheriInefficient Warning(
6098 DAG.getMachineFunction().getFunction(), Loc,
6099 MemOp + " operation with capability argument " + Type +
6100 " and underaligned destination (aligned to " + Twine(Align) +
6101 " bytes) may be inefficient or result in CHERI tags bits being "
6102 "stripped");
6103 DAG.getContext()->diagnose(Warning);
6104 }
6105
getMemcpyLoadsAndStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,Align Alignment,bool isVol,bool AlwaysInline,bool MustPreserveCheriCapabilities,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo,StringRef CopyTy,CodeGenOpt::Level OptLevel)6106 static SDValue getMemcpyLoadsAndStores(
6107 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
6108 uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline,
6109 bool MustPreserveCheriCapabilities, MachinePointerInfo DstPtrInfo,
6110 MachinePointerInfo SrcPtrInfo, StringRef CopyTy,
6111 CodeGenOpt::Level OptLevel) {
6112 // Turn a memcpy of undef to nop.
6113 // FIXME: We need to honor volatile even is Src is undef.
6114 if (Src.isUndef())
6115 return Chain;
6116
6117 // Expand memcpy to a series of load and store ops if the size operand falls
6118 // below a certain threshold.
6119 // TODO: In the AlwaysInline case, if the size is big then generate a loop
6120 // rather than maybe a humongous number of loads and stores.
6121 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6122 const DataLayout &DL = DAG.getDataLayout();
6123 LLVMContext &C = *DAG.getContext();
6124 std::vector<EVT> MemOps;
6125 bool DstAlignCanChange = false;
6126 MachineFunction &MF = DAG.getMachineFunction();
6127 MachineFrameInfo &MFI = MF.getFrameInfo();
6128 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6129 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6130 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6131 DstAlignCanChange = true;
6132 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6133 if (!SrcAlign || Alignment > *SrcAlign)
6134 SrcAlign = Alignment;
6135 assert(SrcAlign && "SrcAlign must be set");
6136 ConstantDataArraySlice Slice;
6137 bool CopyFromConstant = isMemSrcFromConstant(Src, Slice);
6138 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
6139 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
6140 const MemOp Op =
6141 isZeroConstant
6142 ? MemOp::Set(Size, DstAlignCanChange, Alignment,
6143 /*IsZeroMemset*/ true, isVol)
6144 : MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign, isVol,
6145 MustPreserveCheriCapabilities, CopyFromConstant);
6146 const bool FoundLowering = TLI.findOptimalMemOpLowering(
6147 MemOps, Limit, Op, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6148 MF.getFunction().getAttributes());
6149 // Don't warn about inefficient memcpy if we reached the inline memcpy limit
6150 // Also don't warn about copies of less than CapSize
6151 // TODO: the frontend probably shouldn't emit must-preserve-tags for such
6152 // small memcpys
6153 auto CapTy = TLI.cheriCapabilityType();
6154 if (CapTy.isValid()) {
6155 const uint64_t CapSize = CapTy.getStoreSize();
6156 bool ReachedLimit = (CapSize * Limit) < Size;
6157 if (MustPreserveCheriCapabilities && !ReachedLimit && Size >= CapSize &&
6158 (!FoundLowering || !MemOps[0].isFatPointer())) {
6159 LLVM_DEBUG(
6160 dbgs()
6161 << " memcpy must preserve tags but value is not statically "
6162 "known to be sufficiently aligned -> using memcpy() call\n");
6163 if (AlwaysInline) {
6164 report_fatal_error("MustPreserveCheriCapabilities and AlwaysInline set "
6165 "but operation cannot be lowered to loads+stores!");
6166 }
6167 diagnoseInefficientCheriMemOp(
6168 DAG, dl.getDebugLoc(), "memcpy", OptLevel,
6169 CopyTy.empty() ? "<unknown type>" : CopyTy,
6170 std::max((uint64_t)1, std::min(Alignment, *SrcAlign).value()), Size,
6171 CapSize);
6172 return SDValue();
6173 }
6174 }
6175 if (!FoundLowering)
6176 return SDValue();
6177
6178 if (DstAlignCanChange) {
6179 Type *Ty = MemOps[0].getTypeForEVT(C);
6180 LLVM_DEBUG(dbgs() << " DstAlignCanChange -> using type "; Ty->dump());
6181 Align NewAlign = DL.getABITypeAlign(Ty);
6182 LLVM_DEBUG(dbgs() << "\t->NewAlign = " << NewAlign.value() << ", stack alignment="
6183 << DL.getStackAlignment().value() << "\n");
6184 if (MemOps[0].isFatPointer()) {
6185 assert(!DL.exceedsNaturalStackAlignment(NewAlign) &&
6186 "Stack not capability-aligned?");
6187 }
6188
6189 // Don't promote to an alignment that would require dynamic stack
6190 // realignment.
6191 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
6192 if (!TRI->needsStackRealignment(MF))
6193 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
6194 NewAlign = NewAlign / 2;
6195
6196 if (MemOps[0].isFatPointer()) {
6197 assert(NewAlign == DL.getABITypeAlignment(Ty) &&
6198 "Stack not capability-aligned?");
6199 }
6200 if (NewAlign > Alignment) {
6201 // Give the stack frame object a larger alignment if needed.
6202 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6203 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6204 Alignment = NewAlign;
6205 }
6206 }
6207
6208 MachineMemOperand::Flags MMOFlags =
6209 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6210 SmallVector<SDValue, 16> OutLoadChains;
6211 SmallVector<SDValue, 16> OutStoreChains;
6212 SmallVector<SDValue, 32> OutChains;
6213 unsigned NumMemOps = MemOps.size();
6214 uint64_t SrcOff = 0, DstOff = 0;
6215 for (unsigned i = 0; i != NumMemOps; ++i) {
6216 EVT VT = MemOps[i];
6217 unsigned VTSize = VT.getSizeInBits() / 8;
6218 SDValue Value, Store;
6219
6220 if (VTSize > Size) {
6221 // Issuing an unaligned load / store pair that overlaps with the previous
6222 // pair. Adjust the offset accordingly.
6223 assert(i == NumMemOps-1 && i != 0);
6224 SrcOff -= VTSize - Size;
6225 DstOff -= VTSize - Size;
6226 }
6227
6228 if (CopyFromConstant &&
6229 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
6230 // It's unlikely a store of a vector immediate can be done in a single
6231 // instruction. It would require a load from a constantpool first.
6232 // We only handle zero vectors here.
6233 // FIXME: Handle other cases where store of vector immediate is done in
6234 // a single instruction.
6235 ConstantDataArraySlice SubSlice;
6236 if (SrcOff < Slice.Length) {
6237 SubSlice = Slice;
6238 SubSlice.move(SrcOff);
6239 } else {
6240 // This is an out-of-bounds access and hence UB. Pretend we read zero.
6241 SubSlice.Array = nullptr;
6242 SubSlice.Offset = 0;
6243 SubSlice.Length = VTSize;
6244 }
6245 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
6246 if (Value.getNode()) {
6247 Store = DAG.getStore(
6248 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6249 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6250 OutChains.push_back(Store);
6251 }
6252 }
6253
6254 if (!Store.getNode()) {
6255 // The type might not be legal for the target. This should only happen
6256 // if the type is smaller than a legal type, as on PPC, so the right
6257 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
6258 // to Load/Store if NVT==VT.
6259 // FIXME does the case above also need this?
6260 EVT NVT = TLI.getTypeToTransformTo(C, VT);
6261 assert(NVT.bitsGE(VT));
6262
6263 bool isDereferenceable =
6264 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6265 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6266 if (isDereferenceable)
6267 SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6268
6269 Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
6270 DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6271 SrcPtrInfo.getWithOffset(SrcOff), VT,
6272 commonAlignment(*SrcAlign, SrcOff).value(),
6273 SrcMMOFlags);
6274 OutLoadChains.push_back(Value.getValue(1));
6275
6276 Store = DAG.getTruncStore(
6277 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6278 DstPtrInfo.getWithOffset(DstOff), VT, Alignment.value(), MMOFlags);
6279 OutStoreChains.push_back(Store);
6280 }
6281 SrcOff += VTSize;
6282 DstOff += VTSize;
6283 Size -= VTSize;
6284 }
6285
6286 unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
6287 TLI.getMaxGluedStoresPerMemcpy() : MaxLdStGlue;
6288 unsigned NumLdStInMemcpy = OutStoreChains.size();
6289
6290 if (NumLdStInMemcpy) {
6291 // It may be that memcpy might be converted to memset if it's memcpy
6292 // of constants. In such a case, we won't have loads and stores, but
6293 // just stores. In the absence of loads, there is nothing to gang up.
6294 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
6295 // If target does not care, just leave as it.
6296 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
6297 OutChains.push_back(OutLoadChains[i]);
6298 OutChains.push_back(OutStoreChains[i]);
6299 }
6300 } else {
6301 // Ld/St less than/equal limit set by target.
6302 if (NumLdStInMemcpy <= GluedLdStLimit) {
6303 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6304 NumLdStInMemcpy, OutLoadChains,
6305 OutStoreChains);
6306 } else {
6307 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
6308 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
6309 unsigned GlueIter = 0;
6310
6311 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
6312 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
6313 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
6314
6315 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
6316 OutLoadChains, OutStoreChains);
6317 GlueIter += GluedLdStLimit;
6318 }
6319
6320 // Residual ld/st.
6321 if (RemainingLdStInMemcpy) {
6322 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
6323 RemainingLdStInMemcpy, OutLoadChains,
6324 OutStoreChains);
6325 }
6326 }
6327 }
6328 }
6329 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6330 }
6331
getMemmoveLoadsAndStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,Align Alignment,bool isVol,bool AlwaysInline,bool MustPreserveCheriCapabilities,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo,StringRef MoveTy,CodeGenOpt::Level OptLevel)6332 static SDValue getMemmoveLoadsAndStores(
6333 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
6334 uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline,
6335 bool MustPreserveCheriCapabilities, MachinePointerInfo DstPtrInfo,
6336 MachinePointerInfo SrcPtrInfo, StringRef MoveTy,
6337 CodeGenOpt::Level OptLevel) {
6338 // Turn a memmove of undef to nop.
6339 // FIXME: We need to honor volatile even is Src is undef.
6340 if (Src.isUndef())
6341 return Chain;
6342
6343 // Expand memmove to a series of load and store ops if the size operand falls
6344 // below a certain threshold.
6345 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6346 const DataLayout &DL = DAG.getDataLayout();
6347 LLVMContext &C = *DAG.getContext();
6348 std::vector<EVT> MemOps;
6349 bool DstAlignCanChange = false;
6350 MachineFunction &MF = DAG.getMachineFunction();
6351 MachineFrameInfo &MFI = MF.getFrameInfo();
6352 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6353 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6354 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6355 DstAlignCanChange = true;
6356 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
6357 if (!SrcAlign || Alignment > *SrcAlign)
6358 SrcAlign = Alignment;
6359 assert(SrcAlign && "SrcAlign must be set");
6360 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
6361 const bool FoundLowering = TLI.findOptimalMemOpLowering(
6362 MemOps, Limit,
6363 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
6364 /*IsVolatile*/ true, MustPreserveCheriCapabilities),
6365 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
6366 MF.getFunction().getAttributes());
6367
6368 // Don't warn about inefficient memcpy if we reached the inline memmove limit
6369 // Also don't warn about copies of less than CapSize
6370 // TODO: the frontend probably shouldn't emit must-preserve-tags for such
6371 // small memcpys
6372 auto CapTy = TLI.cheriCapabilityType();
6373 if (CapTy.isValid()) {
6374 const uint64_t CapSize = CapTy.getStoreSize();
6375 bool ReachedLimit = (CapSize * Limit) < Size;
6376 if (MustPreserveCheriCapabilities && !ReachedLimit && Size >= CapSize &&
6377 (!FoundLowering || !MemOps[0].isFatPointer())) {
6378 LLVM_DEBUG(
6379 dbgs()
6380 << __func__
6381 << " memmove must preserve tags but value is not statically "
6382 "known to be sufficiently aligned -> using memmove() call\n");
6383 if (AlwaysInline) {
6384 report_fatal_error("MustPreserveCheriCapabilities and AlwaysInline set "
6385 "but operation cannot be lowered to loads+stores!");
6386 }
6387 diagnoseInefficientCheriMemOp(
6388 DAG, dl.getDebugLoc(), "memmove", OptLevel,
6389 MoveTy.empty() ? "<unknown type>" : MoveTy,
6390 std::max(Align(1), std::min(Alignment, *SrcAlign)).value(), Size,
6391 CapSize);
6392 return SDValue();
6393 }
6394 }
6395 if (!FoundLowering)
6396 return SDValue();
6397
6398 if (DstAlignCanChange) {
6399 Type *Ty = MemOps[0].getTypeForEVT(C);
6400 Align NewAlign = DL.getABITypeAlign(Ty);
6401 if (MemOps[0].isFatPointer()) {
6402 assert(!DL.exceedsNaturalStackAlignment(NewAlign) &&
6403 "Stack not capability-aligned?");
6404 }
6405 if (NewAlign > Alignment) {
6406 // Give the stack frame object a larger alignment if needed.
6407 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6408 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6409 Alignment = NewAlign;
6410 }
6411 }
6412
6413 MachineMemOperand::Flags MMOFlags =
6414 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
6415 uint64_t SrcOff = 0, DstOff = 0;
6416 SmallVector<SDValue, 8> LoadValues;
6417 SmallVector<SDValue, 8> LoadChains;
6418 SmallVector<SDValue, 8> OutChains;
6419 unsigned NumMemOps = MemOps.size();
6420 for (unsigned i = 0; i < NumMemOps; i++) {
6421 EVT VT = MemOps[i];
6422 unsigned VTSize = VT.getSizeInBits() / 8;
6423 SDValue Value;
6424
6425 bool isDereferenceable =
6426 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
6427 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
6428 if (isDereferenceable)
6429 SrcMMOFlags |= MachineMemOperand::MODereferenceable;
6430
6431 Value = DAG.getLoad(
6432 VT, dl, Chain, DAG.getMemBasePlusOffset(Src, SrcOff, dl),
6433 SrcPtrInfo.getWithOffset(SrcOff), SrcAlign->value(), SrcMMOFlags);
6434 LoadValues.push_back(Value);
6435 LoadChains.push_back(Value.getValue(1));
6436 SrcOff += VTSize;
6437 }
6438 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
6439 OutChains.clear();
6440 for (unsigned i = 0; i < NumMemOps; i++) {
6441 EVT VT = MemOps[i];
6442 unsigned VTSize = VT.getSizeInBits() / 8;
6443 SDValue Store;
6444
6445 Store = DAG.getStore(
6446 Chain, dl, LoadValues[i], DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6447 DstPtrInfo.getWithOffset(DstOff), Alignment.value(), MMOFlags);
6448 OutChains.push_back(Store);
6449 DstOff += VTSize;
6450 }
6451
6452 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6453 }
6454
6455 /// Lower the call to 'memset' intrinsic function into a series of store
6456 /// operations.
6457 ///
6458 /// \param DAG Selection DAG where lowered code is placed.
6459 /// \param dl Link to corresponding IR location.
6460 /// \param Chain Control flow dependency.
6461 /// \param Dst Pointer to destination memory location.
6462 /// \param Src Value of byte to write into the memory.
6463 /// \param Size Number of bytes to write.
6464 /// \param Alignment Alignment of the destination in bytes.
6465 /// \param isVol True if destination is volatile.
6466 /// \param DstPtrInfo IR information on the memory pointer.
6467 /// \returns New head in the control flow, if lowering was successful, empty
6468 /// SDValue otherwise.
6469 ///
6470 /// The function tries to replace 'llvm.memset' intrinsic with several store
6471 /// operations and value calculation code. This is usually profitable for small
6472 /// memory size.
getMemsetStores(SelectionDAG & DAG,const SDLoc & dl,SDValue Chain,SDValue Dst,SDValue Src,uint64_t Size,Align Alignment,bool isVol,MachinePointerInfo DstPtrInfo)6473 static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl,
6474 SDValue Chain, SDValue Dst, SDValue Src,
6475 uint64_t Size, Align Alignment, bool isVol,
6476 MachinePointerInfo DstPtrInfo) {
6477 // Turn a memset of undef to nop.
6478 // FIXME: We need to honor volatile even is Src is undef.
6479 if (Src.isUndef())
6480 return Chain;
6481
6482 // Expand memset to a series of load/store ops if the size operand
6483 // falls below a certain threshold.
6484 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6485 std::vector<EVT> MemOps;
6486 bool DstAlignCanChange = false;
6487 MachineFunction &MF = DAG.getMachineFunction();
6488 MachineFrameInfo &MFI = MF.getFrameInfo();
6489 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
6490 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
6491 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
6492 DstAlignCanChange = true;
6493 bool IsZeroVal =
6494 isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
6495 if (!TLI.findOptimalMemOpLowering(
6496 MemOps, TLI.getMaxStoresPerMemset(OptSize),
6497 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
6498 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
6499 return SDValue();
6500
6501 if (DstAlignCanChange) {
6502 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
6503 Align NewAlign = DAG.getDataLayout().getABITypeAlign(Ty);
6504 if (MemOps[0].isFatPointer()) {
6505 assert(!DAG.getDataLayout().exceedsNaturalStackAlignment(NewAlign) &&
6506 "Stack not capability-aligned?");
6507 }
6508 if (NewAlign > Alignment) {
6509 // Give the stack frame object a larger alignment if needed.
6510 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
6511 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
6512 Alignment = NewAlign;
6513 }
6514 }
6515
6516 SmallVector<SDValue, 8> OutChains;
6517 uint64_t DstOff = 0;
6518 unsigned NumMemOps = MemOps.size();
6519
6520 // Find the largest store and generate the bit pattern for it.
6521 EVT LargestVT = MemOps[0];
6522 for (unsigned i = 1; i < NumMemOps; i++)
6523 if (MemOps[i].bitsGT(LargestVT))
6524 LargestVT = MemOps[i];
6525 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
6526
6527 for (unsigned i = 0; i < NumMemOps; i++) {
6528 EVT VT = MemOps[i];
6529 unsigned VTSize = VT.getSizeInBits() / 8;
6530 if (VTSize > Size) {
6531 // Issuing an unaligned load / store pair that overlaps with the previous
6532 // pair. Adjust the offset accordingly.
6533 assert(i == NumMemOps-1 && i != 0);
6534 DstOff -= VTSize - Size;
6535 }
6536
6537 // If this store is smaller than the largest store see whether we can get
6538 // the smaller value for free with a truncate.
6539 SDValue Value = MemSetValue;
6540 if (VT.bitsLT(LargestVT)) {
6541 if (!LargestVT.isVector() && !VT.isVector() &&
6542 TLI.isTruncateFree(LargestVT, VT))
6543 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
6544 else
6545 Value = getMemsetValue(Src, VT, DAG, dl);
6546 }
6547 assert(Value.getValueType() == VT && "Value with wrong type.");
6548 SDValue Store = DAG.getStore(
6549 Chain, dl, Value, DAG.getMemBasePlusOffset(Dst, DstOff, dl),
6550 DstPtrInfo.getWithOffset(DstOff), Alignment.value(),
6551 isVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone);
6552 OutChains.push_back(Store);
6553 DstOff += VT.getSizeInBits() / 8;
6554 Size -= VTSize;
6555 }
6556
6557 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
6558 }
6559
getCSetBounds(SDValue Val,const SDLoc & DL,SDValue Length,Align Alignment,StringRef Pass,cheri::SetBoundsPointerSource Kind,const Twine & Details,std::string SrcLoc)6560 SDValue SelectionDAG::getCSetBounds(SDValue Val, const SDLoc &DL,
6561 SDValue Length, Align Alignment,
6562 StringRef Pass,
6563 cheri::SetBoundsPointerSource Kind,
6564 const Twine &Details, std::string SrcLoc) {
6565 if (cheri::ShouldCollectCSetBoundsStats) {
6566 Optional<uint64_t> SizeConst;
6567 if (ConstantSDNode *Constant = dyn_cast<ConstantSDNode>(Length.getNode())) {
6568 SizeConst = Constant->getZExtValue();
6569 }
6570 if (SrcLoc.empty()) {
6571 SrcLoc = cheri::inferSourceLocation(DL.getDebugLoc(),
6572 getMachineFunction().getName());
6573 }
6574 cheri::CSetBoundsStats->add(Alignment, SizeConst, Pass, Kind, Details,
6575 SrcLoc);
6576 }
6577 Intrinsic::ID SetBounds = Intrinsic::cheri_cap_bounds_set;
6578 // Using the bounded stack cap intrinisic allows reuse of the same register:
6579 if (isa<FrameIndexSDNode>(Val.getNode()))
6580 SetBounds = Intrinsic::cheri_bounded_stack_cap;
6581 MVT SizeVT = MVT::getIntegerVT(getDataLayout().getPointerSizeInBits(0));
6582 return getNode(ISD::INTRINSIC_WO_CHAIN, DL, Val.getValueType(),
6583 getConstant(SetBounds, DL, SizeVT), Val, Length);
6584 }
6585
checkAddrSpaceIsValidForLibcall(const TargetLowering * TLI,unsigned AS)6586 static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI,
6587 unsigned AS) {
6588 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6589 // pointer operands can be losslessly bitcasted to pointers of address space 0
6590 if (AS != 0 && !TLI->isNoopAddrSpaceCast(AS, 0)) {
6591 report_fatal_error("cannot lower memory intrinsic in address space " +
6592 Twine(AS));
6593 }
6594 }
6595
getMemcpy(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,Align Alignment,bool isVol,bool AlwaysInline,bool isTailCall,bool MustPreserveCheriCapabilities,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo,StringRef CopyType)6596 SDValue SelectionDAG::getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
6597 SDValue Src, SDValue Size, Align Alignment,
6598 bool isVol, bool AlwaysInline, bool isTailCall,
6599 bool MustPreserveCheriCapabilities,
6600 MachinePointerInfo DstPtrInfo,
6601 MachinePointerInfo SrcPtrInfo,
6602 StringRef CopyType) {
6603 LLVM_DEBUG(dbgs() << "DAG.getMemcpy() align=" << Alignment.value()
6604 << " size=";
6605 Size.dump(););
6606 // Check to see if we should lower the memcpy to loads and stores first.
6607 // For cases within the target-specified limits, this is the best choice.
6608 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6609 if (MustPreserveCheriCapabilities)
6610 assert(TLI->cheriCapabilityType().isValid());
6611 if (ConstantSize) {
6612 // Memcpy with size zero? Just return the original chain.
6613 if (ConstantSize->isNullValue())
6614 return Chain;
6615
6616 SDValue Result = getMemcpyLoadsAndStores(
6617 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
6618 Alignment, isVol, false, MustPreserveCheriCapabilities,
6619 DstPtrInfo, SrcPtrInfo, CopyType, OptLevel);
6620 if (Result.getNode())
6621 return Result;
6622 }
6623
6624 // Then check to see if we should lower the memcpy with target-specific
6625 // code. If the target chooses to do this, this is the next best.
6626 if (TSI) {
6627 SDValue Result = TSI->EmitTargetCodeForMemcpy(
6628 *this, dl, Chain, Dst, Src, Size, Alignment, isVol,
6629 AlwaysInline, MustPreserveCheriCapabilities, DstPtrInfo, SrcPtrInfo);
6630 if (Result.getNode())
6631 return Result;
6632 }
6633
6634 // If we really need inline code and the target declined to provide it,
6635 // use a (potentially long) sequence of loads and stores.
6636 if (AlwaysInline) {
6637 assert(ConstantSize && "AlwaysInline requires a constant size!");
6638 return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
6639 ConstantSize->getZExtValue(), Alignment,
6640 isVol, true, MustPreserveCheriCapabilities,
6641 DstPtrInfo, SrcPtrInfo, CopyType, OptLevel);
6642 }
6643
6644 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6645 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6646
6647 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6648 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6649 // respect volatile, so they may do things like read or write memory
6650 // beyond the given memory regions. But fixing this isn't easy, and most
6651 // people don't care.
6652
6653 // Emit a library call.
6654 TargetLowering::ArgListTy Args;
6655 TargetLowering::ArgListEntry Entry;
6656 Entry.Ty = Dst.getValueType().getTypeForEVT(*getContext());
6657 Entry.Node = Dst; Args.push_back(Entry);
6658 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6659 Entry.Node = Src; Args.push_back(Entry);
6660
6661 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6662 Entry.Node = Size; Args.push_back(Entry);
6663 // FIXME: pass in SDLoc
6664 TargetLowering::CallLoweringInfo CLI(*this);
6665 CLI.setDebugLoc(dl)
6666 .setChain(Chain)
6667 .setLibCallee(
6668 TLI->getLibcallCallingConv(RTLIB::MEMCPY),
6669 Dst.getValueType().getTypeForEVT(*getContext()),
6670 getExternalFunctionSymbol(TLI->getLibcallName(RTLIB::MEMCPY)),
6671 std::move(Args))
6672 .setDiscardResult()
6673 .setTailCall(isTailCall);
6674
6675 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6676 return CallResult.second;
6677 }
6678
getAtomicMemcpy(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Src,unsigned SrcAlign,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6679 SDValue SelectionDAG::getAtomicMemcpy(SDValue Chain, const SDLoc &dl,
6680 SDValue Dst, unsigned DstAlign,
6681 SDValue Src, unsigned SrcAlign,
6682 SDValue Size, Type *SizeTy,
6683 unsigned ElemSz, bool isTailCall,
6684 MachinePointerInfo DstPtrInfo,
6685 MachinePointerInfo SrcPtrInfo) {
6686 // Emit a library call.
6687 TargetLowering::ArgListTy Args;
6688 TargetLowering::ArgListEntry Entry;
6689 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6690 Entry.Node = Dst;
6691 Args.push_back(Entry);
6692
6693 Entry.Node = Src;
6694 Args.push_back(Entry);
6695
6696 Entry.Ty = SizeTy;
6697 Entry.Node = Size;
6698 Args.push_back(Entry);
6699
6700 RTLIB::Libcall LibraryCall =
6701 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6702 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6703 report_fatal_error("Unsupported element size");
6704
6705 TargetLowering::CallLoweringInfo CLI(*this);
6706 CLI.setDebugLoc(dl)
6707 .setChain(Chain)
6708 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6709 Type::getVoidTy(*getContext()),
6710 getExternalFunctionSymbol(TLI->getLibcallName(LibraryCall)),
6711 std::move(Args))
6712 .setDiscardResult()
6713 .setTailCall(isTailCall);
6714
6715 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6716 return CallResult.second;
6717 }
6718
getMemmove(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,Align Alignment,bool isVol,bool isTailCall,bool MustPreserveCheriCapabilities,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo,StringRef MoveType)6719 SDValue SelectionDAG::getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
6720 SDValue Src, SDValue Size, Align Alignment,
6721 bool isVol, bool isTailCall,
6722 bool MustPreserveCheriCapabilities,
6723 MachinePointerInfo DstPtrInfo,
6724 MachinePointerInfo SrcPtrInfo,
6725 StringRef MoveType) {
6726
6727 // Check to see if we should lower the memmove to loads and stores first.
6728 // For cases within the target-specified limits, this is the best choice.
6729 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6730 if (ConstantSize) {
6731 // Memmove with size zero? Just return the original chain.
6732 if (ConstantSize->isNullValue())
6733 return Chain;
6734
6735 SDValue Result = getMemmoveLoadsAndStores(
6736 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
6737 isVol, false, MustPreserveCheriCapabilities, DstPtrInfo, SrcPtrInfo,
6738 MoveType, OptLevel);
6739 if (Result.getNode())
6740 return Result;
6741 }
6742
6743 // Then check to see if we should lower the memmove with target-specific
6744 // code. If the target chooses to do this, this is the next best.
6745 if (TSI) {
6746 SDValue Result = TSI->EmitTargetCodeForMemmove(
6747 *this, dl, Chain, Dst, Src, Size, Alignment, isVol,
6748 MustPreserveCheriCapabilities, DstPtrInfo, SrcPtrInfo);
6749 if (Result.getNode())
6750 return Result;
6751 }
6752
6753 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6754 checkAddrSpaceIsValidForLibcall(TLI, SrcPtrInfo.getAddrSpace());
6755
6756 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6757 // not be safe. See memcpy above for more details.
6758
6759 // Emit a library call.
6760 TargetLowering::ArgListTy Args;
6761 TargetLowering::ArgListEntry Entry;
6762 Entry.Ty = Dst.getValueType().getTypeForEVT(*getContext());
6763 Entry.Node = Dst; Args.push_back(Entry);
6764 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6765 Entry.Node = Src; Args.push_back(Entry);
6766
6767 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6768 Entry.Node = Size; Args.push_back(Entry);
6769 // FIXME: pass in SDLoc
6770 TargetLowering::CallLoweringInfo CLI(*this);
6771 CLI.setDebugLoc(dl)
6772 .setChain(Chain)
6773 .setLibCallee(
6774 TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
6775 Dst.getValueType().getTypeForEVT(*getContext()),
6776 getExternalFunctionSymbol(TLI->getLibcallName(RTLIB::MEMMOVE)),
6777 std::move(Args))
6778 .setDiscardResult()
6779 .setTailCall(isTailCall);
6780
6781 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6782 return CallResult.second;
6783 }
6784
getAtomicMemmove(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Src,unsigned SrcAlign,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo)6785 SDValue SelectionDAG::getAtomicMemmove(SDValue Chain, const SDLoc &dl,
6786 SDValue Dst, unsigned DstAlign,
6787 SDValue Src, unsigned SrcAlign,
6788 SDValue Size, Type *SizeTy,
6789 unsigned ElemSz, bool isTailCall,
6790 MachinePointerInfo DstPtrInfo,
6791 MachinePointerInfo SrcPtrInfo) {
6792 // Emit a library call.
6793 TargetLowering::ArgListTy Args;
6794 TargetLowering::ArgListEntry Entry;
6795 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6796 Entry.Node = Dst;
6797 Args.push_back(Entry);
6798
6799 Entry.Node = Src;
6800 Args.push_back(Entry);
6801
6802 Entry.Ty = SizeTy;
6803 Entry.Node = Size;
6804 Args.push_back(Entry);
6805
6806 RTLIB::Libcall LibraryCall =
6807 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6808 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6809 report_fatal_error("Unsupported element size");
6810
6811 TargetLowering::CallLoweringInfo CLI(*this);
6812 CLI.setDebugLoc(dl)
6813 .setChain(Chain)
6814 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6815 Type::getVoidTy(*getContext()),
6816 getExternalFunctionSymbol(TLI->getLibcallName(LibraryCall)),
6817 std::move(Args))
6818 .setDiscardResult()
6819 .setTailCall(isTailCall);
6820
6821 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6822 return CallResult.second;
6823 }
6824
getMemset(SDValue Chain,const SDLoc & dl,SDValue Dst,SDValue Src,SDValue Size,Align Alignment,bool isVol,bool isTailCall,MachinePointerInfo DstPtrInfo)6825 SDValue SelectionDAG::getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
6826 SDValue Src, SDValue Size, Align Alignment,
6827 bool isVol, bool isTailCall,
6828 MachinePointerInfo DstPtrInfo) {
6829 // Check to see if we should lower the memset to stores first.
6830 // For cases within the target-specified limits, this is the best choice.
6831 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6832 if (ConstantSize) {
6833 // Memset with size zero? Just return the original chain.
6834 if (ConstantSize->isNullValue())
6835 return Chain;
6836
6837 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
6838 ConstantSize->getZExtValue(), Alignment,
6839 isVol, DstPtrInfo);
6840
6841 if (Result.getNode())
6842 return Result;
6843 }
6844
6845 // Then check to see if we should lower the memset with target-specific
6846 // code. If the target chooses to do this, this is the next best.
6847 if (TSI) {
6848 SDValue Result = TSI->EmitTargetCodeForMemset(
6849 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, DstPtrInfo);
6850 if (Result.getNode())
6851 return Result;
6852 }
6853
6854 checkAddrSpaceIsValidForLibcall(TLI, DstPtrInfo.getAddrSpace());
6855
6856 // Emit a library call.
6857 TargetLowering::ArgListTy Args;
6858 TargetLowering::ArgListEntry Entry;
6859 Entry.Node = Dst; Entry.Ty = Dst.getValueType().getTypeForEVT(*getContext());
6860 Args.push_back(Entry);
6861 Entry.Node = Src;
6862 Entry.Ty = Src.getValueType().getTypeForEVT(*getContext());
6863 Args.push_back(Entry);
6864 Entry.Node = Size;
6865 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6866 Args.push_back(Entry);
6867
6868 // FIXME: pass in SDLoc
6869 TargetLowering::CallLoweringInfo CLI(*this);
6870 CLI.setDebugLoc(dl)
6871 .setChain(Chain)
6872 .setLibCallee(
6873 TLI->getLibcallCallingConv(RTLIB::MEMSET),
6874 Dst.getValueType().getTypeForEVT(*getContext()),
6875 getExternalFunctionSymbol(TLI->getLibcallName(RTLIB::MEMSET)),
6876 std::move(Args))
6877 .setDiscardResult()
6878 .setTailCall(isTailCall);
6879
6880 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
6881 return CallResult.second;
6882 }
6883
getAtomicMemset(SDValue Chain,const SDLoc & dl,SDValue Dst,unsigned DstAlign,SDValue Value,SDValue Size,Type * SizeTy,unsigned ElemSz,bool isTailCall,MachinePointerInfo DstPtrInfo)6884 SDValue SelectionDAG::getAtomicMemset(SDValue Chain, const SDLoc &dl,
6885 SDValue Dst, unsigned DstAlign,
6886 SDValue Value, SDValue Size, Type *SizeTy,
6887 unsigned ElemSz, bool isTailCall,
6888 MachinePointerInfo DstPtrInfo) {
6889 // Emit a library call.
6890 TargetLowering::ArgListTy Args;
6891 TargetLowering::ArgListEntry Entry;
6892 Entry.Ty = getDataLayout().getIntPtrType(*getContext());
6893 Entry.Node = Dst;
6894 Args.push_back(Entry);
6895
6896 Entry.Ty = Type::getInt8Ty(*getContext());
6897 Entry.Node = Value;
6898 Args.push_back(Entry);
6899
6900 Entry.Ty = SizeTy;
6901 Entry.Node = Size;
6902 Args.push_back(Entry);
6903
6904 RTLIB::Libcall LibraryCall =
6905 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz);
6906 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
6907 report_fatal_error("Unsupported element size");
6908
6909 TargetLowering::CallLoweringInfo CLI(*this);
6910 CLI.setDebugLoc(dl)
6911 .setChain(Chain)
6912 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
6913 Type::getVoidTy(*getContext()),
6914 getExternalFunctionSymbol(TLI->getLibcallName(LibraryCall)),
6915 std::move(Args))
6916 .setDiscardResult()
6917 .setTailCall(isTailCall);
6918
6919 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
6920 return CallResult.second;
6921 }
6922
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTList,ArrayRef<SDValue> Ops,MachineMemOperand * MMO)6923 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6924 SDVTList VTList, ArrayRef<SDValue> Ops,
6925 MachineMemOperand *MMO) {
6926 FoldingSetNodeID ID;
6927 ID.AddInteger(MemVT.getRawBits());
6928 AddNodeIDNode(ID, Opcode, VTList, Ops);
6929 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
6930 void* IP = nullptr;
6931 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
6932 cast<AtomicSDNode>(E)->refineAlignment(MMO);
6933 return SDValue(E, 0);
6934 }
6935
6936 auto *N = newSDNode<AtomicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
6937 VTList, MemVT, MMO);
6938 createOperands(N, Ops);
6939
6940 CSEMap.InsertNode(N, IP);
6941 InsertNode(N);
6942 return SDValue(N, 0);
6943 }
6944
getAtomicCmpSwap(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDVTList VTs,SDValue Chain,SDValue Ptr,SDValue Cmp,SDValue Swp,MachineMemOperand * MMO)6945 SDValue SelectionDAG::getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl,
6946 EVT MemVT, SDVTList VTs, SDValue Chain,
6947 SDValue Ptr, SDValue Cmp, SDValue Swp,
6948 MachineMemOperand *MMO) {
6949 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
6950 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
6951 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
6952
6953 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
6954 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6955 }
6956
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,SDValue Chain,SDValue Ptr,SDValue Val,MachineMemOperand * MMO)6957 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6958 SDValue Chain, SDValue Ptr, SDValue Val,
6959 MachineMemOperand *MMO) {
6960 assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
6961 Opcode == ISD::ATOMIC_LOAD_SUB ||
6962 Opcode == ISD::ATOMIC_LOAD_AND ||
6963 Opcode == ISD::ATOMIC_LOAD_CLR ||
6964 Opcode == ISD::ATOMIC_LOAD_OR ||
6965 Opcode == ISD::ATOMIC_LOAD_XOR ||
6966 Opcode == ISD::ATOMIC_LOAD_NAND ||
6967 Opcode == ISD::ATOMIC_LOAD_MIN ||
6968 Opcode == ISD::ATOMIC_LOAD_MAX ||
6969 Opcode == ISD::ATOMIC_LOAD_UMIN ||
6970 Opcode == ISD::ATOMIC_LOAD_UMAX ||
6971 Opcode == ISD::ATOMIC_LOAD_FADD ||
6972 Opcode == ISD::ATOMIC_LOAD_FSUB ||
6973 Opcode == ISD::ATOMIC_SWAP ||
6974 Opcode == ISD::ATOMIC_STORE) &&
6975 "Invalid Atomic Op");
6976
6977 EVT VT = Val.getValueType();
6978
6979 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
6980 getVTList(VT, MVT::Other);
6981 SDValue Ops[] = {Chain, Ptr, Val};
6982 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6983 }
6984
getAtomic(unsigned Opcode,const SDLoc & dl,EVT MemVT,EVT VT,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO)6985 SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
6986 EVT VT, SDValue Chain, SDValue Ptr,
6987 MachineMemOperand *MMO) {
6988 assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
6989
6990 SDVTList VTs = getVTList(VT, MVT::Other);
6991 SDValue Ops[] = {Chain, Ptr};
6992 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
6993 }
6994
6995 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
getMergeValues(ArrayRef<SDValue> Ops,const SDLoc & dl)6996 SDValue SelectionDAG::getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl) {
6997 if (Ops.size() == 1)
6998 return Ops[0];
6999
7000 SmallVector<EVT, 4> VTs;
7001 VTs.reserve(Ops.size());
7002 for (unsigned i = 0; i < Ops.size(); ++i)
7003 VTs.push_back(Ops[i].getValueType());
7004 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
7005 }
7006
getMemIntrinsicNode(unsigned Opcode,const SDLoc & dl,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachinePointerInfo PtrInfo,Align Alignment,MachineMemOperand::Flags Flags,uint64_t Size,const AAMDNodes & AAInfo)7007 SDValue SelectionDAG::getMemIntrinsicNode(
7008 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
7009 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
7010 MachineMemOperand::Flags Flags, uint64_t Size, const AAMDNodes &AAInfo) {
7011 if (!Size && MemVT.isScalableVector())
7012 Size = MemoryLocation::UnknownSize;
7013 else if (!Size)
7014 Size = MemVT.getStoreSize();
7015
7016 MachineFunction &MF = getMachineFunction();
7017 MachineMemOperand *MMO =
7018 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
7019
7020 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
7021 }
7022
getMemIntrinsicNode(unsigned Opcode,const SDLoc & dl,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachineMemOperand * MMO)7023 SDValue SelectionDAG::getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl,
7024 SDVTList VTList,
7025 ArrayRef<SDValue> Ops, EVT MemVT,
7026 MachineMemOperand *MMO) {
7027 assert((Opcode == ISD::INTRINSIC_VOID ||
7028 Opcode == ISD::INTRINSIC_W_CHAIN ||
7029 Opcode == ISD::PREFETCH ||
7030 ((int)Opcode <= std::numeric_limits<int>::max() &&
7031 (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
7032 "Opcode is not a memory-accessing opcode!");
7033
7034 // Memoize the node unless it returns a flag.
7035 MemIntrinsicSDNode *N;
7036 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7037 FoldingSetNodeID ID;
7038 AddNodeIDNode(ID, Opcode, VTList, Ops);
7039 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
7040 Opcode, dl.getIROrder(), VTList, MemVT, MMO));
7041 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7042 void *IP = nullptr;
7043 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7044 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
7045 return SDValue(E, 0);
7046 }
7047
7048 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7049 VTList, MemVT, MMO);
7050 createOperands(N, Ops);
7051
7052 CSEMap.InsertNode(N, IP);
7053 } else {
7054 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
7055 VTList, MemVT, MMO);
7056 createOperands(N, Ops);
7057 }
7058 InsertNode(N);
7059 SDValue V(N, 0);
7060 NewSDValueDbgMsg(V, "Creating new node: ", this);
7061 return V;
7062 }
7063
getLifetimeNode(bool IsStart,const SDLoc & dl,SDValue Chain,int FrameIndex,int64_t Size,int64_t Offset)7064 SDValue SelectionDAG::getLifetimeNode(bool IsStart, const SDLoc &dl,
7065 SDValue Chain, int FrameIndex,
7066 int64_t Size, int64_t Offset) {
7067 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
7068 const auto VTs = getVTList(MVT::Other);
7069 SDValue Ops[2] = {
7070 Chain,
7071 getFrameIndex(FrameIndex,
7072 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
7073 true)};
7074
7075 FoldingSetNodeID ID;
7076 AddNodeIDNode(ID, Opcode, VTs, Ops);
7077 ID.AddInteger(FrameIndex);
7078 ID.AddInteger(Size);
7079 ID.AddInteger(Offset);
7080 void *IP = nullptr;
7081 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7082 return SDValue(E, 0);
7083
7084 LifetimeSDNode *N = newSDNode<LifetimeSDNode>(
7085 Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs, Size, Offset);
7086 createOperands(N, Ops);
7087 CSEMap.InsertNode(N, IP);
7088 InsertNode(N);
7089 SDValue V(N, 0);
7090 NewSDValueDbgMsg(V, "Creating new node: ", this);
7091 return V;
7092 }
7093
7094 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7095 /// MachinePointerInfo record from it. This is particularly useful because the
7096 /// code generator has many cases where it doesn't bother passing in a
7097 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(const MachinePointerInfo & Info,SelectionDAG & DAG,SDValue Ptr,int64_t Offset=0)7098 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7099 SelectionDAG &DAG, SDValue Ptr,
7100 int64_t Offset = 0) {
7101 // If this is FI+Offset, we can model it.
7102 if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
7103 return MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
7104 FI->getIndex(), Offset);
7105
7106 // If this is (FI+Offset1)+Offset2, we can model it.
7107 if (Ptr.getOpcode() != ISD::ADD ||
7108 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
7109 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
7110 return Info;
7111
7112 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
7113 return MachinePointerInfo::getFixedStack(
7114 DAG.getMachineFunction(), FI,
7115 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
7116 }
7117
7118 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
7119 /// MachinePointerInfo record from it. This is particularly useful because the
7120 /// code generator has many cases where it doesn't bother passing in a
7121 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
InferPointerInfo(const MachinePointerInfo & Info,SelectionDAG & DAG,SDValue Ptr,SDValue OffsetOp)7122 static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info,
7123 SelectionDAG &DAG, SDValue Ptr,
7124 SDValue OffsetOp) {
7125 // If the 'Offset' value isn't a constant, we can't handle this.
7126 if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
7127 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
7128 if (OffsetOp.isUndef())
7129 return InferPointerInfo(Info, DAG, Ptr);
7130 return Info;
7131 }
7132
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,MachinePointerInfo PtrInfo,EVT MemVT,Align Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges)7133 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7134 EVT VT, const SDLoc &dl, SDValue Chain,
7135 SDValue Ptr, SDValue Offset,
7136 MachinePointerInfo PtrInfo, EVT MemVT,
7137 Align Alignment,
7138 MachineMemOperand::Flags MMOFlags,
7139 const AAMDNodes &AAInfo, const MDNode *Ranges) {
7140 assert(Chain.getValueType() == MVT::Other &&
7141 "Invalid chain type");
7142
7143 MMOFlags |= MachineMemOperand::MOLoad;
7144 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
7145 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
7146 // clients.
7147 if (PtrInfo.V.isNull())
7148 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
7149
7150 uint64_t Size = MemoryLocation::getSizeOrUnknown(MemVT.getStoreSize());
7151 MachineFunction &MF = getMachineFunction();
7152 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
7153 Alignment, AAInfo, Ranges);
7154 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
7155 }
7156
getLoad(ISD::MemIndexedMode AM,ISD::LoadExtType ExtType,EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue Offset,EVT MemVT,MachineMemOperand * MMO)7157 SDValue SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
7158 EVT VT, const SDLoc &dl, SDValue Chain,
7159 SDValue Ptr, SDValue Offset, EVT MemVT,
7160 MachineMemOperand *MMO) {
7161 if (VT == MemVT) {
7162 ExtType = ISD::NON_EXTLOAD;
7163 } else if (ExtType == ISD::NON_EXTLOAD) {
7164 assert(VT == MemVT && "Non-extending load from different memory type!");
7165 } else {
7166 // Extending load.
7167 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
7168 "Should only be an extending load, not truncating!");
7169 assert(VT.isInteger() == MemVT.isInteger() &&
7170 "Cannot convert from FP to Int or Int -> FP!");
7171 assert(VT.isVector() == MemVT.isVector() &&
7172 "Cannot use an ext load to convert to or from a vector!");
7173 assert((!VT.isVector() ||
7174 VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
7175 "Cannot use an ext load to change the number of vector elements!");
7176 }
7177
7178 bool Indexed = AM != ISD::UNINDEXED;
7179 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
7180
7181 SDVTList VTs = Indexed ?
7182 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
7183 SDValue Ops[] = { Chain, Ptr, Offset };
7184 FoldingSetNodeID ID;
7185 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
7186 ID.AddInteger(MemVT.getRawBits());
7187 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
7188 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
7189 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7190 void *IP = nullptr;
7191 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7192 cast<LoadSDNode>(E)->refineAlignment(MMO);
7193 return SDValue(E, 0);
7194 }
7195 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7196 ExtType, MemVT, MMO);
7197 createOperands(N, Ops);
7198
7199 CSEMap.InsertNode(N, IP);
7200 InsertNode(N);
7201 SDValue V(N, 0);
7202 NewSDValueDbgMsg(V, "Creating new node: ", this);
7203 return V;
7204 }
7205
getLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,MaybeAlign Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo,const MDNode * Ranges)7206 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7207 SDValue Ptr, MachinePointerInfo PtrInfo,
7208 MaybeAlign Alignment,
7209 MachineMemOperand::Flags MMOFlags,
7210 const AAMDNodes &AAInfo, const MDNode *Ranges) {
7211 SDValue Undef = getUNDEF(Ptr.getValueType());
7212 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7213 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
7214 }
7215
getLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,MachineMemOperand * MMO)7216 SDValue SelectionDAG::getLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7217 SDValue Ptr, MachineMemOperand *MMO) {
7218 SDValue Undef = getUNDEF(Ptr.getValueType());
7219 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
7220 VT, MMO);
7221 }
7222
getExtLoad(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,MachinePointerInfo PtrInfo,EVT MemVT,MaybeAlign Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)7223 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7224 EVT VT, SDValue Chain, SDValue Ptr,
7225 MachinePointerInfo PtrInfo, EVT MemVT,
7226 MaybeAlign Alignment,
7227 MachineMemOperand::Flags MMOFlags,
7228 const AAMDNodes &AAInfo) {
7229 SDValue Undef = getUNDEF(Ptr.getValueType());
7230 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
7231 MemVT, Alignment, MMOFlags, AAInfo);
7232 }
7233
getExtLoad(ISD::LoadExtType ExtType,const SDLoc & dl,EVT VT,SDValue Chain,SDValue Ptr,EVT MemVT,MachineMemOperand * MMO)7234 SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl,
7235 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
7236 MachineMemOperand *MMO) {
7237 SDValue Undef = getUNDEF(Ptr.getValueType());
7238 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
7239 MemVT, MMO);
7240 }
7241
getIndexedLoad(SDValue OrigLoad,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7242 SDValue SelectionDAG::getIndexedLoad(SDValue OrigLoad, const SDLoc &dl,
7243 SDValue Base, SDValue Offset,
7244 ISD::MemIndexedMode AM) {
7245 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
7246 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
7247 // Don't propagate the invariant or dereferenceable flags.
7248 auto MMOFlags =
7249 LD->getMemOperand()->getFlags() &
7250 ~(MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable);
7251 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
7252 LD->getChain(), Base, Offset, LD->getPointerInfo(),
7253 LD->getMemoryVT(), LD->getAlignment(), MMOFlags,
7254 LD->getAAInfo());
7255 }
7256
getStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,Align Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)7257 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7258 SDValue Ptr, MachinePointerInfo PtrInfo,
7259 Align Alignment,
7260 MachineMemOperand::Flags MMOFlags,
7261 const AAMDNodes &AAInfo) {
7262 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
7263
7264 MMOFlags |= MachineMemOperand::MOStore;
7265 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7266
7267 if (PtrInfo.V.isNull())
7268 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7269
7270 MachineFunction &MF = getMachineFunction();
7271 uint64_t Size =
7272 MemoryLocation::getSizeOrUnknown(Val.getValueType().getStoreSize());
7273 MachineMemOperand *MMO =
7274 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
7275 return getStore(Chain, dl, Val, Ptr, MMO);
7276 }
7277
getStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachineMemOperand * MMO)7278 SDValue SelectionDAG::getStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7279 SDValue Ptr, MachineMemOperand *MMO) {
7280 assert(Chain.getValueType() == MVT::Other &&
7281 "Invalid chain type");
7282 EVT VT = Val.getValueType();
7283 SDVTList VTs = getVTList(MVT::Other);
7284 SDValue Undef = getUNDEF(Ptr.getValueType());
7285 SDValue Ops[] = { Chain, Val, Ptr, Undef };
7286 FoldingSetNodeID ID;
7287 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7288 ID.AddInteger(VT.getRawBits());
7289 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7290 dl.getIROrder(), VTs, ISD::UNINDEXED, false, VT, MMO));
7291 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7292 void *IP = nullptr;
7293 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7294 cast<StoreSDNode>(E)->refineAlignment(MMO);
7295 return SDValue(E, 0);
7296 }
7297 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7298 ISD::UNINDEXED, false, VT, MMO);
7299 createOperands(N, Ops);
7300
7301 CSEMap.InsertNode(N, IP);
7302 InsertNode(N);
7303 SDValue V(N, 0);
7304 NewSDValueDbgMsg(V, "Creating new node: ", this);
7305 return V;
7306 }
7307
getTruncStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,MachinePointerInfo PtrInfo,EVT SVT,Align Alignment,MachineMemOperand::Flags MMOFlags,const AAMDNodes & AAInfo)7308 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7309 SDValue Ptr, MachinePointerInfo PtrInfo,
7310 EVT SVT, Align Alignment,
7311 MachineMemOperand::Flags MMOFlags,
7312 const AAMDNodes &AAInfo) {
7313 assert(Chain.getValueType() == MVT::Other &&
7314 "Invalid chain type");
7315
7316 MMOFlags |= MachineMemOperand::MOStore;
7317 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
7318
7319 if (PtrInfo.V.isNull())
7320 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
7321
7322 MachineFunction &MF = getMachineFunction();
7323 MachineMemOperand *MMO = MF.getMachineMemOperand(
7324 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
7325 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
7326 }
7327
getTruncStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Ptr,EVT SVT,MachineMemOperand * MMO)7328 SDValue SelectionDAG::getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
7329 SDValue Ptr, EVT SVT,
7330 MachineMemOperand *MMO) {
7331 EVT VT = Val.getValueType();
7332
7333 assert(Chain.getValueType() == MVT::Other &&
7334 "Invalid chain type");
7335 if (VT == SVT)
7336 return getStore(Chain, dl, Val, Ptr, MMO);
7337
7338 assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
7339 "Should only be a truncating store, not extending!");
7340 assert(VT.isInteger() == SVT.isInteger() &&
7341 "Can't do FP-INT conversion!");
7342 assert(VT.isVector() == SVT.isVector() &&
7343 "Cannot use trunc store to convert to or from a vector!");
7344 assert((!VT.isVector() ||
7345 VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
7346 "Cannot use trunc store to change the number of vector elements!");
7347
7348 SDVTList VTs = getVTList(MVT::Other);
7349 SDValue Undef = getUNDEF(Ptr.getValueType());
7350 SDValue Ops[] = { Chain, Val, Ptr, Undef };
7351 FoldingSetNodeID ID;
7352 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7353 ID.AddInteger(SVT.getRawBits());
7354 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
7355 dl.getIROrder(), VTs, ISD::UNINDEXED, true, SVT, MMO));
7356 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7357 void *IP = nullptr;
7358 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7359 cast<StoreSDNode>(E)->refineAlignment(MMO);
7360 return SDValue(E, 0);
7361 }
7362 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7363 ISD::UNINDEXED, true, SVT, MMO);
7364 createOperands(N, Ops);
7365
7366 CSEMap.InsertNode(N, IP);
7367 InsertNode(N);
7368 SDValue V(N, 0);
7369 NewSDValueDbgMsg(V, "Creating new node: ", this);
7370 return V;
7371 }
7372
getIndexedStore(SDValue OrigStore,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7373 SDValue SelectionDAG::getIndexedStore(SDValue OrigStore, const SDLoc &dl,
7374 SDValue Base, SDValue Offset,
7375 ISD::MemIndexedMode AM) {
7376 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
7377 assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
7378 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
7379 SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
7380 FoldingSetNodeID ID;
7381 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
7382 ID.AddInteger(ST->getMemoryVT().getRawBits());
7383 ID.AddInteger(ST->getRawSubclassData());
7384 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
7385 void *IP = nullptr;
7386 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
7387 return SDValue(E, 0);
7388
7389 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7390 ST->isTruncatingStore(), ST->getMemoryVT(),
7391 ST->getMemOperand());
7392 createOperands(N, Ops);
7393
7394 CSEMap.InsertNode(N, IP);
7395 InsertNode(N);
7396 SDValue V(N, 0);
7397 NewSDValueDbgMsg(V, "Creating new node: ", this);
7398 return V;
7399 }
7400
getMaskedLoad(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Base,SDValue Offset,SDValue Mask,SDValue PassThru,EVT MemVT,MachineMemOperand * MMO,ISD::MemIndexedMode AM,ISD::LoadExtType ExtTy,bool isExpanding)7401 SDValue SelectionDAG::getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain,
7402 SDValue Base, SDValue Offset, SDValue Mask,
7403 SDValue PassThru, EVT MemVT,
7404 MachineMemOperand *MMO,
7405 ISD::MemIndexedMode AM,
7406 ISD::LoadExtType ExtTy, bool isExpanding) {
7407 bool Indexed = AM != ISD::UNINDEXED;
7408 assert((Indexed || Offset.isUndef()) &&
7409 "Unindexed masked load with an offset!");
7410 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
7411 : getVTList(VT, MVT::Other);
7412 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
7413 FoldingSetNodeID ID;
7414 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
7415 ID.AddInteger(MemVT.getRawBits());
7416 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
7417 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
7418 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7419 void *IP = nullptr;
7420 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7421 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
7422 return SDValue(E, 0);
7423 }
7424 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
7425 AM, ExtTy, isExpanding, MemVT, MMO);
7426 createOperands(N, Ops);
7427
7428 CSEMap.InsertNode(N, IP);
7429 InsertNode(N);
7430 SDValue V(N, 0);
7431 NewSDValueDbgMsg(V, "Creating new node: ", this);
7432 return V;
7433 }
7434
getIndexedMaskedLoad(SDValue OrigLoad,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7435 SDValue SelectionDAG::getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl,
7436 SDValue Base, SDValue Offset,
7437 ISD::MemIndexedMode AM) {
7438 MaskedLoadSDNode *LD = cast<MaskedLoadSDNode>(OrigLoad);
7439 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
7440 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
7441 Offset, LD->getMask(), LD->getPassThru(),
7442 LD->getMemoryVT(), LD->getMemOperand(), AM,
7443 LD->getExtensionType(), LD->isExpandingLoad());
7444 }
7445
getMaskedStore(SDValue Chain,const SDLoc & dl,SDValue Val,SDValue Base,SDValue Offset,SDValue Mask,EVT MemVT,MachineMemOperand * MMO,ISD::MemIndexedMode AM,bool IsTruncating,bool IsCompressing)7446 SDValue SelectionDAG::getMaskedStore(SDValue Chain, const SDLoc &dl,
7447 SDValue Val, SDValue Base, SDValue Offset,
7448 SDValue Mask, EVT MemVT,
7449 MachineMemOperand *MMO,
7450 ISD::MemIndexedMode AM, bool IsTruncating,
7451 bool IsCompressing) {
7452 assert(Chain.getValueType() == MVT::Other &&
7453 "Invalid chain type");
7454 bool Indexed = AM != ISD::UNINDEXED;
7455 assert((Indexed || Offset.isUndef()) &&
7456 "Unindexed masked store with an offset!");
7457 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
7458 : getVTList(MVT::Other);
7459 SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
7460 FoldingSetNodeID ID;
7461 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
7462 ID.AddInteger(MemVT.getRawBits());
7463 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
7464 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
7465 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7466 void *IP = nullptr;
7467 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7468 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
7469 return SDValue(E, 0);
7470 }
7471 auto *N =
7472 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
7473 IsTruncating, IsCompressing, MemVT, MMO);
7474 createOperands(N, Ops);
7475
7476 CSEMap.InsertNode(N, IP);
7477 InsertNode(N);
7478 SDValue V(N, 0);
7479 NewSDValueDbgMsg(V, "Creating new node: ", this);
7480 return V;
7481 }
7482
getIndexedMaskedStore(SDValue OrigStore,const SDLoc & dl,SDValue Base,SDValue Offset,ISD::MemIndexedMode AM)7483 SDValue SelectionDAG::getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
7484 SDValue Base, SDValue Offset,
7485 ISD::MemIndexedMode AM) {
7486 MaskedStoreSDNode *ST = cast<MaskedStoreSDNode>(OrigStore);
7487 assert(ST->getOffset().isUndef() &&
7488 "Masked store is already a indexed store!");
7489 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
7490 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
7491 AM, ST->isTruncatingStore(), ST->isCompressingStore());
7492 }
7493
getMaskedGather(SDVTList VTs,EVT VT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO,ISD::MemIndexType IndexType)7494 SDValue SelectionDAG::getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
7495 ArrayRef<SDValue> Ops,
7496 MachineMemOperand *MMO,
7497 ISD::MemIndexType IndexType) {
7498 assert(Ops.size() == 6 && "Incompatible number of operands");
7499
7500 FoldingSetNodeID ID;
7501 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
7502 ID.AddInteger(VT.getRawBits());
7503 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
7504 dl.getIROrder(), VTs, VT, MMO, IndexType));
7505 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7506 void *IP = nullptr;
7507 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7508 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
7509 return SDValue(E, 0);
7510 }
7511
7512 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7513 VTs, VT, MMO, IndexType);
7514 createOperands(N, Ops);
7515
7516 assert(N->getPassThru().getValueType() == N->getValueType(0) &&
7517 "Incompatible type of the PassThru value in MaskedGatherSDNode");
7518 assert(N->getMask().getValueType().getVectorNumElements() ==
7519 N->getValueType(0).getVectorNumElements() &&
7520 "Vector width mismatch between mask and data");
7521 assert(N->getIndex().getValueType().getVectorNumElements() >=
7522 N->getValueType(0).getVectorNumElements() &&
7523 "Vector width mismatch between index and data");
7524 assert(isa<ConstantSDNode>(N->getScale()) &&
7525 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7526 "Scale should be a constant power of 2");
7527
7528 CSEMap.InsertNode(N, IP);
7529 InsertNode(N);
7530 SDValue V(N, 0);
7531 NewSDValueDbgMsg(V, "Creating new node: ", this);
7532 return V;
7533 }
7534
getMaskedScatter(SDVTList VTs,EVT VT,const SDLoc & dl,ArrayRef<SDValue> Ops,MachineMemOperand * MMO,ISD::MemIndexType IndexType)7535 SDValue SelectionDAG::getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
7536 ArrayRef<SDValue> Ops,
7537 MachineMemOperand *MMO,
7538 ISD::MemIndexType IndexType) {
7539 assert(Ops.size() == 6 && "Incompatible number of operands");
7540
7541 FoldingSetNodeID ID;
7542 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
7543 ID.AddInteger(VT.getRawBits());
7544 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
7545 dl.getIROrder(), VTs, VT, MMO, IndexType));
7546 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
7547 void *IP = nullptr;
7548 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
7549 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
7550 return SDValue(E, 0);
7551 }
7552 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
7553 VTs, VT, MMO, IndexType);
7554 createOperands(N, Ops);
7555
7556 assert(N->getMask().getValueType().getVectorNumElements() ==
7557 N->getValue().getValueType().getVectorNumElements() &&
7558 "Vector width mismatch between mask and data");
7559 assert(N->getIndex().getValueType().getVectorNumElements() >=
7560 N->getValue().getValueType().getVectorNumElements() &&
7561 "Vector width mismatch between index and data");
7562 assert(isa<ConstantSDNode>(N->getScale()) &&
7563 cast<ConstantSDNode>(N->getScale())->getAPIntValue().isPowerOf2() &&
7564 "Scale should be a constant power of 2");
7565
7566 CSEMap.InsertNode(N, IP);
7567 InsertNode(N);
7568 SDValue V(N, 0);
7569 NewSDValueDbgMsg(V, "Creating new node: ", this);
7570 return V;
7571 }
7572
simplifySelect(SDValue Cond,SDValue T,SDValue F)7573 SDValue SelectionDAG::simplifySelect(SDValue Cond, SDValue T, SDValue F) {
7574 // select undef, T, F --> T (if T is a constant), otherwise F
7575 // select, ?, undef, F --> F
7576 // select, ?, T, undef --> T
7577 if (Cond.isUndef())
7578 return isConstantValueOfAnyType(T) ? T : F;
7579 if (T.isUndef())
7580 return F;
7581 if (F.isUndef())
7582 return T;
7583
7584 // select true, T, F --> T
7585 // select false, T, F --> F
7586 if (auto *CondC = dyn_cast<ConstantSDNode>(Cond))
7587 return CondC->isNullValue() ? F : T;
7588
7589 // TODO: This should simplify VSELECT with constant condition using something
7590 // like this (but check boolean contents to be complete?):
7591 // if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7592 // return T;
7593 // if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7594 // return F;
7595
7596 // select ?, T, T --> T
7597 if (T == F)
7598 return T;
7599
7600 return SDValue();
7601 }
7602
simplifyShift(SDValue X,SDValue Y)7603 SDValue SelectionDAG::simplifyShift(SDValue X, SDValue Y) {
7604 // shift undef, Y --> 0 (can always assume that the undef value is 0)
7605 if (X.isUndef())
7606 return getConstant(0, SDLoc(X.getNode()), X.getValueType());
7607 // shift X, undef --> undef (because it may shift by the bitwidth)
7608 if (Y.isUndef())
7609 return getUNDEF(X.getValueType());
7610
7611 // shift 0, Y --> 0
7612 // shift X, 0 --> X
7613 if (isNullOrNullSplat(X) || isNullOrNullSplat(Y))
7614 return X;
7615
7616 // shift X, C >= bitwidth(X) --> undef
7617 // All vector elements must be too big (or undef) to avoid partial undefs.
7618 auto isShiftTooBig = [X](ConstantSDNode *Val) {
7619 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
7620 };
7621 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
7622 return getUNDEF(X.getValueType());
7623
7624 return SDValue();
7625 }
7626
simplifyFPBinop(unsigned Opcode,SDValue X,SDValue Y,SDNodeFlags Flags)7627 SDValue SelectionDAG::simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
7628 SDNodeFlags Flags) {
7629 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
7630 // (an undef operand can be chosen to be Nan/Inf), then the result of this
7631 // operation is poison. That result can be relaxed to undef.
7632 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
7633 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
7634 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
7635 (YC && YC->getValueAPF().isNaN());
7636 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
7637 (YC && YC->getValueAPF().isInfinity());
7638
7639 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
7640 return getUNDEF(X.getValueType());
7641
7642 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
7643 return getUNDEF(X.getValueType());
7644
7645 if (!YC)
7646 return SDValue();
7647
7648 // X + -0.0 --> X
7649 if (Opcode == ISD::FADD)
7650 if (YC->getValueAPF().isNegZero())
7651 return X;
7652
7653 // X - +0.0 --> X
7654 if (Opcode == ISD::FSUB)
7655 if (YC->getValueAPF().isPosZero())
7656 return X;
7657
7658 // X * 1.0 --> X
7659 // X / 1.0 --> X
7660 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
7661 if (YC->getValueAPF().isExactlyValue(1.0))
7662 return X;
7663
7664 return SDValue();
7665 }
7666
getVAArg(EVT VT,const SDLoc & dl,SDValue Chain,SDValue Ptr,SDValue SV,unsigned Align)7667 SDValue SelectionDAG::getVAArg(EVT VT, const SDLoc &dl, SDValue Chain,
7668 SDValue Ptr, SDValue SV, unsigned Align) {
7669 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
7670 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
7671 }
7672
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDUse> Ops)7673 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7674 ArrayRef<SDUse> Ops) {
7675 switch (Ops.size()) {
7676 case 0: return getNode(Opcode, DL, VT);
7677 case 1: return getNode(Opcode, DL, VT, static_cast<const SDValue>(Ops[0]));
7678 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
7679 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
7680 default: break;
7681 }
7682
7683 // Copy from an SDUse array into an SDValue array for use with
7684 // the regular getNode logic.
7685 SmallVector<SDValue, 8> NewOps(Ops.begin(), Ops.end());
7686 return getNode(Opcode, DL, VT, NewOps);
7687 }
7688
getNode(unsigned Opcode,const SDLoc & DL,EVT VT,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)7689 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7690 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7691 unsigned NumOps = Ops.size();
7692 switch (NumOps) {
7693 case 0: return getNode(Opcode, DL, VT);
7694 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
7695 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
7696 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
7697 default: break;
7698 }
7699
7700 switch (Opcode) {
7701 default: break;
7702 case ISD::BUILD_VECTOR:
7703 // Attempt to simplify BUILD_VECTOR.
7704 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7705 return V;
7706 break;
7707 case ISD::CONCAT_VECTORS:
7708 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7709 return V;
7710 break;
7711 case ISD::SELECT_CC:
7712 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
7713 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
7714 "LHS and RHS of condition must have same type!");
7715 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7716 "True and False arms of SelectCC must have same type!");
7717 assert(Ops[2].getValueType() == VT &&
7718 "select_cc node must be of same type as true and false value!");
7719 break;
7720 case ISD::BR_CC:
7721 assert(NumOps == 5 && "BR_CC takes 5 operands!");
7722 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
7723 "LHS/RHS of comparison should match types!");
7724 break;
7725 }
7726
7727 // Memoize nodes.
7728 SDNode *N;
7729 SDVTList VTs = getVTList(VT);
7730
7731 if (VT != MVT::Glue) {
7732 FoldingSetNodeID ID;
7733 AddNodeIDNode(ID, Opcode, VTs, Ops);
7734 void *IP = nullptr;
7735
7736 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7737 return SDValue(E, 0);
7738
7739 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7740 createOperands(N, Ops);
7741
7742 CSEMap.InsertNode(N, IP);
7743 } else {
7744 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
7745 createOperands(N, Ops);
7746 }
7747
7748 N->setFlags(Flags);
7749 InsertNode(N);
7750 SDValue V(N, 0);
7751 NewSDValueDbgMsg(V, "Creating new node: ", this);
7752 return V;
7753 }
7754
getNode(unsigned Opcode,const SDLoc & DL,ArrayRef<EVT> ResultTys,ArrayRef<SDValue> Ops)7755 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7756 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
7757 return getNode(Opcode, DL, getVTList(ResultTys), Ops);
7758 }
7759
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)7760 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7761 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
7762 if (VTList.NumVTs == 1)
7763 return getNode(Opcode, DL, VTList.VTs[0], Ops);
7764
7765 switch (Opcode) {
7766 case ISD::STRICT_FP_EXTEND:
7767 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
7768 "Invalid STRICT_FP_EXTEND!");
7769 assert(VTList.VTs[0].isFloatingPoint() &&
7770 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
7771 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7772 "STRICT_FP_EXTEND result type should be vector iff the operand "
7773 "type is vector!");
7774 assert((!VTList.VTs[0].isVector() ||
7775 VTList.VTs[0].getVectorNumElements() ==
7776 Ops[1].getValueType().getVectorNumElements()) &&
7777 "Vector element count mismatch!");
7778 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
7779 "Invalid fpext node, dst <= src!");
7780 break;
7781 case ISD::STRICT_FP_ROUND:
7782 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
7783 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
7784 "STRICT_FP_ROUND result type should be vector iff the operand "
7785 "type is vector!");
7786 assert((!VTList.VTs[0].isVector() ||
7787 VTList.VTs[0].getVectorNumElements() ==
7788 Ops[1].getValueType().getVectorNumElements()) &&
7789 "Vector element count mismatch!");
7790 assert(VTList.VTs[0].isFloatingPoint() &&
7791 Ops[1].getValueType().isFloatingPoint() &&
7792 VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
7793 isa<ConstantSDNode>(Ops[2]) &&
7794 (cast<ConstantSDNode>(Ops[2])->getZExtValue() == 0 ||
7795 cast<ConstantSDNode>(Ops[2])->getZExtValue() == 1) &&
7796 "Invalid STRICT_FP_ROUND!");
7797 break;
7798 #if 0
7799 // FIXME: figure out how to safely handle things like
7800 // int foo(int x) { return 1 << (x & 255); }
7801 // int bar() { return foo(256); }
7802 case ISD::SRA_PARTS:
7803 case ISD::SRL_PARTS:
7804 case ISD::SHL_PARTS:
7805 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
7806 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
7807 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7808 else if (N3.getOpcode() == ISD::AND)
7809 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
7810 // If the and is only masking out bits that cannot effect the shift,
7811 // eliminate the and.
7812 unsigned NumBits = VT.getScalarSizeInBits()*2;
7813 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
7814 return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
7815 }
7816 break;
7817 #endif
7818 }
7819
7820 // Memoize the node unless it returns a flag.
7821 SDNode *N;
7822 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
7823 FoldingSetNodeID ID;
7824 AddNodeIDNode(ID, Opcode, VTList, Ops);
7825 void *IP = nullptr;
7826 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7827 return SDValue(E, 0);
7828
7829 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7830 createOperands(N, Ops);
7831 CSEMap.InsertNode(N, IP);
7832 } else {
7833 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
7834 createOperands(N, Ops);
7835 }
7836
7837 N->setFlags(Flags);
7838 InsertNode(N);
7839 SDValue V(N, 0);
7840 NewSDValueDbgMsg(V, "Creating new node: ", this);
7841 return V;
7842 }
7843
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList)7844 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
7845 SDVTList VTList) {
7846 return getNode(Opcode, DL, VTList, None);
7847 }
7848
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1)7849 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7850 SDValue N1) {
7851 SDValue Ops[] = { N1 };
7852 return getNode(Opcode, DL, VTList, Ops);
7853 }
7854
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2)7855 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7856 SDValue N1, SDValue N2) {
7857 SDValue Ops[] = { N1, N2 };
7858 return getNode(Opcode, DL, VTList, Ops);
7859 }
7860
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3)7861 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7862 SDValue N1, SDValue N2, SDValue N3) {
7863 SDValue Ops[] = { N1, N2, N3 };
7864 return getNode(Opcode, DL, VTList, Ops);
7865 }
7866
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4)7867 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7868 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
7869 SDValue Ops[] = { N1, N2, N3, N4 };
7870 return getNode(Opcode, DL, VTList, Ops);
7871 }
7872
getNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,SDValue N1,SDValue N2,SDValue N3,SDValue N4,SDValue N5)7873 SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
7874 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
7875 SDValue N5) {
7876 SDValue Ops[] = { N1, N2, N3, N4, N5 };
7877 return getNode(Opcode, DL, VTList, Ops);
7878 }
7879
getVTList(EVT VT)7880 SDVTList SelectionDAG::getVTList(EVT VT) {
7881 return makeVTList(SDNode::getValueTypeList(VT), 1);
7882 }
7883
getVTList(EVT VT1,EVT VT2)7884 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
7885 FoldingSetNodeID ID;
7886 ID.AddInteger(2U);
7887 ID.AddInteger(VT1.getRawBits());
7888 ID.AddInteger(VT2.getRawBits());
7889
7890 void *IP = nullptr;
7891 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7892 if (!Result) {
7893 EVT *Array = Allocator.Allocate<EVT>(2);
7894 Array[0] = VT1;
7895 Array[1] = VT2;
7896 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
7897 VTListMap.InsertNode(Result, IP);
7898 }
7899 return Result->getSDVTList();
7900 }
7901
getVTList(EVT VT1,EVT VT2,EVT VT3)7902 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
7903 FoldingSetNodeID ID;
7904 ID.AddInteger(3U);
7905 ID.AddInteger(VT1.getRawBits());
7906 ID.AddInteger(VT2.getRawBits());
7907 ID.AddInteger(VT3.getRawBits());
7908
7909 void *IP = nullptr;
7910 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7911 if (!Result) {
7912 EVT *Array = Allocator.Allocate<EVT>(3);
7913 Array[0] = VT1;
7914 Array[1] = VT2;
7915 Array[2] = VT3;
7916 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
7917 VTListMap.InsertNode(Result, IP);
7918 }
7919 return Result->getSDVTList();
7920 }
7921
getVTList(EVT VT1,EVT VT2,EVT VT3,EVT VT4)7922 SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
7923 FoldingSetNodeID ID;
7924 ID.AddInteger(4U);
7925 ID.AddInteger(VT1.getRawBits());
7926 ID.AddInteger(VT2.getRawBits());
7927 ID.AddInteger(VT3.getRawBits());
7928 ID.AddInteger(VT4.getRawBits());
7929
7930 void *IP = nullptr;
7931 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7932 if (!Result) {
7933 EVT *Array = Allocator.Allocate<EVT>(4);
7934 Array[0] = VT1;
7935 Array[1] = VT2;
7936 Array[2] = VT3;
7937 Array[3] = VT4;
7938 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
7939 VTListMap.InsertNode(Result, IP);
7940 }
7941 return Result->getSDVTList();
7942 }
7943
getVTList(ArrayRef<EVT> VTs)7944 SDVTList SelectionDAG::getVTList(ArrayRef<EVT> VTs) {
7945 unsigned NumVTs = VTs.size();
7946 FoldingSetNodeID ID;
7947 ID.AddInteger(NumVTs);
7948 for (unsigned index = 0; index < NumVTs; index++) {
7949 ID.AddInteger(VTs[index].getRawBits());
7950 }
7951
7952 void *IP = nullptr;
7953 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
7954 if (!Result) {
7955 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
7956 llvm::copy(VTs, Array);
7957 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
7958 VTListMap.InsertNode(Result, IP);
7959 }
7960 return Result->getSDVTList();
7961 }
7962
7963
7964 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7965 /// specified operands. If the resultant node already exists in the DAG,
7966 /// this does not modify the specified node, instead it returns the node that
7967 /// already exists. If the resultant node does not exist in the DAG, the
7968 /// input node is returned. As a degenerate case, if you specify the same
7969 /// input operands as the node already has, the input node is returned.
UpdateNodeOperands(SDNode * N,SDValue Op)7970 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
7971 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
7972
7973 // Check to see if there is no change.
7974 if (Op == N->getOperand(0)) return N;
7975
7976 // See if the modified node already exists.
7977 void *InsertPos = nullptr;
7978 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
7979 return Existing;
7980
7981 // Nope it doesn't. Remove the node from its current place in the maps.
7982 if (InsertPos)
7983 if (!RemoveNodeFromCSEMaps(N))
7984 InsertPos = nullptr;
7985
7986 // Now we update the operands.
7987 N->OperandList[0].set(Op);
7988
7989 updateDivergence(N);
7990 // If this gets put into a CSE map, add it.
7991 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
7992 return N;
7993 }
7994
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2)7995 SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
7996 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
7997
7998 // Check to see if there is no change.
7999 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
8000 return N; // No operands changed, just return the input node.
8001
8002 // See if the modified node already exists.
8003 void *InsertPos = nullptr;
8004 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
8005 return Existing;
8006
8007 // Nope it doesn't. Remove the node from its current place in the maps.
8008 if (InsertPos)
8009 if (!RemoveNodeFromCSEMaps(N))
8010 InsertPos = nullptr;
8011
8012 // Now we update the operands.
8013 if (N->OperandList[0] != Op1)
8014 N->OperandList[0].set(Op1);
8015 if (N->OperandList[1] != Op2)
8016 N->OperandList[1].set(Op2);
8017
8018 updateDivergence(N);
8019 // If this gets put into a CSE map, add it.
8020 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8021 return N;
8022 }
8023
8024 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3)8025 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
8026 SDValue Ops[] = { Op1, Op2, Op3 };
8027 return UpdateNodeOperands(N, Ops);
8028 }
8029
8030 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4)8031 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8032 SDValue Op3, SDValue Op4) {
8033 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
8034 return UpdateNodeOperands(N, Ops);
8035 }
8036
8037 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,SDValue Op1,SDValue Op2,SDValue Op3,SDValue Op4,SDValue Op5)8038 UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
8039 SDValue Op3, SDValue Op4, SDValue Op5) {
8040 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
8041 return UpdateNodeOperands(N, Ops);
8042 }
8043
8044 SDNode *SelectionDAG::
UpdateNodeOperands(SDNode * N,ArrayRef<SDValue> Ops)8045 UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops) {
8046 unsigned NumOps = Ops.size();
8047 assert(N->getNumOperands() == NumOps &&
8048 "Update with wrong number of operands");
8049
8050 // If no operands changed just return the input node.
8051 if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
8052 return N;
8053
8054 // See if the modified node already exists.
8055 void *InsertPos = nullptr;
8056 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
8057 return Existing;
8058
8059 // Nope it doesn't. Remove the node from its current place in the maps.
8060 if (InsertPos)
8061 if (!RemoveNodeFromCSEMaps(N))
8062 InsertPos = nullptr;
8063
8064 // Now we update the operands.
8065 for (unsigned i = 0; i != NumOps; ++i)
8066 if (N->OperandList[i] != Ops[i])
8067 N->OperandList[i].set(Ops[i]);
8068
8069 updateDivergence(N);
8070 // If this gets put into a CSE map, add it.
8071 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
8072 return N;
8073 }
8074
8075 /// DropOperands - Release the operands and set this node to have
8076 /// zero operands.
DropOperands()8077 void SDNode::DropOperands() {
8078 // Unlike the code in MorphNodeTo that does this, we don't need to
8079 // watch for dead nodes here.
8080 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
8081 SDUse &Use = *I++;
8082 Use.set(SDValue());
8083 }
8084 }
8085
setNodeMemRefs(MachineSDNode * N,ArrayRef<MachineMemOperand * > NewMemRefs)8086 void SelectionDAG::setNodeMemRefs(MachineSDNode *N,
8087 ArrayRef<MachineMemOperand *> NewMemRefs) {
8088 if (NewMemRefs.empty()) {
8089 N->clearMemRefs();
8090 return;
8091 }
8092
8093 // Check if we can avoid allocating by storing a single reference directly.
8094 if (NewMemRefs.size() == 1) {
8095 N->MemRefs = NewMemRefs[0];
8096 N->NumMemRefs = 1;
8097 return;
8098 }
8099
8100 MachineMemOperand **MemRefsBuffer =
8101 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
8102 llvm::copy(NewMemRefs, MemRefsBuffer);
8103 N->MemRefs = MemRefsBuffer;
8104 N->NumMemRefs = static_cast<int>(NewMemRefs.size());
8105 }
8106
8107 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
8108 /// machine opcode.
8109 ///
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT)8110 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8111 EVT VT) {
8112 SDVTList VTs = getVTList(VT);
8113 return SelectNodeTo(N, MachineOpc, VTs, None);
8114 }
8115
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1)8116 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8117 EVT VT, SDValue Op1) {
8118 SDVTList VTs = getVTList(VT);
8119 SDValue Ops[] = { Op1 };
8120 return SelectNodeTo(N, MachineOpc, VTs, Ops);
8121 }
8122
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2)8123 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8124 EVT VT, SDValue Op1,
8125 SDValue Op2) {
8126 SDVTList VTs = getVTList(VT);
8127 SDValue Ops[] = { Op1, Op2 };
8128 return SelectNodeTo(N, MachineOpc, VTs, Ops);
8129 }
8130
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)8131 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8132 EVT VT, SDValue Op1,
8133 SDValue Op2, SDValue Op3) {
8134 SDVTList VTs = getVTList(VT);
8135 SDValue Ops[] = { Op1, Op2, Op3 };
8136 return SelectNodeTo(N, MachineOpc, VTs, Ops);
8137 }
8138
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT,ArrayRef<SDValue> Ops)8139 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8140 EVT VT, ArrayRef<SDValue> Ops) {
8141 SDVTList VTs = getVTList(VT);
8142 return SelectNodeTo(N, MachineOpc, VTs, Ops);
8143 }
8144
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,ArrayRef<SDValue> Ops)8145 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8146 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
8147 SDVTList VTs = getVTList(VT1, VT2);
8148 return SelectNodeTo(N, MachineOpc, VTs, Ops);
8149 }
8150
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2)8151 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8152 EVT VT1, EVT VT2) {
8153 SDVTList VTs = getVTList(VT1, VT2);
8154 return SelectNodeTo(N, MachineOpc, VTs, None);
8155 }
8156
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,EVT VT3,ArrayRef<SDValue> Ops)8157 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8158 EVT VT1, EVT VT2, EVT VT3,
8159 ArrayRef<SDValue> Ops) {
8160 SDVTList VTs = getVTList(VT1, VT2, VT3);
8161 return SelectNodeTo(N, MachineOpc, VTs, Ops);
8162 }
8163
SelectNodeTo(SDNode * N,unsigned MachineOpc,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)8164 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8165 EVT VT1, EVT VT2,
8166 SDValue Op1, SDValue Op2) {
8167 SDVTList VTs = getVTList(VT1, VT2);
8168 SDValue Ops[] = { Op1, Op2 };
8169 return SelectNodeTo(N, MachineOpc, VTs, Ops);
8170 }
8171
SelectNodeTo(SDNode * N,unsigned MachineOpc,SDVTList VTs,ArrayRef<SDValue> Ops)8172 SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
8173 SDVTList VTs,ArrayRef<SDValue> Ops) {
8174 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
8175 // Reset the NodeID to -1.
8176 New->setNodeId(-1);
8177 if (New != N) {
8178 ReplaceAllUsesWith(N, New);
8179 RemoveDeadNode(N);
8180 }
8181 return New;
8182 }
8183
8184 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
8185 /// the line number information on the merged node since it is not possible to
8186 /// preserve the information that operation is associated with multiple lines.
8187 /// This will make the debugger working better at -O0, were there is a higher
8188 /// probability having other instructions associated with that line.
8189 ///
8190 /// For IROrder, we keep the smaller of the two
UpdateSDLocOnMergeSDNode(SDNode * N,const SDLoc & OLoc)8191 SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
8192 DebugLoc NLoc = N->getDebugLoc();
8193 if (NLoc && OptLevel == CodeGenOpt::None && OLoc.getDebugLoc() != NLoc) {
8194 N->setDebugLoc(DebugLoc());
8195 }
8196 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
8197 N->setIROrder(Order);
8198 return N;
8199 }
8200
8201 /// MorphNodeTo - This *mutates* the specified node to have the specified
8202 /// return type, opcode, and operands.
8203 ///
8204 /// Note that MorphNodeTo returns the resultant node. If there is already a
8205 /// node of the specified opcode and operands, it returns that node instead of
8206 /// the current one. Note that the SDLoc need not be the same.
8207 ///
8208 /// Using MorphNodeTo is faster than creating a new node and swapping it in
8209 /// with ReplaceAllUsesWith both because it often avoids allocating a new
8210 /// node, and because it doesn't require CSE recalculation for any of
8211 /// the node's users.
8212 ///
8213 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
8214 /// As a consequence it isn't appropriate to use from within the DAG combiner or
8215 /// the legalizer which maintain worklists that would need to be updated when
8216 /// deleting things.
MorphNodeTo(SDNode * N,unsigned Opc,SDVTList VTs,ArrayRef<SDValue> Ops)8217 SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
8218 SDVTList VTs, ArrayRef<SDValue> Ops) {
8219 // If an identical node already exists, use it.
8220 void *IP = nullptr;
8221 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
8222 FoldingSetNodeID ID;
8223 AddNodeIDNode(ID, Opc, VTs, Ops);
8224 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
8225 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
8226 }
8227
8228 if (!RemoveNodeFromCSEMaps(N))
8229 IP = nullptr;
8230
8231 // Start the morphing.
8232 N->NodeType = Opc;
8233 N->ValueList = VTs.VTs;
8234 N->NumValues = VTs.NumVTs;
8235
8236 // Clear the operands list, updating used nodes to remove this from their
8237 // use list. Keep track of any operands that become dead as a result.
8238 SmallPtrSet<SDNode*, 16> DeadNodeSet;
8239 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
8240 SDUse &Use = *I++;
8241 SDNode *Used = Use.getNode();
8242 Use.set(SDValue());
8243 if (Used->use_empty())
8244 DeadNodeSet.insert(Used);
8245 }
8246
8247 // For MachineNode, initialize the memory references information.
8248 if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N))
8249 MN->clearMemRefs();
8250
8251 // Swap for an appropriately sized array from the recycler.
8252 removeOperands(N);
8253 createOperands(N, Ops);
8254
8255 // Delete any nodes that are still dead after adding the uses for the
8256 // new operands.
8257 if (!DeadNodeSet.empty()) {
8258 SmallVector<SDNode *, 16> DeadNodes;
8259 for (SDNode *N : DeadNodeSet)
8260 if (N->use_empty())
8261 DeadNodes.push_back(N);
8262 RemoveDeadNodes(DeadNodes);
8263 }
8264
8265 if (IP)
8266 CSEMap.InsertNode(N, IP); // Memoize the new node.
8267 return N;
8268 }
8269
mutateStrictFPToFP(SDNode * Node)8270 SDNode* SelectionDAG::mutateStrictFPToFP(SDNode *Node) {
8271 unsigned OrigOpc = Node->getOpcode();
8272 unsigned NewOpc;
8273 switch (OrigOpc) {
8274 default:
8275 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
8276 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8277 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
8278 #define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
8279 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
8280 #include "llvm/IR/ConstrainedOps.def"
8281 }
8282
8283 assert(Node->getNumValues() == 2 && "Unexpected number of results!");
8284
8285 // We're taking this node out of the chain, so we need to re-link things.
8286 SDValue InputChain = Node->getOperand(0);
8287 SDValue OutputChain = SDValue(Node, 1);
8288 ReplaceAllUsesOfValueWith(OutputChain, InputChain);
8289
8290 SmallVector<SDValue, 3> Ops;
8291 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
8292 Ops.push_back(Node->getOperand(i));
8293
8294 SDVTList VTs = getVTList(Node->getValueType(0));
8295 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
8296
8297 // MorphNodeTo can operate in two ways: if an existing node with the
8298 // specified operands exists, it can just return it. Otherwise, it
8299 // updates the node in place to have the requested operands.
8300 if (Res == Node) {
8301 // If we updated the node in place, reset the node ID. To the isel,
8302 // this should be just like a newly allocated machine node.
8303 Res->setNodeId(-1);
8304 } else {
8305 ReplaceAllUsesWith(Node, Res);
8306 RemoveDeadNode(Node);
8307 }
8308
8309 return Res;
8310 }
8311
8312 /// getMachineNode - These are used for target selectors to create a new node
8313 /// with specified return type(s), MachineInstr opcode, and operands.
8314 ///
8315 /// Note that getMachineNode returns the resultant node. If there is already a
8316 /// node of the specified opcode and operands, it returns that node instead of
8317 /// the current one.
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT)8318 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8319 EVT VT) {
8320 SDVTList VTs = getVTList(VT);
8321 return getMachineNode(Opcode, dl, VTs, None);
8322 }
8323
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1)8324 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8325 EVT VT, SDValue Op1) {
8326 SDVTList VTs = getVTList(VT);
8327 SDValue Ops[] = { Op1 };
8328 return getMachineNode(Opcode, dl, VTs, Ops);
8329 }
8330
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1,SDValue Op2)8331 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8332 EVT VT, SDValue Op1, SDValue Op2) {
8333 SDVTList VTs = getVTList(VT);
8334 SDValue Ops[] = { Op1, Op2 };
8335 return getMachineNode(Opcode, dl, VTs, Ops);
8336 }
8337
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,SDValue Op1,SDValue Op2,SDValue Op3)8338 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8339 EVT VT, SDValue Op1, SDValue Op2,
8340 SDValue Op3) {
8341 SDVTList VTs = getVTList(VT);
8342 SDValue Ops[] = { Op1, Op2, Op3 };
8343 return getMachineNode(Opcode, dl, VTs, Ops);
8344 }
8345
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT,ArrayRef<SDValue> Ops)8346 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8347 EVT VT, ArrayRef<SDValue> Ops) {
8348 SDVTList VTs = getVTList(VT);
8349 return getMachineNode(Opcode, dl, VTs, Ops);
8350 }
8351
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2)8352 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8353 EVT VT1, EVT VT2, SDValue Op1,
8354 SDValue Op2) {
8355 SDVTList VTs = getVTList(VT1, VT2);
8356 SDValue Ops[] = { Op1, Op2 };
8357 return getMachineNode(Opcode, dl, VTs, Ops);
8358 }
8359
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,SDValue Op1,SDValue Op2,SDValue Op3)8360 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8361 EVT VT1, EVT VT2, SDValue Op1,
8362 SDValue Op2, SDValue Op3) {
8363 SDVTList VTs = getVTList(VT1, VT2);
8364 SDValue Ops[] = { Op1, Op2, Op3 };
8365 return getMachineNode(Opcode, dl, VTs, Ops);
8366 }
8367
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,ArrayRef<SDValue> Ops)8368 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8369 EVT VT1, EVT VT2,
8370 ArrayRef<SDValue> Ops) {
8371 SDVTList VTs = getVTList(VT1, VT2);
8372 return getMachineNode(Opcode, dl, VTs, Ops);
8373 }
8374
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2)8375 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8376 EVT VT1, EVT VT2, EVT VT3,
8377 SDValue Op1, SDValue Op2) {
8378 SDVTList VTs = getVTList(VT1, VT2, VT3);
8379 SDValue Ops[] = { Op1, Op2 };
8380 return getMachineNode(Opcode, dl, VTs, Ops);
8381 }
8382
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,SDValue Op1,SDValue Op2,SDValue Op3)8383 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8384 EVT VT1, EVT VT2, EVT VT3,
8385 SDValue Op1, SDValue Op2,
8386 SDValue Op3) {
8387 SDVTList VTs = getVTList(VT1, VT2, VT3);
8388 SDValue Ops[] = { Op1, Op2, Op3 };
8389 return getMachineNode(Opcode, dl, VTs, Ops);
8390 }
8391
getMachineNode(unsigned Opcode,const SDLoc & dl,EVT VT1,EVT VT2,EVT VT3,ArrayRef<SDValue> Ops)8392 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8393 EVT VT1, EVT VT2, EVT VT3,
8394 ArrayRef<SDValue> Ops) {
8395 SDVTList VTs = getVTList(VT1, VT2, VT3);
8396 return getMachineNode(Opcode, dl, VTs, Ops);
8397 }
8398
getMachineNode(unsigned Opcode,const SDLoc & dl,ArrayRef<EVT> ResultTys,ArrayRef<SDValue> Ops)8399 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &dl,
8400 ArrayRef<EVT> ResultTys,
8401 ArrayRef<SDValue> Ops) {
8402 SDVTList VTs = getVTList(ResultTys);
8403 return getMachineNode(Opcode, dl, VTs, Ops);
8404 }
8405
getMachineNode(unsigned Opcode,const SDLoc & DL,SDVTList VTs,ArrayRef<SDValue> Ops)8406 MachineSDNode *SelectionDAG::getMachineNode(unsigned Opcode, const SDLoc &DL,
8407 SDVTList VTs,
8408 ArrayRef<SDValue> Ops) {
8409 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
8410 MachineSDNode *N;
8411 void *IP = nullptr;
8412
8413 if (DoCSE) {
8414 FoldingSetNodeID ID;
8415 AddNodeIDNode(ID, ~Opcode, VTs, Ops);
8416 IP = nullptr;
8417 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8418 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
8419 }
8420 }
8421
8422 // Allocate a new MachineSDNode.
8423 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8424 createOperands(N, Ops);
8425
8426 if (DoCSE)
8427 CSEMap.InsertNode(N, IP);
8428
8429 InsertNode(N);
8430 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
8431 return N;
8432 }
8433
8434 /// getTargetExtractSubreg - A convenience function for creating
8435 /// TargetOpcode::EXTRACT_SUBREG nodes.
getTargetExtractSubreg(int SRIdx,const SDLoc & DL,EVT VT,SDValue Operand)8436 SDValue SelectionDAG::getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8437 SDValue Operand) {
8438 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8439 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
8440 VT, Operand, SRIdxVal);
8441 return SDValue(Subreg, 0);
8442 }
8443
8444 /// getTargetInsertSubreg - A convenience function for creating
8445 /// TargetOpcode::INSERT_SUBREG nodes.
getTargetInsertSubreg(int SRIdx,const SDLoc & DL,EVT VT,SDValue Operand,SDValue Subreg)8446 SDValue SelectionDAG::getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
8447 SDValue Operand, SDValue Subreg) {
8448 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
8449 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
8450 VT, Operand, Subreg, SRIdxVal);
8451 return SDValue(Result, 0);
8452 }
8453
8454 /// getNodeIfExists - Get the specified node if it's already available, or
8455 /// else return NULL.
getNodeIfExists(unsigned Opcode,SDVTList VTList,ArrayRef<SDValue> Ops,const SDNodeFlags Flags)8456 SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
8457 ArrayRef<SDValue> Ops,
8458 const SDNodeFlags Flags) {
8459 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
8460 FoldingSetNodeID ID;
8461 AddNodeIDNode(ID, Opcode, VTList, Ops);
8462 void *IP = nullptr;
8463 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
8464 E->intersectFlagsWith(Flags);
8465 return E;
8466 }
8467 }
8468 return nullptr;
8469 }
8470
8471 /// getDbgValue - Creates a SDDbgValue node.
8472 ///
8473 /// SDNode
getDbgValue(DIVariable * Var,DIExpression * Expr,SDNode * N,unsigned R,bool IsIndirect,const DebugLoc & DL,unsigned O)8474 SDDbgValue *SelectionDAG::getDbgValue(DIVariable *Var, DIExpression *Expr,
8475 SDNode *N, unsigned R, bool IsIndirect,
8476 const DebugLoc &DL, unsigned O) {
8477 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8478 "Expected inlined-at fields to agree");
8479 return new (DbgInfo->getAlloc())
8480 SDDbgValue(Var, Expr, N, R, IsIndirect, DL, O);
8481 }
8482
8483 /// Constant
getConstantDbgValue(DIVariable * Var,DIExpression * Expr,const Value * C,const DebugLoc & DL,unsigned O)8484 SDDbgValue *SelectionDAG::getConstantDbgValue(DIVariable *Var,
8485 DIExpression *Expr,
8486 const Value *C,
8487 const DebugLoc &DL, unsigned O) {
8488 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8489 "Expected inlined-at fields to agree");
8490 return new (DbgInfo->getAlloc()) SDDbgValue(Var, Expr, C, DL, O);
8491 }
8492
8493 /// FrameIndex
getFrameIndexDbgValue(DIVariable * Var,DIExpression * Expr,unsigned FI,bool IsIndirect,const DebugLoc & DL,unsigned O)8494 SDDbgValue *SelectionDAG::getFrameIndexDbgValue(DIVariable *Var,
8495 DIExpression *Expr, unsigned FI,
8496 bool IsIndirect,
8497 const DebugLoc &DL,
8498 unsigned O) {
8499 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8500 "Expected inlined-at fields to agree");
8501 return new (DbgInfo->getAlloc())
8502 SDDbgValue(Var, Expr, FI, IsIndirect, DL, O, SDDbgValue::FRAMEIX);
8503 }
8504
8505 /// VReg
getVRegDbgValue(DIVariable * Var,DIExpression * Expr,unsigned VReg,bool IsIndirect,const DebugLoc & DL,unsigned O)8506 SDDbgValue *SelectionDAG::getVRegDbgValue(DIVariable *Var,
8507 DIExpression *Expr,
8508 unsigned VReg, bool IsIndirect,
8509 const DebugLoc &DL, unsigned O) {
8510 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
8511 "Expected inlined-at fields to agree");
8512 return new (DbgInfo->getAlloc())
8513 SDDbgValue(Var, Expr, VReg, IsIndirect, DL, O, SDDbgValue::VREG);
8514 }
8515
transferDbgValues(SDValue From,SDValue To,unsigned OffsetInBits,unsigned SizeInBits,bool InvalidateDbg)8516 void SelectionDAG::transferDbgValues(SDValue From, SDValue To,
8517 unsigned OffsetInBits, unsigned SizeInBits,
8518 bool InvalidateDbg) {
8519 SDNode *FromNode = From.getNode();
8520 SDNode *ToNode = To.getNode();
8521 assert(FromNode && ToNode && "Can't modify dbg values");
8522
8523 // PR35338
8524 // TODO: assert(From != To && "Redundant dbg value transfer");
8525 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
8526 if (From == To || FromNode == ToNode)
8527 return;
8528
8529 if (!FromNode->getHasDebugValue())
8530 return;
8531
8532 SmallVector<SDDbgValue *, 2> ClonedDVs;
8533 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
8534 if (Dbg->getKind() != SDDbgValue::SDNODE || Dbg->isInvalidated())
8535 continue;
8536
8537 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
8538
8539 // Just transfer the dbg value attached to From.
8540 if (Dbg->getResNo() != From.getResNo())
8541 continue;
8542
8543 DIVariable *Var = Dbg->getVariable();
8544 auto *Expr = Dbg->getExpression();
8545 // If a fragment is requested, update the expression.
8546 if (SizeInBits) {
8547 // When splitting a larger (e.g., sign-extended) value whose
8548 // lower bits are described with an SDDbgValue, do not attempt
8549 // to transfer the SDDbgValue to the upper bits.
8550 if (auto FI = Expr->getFragmentInfo())
8551 if (OffsetInBits + SizeInBits > FI->SizeInBits)
8552 continue;
8553 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
8554 SizeInBits);
8555 if (!Fragment)
8556 continue;
8557 Expr = *Fragment;
8558 }
8559 // Clone the SDDbgValue and move it to To.
8560 SDDbgValue *Clone = getDbgValue(
8561 Var, Expr, ToNode, To.getResNo(), Dbg->isIndirect(), Dbg->getDebugLoc(),
8562 std::max(ToNode->getIROrder(), Dbg->getOrder()));
8563 ClonedDVs.push_back(Clone);
8564
8565 if (InvalidateDbg) {
8566 // Invalidate value and indicate the SDDbgValue should not be emitted.
8567 Dbg->setIsInvalidated();
8568 Dbg->setIsEmitted();
8569 }
8570 }
8571
8572 for (SDDbgValue *Dbg : ClonedDVs)
8573 AddDbgValue(Dbg, ToNode, false);
8574 }
8575
salvageDebugInfo(SDNode & N)8576 void SelectionDAG::salvageDebugInfo(SDNode &N) {
8577 if (!N.getHasDebugValue())
8578 return;
8579
8580 SmallVector<SDDbgValue *, 2> ClonedDVs;
8581 for (auto DV : GetDbgValues(&N)) {
8582 if (DV->isInvalidated())
8583 continue;
8584 switch (N.getOpcode()) {
8585 default:
8586 break;
8587 case ISD::ADD:
8588 SDValue N0 = N.getOperand(0);
8589 SDValue N1 = N.getOperand(1);
8590 if (!isConstantIntBuildVectorOrConstantInt(N0) &&
8591 isConstantIntBuildVectorOrConstantInt(N1)) {
8592 uint64_t Offset = N.getConstantOperandVal(1);
8593 // Rewrite an ADD constant node into a DIExpression. Since we are
8594 // performing arithmetic to compute the variable's *value* in the
8595 // DIExpression, we need to mark the expression with a
8596 // DW_OP_stack_value.
8597 auto *DIExpr = DV->getExpression();
8598 DIExpr =
8599 DIExpression::prepend(DIExpr, DIExpression::StackValue, Offset);
8600 SDDbgValue *Clone =
8601 getDbgValue(DV->getVariable(), DIExpr, N0.getNode(), N0.getResNo(),
8602 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder());
8603 ClonedDVs.push_back(Clone);
8604 DV->setIsInvalidated();
8605 DV->setIsEmitted();
8606 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
8607 N0.getNode()->dumprFull(this);
8608 dbgs() << " into " << *DIExpr << '\n');
8609 }
8610 }
8611 }
8612
8613 for (SDDbgValue *Dbg : ClonedDVs)
8614 AddDbgValue(Dbg, Dbg->getSDNode(), false);
8615 }
8616
8617 /// Creates a SDDbgLabel node.
getDbgLabel(DILabel * Label,const DebugLoc & DL,unsigned O)8618 SDDbgLabel *SelectionDAG::getDbgLabel(DILabel *Label,
8619 const DebugLoc &DL, unsigned O) {
8620 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
8621 "Expected inlined-at fields to agree");
8622 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
8623 }
8624
8625 namespace {
8626
8627 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
8628 /// pointed to by a use iterator is deleted, increment the use iterator
8629 /// so that it doesn't dangle.
8630 ///
8631 class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
8632 SDNode::use_iterator &UI;
8633 SDNode::use_iterator &UE;
8634
NodeDeleted(SDNode * N,SDNode * E)8635 void NodeDeleted(SDNode *N, SDNode *E) override {
8636 // Increment the iterator as needed.
8637 while (UI != UE && N == *UI)
8638 ++UI;
8639 }
8640
8641 public:
RAUWUpdateListener(SelectionDAG & d,SDNode::use_iterator & ui,SDNode::use_iterator & ue)8642 RAUWUpdateListener(SelectionDAG &d,
8643 SDNode::use_iterator &ui,
8644 SDNode::use_iterator &ue)
8645 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
8646 };
8647
8648 } // end anonymous namespace
8649
8650 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8651 /// This can cause recursive merging of nodes in the DAG.
8652 ///
8653 /// This version assumes From has a single result value.
8654 ///
ReplaceAllUsesWith(SDValue FromN,SDValue To)8655 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
8656 SDNode *From = FromN.getNode();
8657 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
8658 "Cannot replace with this method!");
8659 assert(From != To.getNode() && "Cannot replace uses of with self");
8660
8661 // Preserve Debug Values
8662 transferDbgValues(FromN, To);
8663
8664 // Iterate over all the existing uses of From. New uses will be added
8665 // to the beginning of the use list, which we avoid visiting.
8666 // This specifically avoids visiting uses of From that arise while the
8667 // replacement is happening, because any such uses would be the result
8668 // of CSE: If an existing node looks like From after one of its operands
8669 // is replaced by To, we don't want to replace of all its users with To
8670 // too. See PR3018 for more info.
8671 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8672 RAUWUpdateListener Listener(*this, UI, UE);
8673 while (UI != UE) {
8674 SDNode *User = *UI;
8675
8676 // This node is about to morph, remove its old self from the CSE maps.
8677 RemoveNodeFromCSEMaps(User);
8678
8679 // A user can appear in a use list multiple times, and when this
8680 // happens the uses are usually next to each other in the list.
8681 // To help reduce the number of CSE recomputations, process all
8682 // the uses of this user that we can find this way.
8683 do {
8684 SDUse &Use = UI.getUse();
8685 ++UI;
8686 Use.set(To);
8687 if (To->isDivergent() != From->isDivergent())
8688 updateDivergence(User);
8689 } while (UI != UE && *UI == User);
8690 // Now that we have modified User, add it back to the CSE maps. If it
8691 // already exists there, recursively merge the results together.
8692 AddModifiedNodeToCSEMaps(User);
8693 }
8694
8695 // If we just RAUW'd the root, take note.
8696 if (FromN == getRoot())
8697 setRoot(To);
8698 }
8699
8700 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8701 /// This can cause recursive merging of nodes in the DAG.
8702 ///
8703 /// This version assumes that for each value of From, there is a
8704 /// corresponding value in To in the same position with the same type.
8705 ///
ReplaceAllUsesWith(SDNode * From,SDNode * To)8706 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
8707 #ifndef NDEBUG
8708 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8709 assert((!From->hasAnyUseOfValue(i) ||
8710 From->getValueType(i) == To->getValueType(i)) &&
8711 "Cannot use this version of ReplaceAllUsesWith!");
8712 #endif
8713
8714 // Handle the trivial case.
8715 if (From == To)
8716 return;
8717
8718 // Preserve Debug Info. Only do this if there's a use.
8719 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8720 if (From->hasAnyUseOfValue(i)) {
8721 assert((i < To->getNumValues()) && "Invalid To location");
8722 transferDbgValues(SDValue(From, i), SDValue(To, i));
8723 }
8724
8725 // Iterate over just the existing users of From. See the comments in
8726 // the ReplaceAllUsesWith above.
8727 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8728 RAUWUpdateListener Listener(*this, UI, UE);
8729 while (UI != UE) {
8730 SDNode *User = *UI;
8731
8732 // This node is about to morph, remove its old self from the CSE maps.
8733 RemoveNodeFromCSEMaps(User);
8734
8735 // A user can appear in a use list multiple times, and when this
8736 // happens the uses are usually next to each other in the list.
8737 // To help reduce the number of CSE recomputations, process all
8738 // the uses of this user that we can find this way.
8739 do {
8740 SDUse &Use = UI.getUse();
8741 ++UI;
8742 Use.setNode(To);
8743 if (To->isDivergent() != From->isDivergent())
8744 updateDivergence(User);
8745 } while (UI != UE && *UI == User);
8746
8747 // Now that we have modified User, add it back to the CSE maps. If it
8748 // already exists there, recursively merge the results together.
8749 AddModifiedNodeToCSEMaps(User);
8750 }
8751
8752 // If we just RAUW'd the root, take note.
8753 if (From == getRoot().getNode())
8754 setRoot(SDValue(To, getRoot().getResNo()));
8755 }
8756
8757 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8758 /// This can cause recursive merging of nodes in the DAG.
8759 ///
8760 /// This version can replace From with any result values. To must match the
8761 /// number and types of values returned by From.
ReplaceAllUsesWith(SDNode * From,const SDValue * To)8762 void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
8763 if (From->getNumValues() == 1) // Handle the simple case efficiently.
8764 return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
8765
8766 // Preserve Debug Info.
8767 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
8768 transferDbgValues(SDValue(From, i), To[i]);
8769
8770 // Iterate over just the existing users of From. See the comments in
8771 // the ReplaceAllUsesWith above.
8772 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
8773 RAUWUpdateListener Listener(*this, UI, UE);
8774 while (UI != UE) {
8775 SDNode *User = *UI;
8776
8777 // This node is about to morph, remove its old self from the CSE maps.
8778 RemoveNodeFromCSEMaps(User);
8779
8780 // A user can appear in a use list multiple times, and when this happens the
8781 // uses are usually next to each other in the list. To help reduce the
8782 // number of CSE and divergence recomputations, process all the uses of this
8783 // user that we can find this way.
8784 bool To_IsDivergent = false;
8785 do {
8786 SDUse &Use = UI.getUse();
8787 const SDValue &ToOp = To[Use.getResNo()];
8788 ++UI;
8789 Use.set(ToOp);
8790 To_IsDivergent |= ToOp->isDivergent();
8791 } while (UI != UE && *UI == User);
8792
8793 if (To_IsDivergent != From->isDivergent())
8794 updateDivergence(User);
8795
8796 // Now that we have modified User, add it back to the CSE maps. If it
8797 // already exists there, recursively merge the results together.
8798 AddModifiedNodeToCSEMaps(User);
8799 }
8800
8801 // If we just RAUW'd the root, take note.
8802 if (From == getRoot().getNode())
8803 setRoot(SDValue(To[getRoot().getResNo()]));
8804 }
8805
8806 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8807 /// uses of other values produced by From.getNode() alone. The Deleted
8808 /// vector is handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValueWith(SDValue From,SDValue To)8809 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
8810 // Handle the really simple, really trivial case efficiently.
8811 if (From == To) return;
8812
8813 // Handle the simple, trivial, case efficiently.
8814 if (From.getNode()->getNumValues() == 1) {
8815 ReplaceAllUsesWith(From, To);
8816 return;
8817 }
8818
8819 // Preserve Debug Info.
8820 transferDbgValues(From, To);
8821
8822 // Iterate over just the existing users of From. See the comments in
8823 // the ReplaceAllUsesWith above.
8824 SDNode::use_iterator UI = From.getNode()->use_begin(),
8825 UE = From.getNode()->use_end();
8826 RAUWUpdateListener Listener(*this, UI, UE);
8827 while (UI != UE) {
8828 SDNode *User = *UI;
8829 bool UserRemovedFromCSEMaps = false;
8830
8831 // A user can appear in a use list multiple times, and when this
8832 // happens the uses are usually next to each other in the list.
8833 // To help reduce the number of CSE recomputations, process all
8834 // the uses of this user that we can find this way.
8835 do {
8836 SDUse &Use = UI.getUse();
8837
8838 // Skip uses of different values from the same node.
8839 if (Use.getResNo() != From.getResNo()) {
8840 ++UI;
8841 continue;
8842 }
8843
8844 // If this node hasn't been modified yet, it's still in the CSE maps,
8845 // so remove its old self from the CSE maps.
8846 if (!UserRemovedFromCSEMaps) {
8847 RemoveNodeFromCSEMaps(User);
8848 UserRemovedFromCSEMaps = true;
8849 }
8850
8851 ++UI;
8852 Use.set(To);
8853 if (To->isDivergent() != From->isDivergent())
8854 updateDivergence(User);
8855 } while (UI != UE && *UI == User);
8856 // We are iterating over all uses of the From node, so if a use
8857 // doesn't use the specific value, no changes are made.
8858 if (!UserRemovedFromCSEMaps)
8859 continue;
8860
8861 // Now that we have modified User, add it back to the CSE maps. If it
8862 // already exists there, recursively merge the results together.
8863 AddModifiedNodeToCSEMaps(User);
8864 }
8865
8866 // If we just RAUW'd the root, take note.
8867 if (From == getRoot())
8868 setRoot(To);
8869 }
8870
8871 namespace {
8872
8873 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8874 /// to record information about a use.
8875 struct UseMemo {
8876 SDNode *User;
8877 unsigned Index;
8878 SDUse *Use;
8879 };
8880
8881 /// operator< - Sort Memos by User.
operator <(const UseMemo & L,const UseMemo & R)8882 bool operator<(const UseMemo &L, const UseMemo &R) {
8883 return (intptr_t)L.User < (intptr_t)R.User;
8884 }
8885
8886 } // end anonymous namespace
8887
updateDivergence(SDNode * N)8888 void SelectionDAG::updateDivergence(SDNode * N)
8889 {
8890 if (TLI->isSDNodeAlwaysUniform(N))
8891 return;
8892 bool IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, DA);
8893 for (auto &Op : N->ops()) {
8894 if (Op.Val.getValueType() != MVT::Other)
8895 IsDivergent |= Op.getNode()->isDivergent();
8896 }
8897 if (N->SDNodeBits.IsDivergent != IsDivergent) {
8898 N->SDNodeBits.IsDivergent = IsDivergent;
8899 for (auto U : N->uses()) {
8900 updateDivergence(U);
8901 }
8902 }
8903 }
8904
CreateTopologicalOrder(std::vector<SDNode * > & Order)8905 void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
8906 DenseMap<SDNode *, unsigned> Degree;
8907 Order.reserve(AllNodes.size());
8908 for (auto &N : allnodes()) {
8909 unsigned NOps = N.getNumOperands();
8910 Degree[&N] = NOps;
8911 if (0 == NOps)
8912 Order.push_back(&N);
8913 }
8914 for (size_t I = 0; I != Order.size(); ++I) {
8915 SDNode *N = Order[I];
8916 for (auto U : N->uses()) {
8917 unsigned &UnsortedOps = Degree[U];
8918 if (0 == --UnsortedOps)
8919 Order.push_back(U);
8920 }
8921 }
8922 }
8923
8924 #ifndef NDEBUG
VerifyDAGDiverence()8925 void SelectionDAG::VerifyDAGDiverence() {
8926 std::vector<SDNode *> TopoOrder;
8927 CreateTopologicalOrder(TopoOrder);
8928 const TargetLowering &TLI = getTargetLoweringInfo();
8929 DenseMap<const SDNode *, bool> DivergenceMap;
8930 for (auto &N : allnodes()) {
8931 DivergenceMap[&N] = false;
8932 }
8933 for (auto N : TopoOrder) {
8934 bool IsDivergent = DivergenceMap[N];
8935 bool IsSDNodeDivergent = TLI.isSDNodeSourceOfDivergence(N, FLI, DA);
8936 for (auto &Op : N->ops()) {
8937 if (Op.Val.getValueType() != MVT::Other)
8938 IsSDNodeDivergent |= DivergenceMap[Op.getNode()];
8939 }
8940 if (!IsDivergent && IsSDNodeDivergent && !TLI.isSDNodeAlwaysUniform(N)) {
8941 DivergenceMap[N] = true;
8942 }
8943 }
8944 for (auto &N : allnodes()) {
8945 (void)N;
8946 assert(DivergenceMap[&N] == N.isDivergent() &&
8947 "Divergence bit inconsistency detected\n");
8948 }
8949 }
8950 #endif
8951
8952 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8953 /// uses of other values produced by From.getNode() alone. The same value
8954 /// may appear in both the From and To list. The Deleted vector is
8955 /// handled the same way as for ReplaceAllUsesWith.
ReplaceAllUsesOfValuesWith(const SDValue * From,const SDValue * To,unsigned Num)8956 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
8957 const SDValue *To,
8958 unsigned Num){
8959 // Handle the simple, trivial case efficiently.
8960 if (Num == 1)
8961 return ReplaceAllUsesOfValueWith(*From, *To);
8962
8963 transferDbgValues(*From, *To);
8964
8965 // Read up all the uses and make records of them. This helps
8966 // processing new uses that are introduced during the
8967 // replacement process.
8968 SmallVector<UseMemo, 4> Uses;
8969 for (unsigned i = 0; i != Num; ++i) {
8970 unsigned FromResNo = From[i].getResNo();
8971 SDNode *FromNode = From[i].getNode();
8972 for (SDNode::use_iterator UI = FromNode->use_begin(),
8973 E = FromNode->use_end(); UI != E; ++UI) {
8974 SDUse &Use = UI.getUse();
8975 if (Use.getResNo() == FromResNo) {
8976 UseMemo Memo = { *UI, i, &Use };
8977 Uses.push_back(Memo);
8978 }
8979 }
8980 }
8981
8982 // Sort the uses, so that all the uses from a given User are together.
8983 llvm::sort(Uses);
8984
8985 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
8986 UseIndex != UseIndexEnd; ) {
8987 // We know that this user uses some value of From. If it is the right
8988 // value, update it.
8989 SDNode *User = Uses[UseIndex].User;
8990
8991 // This node is about to morph, remove its old self from the CSE maps.
8992 RemoveNodeFromCSEMaps(User);
8993
8994 // The Uses array is sorted, so all the uses for a given User
8995 // are next to each other in the list.
8996 // To help reduce the number of CSE recomputations, process all
8997 // the uses of this user that we can find this way.
8998 do {
8999 unsigned i = Uses[UseIndex].Index;
9000 SDUse &Use = *Uses[UseIndex].Use;
9001 ++UseIndex;
9002
9003 Use.set(To[i]);
9004 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
9005
9006 // Now that we have modified User, add it back to the CSE maps. If it
9007 // already exists there, recursively merge the results together.
9008 AddModifiedNodeToCSEMaps(User);
9009 }
9010 }
9011
9012 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
9013 /// based on their topological order. It returns the maximum id and a vector
9014 /// of the SDNodes* in assigned order by reference.
AssignTopologicalOrder()9015 unsigned SelectionDAG::AssignTopologicalOrder() {
9016 unsigned DAGSize = 0;
9017
9018 // SortedPos tracks the progress of the algorithm. Nodes before it are
9019 // sorted, nodes after it are unsorted. When the algorithm completes
9020 // it is at the end of the list.
9021 allnodes_iterator SortedPos = allnodes_begin();
9022
9023 // Visit all the nodes. Move nodes with no operands to the front of
9024 // the list immediately. Annotate nodes that do have operands with their
9025 // operand count. Before we do this, the Node Id fields of the nodes
9026 // may contain arbitrary values. After, the Node Id fields for nodes
9027 // before SortedPos will contain the topological sort index, and the
9028 // Node Id fields for nodes At SortedPos and after will contain the
9029 // count of outstanding operands.
9030 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
9031 SDNode *N = &*I++;
9032 checkForCycles(N, this);
9033 unsigned Degree = N->getNumOperands();
9034 if (Degree == 0) {
9035 // A node with no uses, add it to the result array immediately.
9036 N->setNodeId(DAGSize++);
9037 allnodes_iterator Q(N);
9038 if (Q != SortedPos)
9039 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
9040 assert(SortedPos != AllNodes.end() && "Overran node list");
9041 ++SortedPos;
9042 } else {
9043 // Temporarily use the Node Id as scratch space for the degree count.
9044 N->setNodeId(Degree);
9045 }
9046 }
9047
9048 // Visit all the nodes. As we iterate, move nodes into sorted order,
9049 // such that by the time the end is reached all nodes will be sorted.
9050 for (SDNode &Node : allnodes()) {
9051 SDNode *N = &Node;
9052 checkForCycles(N, this);
9053 // N is in sorted position, so all its uses have one less operand
9054 // that needs to be sorted.
9055 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
9056 UI != UE; ++UI) {
9057 SDNode *P = *UI;
9058 unsigned Degree = P->getNodeId();
9059 assert(Degree != 0 && "Invalid node degree");
9060 --Degree;
9061 if (Degree == 0) {
9062 // All of P's operands are sorted, so P may sorted now.
9063 P->setNodeId(DAGSize++);
9064 if (P->getIterator() != SortedPos)
9065 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
9066 assert(SortedPos != AllNodes.end() && "Overran node list");
9067 ++SortedPos;
9068 } else {
9069 // Update P's outstanding operand count.
9070 P->setNodeId(Degree);
9071 }
9072 }
9073 if (Node.getIterator() == SortedPos) {
9074 #ifndef NDEBUG
9075 allnodes_iterator I(N);
9076 SDNode *S = &*++I;
9077 dbgs() << "Overran sorted position:\n";
9078 S->dumprFull(this); dbgs() << "\n";
9079 dbgs() << "Checking if this is due to cycles\n";
9080 checkForCycles(this, true);
9081 #endif
9082 llvm_unreachable(nullptr);
9083 }
9084 }
9085
9086 assert(SortedPos == AllNodes.end() &&
9087 "Topological sort incomplete!");
9088 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
9089 "First node in topological sort is not the entry token!");
9090 assert(AllNodes.front().getNodeId() == 0 &&
9091 "First node in topological sort has non-zero id!");
9092 assert(AllNodes.front().getNumOperands() == 0 &&
9093 "First node in topological sort has operands!");
9094 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
9095 "Last node in topologic sort has unexpected id!");
9096 assert(AllNodes.back().use_empty() &&
9097 "Last node in topologic sort has users!");
9098 assert(DAGSize == allnodes_size() && "Node count mismatch!");
9099 return DAGSize;
9100 }
9101
9102 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
9103 /// value is produced by SD.
AddDbgValue(SDDbgValue * DB,SDNode * SD,bool isParameter)9104 void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
9105 if (SD) {
9106 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
9107 SD->setHasDebugValue(true);
9108 }
9109 DbgInfo->add(DB, SD, isParameter);
9110 }
9111
AddDbgLabel(SDDbgLabel * DB)9112 void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) {
9113 DbgInfo->add(DB);
9114 }
9115
makeEquivalentMemoryOrdering(LoadSDNode * OldLoad,SDValue NewMemOp)9116 SDValue SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode *OldLoad,
9117 SDValue NewMemOp) {
9118 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
9119 // The new memory operation must have the same position as the old load in
9120 // terms of memory dependency. Create a TokenFactor for the old load and new
9121 // memory operation and update uses of the old load's output chain to use that
9122 // TokenFactor.
9123 SDValue OldChain = SDValue(OldLoad, 1);
9124 SDValue NewChain = SDValue(NewMemOp.getNode(), 1);
9125 if (OldChain == NewChain || !OldLoad->hasAnyUseOfValue(1))
9126 return NewChain;
9127
9128 SDValue TokenFactor =
9129 getNode(ISD::TokenFactor, SDLoc(OldLoad), MVT::Other, OldChain, NewChain);
9130 ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
9131 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewChain);
9132 return TokenFactor;
9133 }
9134
getSymbolFunctionGlobalAddress(SDValue Op,Function ** OutFunction)9135 SDValue SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op,
9136 Function **OutFunction) {
9137 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
9138
9139 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
9140 auto *Module = MF->getFunction().getParent();
9141 auto *Function = Module->getFunction(Symbol);
9142
9143 if (OutFunction != nullptr)
9144 *OutFunction = Function;
9145
9146 if (Function != nullptr) {
9147 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
9148 return getGlobalAddress(Function, SDLoc(Op), PtrTy);
9149 }
9150
9151 std::string ErrorStr;
9152 raw_string_ostream ErrorFormatter(ErrorStr);
9153
9154 ErrorFormatter << "Undefined external symbol ";
9155 ErrorFormatter << '"' << Symbol << '"';
9156 ErrorFormatter.flush();
9157
9158 report_fatal_error(ErrorStr);
9159 }
9160
9161 //===----------------------------------------------------------------------===//
9162 // SDNode Class
9163 //===----------------------------------------------------------------------===//
9164
isNullConstant(SDValue V)9165 bool llvm::isNullConstant(SDValue V) {
9166 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9167 return Const != nullptr && Const->isNullValue();
9168 }
9169
isNullFPConstant(SDValue V)9170 bool llvm::isNullFPConstant(SDValue V) {
9171 ConstantFPSDNode *Const = dyn_cast<ConstantFPSDNode>(V);
9172 return Const != nullptr && Const->isZero() && !Const->isNegative();
9173 }
9174
isAllOnesConstant(SDValue V)9175 bool llvm::isAllOnesConstant(SDValue V) {
9176 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9177 return Const != nullptr && Const->isAllOnesValue();
9178 }
9179
isOneConstant(SDValue V)9180 bool llvm::isOneConstant(SDValue V) {
9181 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
9182 return Const != nullptr && Const->isOne();
9183 }
9184
peekThroughBitcasts(SDValue V)9185 SDValue llvm::peekThroughBitcasts(SDValue V) {
9186 while (V.getOpcode() == ISD::BITCAST)
9187 V = V.getOperand(0);
9188 return V;
9189 }
9190
peekThroughOneUseBitcasts(SDValue V)9191 SDValue llvm::peekThroughOneUseBitcasts(SDValue V) {
9192 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
9193 V = V.getOperand(0);
9194 return V;
9195 }
9196
peekThroughExtractSubvectors(SDValue V)9197 SDValue llvm::peekThroughExtractSubvectors(SDValue V) {
9198 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
9199 V = V.getOperand(0);
9200 return V;
9201 }
9202
isBitwiseNot(SDValue V,bool AllowUndefs)9203 bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
9204 if (V.getOpcode() != ISD::XOR)
9205 return false;
9206 V = peekThroughBitcasts(V.getOperand(1));
9207 unsigned NumBits = V.getScalarValueSizeInBits();
9208 ConstantSDNode *C =
9209 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
9210 return C && (C->getAPIntValue().countTrailingOnes() >= NumBits);
9211 }
9212
isConstOrConstSplat(SDValue N,bool AllowUndefs,bool AllowTruncation)9213 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, bool AllowUndefs,
9214 bool AllowTruncation) {
9215 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9216 return CN;
9217
9218 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9219 BitVector UndefElements;
9220 ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
9221
9222 // BuildVectors can truncate their operands. Ignore that case here unless
9223 // AllowTruncation is set.
9224 if (CN && (UndefElements.none() || AllowUndefs)) {
9225 EVT CVT = CN->getValueType(0);
9226 EVT NSVT = N.getValueType().getScalarType();
9227 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9228 if (AllowTruncation || (CVT == NSVT))
9229 return CN;
9230 }
9231 }
9232
9233 return nullptr;
9234 }
9235
isConstOrConstSplat(SDValue N,const APInt & DemandedElts,bool AllowUndefs,bool AllowTruncation)9236 ConstantSDNode *llvm::isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
9237 bool AllowUndefs,
9238 bool AllowTruncation) {
9239 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
9240 return CN;
9241
9242 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9243 BitVector UndefElements;
9244 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
9245
9246 // BuildVectors can truncate their operands. Ignore that case here unless
9247 // AllowTruncation is set.
9248 if (CN && (UndefElements.none() || AllowUndefs)) {
9249 EVT CVT = CN->getValueType(0);
9250 EVT NSVT = N.getValueType().getScalarType();
9251 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
9252 if (AllowTruncation || (CVT == NSVT))
9253 return CN;
9254 }
9255 }
9256
9257 return nullptr;
9258 }
9259
isConstOrConstSplatFP(SDValue N,bool AllowUndefs)9260 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N, bool AllowUndefs) {
9261 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9262 return CN;
9263
9264 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9265 BitVector UndefElements;
9266 ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
9267 if (CN && (UndefElements.none() || AllowUndefs))
9268 return CN;
9269 }
9270
9271 return nullptr;
9272 }
9273
isConstOrConstSplatFP(SDValue N,const APInt & DemandedElts,bool AllowUndefs)9274 ConstantFPSDNode *llvm::isConstOrConstSplatFP(SDValue N,
9275 const APInt &DemandedElts,
9276 bool AllowUndefs) {
9277 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
9278 return CN;
9279
9280 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
9281 BitVector UndefElements;
9282 ConstantFPSDNode *CN =
9283 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
9284 if (CN && (UndefElements.none() || AllowUndefs))
9285 return CN;
9286 }
9287
9288 return nullptr;
9289 }
9290
isNullOrNullSplat(SDValue N,bool AllowUndefs)9291 bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
9292 // TODO: may want to use peekThroughBitcast() here.
9293 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
9294 return C && C->isNullValue();
9295 }
9296
isOneOrOneSplat(SDValue N)9297 bool llvm::isOneOrOneSplat(SDValue N) {
9298 // TODO: may want to use peekThroughBitcast() here.
9299 unsigned BitWidth = N.getScalarValueSizeInBits();
9300 ConstantSDNode *C = isConstOrConstSplat(N);
9301 return C && C->isOne() && C->getValueSizeInBits(0) == BitWidth;
9302 }
9303
isAllOnesOrAllOnesSplat(SDValue N)9304 bool llvm::isAllOnesOrAllOnesSplat(SDValue N) {
9305 N = peekThroughBitcasts(N);
9306 unsigned BitWidth = N.getScalarValueSizeInBits();
9307 ConstantSDNode *C = isConstOrConstSplat(N);
9308 return C && C->isAllOnesValue() && C->getValueSizeInBits(0) == BitWidth;
9309 }
9310
~HandleSDNode()9311 HandleSDNode::~HandleSDNode() {
9312 DropOperands();
9313 }
9314
GlobalAddressSDNode(unsigned Opc,unsigned Order,const DebugLoc & DL,const GlobalValue * GA,EVT VT,int64_t o,unsigned TF)9315 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, unsigned Order,
9316 const DebugLoc &DL,
9317 const GlobalValue *GA, EVT VT,
9318 int64_t o, unsigned TF)
9319 : SDNode(Opc, Order, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
9320 TheGlobal = GA;
9321 }
9322
AddrSpaceCastSDNode(unsigned Order,const DebugLoc & dl,EVT VT,unsigned SrcAS,unsigned DestAS)9323 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl,
9324 EVT VT, unsigned SrcAS,
9325 unsigned DestAS)
9326 : SDNode(ISD::ADDRSPACECAST, Order, dl, getSDVTList(VT)),
9327 SrcAddrSpace(SrcAS), DestAddrSpace(DestAS) {}
9328
MemSDNode(unsigned Opc,unsigned Order,const DebugLoc & dl,SDVTList VTs,EVT memvt,MachineMemOperand * mmo)9329 MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
9330 SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
9331 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
9332 MemSDNodeBits.IsVolatile = MMO->isVolatile();
9333 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
9334 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
9335 MemSDNodeBits.IsInvariant = MMO->isInvariant();
9336
9337 // We check here that the size of the memory operand fits within the size of
9338 // the MMO. This is because the MMO might indicate only a possible address
9339 // range instead of specifying the affected memory addresses precisely.
9340 // TODO: Make MachineMemOperands aware of scalable vectors.
9341 assert(memvt.getStoreSize().getKnownMinSize() <= MMO->getSize() &&
9342 "Size mismatch!");
9343 }
9344
9345 /// Profile - Gather unique data for the node.
9346 ///
Profile(FoldingSetNodeID & ID) const9347 void SDNode::Profile(FoldingSetNodeID &ID) const {
9348 AddNodeIDNode(ID, this);
9349 }
9350
9351 namespace {
9352
9353 struct EVTArray {
9354 std::vector<EVT> VTs;
9355
EVTArray__anon8b1174b51011::EVTArray9356 EVTArray() {
9357 VTs.reserve(MVT::LAST_VALUETYPE);
9358 for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
9359 VTs.push_back(MVT((MVT::SimpleValueType)i));
9360 }
9361 };
9362
9363 } // end anonymous namespace
9364
9365 static ManagedStatic<std::set<EVT, EVT::compareRawBits>> EVTs;
9366 static ManagedStatic<EVTArray> SimpleVTArray;
9367 static ManagedStatic<sys::SmartMutex<true>> VTMutex;
9368
9369 /// getValueTypeList - Return a pointer to the specified value type.
9370 ///
getValueTypeList(EVT VT)9371 const EVT *SDNode::getValueTypeList(EVT VT) {
9372 if (VT.isExtended()) {
9373 sys::SmartScopedLock<true> Lock(*VTMutex);
9374 return &(*EVTs->insert(VT).first);
9375 } else {
9376 assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
9377 "Value type out of range!");
9378 return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
9379 }
9380 }
9381
9382 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
9383 /// indicated value. This method ignores uses of other values defined by this
9384 /// operation.
hasNUsesOfValue(unsigned NUses,unsigned Value) const9385 bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
9386 assert(Value < getNumValues() && "Bad value!");
9387
9388 // TODO: Only iterate over uses of a given value of the node
9389 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
9390 if (UI.getUse().getResNo() == Value) {
9391 if (NUses == 0)
9392 return false;
9393 --NUses;
9394 }
9395 }
9396
9397 // Found exactly the right number of uses?
9398 return NUses == 0;
9399 }
9400
9401 /// hasAnyUseOfValue - Return true if there are any use of the indicated
9402 /// value. This method ignores uses of other values defined by this operation.
hasAnyUseOfValue(unsigned Value) const9403 bool SDNode::hasAnyUseOfValue(unsigned Value) const {
9404 assert(Value < getNumValues() && "Bad value!");
9405
9406 for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
9407 if (UI.getUse().getResNo() == Value)
9408 return true;
9409
9410 return false;
9411 }
9412
9413 /// isOnlyUserOf - Return true if this node is the only use of N.
isOnlyUserOf(const SDNode * N) const9414 bool SDNode::isOnlyUserOf(const SDNode *N) const {
9415 bool Seen = false;
9416 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9417 SDNode *User = *I;
9418 if (User == this)
9419 Seen = true;
9420 else
9421 return false;
9422 }
9423
9424 return Seen;
9425 }
9426
9427 /// Return true if the only users of N are contained in Nodes.
areOnlyUsersOf(ArrayRef<const SDNode * > Nodes,const SDNode * N)9428 bool SDNode::areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N) {
9429 bool Seen = false;
9430 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
9431 SDNode *User = *I;
9432 if (llvm::any_of(Nodes,
9433 [&User](const SDNode *Node) { return User == Node; }))
9434 Seen = true;
9435 else
9436 return false;
9437 }
9438
9439 return Seen;
9440 }
9441
9442 /// isOperand - Return true if this node is an operand of N.
isOperandOf(const SDNode * N) const9443 bool SDValue::isOperandOf(const SDNode *N) const {
9444 return any_of(N->op_values(), [this](SDValue Op) { return *this == Op; });
9445 }
9446
isOperandOf(const SDNode * N) const9447 bool SDNode::isOperandOf(const SDNode *N) const {
9448 return any_of(N->op_values(),
9449 [this](SDValue Op) { return this == Op.getNode(); });
9450 }
9451
9452 /// reachesChainWithoutSideEffects - Return true if this operand (which must
9453 /// be a chain) reaches the specified operand without crossing any
9454 /// side-effecting instructions on any chain path. In practice, this looks
9455 /// through token factors and non-volatile loads. In order to remain efficient,
9456 /// this only looks a couple of nodes in, it does not do an exhaustive search.
9457 ///
9458 /// Note that we only need to examine chains when we're searching for
9459 /// side-effects; SelectionDAG requires that all side-effects are represented
9460 /// by chains, even if another operand would force a specific ordering. This
9461 /// constraint is necessary to allow transformations like splitting loads.
reachesChainWithoutSideEffects(SDValue Dest,unsigned Depth) const9462 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
9463 unsigned Depth) const {
9464 if (*this == Dest) return true;
9465
9466 // Don't search too deeply, we just want to be able to see through
9467 // TokenFactor's etc.
9468 if (Depth == 0) return false;
9469
9470 // If this is a token factor, all inputs to the TF happen in parallel.
9471 if (getOpcode() == ISD::TokenFactor) {
9472 // First, try a shallow search.
9473 if (is_contained((*this)->ops(), Dest)) {
9474 // We found the chain we want as an operand of this TokenFactor.
9475 // Essentially, we reach the chain without side-effects if we could
9476 // serialize the TokenFactor into a simple chain of operations with
9477 // Dest as the last operation. This is automatically true if the
9478 // chain has one use: there are no other ordering constraints.
9479 // If the chain has more than one use, we give up: some other
9480 // use of Dest might force a side-effect between Dest and the current
9481 // node.
9482 if (Dest.hasOneUse())
9483 return true;
9484 }
9485 // Next, try a deep search: check whether every operand of the TokenFactor
9486 // reaches Dest.
9487 return llvm::all_of((*this)->ops(), [=](SDValue Op) {
9488 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
9489 });
9490 }
9491
9492 // Loads don't have side effects, look through them.
9493 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
9494 if (Ld->isUnordered())
9495 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
9496 }
9497 return false;
9498 }
9499
hasPredecessor(const SDNode * N) const9500 bool SDNode::hasPredecessor(const SDNode *N) const {
9501 SmallPtrSet<const SDNode *, 32> Visited;
9502 SmallVector<const SDNode *, 16> Worklist;
9503 Worklist.push_back(this);
9504 return hasPredecessorHelper(N, Visited, Worklist);
9505 }
9506
intersectFlagsWith(const SDNodeFlags Flags)9507 void SDNode::intersectFlagsWith(const SDNodeFlags Flags) {
9508 this->Flags.intersectWith(Flags);
9509 }
9510
9511 SDValue
matchBinOpReduction(SDNode * Extract,ISD::NodeType & BinOp,ArrayRef<ISD::NodeType> CandidateBinOps,bool AllowPartials)9512 SelectionDAG::matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
9513 ArrayRef<ISD::NodeType> CandidateBinOps,
9514 bool AllowPartials) {
9515 // The pattern must end in an extract from index 0.
9516 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9517 !isNullConstant(Extract->getOperand(1)))
9518 return SDValue();
9519
9520 // Match against one of the candidate binary ops.
9521 SDValue Op = Extract->getOperand(0);
9522 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
9523 return Op.getOpcode() == unsigned(BinOp);
9524 }))
9525 return SDValue();
9526
9527 // Floating-point reductions may require relaxed constraints on the final step
9528 // of the reduction because they may reorder intermediate operations.
9529 unsigned CandidateBinOp = Op.getOpcode();
9530 if (Op.getValueType().isFloatingPoint()) {
9531 SDNodeFlags Flags = Op->getFlags();
9532 switch (CandidateBinOp) {
9533 case ISD::FADD:
9534 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
9535 return SDValue();
9536 break;
9537 default:
9538 llvm_unreachable("Unhandled FP opcode for binop reduction");
9539 }
9540 }
9541
9542 // Matching failed - attempt to see if we did enough stages that a partial
9543 // reduction from a subvector is possible.
9544 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
9545 if (!AllowPartials || !Op)
9546 return SDValue();
9547 EVT OpVT = Op.getValueType();
9548 EVT OpSVT = OpVT.getScalarType();
9549 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
9550 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
9551 return SDValue();
9552 BinOp = (ISD::NodeType)CandidateBinOp;
9553 return getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Op), SubVT, Op,
9554 getVectorIdxConstant(0, SDLoc(Op)));
9555 };
9556
9557 // At each stage, we're looking for something that looks like:
9558 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
9559 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
9560 // i32 undef, i32 undef, i32 undef, i32 undef>
9561 // %a = binop <8 x i32> %op, %s
9562 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
9563 // we expect something like:
9564 // <4,5,6,7,u,u,u,u>
9565 // <2,3,u,u,u,u,u,u>
9566 // <1,u,u,u,u,u,u,u>
9567 // While a partial reduction match would be:
9568 // <2,3,u,u,u,u,u,u>
9569 // <1,u,u,u,u,u,u,u>
9570 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
9571 SDValue PrevOp;
9572 for (unsigned i = 0; i < Stages; ++i) {
9573 unsigned MaskEnd = (1 << i);
9574
9575 if (Op.getOpcode() != CandidateBinOp)
9576 return PartialReduction(PrevOp, MaskEnd);
9577
9578 SDValue Op0 = Op.getOperand(0);
9579 SDValue Op1 = Op.getOperand(1);
9580
9581 ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(Op0);
9582 if (Shuffle) {
9583 Op = Op1;
9584 } else {
9585 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
9586 Op = Op0;
9587 }
9588
9589 // The first operand of the shuffle should be the same as the other operand
9590 // of the binop.
9591 if (!Shuffle || Shuffle->getOperand(0) != Op)
9592 return PartialReduction(PrevOp, MaskEnd);
9593
9594 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
9595 for (int Index = 0; Index < (int)MaskEnd; ++Index)
9596 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
9597 return PartialReduction(PrevOp, MaskEnd);
9598
9599 PrevOp = Op;
9600 }
9601
9602 // Handle subvector reductions, which tend to appear after the shuffle
9603 // reduction stages.
9604 while (Op.getOpcode() == CandidateBinOp) {
9605 unsigned NumElts = Op.getValueType().getVectorNumElements();
9606 SDValue Op0 = Op.getOperand(0);
9607 SDValue Op1 = Op.getOperand(1);
9608 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9609 Op1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
9610 Op0.getOperand(0) != Op1.getOperand(0))
9611 break;
9612 SDValue Src = Op0.getOperand(0);
9613 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
9614 if (NumSrcElts != (2 * NumElts))
9615 break;
9616 if (!(Op0.getConstantOperandAPInt(1) == 0 &&
9617 Op1.getConstantOperandAPInt(1) == NumElts) &&
9618 !(Op1.getConstantOperandAPInt(1) == 0 &&
9619 Op0.getConstantOperandAPInt(1) == NumElts))
9620 break;
9621 Op = Src;
9622 }
9623
9624 BinOp = (ISD::NodeType)CandidateBinOp;
9625 return Op;
9626 }
9627
UnrollVectorOp(SDNode * N,unsigned ResNE)9628 SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
9629 assert(N->getNumValues() == 1 &&
9630 "Can't unroll a vector with multiple results!");
9631
9632 EVT VT = N->getValueType(0);
9633 unsigned NE = VT.getVectorNumElements();
9634 EVT EltVT = VT.getVectorElementType();
9635 SDLoc dl(N);
9636
9637 SmallVector<SDValue, 8> Scalars;
9638 SmallVector<SDValue, 4> Operands(N->getNumOperands());
9639
9640 // If ResNE is 0, fully unroll the vector op.
9641 if (ResNE == 0)
9642 ResNE = NE;
9643 else if (NE > ResNE)
9644 NE = ResNE;
9645
9646 unsigned i;
9647 for (i= 0; i != NE; ++i) {
9648 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
9649 SDValue Operand = N->getOperand(j);
9650 EVT OperandVT = Operand.getValueType();
9651 if (OperandVT.isVector()) {
9652 // A vector operand; extract a single element.
9653 EVT OperandEltVT = OperandVT.getVectorElementType();
9654 Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl, OperandEltVT,
9655 Operand, getVectorIdxConstant(i, dl));
9656 } else {
9657 // A scalar operand; just use it as is.
9658 Operands[j] = Operand;
9659 }
9660 }
9661
9662 switch (N->getOpcode()) {
9663 default: {
9664 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
9665 N->getFlags()));
9666 break;
9667 }
9668 case ISD::VSELECT:
9669 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
9670 break;
9671 case ISD::SHL:
9672 case ISD::SRA:
9673 case ISD::SRL:
9674 case ISD::ROTL:
9675 case ISD::ROTR:
9676 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
9677 getShiftAmountOperand(Operands[0].getValueType(),
9678 Operands[1])));
9679 break;
9680 case ISD::SIGN_EXTEND_INREG: {
9681 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
9682 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
9683 Operands[0],
9684 getValueType(ExtVT)));
9685 }
9686 }
9687 }
9688
9689 for (; i < ResNE; ++i)
9690 Scalars.push_back(getUNDEF(EltVT));
9691
9692 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
9693 return getBuildVector(VecVT, dl, Scalars);
9694 }
9695
UnrollVectorOverflowOp(SDNode * N,unsigned ResNE)9696 std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
9697 SDNode *N, unsigned ResNE) {
9698 unsigned Opcode = N->getOpcode();
9699 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
9700 Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
9701 Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
9702 "Expected an overflow opcode");
9703
9704 EVT ResVT = N->getValueType(0);
9705 EVT OvVT = N->getValueType(1);
9706 EVT ResEltVT = ResVT.getVectorElementType();
9707 EVT OvEltVT = OvVT.getVectorElementType();
9708 SDLoc dl(N);
9709
9710 // If ResNE is 0, fully unroll the vector op.
9711 unsigned NE = ResVT.getVectorNumElements();
9712 if (ResNE == 0)
9713 ResNE = NE;
9714 else if (NE > ResNE)
9715 NE = ResNE;
9716
9717 SmallVector<SDValue, 8> LHSScalars;
9718 SmallVector<SDValue, 8> RHSScalars;
9719 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
9720 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
9721
9722 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
9723 SDVTList VTs = getVTList(ResEltVT, SVT);
9724 SmallVector<SDValue, 8> ResScalars;
9725 SmallVector<SDValue, 8> OvScalars;
9726 for (unsigned i = 0; i < NE; ++i) {
9727 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
9728 SDValue Ov =
9729 getSelect(dl, OvEltVT, Res.getValue(1),
9730 getBoolConstant(true, dl, OvEltVT, ResVT),
9731 getConstant(0, dl, OvEltVT));
9732
9733 ResScalars.push_back(Res);
9734 OvScalars.push_back(Ov);
9735 }
9736
9737 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
9738 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
9739
9740 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
9741 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
9742 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
9743 getBuildVector(NewOvVT, dl, OvScalars));
9744 }
9745
areNonVolatileConsecutiveLoads(LoadSDNode * LD,LoadSDNode * Base,unsigned Bytes,int Dist) const9746 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode *LD,
9747 LoadSDNode *Base,
9748 unsigned Bytes,
9749 int Dist) const {
9750 if (LD->isVolatile() || Base->isVolatile())
9751 return false;
9752 // TODO: probably too restrictive for atomics, revisit
9753 if (!LD->isSimple())
9754 return false;
9755 if (LD->isIndexed() || Base->isIndexed())
9756 return false;
9757 if (LD->getChain() != Base->getChain())
9758 return false;
9759 EVT VT = LD->getValueType(0);
9760 if (VT.getSizeInBits() / 8 != Bytes)
9761 return false;
9762
9763 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
9764 auto LocDecomp = BaseIndexOffset::match(LD, *this);
9765
9766 int64_t Offset = 0;
9767 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
9768 return (Dist * Bytes == Offset);
9769 return false;
9770 }
9771
9772 /// InferPtrAlignment - Infer alignment of a load / store address. Return None
9773 /// if it cannot be inferred.
InferPtrAlign(SDValue Ptr) const9774 MaybeAlign SelectionDAG::InferPtrAlign(SDValue Ptr) const {
9775 // If this is a GlobalAddress + cst, return the alignment.
9776 const GlobalValue *GV = nullptr;
9777 int64_t GVOffset = 0;
9778 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
9779 unsigned PtrWidth = getDataLayout().getIndexTypeSizeInBits(GV->getType());
9780 KnownBits Known(PtrWidth);
9781 llvm::computeKnownBits(GV, Known, getDataLayout());
9782 unsigned AlignBits = Known.countMinTrailingZeros();
9783 if (AlignBits)
9784 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
9785 }
9786
9787 // If this is a direct reference to a stack slot, use information about the
9788 // stack slot's alignment.
9789 int FrameIdx = INT_MIN;
9790 int64_t FrameOffset = 0;
9791 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
9792 FrameIdx = FI->getIndex();
9793 } else if (isBaseWithConstantOffset(Ptr) &&
9794 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
9795 // Handle FI+Cst
9796 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9797 FrameOffset = Ptr.getConstantOperandVal(1);
9798 }
9799
9800 if (FrameIdx != INT_MIN) {
9801 const MachineFrameInfo &MFI = getMachineFunction().getFrameInfo();
9802 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
9803 }
9804
9805 return None;
9806 }
9807
9808 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9809 /// which is split (or expanded) into two not necessarily identical pieces.
GetSplitDestVTs(const EVT & VT) const9810 std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
9811 // Currently all types are split in half.
9812 EVT LoVT, HiVT;
9813 if (!VT.isVector())
9814 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
9815 else
9816 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
9817
9818 return std::make_pair(LoVT, HiVT);
9819 }
9820
9821 /// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
9822 /// type, dependent on an enveloping VT that has been split into two identical
9823 /// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
9824 std::pair<EVT, EVT>
GetDependentSplitDestVTs(const EVT & VT,const EVT & EnvVT,bool * HiIsEmpty) const9825 SelectionDAG::GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
9826 bool *HiIsEmpty) const {
9827 EVT EltTp = VT.getVectorElementType();
9828 bool IsScalable = VT.isScalableVector();
9829 // Examples:
9830 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty)
9831 // custom VL=9 with enveloping VL=8/8 yields 8/1
9832 // custom VL=10 with enveloping VL=8/8 yields 8/2
9833 // etc.
9834 unsigned VTNumElts = VT.getVectorNumElements();
9835 unsigned EnvNumElts = EnvVT.getVectorNumElements();
9836 EVT LoVT, HiVT;
9837 if (VTNumElts > EnvNumElts) {
9838 LoVT = EnvVT;
9839 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts,
9840 IsScalable);
9841 *HiIsEmpty = false;
9842 } else {
9843 // Flag that hi type has zero storage size, but return split envelop type
9844 // (this would be easier if vector types with zero elements were allowed).
9845 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts, IsScalable);
9846 HiVT = EnvVT;
9847 *HiIsEmpty = true;
9848 }
9849 return std::make_pair(LoVT, HiVT);
9850 }
9851
9852 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9853 /// low/high part.
9854 std::pair<SDValue, SDValue>
SplitVector(const SDValue & N,const SDLoc & DL,const EVT & LoVT,const EVT & HiVT)9855 SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
9856 const EVT &HiVT) {
9857 assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
9858 LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
9859 "Splitting vector with an invalid mixture of fixed and scalable "
9860 "vector types");
9861 assert(LoVT.getVectorMinNumElements() + HiVT.getVectorMinNumElements() <=
9862 N.getValueType().getVectorMinNumElements() &&
9863 "More vector elements requested than available!");
9864 SDValue Lo, Hi;
9865 Lo =
9866 getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, getVectorIdxConstant(0, DL));
9867 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
9868 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
9869 // IDX with the runtime scaling factor of the result vector type. For
9870 // fixed-width result vectors, that runtime scaling factor is 1.
9871 Hi = getNode(ISD::EXTRACT_SUBVECTOR, DL, HiVT, N,
9872 getVectorIdxConstant(LoVT.getVectorMinNumElements(), DL));
9873 return std::make_pair(Lo, Hi);
9874 }
9875
9876 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
WidenVector(const SDValue & N,const SDLoc & DL)9877 SDValue SelectionDAG::WidenVector(const SDValue &N, const SDLoc &DL) {
9878 EVT VT = N.getValueType();
9879 EVT WideVT = EVT::getVectorVT(*getContext(), VT.getVectorElementType(),
9880 NextPowerOf2(VT.getVectorNumElements()));
9881 return getNode(ISD::INSERT_SUBVECTOR, DL, WideVT, getUNDEF(WideVT), N,
9882 getVectorIdxConstant(0, DL));
9883 }
9884
ExtractVectorElements(SDValue Op,SmallVectorImpl<SDValue> & Args,unsigned Start,unsigned Count,EVT EltVT)9885 void SelectionDAG::ExtractVectorElements(SDValue Op,
9886 SmallVectorImpl<SDValue> &Args,
9887 unsigned Start, unsigned Count,
9888 EVT EltVT) {
9889 EVT VT = Op.getValueType();
9890 if (Count == 0)
9891 Count = VT.getVectorNumElements();
9892 if (EltVT == EVT())
9893 EltVT = VT.getVectorElementType();
9894 SDLoc SL(Op);
9895 for (unsigned i = Start, e = Start + Count; i != e; ++i) {
9896 Args.push_back(getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Op,
9897 getVectorIdxConstant(i, SL)));
9898 }
9899 }
9900
9901 // getAddressSpace - Return the address space this GlobalAddress belongs to.
getAddressSpace() const9902 unsigned GlobalAddressSDNode::getAddressSpace() const {
9903 return getGlobal()->getType()->getAddressSpace();
9904 }
9905
getType() const9906 Type *ConstantPoolSDNode::getType() const {
9907 if (isMachineConstantPoolEntry())
9908 return Val.MachineCPVal->getType();
9909 return Val.ConstVal->getType();
9910 }
9911
isConstantSplat(APInt & SplatValue,APInt & SplatUndef,unsigned & SplatBitSize,bool & HasAnyUndefs,unsigned MinSplatBits,bool IsBigEndian) const9912 bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
9913 unsigned &SplatBitSize,
9914 bool &HasAnyUndefs,
9915 unsigned MinSplatBits,
9916 bool IsBigEndian) const {
9917 EVT VT = getValueType(0);
9918 assert(VT.isVector() && "Expected a vector type");
9919 unsigned VecWidth = VT.getSizeInBits();
9920 if (MinSplatBits > VecWidth)
9921 return false;
9922
9923 // FIXME: The widths are based on this node's type, but build vectors can
9924 // truncate their operands.
9925 SplatValue = APInt(VecWidth, 0);
9926 SplatUndef = APInt(VecWidth, 0);
9927
9928 // Get the bits. Bits with undefined values (when the corresponding element
9929 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9930 // in SplatValue. If any of the values are not constant, give up and return
9931 // false.
9932 unsigned int NumOps = getNumOperands();
9933 assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
9934 unsigned EltWidth = VT.getScalarSizeInBits();
9935
9936 for (unsigned j = 0; j < NumOps; ++j) {
9937 unsigned i = IsBigEndian ? NumOps - 1 - j : j;
9938 SDValue OpVal = getOperand(i);
9939 unsigned BitPos = j * EltWidth;
9940
9941 if (OpVal.isUndef())
9942 SplatUndef.setBits(BitPos, BitPos + EltWidth);
9943 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
9944 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
9945 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
9946 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
9947 else
9948 return false;
9949 }
9950
9951 // The build_vector is all constants or undefs. Find the smallest element
9952 // size that splats the vector.
9953 HasAnyUndefs = (SplatUndef != 0);
9954
9955 // FIXME: This does not work for vectors with elements less than 8 bits.
9956 while (VecWidth > 8) {
9957 unsigned HalfSize = VecWidth / 2;
9958 APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
9959 APInt LowValue = SplatValue.trunc(HalfSize);
9960 APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
9961 APInt LowUndef = SplatUndef.trunc(HalfSize);
9962
9963 // If the two halves do not match (ignoring undef bits), stop here.
9964 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
9965 MinSplatBits > HalfSize)
9966 break;
9967
9968 SplatValue = HighValue | LowValue;
9969 SplatUndef = HighUndef & LowUndef;
9970
9971 VecWidth = HalfSize;
9972 }
9973
9974 SplatBitSize = VecWidth;
9975 return true;
9976 }
9977
getSplatValue(const APInt & DemandedElts,BitVector * UndefElements) const9978 SDValue BuildVectorSDNode::getSplatValue(const APInt &DemandedElts,
9979 BitVector *UndefElements) const {
9980 if (UndefElements) {
9981 UndefElements->clear();
9982 UndefElements->resize(getNumOperands());
9983 }
9984 assert(getNumOperands() == DemandedElts.getBitWidth() &&
9985 "Unexpected vector size");
9986 if (!DemandedElts)
9987 return SDValue();
9988 SDValue Splatted;
9989 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
9990 if (!DemandedElts[i])
9991 continue;
9992 SDValue Op = getOperand(i);
9993 if (Op.isUndef()) {
9994 if (UndefElements)
9995 (*UndefElements)[i] = true;
9996 } else if (!Splatted) {
9997 Splatted = Op;
9998 } else if (Splatted != Op) {
9999 return SDValue();
10000 }
10001 }
10002
10003 if (!Splatted) {
10004 unsigned FirstDemandedIdx = DemandedElts.countTrailingZeros();
10005 assert(getOperand(FirstDemandedIdx).isUndef() &&
10006 "Can only have a splat without a constant for all undefs.");
10007 return getOperand(FirstDemandedIdx);
10008 }
10009
10010 return Splatted;
10011 }
10012
getSplatValue(BitVector * UndefElements) const10013 SDValue BuildVectorSDNode::getSplatValue(BitVector *UndefElements) const {
10014 APInt DemandedElts = APInt::getAllOnesValue(getNumOperands());
10015 return getSplatValue(DemandedElts, UndefElements);
10016 }
10017
10018 ConstantSDNode *
getConstantSplatNode(const APInt & DemandedElts,BitVector * UndefElements) const10019 BuildVectorSDNode::getConstantSplatNode(const APInt &DemandedElts,
10020 BitVector *UndefElements) const {
10021 return dyn_cast_or_null<ConstantSDNode>(
10022 getSplatValue(DemandedElts, UndefElements));
10023 }
10024
10025 ConstantSDNode *
getConstantSplatNode(BitVector * UndefElements) const10026 BuildVectorSDNode::getConstantSplatNode(BitVector *UndefElements) const {
10027 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
10028 }
10029
10030 ConstantFPSDNode *
getConstantFPSplatNode(const APInt & DemandedElts,BitVector * UndefElements) const10031 BuildVectorSDNode::getConstantFPSplatNode(const APInt &DemandedElts,
10032 BitVector *UndefElements) const {
10033 return dyn_cast_or_null<ConstantFPSDNode>(
10034 getSplatValue(DemandedElts, UndefElements));
10035 }
10036
10037 ConstantFPSDNode *
getConstantFPSplatNode(BitVector * UndefElements) const10038 BuildVectorSDNode::getConstantFPSplatNode(BitVector *UndefElements) const {
10039 return dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements));
10040 }
10041
10042 int32_t
getConstantFPSplatPow2ToLog2Int(BitVector * UndefElements,uint32_t BitWidth) const10043 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
10044 uint32_t BitWidth) const {
10045 if (ConstantFPSDNode *CN =
10046 dyn_cast_or_null<ConstantFPSDNode>(getSplatValue(UndefElements))) {
10047 bool IsExact;
10048 APSInt IntVal(BitWidth);
10049 const APFloat &APF = CN->getValueAPF();
10050 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
10051 APFloat::opOK ||
10052 !IsExact)
10053 return -1;
10054
10055 return IntVal.exactLogBase2();
10056 }
10057 return -1;
10058 }
10059
isConstant() const10060 bool BuildVectorSDNode::isConstant() const {
10061 for (const SDValue &Op : op_values()) {
10062 unsigned Opc = Op.getOpcode();
10063 if (Opc != ISD::UNDEF && Opc != ISD::Constant && Opc != ISD::ConstantFP)
10064 return false;
10065 }
10066 return true;
10067 }
10068
isSplatMask(const int * Mask,EVT VT)10069 bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
10070 // Find the first non-undef value in the shuffle mask.
10071 unsigned i, e;
10072 for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
10073 /* search */;
10074
10075 // If all elements are undefined, this shuffle can be considered a splat
10076 // (although it should eventually get simplified away completely).
10077 if (i == e)
10078 return true;
10079
10080 // Make sure all remaining elements are either undef or the same as the first
10081 // non-undef value.
10082 for (int Idx = Mask[i]; i != e; ++i)
10083 if (Mask[i] >= 0 && Mask[i] != Idx)
10084 return false;
10085 return true;
10086 }
10087
10088 // Returns the SDNode if it is a constant integer BuildVector
10089 // or constant integer.
isConstantIntBuildVectorOrConstantInt(SDValue N)10090 SDNode *SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N) {
10091 if (isa<ConstantSDNode>(N))
10092 return N.getNode();
10093 if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
10094 return N.getNode();
10095 // Treat a GlobalAddress supporting constant offset folding as a
10096 // constant integer.
10097 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N))
10098 if (GA->getOpcode() == ISD::GlobalAddress &&
10099 TLI->isOffsetFoldingLegal(GA))
10100 return GA;
10101 return nullptr;
10102 }
10103
isConstantFPBuildVectorOrConstantFP(SDValue N)10104 SDNode *SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N) {
10105 if (isa<ConstantFPSDNode>(N))
10106 return N.getNode();
10107
10108 if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
10109 return N.getNode();
10110
10111 return nullptr;
10112 }
10113
createOperands(SDNode * Node,ArrayRef<SDValue> Vals)10114 void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
10115 assert(!Node->OperandList && "Node already has operands");
10116 assert(SDNode::getMaxNumOperands() >= Vals.size() &&
10117 "too many operands to fit into SDNode");
10118 SDUse *Ops = OperandRecycler.allocate(
10119 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
10120
10121 bool IsDivergent = false;
10122 for (unsigned I = 0; I != Vals.size(); ++I) {
10123 Ops[I].setUser(Node);
10124 Ops[I].setInitial(Vals[I]);
10125 if (Ops[I].Val.getValueType() != MVT::Other) // Skip Chain. It does not carry divergence.
10126 IsDivergent = IsDivergent || Ops[I].getNode()->isDivergent();
10127 }
10128 Node->NumOperands = Vals.size();
10129 Node->OperandList = Ops;
10130 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, DA);
10131 if (!TLI->isSDNodeAlwaysUniform(Node))
10132 Node->SDNodeBits.IsDivergent = IsDivergent;
10133 checkForCycles(Node);
10134 }
10135
getTokenFactor(const SDLoc & DL,SmallVectorImpl<SDValue> & Vals)10136 SDValue SelectionDAG::getTokenFactor(const SDLoc &DL,
10137 SmallVectorImpl<SDValue> &Vals) {
10138 size_t Limit = SDNode::getMaxNumOperands();
10139 while (Vals.size() > Limit) {
10140 unsigned SliceIdx = Vals.size() - Limit;
10141 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
10142 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
10143 Vals.erase(Vals.begin() + SliceIdx, Vals.end());
10144 Vals.emplace_back(NewTF);
10145 }
10146 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
10147 }
10148
10149 #ifndef NDEBUG
checkForCyclesHelper(const SDNode * N,SmallPtrSetImpl<const SDNode * > & Visited,SmallPtrSetImpl<const SDNode * > & Checked,const llvm::SelectionDAG * DAG)10150 static void checkForCyclesHelper(const SDNode *N,
10151 SmallPtrSetImpl<const SDNode*> &Visited,
10152 SmallPtrSetImpl<const SDNode*> &Checked,
10153 const llvm::SelectionDAG *DAG) {
10154 // If this node has already been checked, don't check it again.
10155 if (Checked.count(N))
10156 return;
10157
10158 // If a node has already been visited on this depth-first walk, reject it as
10159 // a cycle.
10160 if (!Visited.insert(N).second) {
10161 errs() << "Detected cycle in SelectionDAG\n";
10162 dbgs() << "Offending node:\n";
10163 N->dumprFull(DAG); dbgs() << "\n";
10164 abort();
10165 }
10166
10167 for (const SDValue &Op : N->op_values())
10168 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
10169
10170 Checked.insert(N);
10171 Visited.erase(N);
10172 }
10173 #endif
10174
checkForCycles(const llvm::SDNode * N,const llvm::SelectionDAG * DAG,bool force)10175 void llvm::checkForCycles(const llvm::SDNode *N,
10176 const llvm::SelectionDAG *DAG,
10177 bool force) {
10178 #ifndef NDEBUG
10179 bool check = force;
10180 #ifdef EXPENSIVE_CHECKS
10181 check = true;
10182 #endif // EXPENSIVE_CHECKS
10183 if (check) {
10184 assert(N && "Checking nonexistent SDNode");
10185 SmallPtrSet<const SDNode*, 32> visited;
10186 SmallPtrSet<const SDNode*, 32> checked;
10187 checkForCyclesHelper(N, visited, checked, DAG);
10188 }
10189 #endif // !NDEBUG
10190 }
10191
checkForCycles(const llvm::SelectionDAG * DAG,bool force)10192 void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
10193 checkForCycles(DAG->getRoot().getNode(), DAG, force);
10194 }
10195