1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Cheri.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/IntrinsicsXCore.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/SymbolTableListTraits.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Use.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstddef>
67 #include <cstdint>
68 #include <cstring>
69 #include <string>
70 
71 using namespace llvm;
72 using ProfileCount = Function::ProfileCount;
73 
74 // Explicit instantiations of SymbolTableListTraits since some of the methods
75 // are not in the public header file...
76 template class llvm::SymbolTableListTraits<BasicBlock>;
77 
78 //===----------------------------------------------------------------------===//
79 // Argument Implementation
80 //===----------------------------------------------------------------------===//
81 
Argument(Type * Ty,const Twine & Name,Function * Par,unsigned ArgNo)82 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
83     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
84   setName(Name);
85 }
86 
setParent(Function * parent)87 void Argument::setParent(Function *parent) {
88   Parent = parent;
89 }
90 
hasNonNullAttr() const91 bool Argument::hasNonNullAttr() const {
92   if (!getType()->isPointerTy()) return false;
93   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
94     return true;
95   else if (getDereferenceableBytes() > 0 &&
96            !NullPointerIsDefined(getParent(),
97                                  getType()->getPointerAddressSpace()))
98     return true;
99   return false;
100 }
101 
hasByValAttr() const102 bool Argument::hasByValAttr() const {
103   if (!getType()->isPointerTy()) return false;
104   return hasAttribute(Attribute::ByVal);
105 }
106 
hasSwiftSelfAttr() const107 bool Argument::hasSwiftSelfAttr() const {
108   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
109 }
110 
hasSwiftErrorAttr() const111 bool Argument::hasSwiftErrorAttr() const {
112   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
113 }
114 
hasInAllocaAttr() const115 bool Argument::hasInAllocaAttr() const {
116   if (!getType()->isPointerTy()) return false;
117   return hasAttribute(Attribute::InAlloca);
118 }
119 
hasPreallocatedAttr() const120 bool Argument::hasPreallocatedAttr() const {
121   if (!getType()->isPointerTy())
122     return false;
123   return hasAttribute(Attribute::Preallocated);
124 }
125 
hasPassPointeeByValueAttr() const126 bool Argument::hasPassPointeeByValueAttr() const {
127   if (!getType()->isPointerTy()) return false;
128   AttributeList Attrs = getParent()->getAttributes();
129   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
130          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
131          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
132 }
133 
getPassPointeeByValueCopySize(const DataLayout & DL) const134 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
135   AttributeSet ParamAttrs
136     = getParent()->getAttributes().getParamAttributes(getArgNo());
137 
138   // FIXME: All the type carrying attributes are mutually exclusive, so there
139   // should be a single query to get the stored type that handles any of them.
140   if (Type *ByValTy = ParamAttrs.getByValType())
141     return DL.getTypeAllocSize(ByValTy);
142   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
143     return DL.getTypeAllocSize(PreAllocTy);
144 
145   // FIXME: inalloca always depends on pointee element type. It's also possible
146   // for byval to miss it.
147   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
148       ParamAttrs.hasAttribute(Attribute::ByVal) ||
149       ParamAttrs.hasAttribute(Attribute::Preallocated))
150     return DL.getTypeAllocSize(cast<PointerType>(getType())->getElementType());
151 
152   return 0;
153 }
154 
getParamAlignment() const155 unsigned Argument::getParamAlignment() const {
156   assert(getType()->isPointerTy() && "Only pointers have alignments");
157   return getParent()->getParamAlignment(getArgNo());
158 }
159 
getParamAlign() const160 MaybeAlign Argument::getParamAlign() const {
161   assert(getType()->isPointerTy() && "Only pointers have alignments");
162   return getParent()->getParamAlign(getArgNo());
163 }
164 
getParamByValType() const165 Type *Argument::getParamByValType() const {
166   assert(getType()->isPointerTy() && "Only pointers have byval types");
167   return getParent()->getParamByValType(getArgNo());
168 }
169 
getDereferenceableBytes() const170 uint64_t Argument::getDereferenceableBytes() const {
171   assert(getType()->isPointerTy() &&
172          "Only pointers have dereferenceable bytes");
173   return getParent()->getParamDereferenceableBytes(getArgNo());
174 }
175 
getDereferenceableOrNullBytes() const176 uint64_t Argument::getDereferenceableOrNullBytes() const {
177   assert(getType()->isPointerTy() &&
178          "Only pointers have dereferenceable bytes");
179   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
180 }
181 
hasNestAttr() const182 bool Argument::hasNestAttr() const {
183   if (!getType()->isPointerTy()) return false;
184   return hasAttribute(Attribute::Nest);
185 }
186 
hasNoAliasAttr() const187 bool Argument::hasNoAliasAttr() const {
188   if (!getType()->isPointerTy()) return false;
189   return hasAttribute(Attribute::NoAlias);
190 }
191 
hasNoCaptureAttr() const192 bool Argument::hasNoCaptureAttr() const {
193   if (!getType()->isPointerTy()) return false;
194   return hasAttribute(Attribute::NoCapture);
195 }
196 
hasStructRetAttr() const197 bool Argument::hasStructRetAttr() const {
198   if (!getType()->isPointerTy()) return false;
199   return hasAttribute(Attribute::StructRet);
200 }
201 
hasInRegAttr() const202 bool Argument::hasInRegAttr() const {
203   return hasAttribute(Attribute::InReg);
204 }
205 
hasReturnedAttr() const206 bool Argument::hasReturnedAttr() const {
207   return hasAttribute(Attribute::Returned);
208 }
209 
hasZExtAttr() const210 bool Argument::hasZExtAttr() const {
211   return hasAttribute(Attribute::ZExt);
212 }
213 
hasSExtAttr() const214 bool Argument::hasSExtAttr() const {
215   return hasAttribute(Attribute::SExt);
216 }
217 
onlyReadsMemory() const218 bool Argument::onlyReadsMemory() const {
219   AttributeList Attrs = getParent()->getAttributes();
220   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
221          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
222 }
223 
addAttrs(AttrBuilder & B)224 void Argument::addAttrs(AttrBuilder &B) {
225   AttributeList AL = getParent()->getAttributes();
226   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
227   getParent()->setAttributes(AL);
228 }
229 
addAttr(Attribute::AttrKind Kind)230 void Argument::addAttr(Attribute::AttrKind Kind) {
231   getParent()->addParamAttr(getArgNo(), Kind);
232 }
233 
addAttr(Attribute Attr)234 void Argument::addAttr(Attribute Attr) {
235   getParent()->addParamAttr(getArgNo(), Attr);
236 }
237 
removeAttr(Attribute::AttrKind Kind)238 void Argument::removeAttr(Attribute::AttrKind Kind) {
239   getParent()->removeParamAttr(getArgNo(), Kind);
240 }
241 
hasAttribute(Attribute::AttrKind Kind) const242 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
243   return getParent()->hasParamAttribute(getArgNo(), Kind);
244 }
245 
getAttribute(Attribute::AttrKind Kind) const246 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
247   return getParent()->getParamAttribute(getArgNo(), Kind);
248 }
249 
250 //===----------------------------------------------------------------------===//
251 // Helper Methods in Function
252 //===----------------------------------------------------------------------===//
253 
getContext() const254 LLVMContext &Function::getContext() const {
255   return getType()->getContext();
256 }
257 
getInstructionCount() const258 unsigned Function::getInstructionCount() const {
259   unsigned NumInstrs = 0;
260   for (const BasicBlock &BB : BasicBlocks)
261     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
262                                BB.instructionsWithoutDebug().end());
263   return NumInstrs;
264 }
265 
DefaultAddrSpaceForFunctions(Module & M)266 static inline unsigned DefaultAddrSpaceForFunctions(Module& M) {
267   return M.getDataLayout().getProgramAddressSpace();
268 }
269 
Create(FunctionType * Ty,LinkageTypes Linkage,const Twine & N,Module & M)270 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
271                            const Twine &N, Module &M) {
272   return Create(Ty, Linkage, DefaultAddrSpaceForFunctions(M), N, &M);
273 }
274 
CreateBefore(Function & InsertBefore,FunctionType * Ty,LinkageTypes Linkage,const Twine & N)275 Function *Function::CreateBefore(Function &InsertBefore, FunctionType *Ty,
276                                  LinkageTypes Linkage, const Twine &N) {
277   auto &M = *InsertBefore.getParent();
278   unsigned AddrSpace = DefaultAddrSpaceForFunctions(M);
279   Function *F = Create(Ty, Linkage, AddrSpace, N);
280 
281   M.getFunctionList().insert(InsertBefore.getIterator(), F);
282   return F;
283 }
284 
removeFromParent()285 void Function::removeFromParent() {
286   getParent()->getFunctionList().remove(getIterator());
287 }
288 
eraseFromParent()289 void Function::eraseFromParent() {
290   getParent()->getFunctionList().erase(getIterator());
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Function Implementation
295 //===----------------------------------------------------------------------===//
computeAddrSpace(unsigned AddrSpace,Module * M)296 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
297   // If AS == -1 and we are passed a valid module pointer we place the function
298   // in the program address space and otherwise we default to AS0
299   // TODO: assert(M || AddrSpace != static_cast<unsigned>(-1));
300   if (AddrSpace == static_cast<unsigned>(-1)) {
301     assert(M && "Need either Module* or an explicit address space");
302     return M ? DefaultAddrSpaceForFunctions(*M) : 0;
303   }
304   return AddrSpace;
305 }
306 
Function(FunctionType * Ty,LinkageTypes Linkage,unsigned AddrSpace,const Twine & name,Module * ParentModule)307 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
308                    const Twine &name, Module *ParentModule)
309     : GlobalObject(Ty, Value::FunctionVal,
310                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
311                    computeAddrSpace(AddrSpace, ParentModule)),
312       NumArgs(Ty->getNumParams()) {
313   assert(FunctionType::isValidReturnType(getReturnType()) &&
314          "invalid return type");
315   setGlobalObjectSubClassData(0);
316 
317   // We only need a symbol table for a function if the context keeps value names
318   if (!getContext().shouldDiscardValueNames())
319     SymTab = std::make_unique<ValueSymbolTable>();
320 
321   // If the function has arguments, mark them as lazily built.
322   if (Ty->getNumParams())
323     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
324 
325   if (ParentModule)
326     ParentModule->getFunctionList().push_back(this);
327 
328   HasLLVMReservedName = getName().startswith("llvm.");
329   // Ensure intrinsics have the right parameter attributes.
330   // Note, the IntID field will have been set in Value::setName if this function
331   // name is a valid intrinsic ID.
332   if (IntID)
333     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
334 }
335 
~Function()336 Function::~Function() {
337   dropAllReferences();    // After this it is safe to delete instructions.
338 
339   // Delete all of the method arguments and unlink from symbol table...
340   if (Arguments)
341     clearArguments();
342 
343   // Remove the function from the on-the-side GC table.
344   clearGC();
345 }
346 
BuildLazyArguments() const347 void Function::BuildLazyArguments() const {
348   // Create the arguments vector, all arguments start out unnamed.
349   auto *FT = getFunctionType();
350   if (NumArgs > 0) {
351     Arguments = std::allocator<Argument>().allocate(NumArgs);
352     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
353       Type *ArgTy = FT->getParamType(i);
354       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
355       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
356     }
357   }
358 
359   // Clear the lazy arguments bit.
360   unsigned SDC = getSubclassDataFromValue();
361   SDC &= ~(1 << 0);
362   const_cast<Function*>(this)->setValueSubclassData(SDC);
363   assert(!hasLazyArguments());
364 }
365 
makeArgArray(Argument * Args,size_t Count)366 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
367   return MutableArrayRef<Argument>(Args, Count);
368 }
369 
isConstrainedFPIntrinsic() const370 bool Function::isConstrainedFPIntrinsic() const {
371   switch (getIntrinsicID()) {
372 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
373   case Intrinsic::INTRINSIC:
374 #include "llvm/IR/ConstrainedOps.def"
375     return true;
376 #undef INSTRUCTION
377   default:
378     return false;
379   }
380 }
381 
clearArguments()382 void Function::clearArguments() {
383   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
384     A.setName("");
385     A.~Argument();
386   }
387   std::allocator<Argument>().deallocate(Arguments, NumArgs);
388   Arguments = nullptr;
389 }
390 
stealArgumentListFrom(Function & Src)391 void Function::stealArgumentListFrom(Function &Src) {
392   assert(isDeclaration() && "Expected no references to current arguments");
393 
394   // Drop the current arguments, if any, and set the lazy argument bit.
395   if (!hasLazyArguments()) {
396     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
397                         [](const Argument &A) { return A.use_empty(); }) &&
398            "Expected arguments to be unused in declaration");
399     clearArguments();
400     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
401   }
402 
403   // Nothing to steal if Src has lazy arguments.
404   if (Src.hasLazyArguments())
405     return;
406 
407   // Steal arguments from Src, and fix the lazy argument bits.
408   assert(arg_size() == Src.arg_size());
409   Arguments = Src.Arguments;
410   Src.Arguments = nullptr;
411   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
412     // FIXME: This does the work of transferNodesFromList inefficiently.
413     SmallString<128> Name;
414     if (A.hasName())
415       Name = A.getName();
416     if (!Name.empty())
417       A.setName("");
418     A.setParent(this);
419     if (!Name.empty())
420       A.setName(Name);
421   }
422 
423   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
424   assert(!hasLazyArguments());
425   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
426 }
427 
428 // dropAllReferences() - This function causes all the subinstructions to "let
429 // go" of all references that they are maintaining.  This allows one to
430 // 'delete' a whole class at a time, even though there may be circular
431 // references... first all references are dropped, and all use counts go to
432 // zero.  Then everything is deleted for real.  Note that no operations are
433 // valid on an object that has "dropped all references", except operator
434 // delete.
435 //
dropAllReferences()436 void Function::dropAllReferences() {
437   setIsMaterializable(false);
438 
439   for (BasicBlock &BB : *this)
440     BB.dropAllReferences();
441 
442   // Delete all basic blocks. They are now unused, except possibly by
443   // blockaddresses, but BasicBlock's destructor takes care of those.
444   while (!BasicBlocks.empty())
445     BasicBlocks.begin()->eraseFromParent();
446 
447   // Drop uses of any optional data (real or placeholder).
448   if (getNumOperands()) {
449     User::dropAllReferences();
450     setNumHungOffUseOperands(0);
451     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
452   }
453 
454   // Metadata is stored in a side-table.
455   clearMetadata();
456 }
457 
addAttribute(unsigned i,Attribute::AttrKind Kind)458 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
459   AttributeList PAL = getAttributes();
460   PAL = PAL.addAttribute(getContext(), i, Kind);
461   setAttributes(PAL);
462 }
463 
addAttribute(unsigned i,Attribute Attr)464 void Function::addAttribute(unsigned i, Attribute Attr) {
465   AttributeList PAL = getAttributes();
466   PAL = PAL.addAttribute(getContext(), i, Attr);
467   setAttributes(PAL);
468 }
469 
addAttributes(unsigned i,const AttrBuilder & Attrs)470 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
471   AttributeList PAL = getAttributes();
472   PAL = PAL.addAttributes(getContext(), i, Attrs);
473   setAttributes(PAL);
474 }
475 
addParamAttr(unsigned ArgNo,Attribute::AttrKind Kind)476 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
477   AttributeList PAL = getAttributes();
478   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
479   setAttributes(PAL);
480 }
481 
addParamAttr(unsigned ArgNo,Attribute Attr)482 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
483   AttributeList PAL = getAttributes();
484   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
485   setAttributes(PAL);
486 }
487 
addParamAttrs(unsigned ArgNo,const AttrBuilder & Attrs)488 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
489   AttributeList PAL = getAttributes();
490   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
491   setAttributes(PAL);
492 }
493 
removeAttribute(unsigned i,Attribute::AttrKind Kind)494 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
495   AttributeList PAL = getAttributes();
496   PAL = PAL.removeAttribute(getContext(), i, Kind);
497   setAttributes(PAL);
498 }
499 
removeAttribute(unsigned i,StringRef Kind)500 void Function::removeAttribute(unsigned i, StringRef Kind) {
501   AttributeList PAL = getAttributes();
502   PAL = PAL.removeAttribute(getContext(), i, Kind);
503   setAttributes(PAL);
504 }
505 
removeAttributes(unsigned i,const AttrBuilder & Attrs)506 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
507   AttributeList PAL = getAttributes();
508   PAL = PAL.removeAttributes(getContext(), i, Attrs);
509   setAttributes(PAL);
510 }
511 
removeParamAttr(unsigned ArgNo,Attribute::AttrKind Kind)512 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
513   AttributeList PAL = getAttributes();
514   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
515   setAttributes(PAL);
516 }
517 
removeParamAttr(unsigned ArgNo,StringRef Kind)518 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
519   AttributeList PAL = getAttributes();
520   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
521   setAttributes(PAL);
522 }
523 
removeParamAttrs(unsigned ArgNo,const AttrBuilder & Attrs)524 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
525   AttributeList PAL = getAttributes();
526   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
527   setAttributes(PAL);
528 }
529 
addDereferenceableAttr(unsigned i,uint64_t Bytes)530 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
531   AttributeList PAL = getAttributes();
532   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
533   setAttributes(PAL);
534 }
535 
addDereferenceableParamAttr(unsigned ArgNo,uint64_t Bytes)536 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
537   AttributeList PAL = getAttributes();
538   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
539   setAttributes(PAL);
540 }
541 
addDereferenceableOrNullAttr(unsigned i,uint64_t Bytes)542 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
543   AttributeList PAL = getAttributes();
544   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
545   setAttributes(PAL);
546 }
547 
addDereferenceableOrNullParamAttr(unsigned ArgNo,uint64_t Bytes)548 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
549                                                  uint64_t Bytes) {
550   AttributeList PAL = getAttributes();
551   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
552   setAttributes(PAL);
553 }
554 
getGC() const555 const std::string &Function::getGC() const {
556   assert(hasGC() && "Function has no collector");
557   return getContext().getGC(*this);
558 }
559 
setGC(std::string Str)560 void Function::setGC(std::string Str) {
561   setValueSubclassDataBit(14, !Str.empty());
562   getContext().setGC(*this, std::move(Str));
563 }
564 
clearGC()565 void Function::clearGC() {
566   if (!hasGC())
567     return;
568   getContext().deleteGC(*this);
569   setValueSubclassDataBit(14, false);
570 }
571 
572 /// Copy all additional attributes (those not needed to create a Function) from
573 /// the Function Src to this one.
copyAttributesFrom(const Function * Src)574 void Function::copyAttributesFrom(const Function *Src) {
575   GlobalObject::copyAttributesFrom(Src);
576   setCallingConv(Src->getCallingConv());
577   setAttributes(Src->getAttributes());
578   if (Src->hasGC())
579     setGC(Src->getGC());
580   else
581     clearGC();
582   if (Src->hasPersonalityFn())
583     setPersonalityFn(Src->getPersonalityFn());
584   if (Src->hasPrefixData())
585     setPrefixData(Src->getPrefixData());
586   if (Src->hasPrologueData())
587     setPrologueData(Src->getPrologueData());
588 }
589 
590 /// Table of string intrinsic names indexed by enum value.
591 static const char * const IntrinsicNameTable[] = {
592   "not_intrinsic",
593 #define GET_INTRINSIC_NAME_TABLE
594 #include "llvm/IR/IntrinsicImpl.inc"
595 #undef GET_INTRINSIC_NAME_TABLE
596 };
597 
598 /// Table of per-target intrinsic name tables.
599 #define GET_INTRINSIC_TARGET_DATA
600 #include "llvm/IR/IntrinsicImpl.inc"
601 #undef GET_INTRINSIC_TARGET_DATA
602 
603 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
604 /// target as \c Name, or the generic table if \c Name is not target specific.
605 ///
606 /// Returns the relevant slice of \c IntrinsicNameTable
findTargetSubtable(StringRef Name)607 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
608   assert(Name.startswith("llvm."));
609 
610   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
611   // Drop "llvm." and take the first dotted component. That will be the target
612   // if this is target specific.
613   StringRef Target = Name.drop_front(5).split('.').first;
614   auto It = partition_point(
615       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
616   // We've either found the target or just fall back to the generic set, which
617   // is always first.
618   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
619   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
620 }
621 
622 /// This does the actual lookup of an intrinsic ID which
623 /// matches the given function name.
lookupIntrinsicID(StringRef Name)624 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
625   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
626   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
627   if (Idx == -1)
628     return Intrinsic::not_intrinsic;
629 
630   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
631   // an index into a sub-table.
632   int Adjust = NameTable.data() - IntrinsicNameTable;
633   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
634 
635   // If the intrinsic is not overloaded, require an exact match. If it is
636   // overloaded, require either exact or prefix match.
637   const auto MatchSize = strlen(NameTable[Idx]);
638   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
639   bool IsExactMatch = Name.size() == MatchSize;
640   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
641                                                      : Intrinsic::not_intrinsic;
642 }
643 
recalculateIntrinsicID()644 void Function::recalculateIntrinsicID() {
645   StringRef Name = getName();
646   if (!Name.startswith("llvm.")) {
647     HasLLVMReservedName = false;
648     IntID = Intrinsic::not_intrinsic;
649     return;
650   }
651   HasLLVMReservedName = true;
652   IntID = lookupIntrinsicID(Name);
653 }
654 
655 /// Returns a stable mangling for the type specified for use in the name
656 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
657 /// of named types is simply their name.  Manglings for unnamed types consist
658 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
659 /// combined with the mangling of their component types.  A vararg function
660 /// type will have a suffix of 'vararg'.  Since function types can contain
661 /// other function types, we close a function type mangling with suffix 'f'
662 /// which can't be confused with it's prefix.  This ensures we don't have
663 /// collisions between two unrelated function types. Otherwise, you might
664 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
665 ///
getMangledTypeStr(Type * Ty)666 static std::string getMangledTypeStr(Type* Ty) {
667   std::string Result;
668   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
669     Result += "p" + utostr(PTyp->getAddressSpace()) +
670       getMangledTypeStr(PTyp->getElementType());
671   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
672     Result += "a" + utostr(ATyp->getNumElements()) +
673       getMangledTypeStr(ATyp->getElementType());
674   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
675     if (!STyp->isLiteral()) {
676       Result += "s_";
677       Result += STyp->getName();
678     } else {
679       Result += "sl_";
680       for (auto Elem : STyp->elements())
681         Result += getMangledTypeStr(Elem);
682     }
683     // Ensure nested structs are distinguishable.
684     Result += "s";
685   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
686     Result += "f_" + getMangledTypeStr(FT->getReturnType());
687     for (size_t i = 0; i < FT->getNumParams(); i++)
688       Result += getMangledTypeStr(FT->getParamType(i));
689     if (FT->isVarArg())
690       Result += "vararg";
691     // Ensure nested function types are distinguishable.
692     Result += "f";
693   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
694     ElementCount EC = VTy->getElementCount();
695     if (EC.Scalable)
696       Result += "nx";
697     Result += "v" + utostr(EC.Min) + getMangledTypeStr(VTy->getElementType());
698   } else if (Ty) {
699     switch (Ty->getTypeID()) {
700     default: llvm_unreachable("Unhandled type");
701     case Type::VoidTyID:      Result += "isVoid";   break;
702     case Type::MetadataTyID:  Result += "Metadata"; break;
703     case Type::HalfTyID:      Result += "f16";      break;
704     case Type::BFloatTyID:    Result += "bf16";     break;
705     case Type::FloatTyID:     Result += "f32";      break;
706     case Type::DoubleTyID:    Result += "f64";      break;
707     case Type::X86_FP80TyID:  Result += "f80";      break;
708     case Type::FP128TyID:     Result += "f128";     break;
709     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
710     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
711     case Type::IntegerTyID:
712       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
713       break;
714     }
715   }
716   return Result;
717 }
718 
getName(ID id)719 StringRef Intrinsic::getName(ID id) {
720   assert(id < num_intrinsics && "Invalid intrinsic ID!");
721   assert(!Intrinsic::isOverloaded(id) &&
722          "This version of getName does not support overloading");
723   return IntrinsicNameTable[id];
724 }
725 
getName(ID id,ArrayRef<Type * > Tys)726 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
727   assert(id < num_intrinsics && "Invalid intrinsic ID!");
728   std::string Result(IntrinsicNameTable[id]);
729   for (Type *Ty : Tys) {
730     Result += "." + getMangledTypeStr(Ty);
731   }
732   return Result;
733 }
734 
735 /// IIT_Info - These are enumerators that describe the entries returned by the
736 /// getIntrinsicInfoTableEntries function.
737 ///
738 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
739 enum IIT_Info {
740   // Common values should be encoded with 0-15.
741   IIT_Done = 0,
742   IIT_I1   = 1,
743   IIT_I8   = 2,
744   IIT_I16  = 3,
745   IIT_I32  = 4,
746   IIT_I64  = 5,
747   IIT_F16  = 6,
748   IIT_F32  = 7,
749   IIT_F64  = 8,
750   IIT_V2   = 9,
751   IIT_V4   = 10,
752   IIT_V8   = 11,
753   IIT_V16  = 12,
754   IIT_V32  = 13,
755   IIT_PTR  = 14,
756   IIT_ARG  = 15,
757 
758   // Values from 16+ are only encodable with the inefficient encoding.
759   IIT_V64  = 16,
760   IIT_MMX  = 17,
761   IIT_TOKEN = 18,
762   IIT_METADATA = 19,
763   IIT_EMPTYSTRUCT = 20,
764   IIT_STRUCT2 = 21,
765   IIT_STRUCT3 = 22,
766   IIT_STRUCT4 = 23,
767   IIT_STRUCT5 = 24,
768   IIT_EXTEND_ARG = 25,
769   IIT_TRUNC_ARG = 26,
770   IIT_ANYPTR = 27,
771   IIT_V1   = 28,
772   IIT_VARARG = 29,
773   IIT_HALF_VEC_ARG = 30,
774   IIT_SAME_VEC_WIDTH_ARG = 31,
775   IIT_PTR_TO_ARG = 32,
776   IIT_PTR_TO_ELT = 33,
777   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
778   IIT_I128 = 35,
779   IIT_V512 = 36,
780   IIT_V1024 = 37,
781   IIT_STRUCT6 = 38,
782   IIT_STRUCT7 = 39,
783   IIT_STRUCT8 = 40,
784   IIT_F128 = 41,
785   IIT_VEC_ELEMENT = 42,
786   IIT_SCALABLE_VEC = 43,
787   IIT_SUBDIVIDE2_ARG = 44,
788   IIT_SUBDIVIDE4_ARG = 45,
789   IIT_VEC_OF_BITCASTS_TO_INT = 46,
790   IIT_V128 = 47,
791   IIT_BF16 = 48,
792   IIT_IFATPTR64 = 49,
793   IIT_IFATPTR128 = 50,
794   IIT_IFATPTR256 = 51,
795   IIT_IFATPTR512 = 52,
796   IIT_IFATPTRAny = 53,
797 };
798 
DecodeIITType(unsigned & NextElt,ArrayRef<unsigned char> Infos,IIT_Info LastInfo,SmallVectorImpl<Intrinsic::IITDescriptor> & OutputTable)799 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
800                       IIT_Info LastInfo,
801                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
802   using namespace Intrinsic;
803 
804   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
805 
806   IIT_Info Info = IIT_Info(Infos[NextElt++]);
807   unsigned StructElts = 2;
808 
809   switch (Info) {
810   case IIT_Done:
811     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
812     return;
813   case IIT_VARARG:
814     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
815     return;
816   case IIT_MMX:
817     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
818     return;
819   case IIT_TOKEN:
820     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
821     return;
822   case IIT_METADATA:
823     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
824     return;
825   case IIT_F16:
826     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
827     return;
828   case IIT_BF16:
829     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
830     return;
831   case IIT_F32:
832     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
833     return;
834   case IIT_F64:
835     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
836     return;
837   case IIT_F128:
838     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
839     return;
840   case IIT_I1:
841     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
842     return;
843   case IIT_I8:
844     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
845     return;
846   case IIT_I16:
847     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
848     return;
849   case IIT_I32:
850     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
851     return;
852   case IIT_I64:
853     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
854     return;
855   case IIT_I128:
856     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
857     return;
858   case IIT_V1:
859     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
860     DecodeIITType(NextElt, Infos, Info, OutputTable);
861     return;
862   case IIT_V2:
863     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
864     DecodeIITType(NextElt, Infos, Info, OutputTable);
865     return;
866   case IIT_V4:
867     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
868     DecodeIITType(NextElt, Infos, Info, OutputTable);
869     return;
870   case IIT_V8:
871     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
872     DecodeIITType(NextElt, Infos, Info, OutputTable);
873     return;
874   case IIT_V16:
875     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
876     DecodeIITType(NextElt, Infos, Info, OutputTable);
877     return;
878   case IIT_V32:
879     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
880     DecodeIITType(NextElt, Infos, Info, OutputTable);
881     return;
882   case IIT_V64:
883     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
884     DecodeIITType(NextElt, Infos, Info, OutputTable);
885     return;
886   case IIT_V128:
887     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
888     DecodeIITType(NextElt, Infos, Info, OutputTable);
889     return;
890   case IIT_V512:
891     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
892     DecodeIITType(NextElt, Infos, Info, OutputTable);
893     return;
894   case IIT_V1024:
895     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
896     DecodeIITType(NextElt, Infos, Info, OutputTable);
897     return;
898   case IIT_PTR:
899     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
900     DecodeIITType(NextElt, Infos, Info, OutputTable);
901     return;
902   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
903     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
904                                              Infos[NextElt++]));
905     DecodeIITType(NextElt, Infos, Info, OutputTable);
906     return;
907   }
908   case IIT_IFATPTR64:
909   case IIT_IFATPTR128:
910   case IIT_IFATPTR256:
911   case IIT_IFATPTR512:
912   case IIT_IFATPTRAny: {
913     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 200));
914     DecodeIITType(++NextElt, Infos, Info, OutputTable);
915     return;
916   }
917   case IIT_ARG: {
918     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
919     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
920     return;
921   }
922   case IIT_EXTEND_ARG: {
923     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
924     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
925                                              ArgInfo));
926     return;
927   }
928   case IIT_TRUNC_ARG: {
929     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
930     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
931                                              ArgInfo));
932     return;
933   }
934   case IIT_HALF_VEC_ARG: {
935     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
936     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
937                                              ArgInfo));
938     return;
939   }
940   case IIT_SAME_VEC_WIDTH_ARG: {
941     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
942     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
943                                              ArgInfo));
944     return;
945   }
946   case IIT_PTR_TO_ARG: {
947     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
948     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
949                                              ArgInfo));
950     return;
951   }
952   case IIT_PTR_TO_ELT: {
953     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
954     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
955     return;
956   }
957   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
958     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
959     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
960     OutputTable.push_back(
961         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
962     return;
963   }
964   case IIT_EMPTYSTRUCT:
965     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
966     return;
967   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
968   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
969   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
970   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
971   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
972   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
973   case IIT_STRUCT2: {
974     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
975 
976     for (unsigned i = 0; i != StructElts; ++i)
977       DecodeIITType(NextElt, Infos, Info, OutputTable);
978     return;
979   }
980   case IIT_SUBDIVIDE2_ARG: {
981     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
982     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
983                                              ArgInfo));
984     return;
985   }
986   case IIT_SUBDIVIDE4_ARG: {
987     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
988     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
989                                              ArgInfo));
990     return;
991   }
992   case IIT_VEC_ELEMENT: {
993     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
994     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
995                                              ArgInfo));
996     return;
997   }
998   case IIT_SCALABLE_VEC: {
999     DecodeIITType(NextElt, Infos, Info, OutputTable);
1000     return;
1001   }
1002   case IIT_VEC_OF_BITCASTS_TO_INT: {
1003     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1004     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1005                                              ArgInfo));
1006     return;
1007   }
1008   }
1009   llvm_unreachable("unhandled");
1010 }
1011 
1012 #define GET_INTRINSIC_GENERATOR_GLOBAL
1013 #include "llvm/IR/IntrinsicImpl.inc"
1014 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1015 
getIntrinsicInfoTableEntries(ID id,SmallVectorImpl<IITDescriptor> & T)1016 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1017                                              SmallVectorImpl<IITDescriptor> &T){
1018   // Check to see if the intrinsic's type was expressible by the table.
1019   unsigned TableVal = IIT_Table[id-1];
1020 
1021   // Decode the TableVal into an array of IITValues.
1022   SmallVector<unsigned char, 8> IITValues;
1023   ArrayRef<unsigned char> IITEntries;
1024   unsigned NextElt = 0;
1025   if ((TableVal >> 31) != 0) {
1026     // This is an offset into the IIT_LongEncodingTable.
1027     IITEntries = IIT_LongEncodingTable;
1028 
1029     // Strip sentinel bit.
1030     NextElt = (TableVal << 1) >> 1;
1031   } else {
1032     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1033     // into a single word in the table itself, decode it now.
1034     do {
1035       IITValues.push_back(TableVal & 0xF);
1036       TableVal >>= 4;
1037     } while (TableVal);
1038 
1039     IITEntries = IITValues;
1040     NextElt = 0;
1041   }
1042 
1043   // Okay, decode the table into the output vector of IITDescriptors.
1044   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1045   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1046     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1047 }
1048 
DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> & Infos,ArrayRef<Type * > Tys,LLVMContext & Context)1049 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1050                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1051   using namespace Intrinsic;
1052 
1053   IITDescriptor D = Infos.front();
1054   Infos = Infos.slice(1);
1055 
1056   switch (D.Kind) {
1057   case IITDescriptor::Void: return Type::getVoidTy(Context);
1058   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1059   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1060   case IITDescriptor::Token: return Type::getTokenTy(Context);
1061   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1062   case IITDescriptor::Half: return Type::getHalfTy(Context);
1063   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1064   case IITDescriptor::Float: return Type::getFloatTy(Context);
1065   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1066   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1067 
1068   case IITDescriptor::Integer:
1069     return IntegerType::get(Context, D.Integer_Width);
1070   case IITDescriptor::Vector:
1071     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1072                            D.Vector_Width);
1073   case IITDescriptor::Pointer:
1074     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1075                             D.Pointer_AddressSpace);
1076   case IITDescriptor::Struct: {
1077     SmallVector<Type *, 8> Elts;
1078     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1079       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1080     return StructType::get(Context, Elts);
1081   }
1082   case IITDescriptor::Argument:
1083     return Tys[D.getArgumentNumber()];
1084   case IITDescriptor::ExtendArgument: {
1085     Type *Ty = Tys[D.getArgumentNumber()];
1086     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1087       return VectorType::getExtendedElementVectorType(VTy);
1088 
1089     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1090   }
1091   case IITDescriptor::TruncArgument: {
1092     Type *Ty = Tys[D.getArgumentNumber()];
1093     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1094       return VectorType::getTruncatedElementVectorType(VTy);
1095 
1096     IntegerType *ITy = cast<IntegerType>(Ty);
1097     assert(ITy->getBitWidth() % 2 == 0);
1098     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1099   }
1100   case IITDescriptor::Subdivide2Argument:
1101   case IITDescriptor::Subdivide4Argument: {
1102     Type *Ty = Tys[D.getArgumentNumber()];
1103     VectorType *VTy = dyn_cast<VectorType>(Ty);
1104     assert(VTy && "Expected an argument of Vector Type");
1105     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1106     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1107   }
1108   case IITDescriptor::HalfVecArgument:
1109     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1110                                                   Tys[D.getArgumentNumber()]));
1111   case IITDescriptor::SameVecWidthArgument: {
1112     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1113     Type *Ty = Tys[D.getArgumentNumber()];
1114     if (auto *VTy = dyn_cast<VectorType>(Ty))
1115       return VectorType::get(EltTy, VTy->getElementCount());
1116     return EltTy;
1117   }
1118   case IITDescriptor::PtrToArgument: {
1119     Type *Ty = Tys[D.getArgumentNumber()];
1120     return PointerType::getUnqual(Ty);
1121   }
1122   case IITDescriptor::PtrToElt: {
1123     Type *Ty = Tys[D.getArgumentNumber()];
1124     VectorType *VTy = dyn_cast<VectorType>(Ty);
1125     if (!VTy)
1126       llvm_unreachable("Expected an argument of Vector Type");
1127     Type *EltTy = VTy->getElementType();
1128     return PointerType::getUnqual(EltTy);
1129   }
1130   case IITDescriptor::VecElementArgument: {
1131     Type *Ty = Tys[D.getArgumentNumber()];
1132     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1133       return VTy->getElementType();
1134     llvm_unreachable("Expected an argument of Vector Type");
1135   }
1136   case IITDescriptor::VecOfBitcastsToInt: {
1137     Type *Ty = Tys[D.getArgumentNumber()];
1138     VectorType *VTy = dyn_cast<VectorType>(Ty);
1139     assert(VTy && "Expected an argument of Vector Type");
1140     return VectorType::getInteger(VTy);
1141   }
1142   case IITDescriptor::VecOfAnyPtrsToElt:
1143     // Return the overloaded type (which determines the pointers address space)
1144     return Tys[D.getOverloadArgNumber()];
1145   }
1146   llvm_unreachable("unhandled");
1147 }
1148 
getType(LLVMContext & Context,ID id,ArrayRef<Type * > Tys)1149 FunctionType *Intrinsic::getType(LLVMContext &Context,
1150                                  ID id, ArrayRef<Type*> Tys) {
1151   SmallVector<IITDescriptor, 8> Table;
1152   getIntrinsicInfoTableEntries(id, Table);
1153 
1154   ArrayRef<IITDescriptor> TableRef = Table;
1155   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1156 
1157   SmallVector<Type*, 8> ArgTys;
1158   while (!TableRef.empty())
1159     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1160 
1161   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1162   // If we see void type as the type of the last argument, it is vararg intrinsic
1163   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1164     ArgTys.pop_back();
1165     return FunctionType::get(ResultTy, ArgTys, true);
1166   }
1167   return FunctionType::get(ResultTy, ArgTys, false);
1168 }
1169 
isOverloaded(ID id)1170 bool Intrinsic::isOverloaded(ID id) {
1171 #define GET_INTRINSIC_OVERLOAD_TABLE
1172 #include "llvm/IR/IntrinsicImpl.inc"
1173 #undef GET_INTRINSIC_OVERLOAD_TABLE
1174 }
1175 
isLeaf(ID id)1176 bool Intrinsic::isLeaf(ID id) {
1177   switch (id) {
1178   default:
1179     return true;
1180 
1181   case Intrinsic::experimental_gc_statepoint:
1182   case Intrinsic::experimental_patchpoint_void:
1183   case Intrinsic::experimental_patchpoint_i64:
1184     return false;
1185   }
1186 }
1187 
1188 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1189 #define GET_INTRINSIC_ATTRIBUTES
1190 #include "llvm/IR/IntrinsicImpl.inc"
1191 #undef GET_INTRINSIC_ATTRIBUTES
1192 
getDeclaration(Module * M,ID id,ArrayRef<Type * > Tys)1193 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1194   // There can never be multiple globals with the same name of different types,
1195   // because intrinsics must be a specific type.
1196   return cast<Function>(
1197       M->getOrInsertFunction(getName(id, Tys),
1198                              getType(M->getContext(), id, Tys))
1199           .getCallee());
1200 }
1201 
1202 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1203 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1204 #include "llvm/IR/IntrinsicImpl.inc"
1205 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1206 
1207 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1208 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1209 #include "llvm/IR/IntrinsicImpl.inc"
1210 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1211 
1212 using DeferredIntrinsicMatchPair =
1213     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1214 
matchIntrinsicType(Type * Ty,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys,SmallVectorImpl<DeferredIntrinsicMatchPair> & DeferredChecks,bool IsDeferredCheck)1215 static bool matchIntrinsicType(
1216     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1217     SmallVectorImpl<Type *> &ArgTys,
1218     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1219     bool IsDeferredCheck) {
1220   using namespace Intrinsic;
1221 
1222   // If we ran out of descriptors, there are too many arguments.
1223   if (Infos.empty()) return true;
1224 
1225   // Do this before slicing off the 'front' part
1226   auto InfosRef = Infos;
1227   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1228     DeferredChecks.emplace_back(T, InfosRef);
1229     return false;
1230   };
1231 
1232   IITDescriptor D = Infos.front();
1233   Infos = Infos.slice(1);
1234 
1235   switch (D.Kind) {
1236     case IITDescriptor::Void: return !Ty->isVoidTy();
1237     case IITDescriptor::VarArg: return true;
1238     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1239     case IITDescriptor::Token: return !Ty->isTokenTy();
1240     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1241     case IITDescriptor::Half: return !Ty->isHalfTy();
1242     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1243     case IITDescriptor::Float: return !Ty->isFloatTy();
1244     case IITDescriptor::Double: return !Ty->isDoubleTy();
1245     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1246     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1247     case IITDescriptor::Vector: {
1248       VectorType *VT = dyn_cast<VectorType>(Ty);
1249       return !VT || VT->getElementCount() != D.Vector_Width ||
1250              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1251                                 DeferredChecks, IsDeferredCheck);
1252     }
1253     case IITDescriptor::Pointer: {
1254       PointerType *PT = dyn_cast<PointerType>(Ty);
1255       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1256              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1257                                 DeferredChecks, IsDeferredCheck);
1258     }
1259 
1260     case IITDescriptor::Struct: {
1261       StructType *ST = dyn_cast<StructType>(Ty);
1262       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1263         return true;
1264 
1265       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1266         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1267                                DeferredChecks, IsDeferredCheck))
1268           return true;
1269       return false;
1270     }
1271 
1272     case IITDescriptor::Argument:
1273       // If this is the second occurrence of an argument,
1274       // verify that the later instance matches the previous instance.
1275       if (D.getArgumentNumber() < ArgTys.size())
1276         return Ty != ArgTys[D.getArgumentNumber()];
1277 
1278       if (D.getArgumentNumber() > ArgTys.size() ||
1279           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1280         return IsDeferredCheck || DeferCheck(Ty);
1281 
1282       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1283              "Table consistency error");
1284       ArgTys.push_back(Ty);
1285 
1286       switch (D.getArgumentKind()) {
1287         case IITDescriptor::AK_Any:        return false; // Success
1288         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1289         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1290         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1291         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1292         default:                           break;
1293       }
1294       llvm_unreachable("all argument kinds not covered");
1295 
1296     case IITDescriptor::ExtendArgument: {
1297       // If this is a forward reference, defer the check for later.
1298       if (D.getArgumentNumber() >= ArgTys.size())
1299         return IsDeferredCheck || DeferCheck(Ty);
1300 
1301       Type *NewTy = ArgTys[D.getArgumentNumber()];
1302       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1303         NewTy = VectorType::getExtendedElementVectorType(VTy);
1304       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1305         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1306       else
1307         return true;
1308 
1309       return Ty != NewTy;
1310     }
1311     case IITDescriptor::TruncArgument: {
1312       // If this is a forward reference, defer the check for later.
1313       if (D.getArgumentNumber() >= ArgTys.size())
1314         return IsDeferredCheck || DeferCheck(Ty);
1315 
1316       Type *NewTy = ArgTys[D.getArgumentNumber()];
1317       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1318         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1319       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1320         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1321       else
1322         return true;
1323 
1324       return Ty != NewTy;
1325     }
1326     case IITDescriptor::HalfVecArgument:
1327       // If this is a forward reference, defer the check for later.
1328       if (D.getArgumentNumber() >= ArgTys.size())
1329         return IsDeferredCheck || DeferCheck(Ty);
1330       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1331              VectorType::getHalfElementsVectorType(
1332                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1333     case IITDescriptor::SameVecWidthArgument: {
1334       if (D.getArgumentNumber() >= ArgTys.size()) {
1335         // Defer check and subsequent check for the vector element type.
1336         Infos = Infos.slice(1);
1337         return IsDeferredCheck || DeferCheck(Ty);
1338       }
1339       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1340       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1341       // Both must be vectors of the same number of elements or neither.
1342       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1343         return true;
1344       Type *EltTy = Ty;
1345       if (ThisArgType) {
1346         if (ReferenceType->getElementCount() !=
1347             ThisArgType->getElementCount())
1348           return true;
1349         EltTy = ThisArgType->getElementType();
1350       }
1351       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1352                                 IsDeferredCheck);
1353     }
1354     case IITDescriptor::PtrToArgument: {
1355       if (D.getArgumentNumber() >= ArgTys.size())
1356         return IsDeferredCheck || DeferCheck(Ty);
1357       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1358       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1359       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1360     }
1361     case IITDescriptor::PtrToElt: {
1362       if (D.getArgumentNumber() >= ArgTys.size())
1363         return IsDeferredCheck || DeferCheck(Ty);
1364       VectorType * ReferenceType =
1365         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1366       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1367 
1368       return (!ThisArgType || !ReferenceType ||
1369               ThisArgType->getElementType() != ReferenceType->getElementType());
1370     }
1371     case IITDescriptor::VecOfAnyPtrsToElt: {
1372       unsigned RefArgNumber = D.getRefArgNumber();
1373       if (RefArgNumber >= ArgTys.size()) {
1374         if (IsDeferredCheck)
1375           return true;
1376         // If forward referencing, already add the pointer-vector type and
1377         // defer the checks for later.
1378         ArgTys.push_back(Ty);
1379         return DeferCheck(Ty);
1380       }
1381 
1382       if (!IsDeferredCheck){
1383         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1384                "Table consistency error");
1385         ArgTys.push_back(Ty);
1386       }
1387 
1388       // Verify the overloaded type "matches" the Ref type.
1389       // i.e. Ty is a vector with the same width as Ref.
1390       // Composed of pointers to the same element type as Ref.
1391       VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1392       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1393       if (!ThisArgVecTy || !ReferenceType ||
1394           (ReferenceType->getNumElements() != ThisArgVecTy->getNumElements()))
1395         return true;
1396       PointerType *ThisArgEltTy =
1397           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1398       if (!ThisArgEltTy)
1399         return true;
1400       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1401     }
1402     case IITDescriptor::VecElementArgument: {
1403       if (D.getArgumentNumber() >= ArgTys.size())
1404         return IsDeferredCheck ? true : DeferCheck(Ty);
1405       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1406       return !ReferenceType || Ty != ReferenceType->getElementType();
1407     }
1408     case IITDescriptor::Subdivide2Argument:
1409     case IITDescriptor::Subdivide4Argument: {
1410       // If this is a forward reference, defer the check for later.
1411       if (D.getArgumentNumber() >= ArgTys.size())
1412         return IsDeferredCheck || DeferCheck(Ty);
1413 
1414       Type *NewTy = ArgTys[D.getArgumentNumber()];
1415       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1416         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1417         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1418         return Ty != NewTy;
1419       }
1420       return true;
1421     }
1422     case IITDescriptor::VecOfBitcastsToInt: {
1423       if (D.getArgumentNumber() >= ArgTys.size())
1424         return IsDeferredCheck || DeferCheck(Ty);
1425       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1426       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1427       if (!ThisArgVecTy || !ReferenceType)
1428         return true;
1429       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1430     }
1431   }
1432   llvm_unreachable("unhandled");
1433 }
1434 
1435 Intrinsic::MatchIntrinsicTypesResult
matchIntrinsicSignature(FunctionType * FTy,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys)1436 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1437                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1438                                    SmallVectorImpl<Type *> &ArgTys) {
1439   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1440   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1441                          false))
1442     return MatchIntrinsicTypes_NoMatchRet;
1443 
1444   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1445 
1446   for (auto Ty : FTy->params())
1447     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1448       return MatchIntrinsicTypes_NoMatchArg;
1449 
1450   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1451     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1452     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1453                            true))
1454       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1455                                          : MatchIntrinsicTypes_NoMatchArg;
1456   }
1457 
1458   return MatchIntrinsicTypes_Match;
1459 }
1460 
1461 bool
matchIntrinsicVarArg(bool isVarArg,ArrayRef<Intrinsic::IITDescriptor> & Infos)1462 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1463                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1464   // If there are no descriptors left, then it can't be a vararg.
1465   if (Infos.empty())
1466     return isVarArg;
1467 
1468   // There should be only one descriptor remaining at this point.
1469   if (Infos.size() != 1)
1470     return true;
1471 
1472   // Check and verify the descriptor.
1473   IITDescriptor D = Infos.front();
1474   Infos = Infos.slice(1);
1475   if (D.Kind == IITDescriptor::VarArg)
1476     return !isVarArg;
1477 
1478   return true;
1479 }
1480 
getIntrinsicSignature(Function * F,SmallVectorImpl<Type * > & ArgTys)1481 bool Intrinsic::getIntrinsicSignature(Function *F,
1482                                       SmallVectorImpl<Type *> &ArgTys) {
1483   Intrinsic::ID ID = F->getIntrinsicID();
1484   if (!ID)
1485     return false;
1486 
1487   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1488   getIntrinsicInfoTableEntries(ID, Table);
1489   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1490 
1491   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1492                                          ArgTys) !=
1493       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1494     return false;
1495   }
1496   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1497                                       TableRef))
1498     return false;
1499   return true;
1500 }
1501 
remangleIntrinsicFunction(Function * F)1502 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1503   SmallVector<Type *, 4> ArgTys;
1504   if (!getIntrinsicSignature(F, ArgTys))
1505     return None;
1506 
1507   Intrinsic::ID ID = F->getIntrinsicID();
1508   StringRef Name = F->getName();
1509   if (Name == Intrinsic::getName(ID, ArgTys))
1510     return None;
1511 
1512   // Don't remangle va_start, etc if it already had an address space qualifier
1513   if (ID == Intrinsic::vastart || ID == Intrinsic::vaend ||
1514       ID == Intrinsic::vacopy) {
1515     if (Name.contains('.'))
1516       return None;
1517   }
1518 
1519   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1520   NewDecl->setCallingConv(F->getCallingConv());
1521   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1522          "Shouldn't change the signature");
1523   return NewDecl;
1524 }
1525 
1526 /// hasAddressTaken - returns true if there are any uses of this function
1527 /// other than direct calls or invokes to it. Optionally ignores callback
1528 /// uses.
hasAddressTaken(const User ** PutOffender,bool IgnoreCallbackUses) const1529 bool Function::hasAddressTaken(const User **PutOffender,
1530                                bool IgnoreCallbackUses) const {
1531   for (const Use &U : uses()) {
1532     const User *FU = U.getUser();
1533     if (isa<BlockAddress>(FU))
1534       continue;
1535 
1536     if (IgnoreCallbackUses) {
1537       AbstractCallSite ACS(&U);
1538       if (ACS && ACS.isCallbackCall())
1539         continue;
1540     }
1541 
1542     const auto *Call = dyn_cast<CallBase>(FU);
1543     if (!Call) {
1544       if (PutOffender)
1545         *PutOffender = FU;
1546       return true;
1547     }
1548     if (!Call->isCallee(&U)) {
1549       if (PutOffender)
1550         *PutOffender = FU;
1551       return true;
1552     }
1553   }
1554   return false;
1555 }
1556 
isDefTriviallyDead() const1557 bool Function::isDefTriviallyDead() const {
1558   // Check the linkage
1559   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1560       !hasAvailableExternallyLinkage())
1561     return false;
1562 
1563   // Check if the function is used by anything other than a blockaddress.
1564   for (const User *U : users())
1565     if (!isa<BlockAddress>(U))
1566       return false;
1567 
1568   return true;
1569 }
1570 
1571 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1572 /// setjmp or other function that gcc recognizes as "returning twice".
callsFunctionThatReturnsTwice() const1573 bool Function::callsFunctionThatReturnsTwice() const {
1574   for (const Instruction &I : instructions(this))
1575     if (const auto *Call = dyn_cast<CallBase>(&I))
1576       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1577         return true;
1578 
1579   return false;
1580 }
1581 
getPersonalityFn() const1582 Constant *Function::getPersonalityFn() const {
1583   assert(hasPersonalityFn() && getNumOperands());
1584   return cast<Constant>(Op<0>());
1585 }
1586 
setPersonalityFn(Constant * Fn)1587 void Function::setPersonalityFn(Constant *Fn) {
1588   setHungoffOperand<0>(Fn);
1589   setValueSubclassDataBit(3, Fn != nullptr);
1590 }
1591 
getPrefixData() const1592 Constant *Function::getPrefixData() const {
1593   assert(hasPrefixData() && getNumOperands());
1594   return cast<Constant>(Op<1>());
1595 }
1596 
setPrefixData(Constant * PrefixData)1597 void Function::setPrefixData(Constant *PrefixData) {
1598   setHungoffOperand<1>(PrefixData);
1599   setValueSubclassDataBit(1, PrefixData != nullptr);
1600 }
1601 
getPrologueData() const1602 Constant *Function::getPrologueData() const {
1603   assert(hasPrologueData() && getNumOperands());
1604   return cast<Constant>(Op<2>());
1605 }
1606 
setPrologueData(Constant * PrologueData)1607 void Function::setPrologueData(Constant *PrologueData) {
1608   setHungoffOperand<2>(PrologueData);
1609   setValueSubclassDataBit(2, PrologueData != nullptr);
1610 }
1611 
allocHungoffUselist()1612 void Function::allocHungoffUselist() {
1613   // If we've already allocated a uselist, stop here.
1614   if (getNumOperands())
1615     return;
1616 
1617   allocHungoffUses(3, /*IsPhi=*/ false);
1618   setNumHungOffUseOperands(3);
1619 
1620   // Initialize the uselist with placeholder operands to allow traversal.
1621   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1622   Op<0>().set(CPN);
1623   Op<1>().set(CPN);
1624   Op<2>().set(CPN);
1625 }
1626 
1627 template <int Idx>
setHungoffOperand(Constant * C)1628 void Function::setHungoffOperand(Constant *C) {
1629   if (C) {
1630     allocHungoffUselist();
1631     Op<Idx>().set(C);
1632   } else if (getNumOperands()) {
1633     Op<Idx>().set(
1634         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1635   }
1636 }
1637 
setValueSubclassDataBit(unsigned Bit,bool On)1638 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1639   assert(Bit < 16 && "SubclassData contains only 16 bits");
1640   if (On)
1641     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1642   else
1643     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1644 }
1645 
setEntryCount(ProfileCount Count,const DenseSet<GlobalValue::GUID> * S)1646 void Function::setEntryCount(ProfileCount Count,
1647                              const DenseSet<GlobalValue::GUID> *S) {
1648   assert(Count.hasValue());
1649 #if !defined(NDEBUG)
1650   auto PrevCount = getEntryCount();
1651   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1652 #endif
1653 
1654   auto ImportGUIDs = getImportGUIDs();
1655   if (S == nullptr && ImportGUIDs.size())
1656     S = &ImportGUIDs;
1657 
1658   MDBuilder MDB(getContext());
1659   setMetadata(
1660       LLVMContext::MD_prof,
1661       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1662 }
1663 
setEntryCount(uint64_t Count,Function::ProfileCountType Type,const DenseSet<GlobalValue::GUID> * Imports)1664 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1665                              const DenseSet<GlobalValue::GUID> *Imports) {
1666   setEntryCount(ProfileCount(Count, Type), Imports);
1667 }
1668 
getEntryCount(bool AllowSynthetic) const1669 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1670   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1671   if (MD && MD->getOperand(0))
1672     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1673       if (MDS->getString().equals("function_entry_count")) {
1674         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1675         uint64_t Count = CI->getValue().getZExtValue();
1676         // A value of -1 is used for SamplePGO when there were no samples.
1677         // Treat this the same as unknown.
1678         if (Count == (uint64_t)-1)
1679           return ProfileCount::getInvalid();
1680         return ProfileCount(Count, PCT_Real);
1681       } else if (AllowSynthetic &&
1682                  MDS->getString().equals("synthetic_function_entry_count")) {
1683         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1684         uint64_t Count = CI->getValue().getZExtValue();
1685         return ProfileCount(Count, PCT_Synthetic);
1686       }
1687     }
1688   return ProfileCount::getInvalid();
1689 }
1690 
getImportGUIDs() const1691 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1692   DenseSet<GlobalValue::GUID> R;
1693   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1694     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1695       if (MDS->getString().equals("function_entry_count"))
1696         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1697           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1698                        ->getValue()
1699                        .getZExtValue());
1700   return R;
1701 }
1702 
setSectionPrefix(StringRef Prefix)1703 void Function::setSectionPrefix(StringRef Prefix) {
1704   MDBuilder MDB(getContext());
1705   setMetadata(LLVMContext::MD_section_prefix,
1706               MDB.createFunctionSectionPrefix(Prefix));
1707 }
1708 
getSectionPrefix() const1709 Optional<StringRef> Function::getSectionPrefix() const {
1710   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1711     assert(cast<MDString>(MD->getOperand(0))
1712                ->getString()
1713                .equals("function_section_prefix") &&
1714            "Metadata not match");
1715     return cast<MDString>(MD->getOperand(1))->getString();
1716   }
1717   return None;
1718 }
1719 
nullPointerIsDefined() const1720 bool Function::nullPointerIsDefined() const {
1721   return hasFnAttribute(Attribute::NullPointerIsValid);
1722 }
1723 
NullPointerIsDefined(const Function * F,unsigned AS)1724 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1725   if (F && F->nullPointerIsDefined())
1726     return true;
1727 
1728   if (isCheriPointer(AS, getDataLayoutOrNull(F)))
1729     return false; // Null is not a valid address for AS200 (if we are using CHERI)
1730 
1731   if (AS != 0)
1732     return true;
1733 
1734   return false;
1735 }
1736