1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 // MCInsts.
12 //
13 //
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets. The main decode sequence for an assembly
16 // instruction in this disassembler is:
17 //
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 // These attributes, recorded in enum attributeBits
20 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
21 // provides a mapping from bitmasks to contexts, which are represented by
22 // enum InstructionContext (ibid.).
23 //
24 // 2. Read the opcode, and determine what kind of opcode it is. The
25 // disassembler distinguishes four kinds of opcodes, which are enumerated in
26 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
29 //
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
32 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
33 // a ModRMDecision (ibid.).
34 //
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from
38 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 // ModR/M byte is required and how to interpret it.
40 //
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
43 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 // meanings of its operands.
45 //
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 // (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 // OperandType (ibid.). The encoding indicates how to read it from the
49 // instruction; the type indicates how to interpret the value once it has
50 // been read. For example, a register operand could be stored in the R/M
51 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM
53 // register, for instance). Given this information, the operands can be
54 // extracted and interpreted.
55 //
56 // 7. As the last step, the disassembler translates the instruction information
57 // and operands into a format understandable by the client - in this case, an
58 // MCInst for use by the MC infrastructure.
59 //
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself. The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
64 //
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 // invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 // table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 // factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 // responsible for steps 1-6.
73 //
74 //===----------------------------------------------------------------------===//
75
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "TargetInfo/X86TargetInfo.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/TargetRegistry.h"
89 #include "llvm/Support/raw_ostream.h"
90
91 using namespace llvm;
92 using namespace llvm::X86Disassembler;
93
94 #define DEBUG_TYPE "x86-disassembler"
95
96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
97
98 // Specifies whether a ModR/M byte is needed and (if so) which
99 // instruction each possible value of the ModR/M byte corresponds to. Once
100 // this information is known, we have narrowed down to a single instruction.
101 struct ModRMDecision {
102 uint8_t modrm_type;
103 uint16_t instructionIDs;
104 };
105
106 // Specifies which set of ModR/M->instruction tables to look at
107 // given a particular opcode.
108 struct OpcodeDecision {
109 ModRMDecision modRMDecisions[256];
110 };
111
112 // Specifies which opcode->instruction tables to look at given
113 // a particular context (set of attributes). Since there are many possible
114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context
115 // applies given a specific set of attributes. Hence there are only IC_max
116 // entries in this table, rather than 2^(ATTR_max).
117 struct ContextDecision {
118 OpcodeDecision opcodeDecisions[IC_max];
119 };
120
121 #include "X86GenDisassemblerTables.inc"
122
decode(OpcodeType type,InstructionContext insnContext,uint8_t opcode,uint8_t modRM)123 static InstrUID decode(OpcodeType type, InstructionContext insnContext,
124 uint8_t opcode, uint8_t modRM) {
125 const struct ModRMDecision *dec;
126
127 switch (type) {
128 case ONEBYTE:
129 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
130 break;
131 case TWOBYTE:
132 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133 break;
134 case THREEBYTE_38:
135 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136 break;
137 case THREEBYTE_3A:
138 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139 break;
140 case XOP8_MAP:
141 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142 break;
143 case XOP9_MAP:
144 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145 break;
146 case XOPA_MAP:
147 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148 break;
149 case THREEDNOW_MAP:
150 dec =
151 &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152 break;
153 }
154
155 switch (dec->modrm_type) {
156 default:
157 llvm_unreachable("Corrupt table! Unknown modrm_type");
158 return 0;
159 case MODRM_ONEENTRY:
160 return modRMTable[dec->instructionIDs];
161 case MODRM_SPLITRM:
162 if (modFromModRM(modRM) == 0x3)
163 return modRMTable[dec->instructionIDs + 1];
164 return modRMTable[dec->instructionIDs];
165 case MODRM_SPLITREG:
166 if (modFromModRM(modRM) == 0x3)
167 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
168 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
169 case MODRM_SPLITMISC:
170 if (modFromModRM(modRM) == 0x3)
171 return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
172 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
173 case MODRM_FULL:
174 return modRMTable[dec->instructionIDs + modRM];
175 }
176 }
177
peek(struct InternalInstruction * insn,uint8_t & byte)178 static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
179 uint64_t offset = insn->readerCursor - insn->startLocation;
180 if (offset >= insn->bytes.size())
181 return true;
182 byte = insn->bytes[offset];
183 return false;
184 }
185
consume(InternalInstruction * insn,T & ptr)186 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
187 auto r = insn->bytes;
188 uint64_t offset = insn->readerCursor - insn->startLocation;
189 if (offset + sizeof(T) > r.size())
190 return true;
191 T ret = 0;
192 for (unsigned i = 0; i < sizeof(T); ++i)
193 ret |= (uint64_t)r[offset + i] << (i * 8);
194 ptr = ret;
195 insn->readerCursor += sizeof(T);
196 return false;
197 }
198
isREX(struct InternalInstruction * insn,uint8_t prefix)199 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
200 return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
201 }
202
203 // Consumes all of an instruction's prefix bytes, and marks the
204 // instruction as having them. Also sets the instruction's default operand,
205 // address, and other relevant data sizes to report operands correctly.
206 //
207 // insn must not be empty.
readPrefixes(struct InternalInstruction * insn)208 static int readPrefixes(struct InternalInstruction *insn) {
209 bool isPrefix = true;
210 uint8_t byte = 0;
211 uint8_t nextByte;
212
213 LLVM_DEBUG(dbgs() << "readPrefixes()");
214
215 while (isPrefix) {
216 // If we fail reading prefixes, just stop here and let the opcode reader
217 // deal with it.
218 if (consume(insn, byte))
219 break;
220
221 // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
222 // break and let it be disassembled as a normal "instruction".
223 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
224 break;
225
226 if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
227 // If the byte is 0xf2 or 0xf3, and any of the following conditions are
228 // met:
229 // - it is followed by a LOCK (0xf0) prefix
230 // - it is followed by an xchg instruction
231 // then it should be disassembled as a xacquire/xrelease not repne/rep.
232 if (((nextByte == 0xf0) ||
233 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
234 insn->xAcquireRelease = true;
235 if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
236 break;
237 }
238 // Also if the byte is 0xf3, and the following condition is met:
239 // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
240 // "mov mem, imm" (opcode 0xc6/0xc7) instructions.
241 // then it should be disassembled as an xrelease not rep.
242 if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
243 nextByte == 0xc6 || nextByte == 0xc7)) {
244 insn->xAcquireRelease = true;
245 break;
246 }
247 if (isREX(insn, nextByte)) {
248 uint8_t nnextByte;
249 // Go to REX prefix after the current one
250 if (consume(insn, nnextByte))
251 return -1;
252 // We should be able to read next byte after REX prefix
253 if (peek(insn, nnextByte))
254 return -1;
255 --insn->readerCursor;
256 }
257 }
258
259 switch (byte) {
260 case 0xf0: // LOCK
261 insn->hasLockPrefix = true;
262 break;
263 case 0xf2: // REPNE/REPNZ
264 case 0xf3: { // REP or REPE/REPZ
265 uint8_t nextByte;
266 if (peek(insn, nextByte))
267 break;
268 // TODO:
269 // 1. There could be several 0x66
270 // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then
271 // it's not mandatory prefix
272 // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
273 // 0x0f exactly after it to be mandatory prefix
274 if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
275 // The last of 0xf2 /0xf3 is mandatory prefix
276 insn->mandatoryPrefix = byte;
277 insn->repeatPrefix = byte;
278 break;
279 }
280 case 0x2e: // CS segment override -OR- Branch not taken
281 insn->segmentOverride = SEG_OVERRIDE_CS;
282 break;
283 case 0x36: // SS segment override -OR- Branch taken
284 insn->segmentOverride = SEG_OVERRIDE_SS;
285 break;
286 case 0x3e: // DS segment override
287 insn->segmentOverride = SEG_OVERRIDE_DS;
288 break;
289 case 0x26: // ES segment override
290 insn->segmentOverride = SEG_OVERRIDE_ES;
291 break;
292 case 0x64: // FS segment override
293 insn->segmentOverride = SEG_OVERRIDE_FS;
294 break;
295 case 0x65: // GS segment override
296 insn->segmentOverride = SEG_OVERRIDE_GS;
297 break;
298 case 0x66: { // Operand-size override {
299 uint8_t nextByte;
300 insn->hasOpSize = true;
301 if (peek(insn, nextByte))
302 break;
303 // 0x66 can't overwrite existing mandatory prefix and should be ignored
304 if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
305 insn->mandatoryPrefix = byte;
306 break;
307 }
308 case 0x67: // Address-size override
309 insn->hasAdSize = true;
310 break;
311 default: // Not a prefix byte
312 isPrefix = false;
313 break;
314 }
315
316 if (isPrefix)
317 LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
318 }
319
320 insn->vectorExtensionType = TYPE_NO_VEX_XOP;
321
322 if (byte == 0x62) {
323 uint8_t byte1, byte2;
324 if (consume(insn, byte1)) {
325 LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
326 return -1;
327 }
328
329 if (peek(insn, byte2)) {
330 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
331 return -1;
332 }
333
334 if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
335 ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
336 insn->vectorExtensionType = TYPE_EVEX;
337 } else {
338 --insn->readerCursor; // unconsume byte1
339 --insn->readerCursor; // unconsume byte
340 }
341
342 if (insn->vectorExtensionType == TYPE_EVEX) {
343 insn->vectorExtensionPrefix[0] = byte;
344 insn->vectorExtensionPrefix[1] = byte1;
345 if (consume(insn, insn->vectorExtensionPrefix[2])) {
346 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
347 return -1;
348 }
349 if (consume(insn, insn->vectorExtensionPrefix[3])) {
350 LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
351 return -1;
352 }
353
354 // We simulate the REX prefix for simplicity's sake
355 if (insn->mode == MODE_64BIT) {
356 insn->rexPrefix = 0x40 |
357 (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
358 (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
359 (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
360 (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
361 }
362
363 LLVM_DEBUG(
364 dbgs() << format(
365 "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
366 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
367 insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
368 }
369 } else if (byte == 0xc4) {
370 uint8_t byte1;
371 if (peek(insn, byte1)) {
372 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
373 return -1;
374 }
375
376 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
377 insn->vectorExtensionType = TYPE_VEX_3B;
378 else
379 --insn->readerCursor;
380
381 if (insn->vectorExtensionType == TYPE_VEX_3B) {
382 insn->vectorExtensionPrefix[0] = byte;
383 consume(insn, insn->vectorExtensionPrefix[1]);
384 consume(insn, insn->vectorExtensionPrefix[2]);
385
386 // We simulate the REX prefix for simplicity's sake
387
388 if (insn->mode == MODE_64BIT)
389 insn->rexPrefix = 0x40 |
390 (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
391 (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
392 (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
393 (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
394
395 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
396 insn->vectorExtensionPrefix[0],
397 insn->vectorExtensionPrefix[1],
398 insn->vectorExtensionPrefix[2]));
399 }
400 } else if (byte == 0xc5) {
401 uint8_t byte1;
402 if (peek(insn, byte1)) {
403 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
404 return -1;
405 }
406
407 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
408 insn->vectorExtensionType = TYPE_VEX_2B;
409 else
410 --insn->readerCursor;
411
412 if (insn->vectorExtensionType == TYPE_VEX_2B) {
413 insn->vectorExtensionPrefix[0] = byte;
414 consume(insn, insn->vectorExtensionPrefix[1]);
415
416 if (insn->mode == MODE_64BIT)
417 insn->rexPrefix =
418 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
419
420 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
421 default:
422 break;
423 case VEX_PREFIX_66:
424 insn->hasOpSize = true;
425 break;
426 }
427
428 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
429 insn->vectorExtensionPrefix[0],
430 insn->vectorExtensionPrefix[1]));
431 }
432 } else if (byte == 0x8f) {
433 uint8_t byte1;
434 if (peek(insn, byte1)) {
435 LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
436 return -1;
437 }
438
439 if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
440 insn->vectorExtensionType = TYPE_XOP;
441 else
442 --insn->readerCursor;
443
444 if (insn->vectorExtensionType == TYPE_XOP) {
445 insn->vectorExtensionPrefix[0] = byte;
446 consume(insn, insn->vectorExtensionPrefix[1]);
447 consume(insn, insn->vectorExtensionPrefix[2]);
448
449 // We simulate the REX prefix for simplicity's sake
450
451 if (insn->mode == MODE_64BIT)
452 insn->rexPrefix = 0x40 |
453 (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
454 (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
455 (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
456 (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
457
458 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
459 default:
460 break;
461 case VEX_PREFIX_66:
462 insn->hasOpSize = true;
463 break;
464 }
465
466 LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
467 insn->vectorExtensionPrefix[0],
468 insn->vectorExtensionPrefix[1],
469 insn->vectorExtensionPrefix[2]));
470 }
471 } else if (isREX(insn, byte)) {
472 if (peek(insn, nextByte))
473 return -1;
474 insn->rexPrefix = byte;
475 LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
476 } else
477 --insn->readerCursor;
478
479 if (insn->mode == MODE_16BIT) {
480 insn->registerSize = (insn->hasOpSize ? 4 : 2);
481 insn->addressSize = (insn->hasAdSize ? 4 : 2);
482 insn->displacementSize = (insn->hasAdSize ? 4 : 2);
483 insn->immediateSize = (insn->hasOpSize ? 4 : 2);
484 } else if (insn->mode == MODE_32BIT) {
485 insn->registerSize = (insn->hasOpSize ? 2 : 4);
486 insn->addressSize = (insn->hasAdSize ? 2 : 4);
487 insn->displacementSize = (insn->hasAdSize ? 2 : 4);
488 insn->immediateSize = (insn->hasOpSize ? 2 : 4);
489 } else if (insn->mode == MODE_64BIT) {
490 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
491 insn->registerSize = 8;
492 insn->addressSize = (insn->hasAdSize ? 4 : 8);
493 insn->displacementSize = 4;
494 insn->immediateSize = 4;
495 } else {
496 insn->registerSize = (insn->hasOpSize ? 2 : 4);
497 insn->addressSize = (insn->hasAdSize ? 4 : 8);
498 insn->displacementSize = (insn->hasOpSize ? 2 : 4);
499 insn->immediateSize = (insn->hasOpSize ? 2 : 4);
500 }
501 }
502
503 return 0;
504 }
505
506 // Consumes the SIB byte to determine addressing information.
readSIB(struct InternalInstruction * insn)507 static int readSIB(struct InternalInstruction *insn) {
508 SIBBase sibBaseBase = SIB_BASE_NONE;
509 uint8_t index, base;
510
511 LLVM_DEBUG(dbgs() << "readSIB()");
512 switch (insn->addressSize) {
513 case 2:
514 default:
515 llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
516 case 4:
517 insn->sibIndexBase = SIB_INDEX_EAX;
518 sibBaseBase = SIB_BASE_EAX;
519 break;
520 case 8:
521 insn->sibIndexBase = SIB_INDEX_RAX;
522 sibBaseBase = SIB_BASE_RAX;
523 break;
524 }
525
526 if (consume(insn, insn->sib))
527 return -1;
528
529 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
530
531 if (index == 0x4) {
532 insn->sibIndex = SIB_INDEX_NONE;
533 } else {
534 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
535 }
536
537 insn->sibScale = 1 << scaleFromSIB(insn->sib);
538
539 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
540
541 switch (base) {
542 case 0x5:
543 case 0xd:
544 switch (modFromModRM(insn->modRM)) {
545 case 0x0:
546 insn->eaDisplacement = EA_DISP_32;
547 insn->sibBase = SIB_BASE_NONE;
548 break;
549 case 0x1:
550 insn->eaDisplacement = EA_DISP_8;
551 insn->sibBase = (SIBBase)(sibBaseBase + base);
552 break;
553 case 0x2:
554 insn->eaDisplacement = EA_DISP_32;
555 insn->sibBase = (SIBBase)(sibBaseBase + base);
556 break;
557 default:
558 llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
559 }
560 break;
561 default:
562 insn->sibBase = (SIBBase)(sibBaseBase + base);
563 break;
564 }
565
566 return 0;
567 }
568
readDisplacement(struct InternalInstruction * insn)569 static int readDisplacement(struct InternalInstruction *insn) {
570 int8_t d8;
571 int16_t d16;
572 int32_t d32;
573 LLVM_DEBUG(dbgs() << "readDisplacement()");
574
575 insn->displacementOffset = insn->readerCursor - insn->startLocation;
576 switch (insn->eaDisplacement) {
577 case EA_DISP_NONE:
578 break;
579 case EA_DISP_8:
580 if (consume(insn, d8))
581 return -1;
582 insn->displacement = d8;
583 break;
584 case EA_DISP_16:
585 if (consume(insn, d16))
586 return -1;
587 insn->displacement = d16;
588 break;
589 case EA_DISP_32:
590 if (consume(insn, d32))
591 return -1;
592 insn->displacement = d32;
593 break;
594 }
595
596 return 0;
597 }
598
599 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
readModRM(struct InternalInstruction * insn)600 static int readModRM(struct InternalInstruction *insn) {
601 uint8_t mod, rm, reg, evexrm;
602 LLVM_DEBUG(dbgs() << "readModRM()");
603
604 if (insn->consumedModRM)
605 return 0;
606
607 if (consume(insn, insn->modRM))
608 return -1;
609 insn->consumedModRM = true;
610
611 mod = modFromModRM(insn->modRM);
612 rm = rmFromModRM(insn->modRM);
613 reg = regFromModRM(insn->modRM);
614
615 // This goes by insn->registerSize to pick the correct register, which messes
616 // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
617 // fixupReg().
618 switch (insn->registerSize) {
619 case 2:
620 insn->regBase = MODRM_REG_AX;
621 insn->eaRegBase = EA_REG_AX;
622 break;
623 case 4:
624 insn->regBase = MODRM_REG_EAX;
625 insn->eaRegBase = EA_REG_EAX;
626 break;
627 case 8:
628 insn->regBase = MODRM_REG_RAX;
629 insn->eaRegBase = EA_REG_RAX;
630 break;
631 }
632
633 reg |= rFromREX(insn->rexPrefix) << 3;
634 rm |= bFromREX(insn->rexPrefix) << 3;
635
636 evexrm = 0;
637 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
638 reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
639 evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
640 }
641
642 insn->reg = (Reg)(insn->regBase + reg);
643
644 switch (insn->addressSize) {
645 case 2: {
646 EABase eaBaseBase = EA_BASE_BX_SI;
647
648 switch (mod) {
649 case 0x0:
650 if (rm == 0x6) {
651 insn->eaBase = EA_BASE_NONE;
652 insn->eaDisplacement = EA_DISP_16;
653 if (readDisplacement(insn))
654 return -1;
655 } else {
656 insn->eaBase = (EABase)(eaBaseBase + rm);
657 insn->eaDisplacement = EA_DISP_NONE;
658 }
659 break;
660 case 0x1:
661 insn->eaBase = (EABase)(eaBaseBase + rm);
662 insn->eaDisplacement = EA_DISP_8;
663 insn->displacementSize = 1;
664 if (readDisplacement(insn))
665 return -1;
666 break;
667 case 0x2:
668 insn->eaBase = (EABase)(eaBaseBase + rm);
669 insn->eaDisplacement = EA_DISP_16;
670 if (readDisplacement(insn))
671 return -1;
672 break;
673 case 0x3:
674 insn->eaBase = (EABase)(insn->eaRegBase + rm);
675 if (readDisplacement(insn))
676 return -1;
677 break;
678 }
679 break;
680 }
681 case 4:
682 case 8: {
683 EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
684
685 switch (mod) {
686 case 0x0:
687 insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
688 // In determining whether RIP-relative mode is used (rm=5),
689 // or whether a SIB byte is present (rm=4),
690 // the extension bits (REX.b and EVEX.x) are ignored.
691 switch (rm & 7) {
692 case 0x4: // SIB byte is present
693 insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
694 if (readSIB(insn) || readDisplacement(insn))
695 return -1;
696 break;
697 case 0x5: // RIP-relative
698 insn->eaBase = EA_BASE_NONE;
699 insn->eaDisplacement = EA_DISP_32;
700 if (readDisplacement(insn))
701 return -1;
702 break;
703 default:
704 insn->eaBase = (EABase)(eaBaseBase + rm);
705 break;
706 }
707 break;
708 case 0x1:
709 insn->displacementSize = 1;
710 LLVM_FALLTHROUGH;
711 case 0x2:
712 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
713 switch (rm & 7) {
714 case 0x4: // SIB byte is present
715 insn->eaBase = EA_BASE_sib;
716 if (readSIB(insn) || readDisplacement(insn))
717 return -1;
718 break;
719 default:
720 insn->eaBase = (EABase)(eaBaseBase + rm);
721 if (readDisplacement(insn))
722 return -1;
723 break;
724 }
725 break;
726 case 0x3:
727 insn->eaDisplacement = EA_DISP_NONE;
728 insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
729 break;
730 }
731 break;
732 }
733 } // switch (insn->addressSize)
734
735 return 0;
736 }
737
738 #define GENERIC_FIXUP_FUNC(name, base, prefix, mask) \
739 static uint16_t name(struct InternalInstruction *insn, OperandType type, \
740 uint8_t index, uint8_t *valid) { \
741 *valid = 1; \
742 switch (type) { \
743 default: \
744 debug("Unhandled register type"); \
745 *valid = 0; \
746 return 0; \
747 case TYPE_Rv: \
748 return base + index; \
749 case TYPE_R8: \
750 index &= mask; \
751 if (index > 0xf) \
752 *valid = 0; \
753 if (insn->rexPrefix && index >= 4 && index <= 7) { \
754 return prefix##_SPL + (index - 4); \
755 } else { \
756 return prefix##_AL + index; \
757 } \
758 case TYPE_R16: \
759 index &= mask; \
760 if (index > 0xf) \
761 *valid = 0; \
762 return prefix##_AX + index; \
763 case TYPE_R32: \
764 index &= mask; \
765 if (index > 0xf) \
766 *valid = 0; \
767 return prefix##_EAX + index; \
768 case TYPE_R64: \
769 index &= mask; \
770 if (index > 0xf) \
771 *valid = 0; \
772 return prefix##_RAX + index; \
773 case TYPE_ZMM: \
774 return prefix##_ZMM0 + index; \
775 case TYPE_YMM: \
776 return prefix##_YMM0 + index; \
777 case TYPE_XMM: \
778 return prefix##_XMM0 + index; \
779 case TYPE_TMM: \
780 if (index > 7) \
781 *valid = 0; \
782 return prefix##_TMM0 + index; \
783 case TYPE_VK: \
784 index &= 0xf; \
785 if (index > 7) \
786 *valid = 0; \
787 return prefix##_K0 + index; \
788 case TYPE_VK_PAIR: \
789 if (index > 7) \
790 *valid = 0; \
791 return prefix##_K0_K1 + (index / 2); \
792 case TYPE_MM64: \
793 return prefix##_MM0 + (index & 0x7); \
794 case TYPE_SEGMENTREG: \
795 if ((index & 7) > 5) \
796 *valid = 0; \
797 return prefix##_ES + (index & 7); \
798 case TYPE_DEBUGREG: \
799 return prefix##_DR0 + index; \
800 case TYPE_CONTROLREG: \
801 return prefix##_CR0 + index; \
802 case TYPE_BNDR: \
803 if (index > 3) \
804 *valid = 0; \
805 return prefix##_BND0 + index; \
806 case TYPE_MVSIBX: \
807 return prefix##_XMM0 + index; \
808 case TYPE_MVSIBY: \
809 return prefix##_YMM0 + index; \
810 case TYPE_MVSIBZ: \
811 return prefix##_ZMM0 + index; \
812 } \
813 }
814
815 // Consult an operand type to determine the meaning of the reg or R/M field. If
816 // the operand is an XMM operand, for example, an operand would be XMM0 instead
817 // of AX, which readModRM() would otherwise misinterpret it as.
818 //
819 // @param insn - The instruction containing the operand.
820 // @param type - The operand type.
821 // @param index - The existing value of the field as reported by readModRM().
822 // @param valid - The address of a uint8_t. The target is set to 1 if the
823 // field is valid for the register class; 0 if not.
824 // @return - The proper value.
825 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f)
826 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf)
827
828 // Consult an operand specifier to determine which of the fixup*Value functions
829 // to use in correcting readModRM()'ss interpretation.
830 //
831 // @param insn - See fixup*Value().
832 // @param op - The operand specifier.
833 // @return - 0 if fixup was successful; -1 if the register returned was
834 // invalid for its class.
fixupReg(struct InternalInstruction * insn,const struct OperandSpecifier * op)835 static int fixupReg(struct InternalInstruction *insn,
836 const struct OperandSpecifier *op) {
837 uint8_t valid;
838 LLVM_DEBUG(dbgs() << "fixupReg()");
839
840 switch ((OperandEncoding)op->encoding) {
841 default:
842 debug("Expected a REG or R/M encoding in fixupReg");
843 return -1;
844 case ENCODING_VVVV:
845 insn->vvvv =
846 (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
847 if (!valid)
848 return -1;
849 break;
850 case ENCODING_REG:
851 insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
852 insn->reg - insn->regBase, &valid);
853 if (!valid)
854 return -1;
855 break;
856 case ENCODING_SIB:
857 CASE_ENCODING_RM:
858 if (insn->eaBase >= insn->eaRegBase) {
859 insn->eaBase = (EABase)fixupRMValue(
860 insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
861 if (!valid)
862 return -1;
863 }
864 break;
865 }
866
867 return 0;
868 }
869
870 // Read the opcode (except the ModR/M byte in the case of extended or escape
871 // opcodes).
readOpcode(struct InternalInstruction * insn)872 static bool readOpcode(struct InternalInstruction *insn) {
873 uint8_t current;
874 LLVM_DEBUG(dbgs() << "readOpcode()");
875
876 insn->opcodeType = ONEBYTE;
877 if (insn->vectorExtensionType == TYPE_EVEX) {
878 switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
879 default:
880 LLVM_DEBUG(
881 dbgs() << format("Unhandled mm field for instruction (0x%hhx)",
882 mmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
883 return true;
884 case VEX_LOB_0F:
885 insn->opcodeType = TWOBYTE;
886 return consume(insn, insn->opcode);
887 case VEX_LOB_0F38:
888 insn->opcodeType = THREEBYTE_38;
889 return consume(insn, insn->opcode);
890 case VEX_LOB_0F3A:
891 insn->opcodeType = THREEBYTE_3A;
892 return consume(insn, insn->opcode);
893 }
894 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
895 switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
896 default:
897 LLVM_DEBUG(
898 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
899 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
900 return true;
901 case VEX_LOB_0F:
902 insn->opcodeType = TWOBYTE;
903 return consume(insn, insn->opcode);
904 case VEX_LOB_0F38:
905 insn->opcodeType = THREEBYTE_38;
906 return consume(insn, insn->opcode);
907 case VEX_LOB_0F3A:
908 insn->opcodeType = THREEBYTE_3A;
909 return consume(insn, insn->opcode);
910 }
911 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
912 insn->opcodeType = TWOBYTE;
913 return consume(insn, insn->opcode);
914 } else if (insn->vectorExtensionType == TYPE_XOP) {
915 switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
916 default:
917 LLVM_DEBUG(
918 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
919 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
920 return true;
921 case XOP_MAP_SELECT_8:
922 insn->opcodeType = XOP8_MAP;
923 return consume(insn, insn->opcode);
924 case XOP_MAP_SELECT_9:
925 insn->opcodeType = XOP9_MAP;
926 return consume(insn, insn->opcode);
927 case XOP_MAP_SELECT_A:
928 insn->opcodeType = XOPA_MAP;
929 return consume(insn, insn->opcode);
930 }
931 }
932
933 if (consume(insn, current))
934 return true;
935
936 if (current == 0x0f) {
937 LLVM_DEBUG(
938 dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
939 if (consume(insn, current))
940 return true;
941
942 if (current == 0x38) {
943 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
944 current));
945 if (consume(insn, current))
946 return true;
947
948 insn->opcodeType = THREEBYTE_38;
949 } else if (current == 0x3a) {
950 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
951 current));
952 if (consume(insn, current))
953 return true;
954
955 insn->opcodeType = THREEBYTE_3A;
956 } else if (current == 0x0f) {
957 LLVM_DEBUG(
958 dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
959
960 // Consume operands before the opcode to comply with the 3DNow encoding
961 if (readModRM(insn))
962 return true;
963
964 if (consume(insn, current))
965 return true;
966
967 insn->opcodeType = THREEDNOW_MAP;
968 } else {
969 LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
970 insn->opcodeType = TWOBYTE;
971 }
972 } else if (insn->mandatoryPrefix)
973 // The opcode with mandatory prefix must start with opcode escape.
974 // If not it's legacy repeat prefix
975 insn->mandatoryPrefix = 0;
976
977 // At this point we have consumed the full opcode.
978 // Anything we consume from here on must be unconsumed.
979 insn->opcode = current;
980
981 return false;
982 }
983
984 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
is16BitEquivalent(const char * orig,const char * equiv)985 static bool is16BitEquivalent(const char *orig, const char *equiv) {
986 for (int i = 0;; i++) {
987 if (orig[i] == '\0' && equiv[i] == '\0')
988 return true;
989 if (orig[i] == '\0' || equiv[i] == '\0')
990 return false;
991 if (orig[i] != equiv[i]) {
992 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
993 continue;
994 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
995 continue;
996 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
997 continue;
998 return false;
999 }
1000 }
1001 }
1002
1003 // Determine whether this instruction is a 64-bit instruction.
is64Bit(const char * name)1004 static bool is64Bit(const char *name) {
1005 for (int i = 0;; ++i) {
1006 if (name[i] == '\0')
1007 return false;
1008 if (name[i] == '6' && name[i + 1] == '4')
1009 return true;
1010 }
1011 }
1012
1013 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1014 // for extended and escape opcodes, and using a supplied attribute mask.
getInstructionIDWithAttrMask(uint16_t * instructionID,struct InternalInstruction * insn,uint16_t attrMask)1015 static int getInstructionIDWithAttrMask(uint16_t *instructionID,
1016 struct InternalInstruction *insn,
1017 uint16_t attrMask) {
1018 auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
1019 const ContextDecision *decision;
1020 switch (insn->opcodeType) {
1021 case ONEBYTE:
1022 decision = &ONEBYTE_SYM;
1023 break;
1024 case TWOBYTE:
1025 decision = &TWOBYTE_SYM;
1026 break;
1027 case THREEBYTE_38:
1028 decision = &THREEBYTE38_SYM;
1029 break;
1030 case THREEBYTE_3A:
1031 decision = &THREEBYTE3A_SYM;
1032 break;
1033 case XOP8_MAP:
1034 decision = &XOP8_MAP_SYM;
1035 break;
1036 case XOP9_MAP:
1037 decision = &XOP9_MAP_SYM;
1038 break;
1039 case XOPA_MAP:
1040 decision = &XOPA_MAP_SYM;
1041 break;
1042 case THREEDNOW_MAP:
1043 decision = &THREEDNOW_MAP_SYM;
1044 break;
1045 }
1046
1047 if (decision->opcodeDecisions[insnCtx]
1048 .modRMDecisions[insn->opcode]
1049 .modrm_type != MODRM_ONEENTRY) {
1050 if (readModRM(insn))
1051 return -1;
1052 *instructionID =
1053 decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
1054 } else {
1055 *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
1056 }
1057
1058 return 0;
1059 }
1060
1061 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1062 // for extended and escape opcodes. Determines the attributes and context for
1063 // the instruction before doing so.
getInstructionID(struct InternalInstruction * insn,const MCInstrInfo * mii)1064 static int getInstructionID(struct InternalInstruction *insn,
1065 const MCInstrInfo *mii) {
1066 uint16_t attrMask;
1067 uint16_t instructionID;
1068
1069 LLVM_DEBUG(dbgs() << "getID()");
1070
1071 attrMask = ATTR_NONE;
1072
1073 if (insn->mode == MODE_64BIT)
1074 attrMask |= ATTR_64BIT;
1075
1076 if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1077 attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
1078
1079 if (insn->vectorExtensionType == TYPE_EVEX) {
1080 switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
1081 case VEX_PREFIX_66:
1082 attrMask |= ATTR_OPSIZE;
1083 break;
1084 case VEX_PREFIX_F3:
1085 attrMask |= ATTR_XS;
1086 break;
1087 case VEX_PREFIX_F2:
1088 attrMask |= ATTR_XD;
1089 break;
1090 }
1091
1092 if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1093 attrMask |= ATTR_EVEXKZ;
1094 if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1095 attrMask |= ATTR_EVEXB;
1096 if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1097 attrMask |= ATTR_EVEXK;
1098 if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1099 attrMask |= ATTR_VEXL;
1100 if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1101 attrMask |= ATTR_EVEXL2;
1102 } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1103 switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1104 case VEX_PREFIX_66:
1105 attrMask |= ATTR_OPSIZE;
1106 break;
1107 case VEX_PREFIX_F3:
1108 attrMask |= ATTR_XS;
1109 break;
1110 case VEX_PREFIX_F2:
1111 attrMask |= ATTR_XD;
1112 break;
1113 }
1114
1115 if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1116 attrMask |= ATTR_VEXL;
1117 } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1118 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1119 case VEX_PREFIX_66:
1120 attrMask |= ATTR_OPSIZE;
1121 break;
1122 case VEX_PREFIX_F3:
1123 attrMask |= ATTR_XS;
1124 break;
1125 case VEX_PREFIX_F2:
1126 attrMask |= ATTR_XD;
1127 break;
1128 }
1129
1130 if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1131 attrMask |= ATTR_VEXL;
1132 } else if (insn->vectorExtensionType == TYPE_XOP) {
1133 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1134 case VEX_PREFIX_66:
1135 attrMask |= ATTR_OPSIZE;
1136 break;
1137 case VEX_PREFIX_F3:
1138 attrMask |= ATTR_XS;
1139 break;
1140 case VEX_PREFIX_F2:
1141 attrMask |= ATTR_XD;
1142 break;
1143 }
1144
1145 if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1146 attrMask |= ATTR_VEXL;
1147 } else {
1148 return -1;
1149 }
1150 } else if (!insn->mandatoryPrefix) {
1151 // If we don't have mandatory prefix we should use legacy prefixes here
1152 if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1153 attrMask |= ATTR_OPSIZE;
1154 if (insn->hasAdSize)
1155 attrMask |= ATTR_ADSIZE;
1156 if (insn->opcodeType == ONEBYTE) {
1157 if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1158 // Special support for PAUSE
1159 attrMask |= ATTR_XS;
1160 } else {
1161 if (insn->repeatPrefix == 0xf2)
1162 attrMask |= ATTR_XD;
1163 else if (insn->repeatPrefix == 0xf3)
1164 attrMask |= ATTR_XS;
1165 }
1166 } else {
1167 switch (insn->mandatoryPrefix) {
1168 case 0xf2:
1169 attrMask |= ATTR_XD;
1170 break;
1171 case 0xf3:
1172 attrMask |= ATTR_XS;
1173 break;
1174 case 0x66:
1175 if (insn->mode != MODE_16BIT)
1176 attrMask |= ATTR_OPSIZE;
1177 break;
1178 case 0x67:
1179 attrMask |= ATTR_ADSIZE;
1180 break;
1181 }
1182 }
1183
1184 if (insn->rexPrefix & 0x08) {
1185 attrMask |= ATTR_REXW;
1186 attrMask &= ~ATTR_ADSIZE;
1187 }
1188
1189 if (insn->mode == MODE_16BIT) {
1190 // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1191 // of the AdSize prefix is inverted w.r.t. 32-bit mode.
1192 if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
1193 attrMask ^= ATTR_ADSIZE;
1194 // If we're in 16-bit mode and this is one of the relative jumps and opsize
1195 // prefix isn't present, we need to force the opsize attribute since the
1196 // prefix is inverted relative to 32-bit mode.
1197 if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
1198 (insn->opcode == 0xE8 || insn->opcode == 0xE9))
1199 attrMask |= ATTR_OPSIZE;
1200
1201 if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
1202 insn->opcode >= 0x80 && insn->opcode <= 0x8F)
1203 attrMask |= ATTR_OPSIZE;
1204 }
1205
1206
1207 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1208 return -1;
1209
1210 // The following clauses compensate for limitations of the tables.
1211
1212 if (insn->mode != MODE_64BIT &&
1213 insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1214 // The tables can't distinquish between cases where the W-bit is used to
1215 // select register size and cases where its a required part of the opcode.
1216 if ((insn->vectorExtensionType == TYPE_EVEX &&
1217 wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1218 (insn->vectorExtensionType == TYPE_VEX_3B &&
1219 wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1220 (insn->vectorExtensionType == TYPE_XOP &&
1221 wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1222
1223 uint16_t instructionIDWithREXW;
1224 if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
1225 attrMask | ATTR_REXW)) {
1226 insn->instructionID = instructionID;
1227 insn->spec = &INSTRUCTIONS_SYM[instructionID];
1228 return 0;
1229 }
1230
1231 auto SpecName = mii->getName(instructionIDWithREXW);
1232 // If not a 64-bit instruction. Switch the opcode.
1233 if (!is64Bit(SpecName.data())) {
1234 insn->instructionID = instructionIDWithREXW;
1235 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
1236 return 0;
1237 }
1238 }
1239 }
1240
1241 // Absolute moves, umonitor, and movdir64b need special handling.
1242 // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1243 // inverted w.r.t.
1244 // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1245 // any position.
1246 if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1247 (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1248 (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
1249 // Make sure we observed the prefixes in any position.
1250 if (insn->hasAdSize)
1251 attrMask |= ATTR_ADSIZE;
1252 if (insn->hasOpSize)
1253 attrMask |= ATTR_OPSIZE;
1254
1255 // In 16-bit, invert the attributes.
1256 if (insn->mode == MODE_16BIT) {
1257 attrMask ^= ATTR_ADSIZE;
1258
1259 // The OpSize attribute is only valid with the absolute moves.
1260 if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1261 attrMask ^= ATTR_OPSIZE;
1262 }
1263
1264 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1265 return -1;
1266
1267 insn->instructionID = instructionID;
1268 insn->spec = &INSTRUCTIONS_SYM[instructionID];
1269 return 0;
1270 }
1271
1272 if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1273 !(attrMask & ATTR_OPSIZE)) {
1274 // The instruction tables make no distinction between instructions that
1275 // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1276 // particular spot (i.e., many MMX operations). In general we're
1277 // conservative, but in the specific case where OpSize is present but not in
1278 // the right place we check if there's a 16-bit operation.
1279 const struct InstructionSpecifier *spec;
1280 uint16_t instructionIDWithOpsize;
1281 llvm::StringRef specName, specWithOpSizeName;
1282
1283 spec = &INSTRUCTIONS_SYM[instructionID];
1284
1285 if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
1286 attrMask | ATTR_OPSIZE)) {
1287 // ModRM required with OpSize but not present. Give up and return the
1288 // version without OpSize set.
1289 insn->instructionID = instructionID;
1290 insn->spec = spec;
1291 return 0;
1292 }
1293
1294 specName = mii->getName(instructionID);
1295 specWithOpSizeName = mii->getName(instructionIDWithOpsize);
1296
1297 if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1298 (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1299 insn->instructionID = instructionIDWithOpsize;
1300 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
1301 } else {
1302 insn->instructionID = instructionID;
1303 insn->spec = spec;
1304 }
1305 return 0;
1306 }
1307
1308 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1309 insn->rexPrefix & 0x01) {
1310 // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
1311 // as XCHG %r8, %eax.
1312 const struct InstructionSpecifier *spec;
1313 uint16_t instructionIDWithNewOpcode;
1314 const struct InstructionSpecifier *specWithNewOpcode;
1315
1316 spec = &INSTRUCTIONS_SYM[instructionID];
1317
1318 // Borrow opcode from one of the other XCHGar opcodes
1319 insn->opcode = 0x91;
1320
1321 if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
1322 attrMask)) {
1323 insn->opcode = 0x90;
1324
1325 insn->instructionID = instructionID;
1326 insn->spec = spec;
1327 return 0;
1328 }
1329
1330 specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
1331
1332 // Change back
1333 insn->opcode = 0x90;
1334
1335 insn->instructionID = instructionIDWithNewOpcode;
1336 insn->spec = specWithNewOpcode;
1337
1338 return 0;
1339 }
1340
1341 insn->instructionID = instructionID;
1342 insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
1343
1344 return 0;
1345 }
1346
1347 // Read an operand from the opcode field of an instruction and interprets it
1348 // appropriately given the operand width. Handles AddRegFrm instructions.
1349 //
1350 // @param insn - the instruction whose opcode field is to be read.
1351 // @param size - The width (in bytes) of the register being specified.
1352 // 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1353 // RAX.
1354 // @return - 0 on success; nonzero otherwise.
readOpcodeRegister(struct InternalInstruction * insn,uint8_t size)1355 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
1356 LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
1357
1358 if (size == 0)
1359 size = insn->registerSize;
1360
1361 switch (size) {
1362 case 1:
1363 insn->opcodeRegister = (Reg)(
1364 MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1365 if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1366 insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1367 insn->opcodeRegister =
1368 (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
1369 }
1370
1371 break;
1372 case 2:
1373 insn->opcodeRegister = (Reg)(
1374 MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1375 break;
1376 case 4:
1377 insn->opcodeRegister =
1378 (Reg)(MODRM_REG_EAX +
1379 ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1380 break;
1381 case 8:
1382 insn->opcodeRegister =
1383 (Reg)(MODRM_REG_RAX +
1384 ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1385 break;
1386 }
1387
1388 return 0;
1389 }
1390
1391 // Consume an immediate operand from an instruction, given the desired operand
1392 // size.
1393 //
1394 // @param insn - The instruction whose operand is to be read.
1395 // @param size - The width (in bytes) of the operand.
1396 // @return - 0 if the immediate was successfully consumed; nonzero
1397 // otherwise.
readImmediate(struct InternalInstruction * insn,uint8_t size)1398 static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
1399 uint8_t imm8;
1400 uint16_t imm16;
1401 uint32_t imm32;
1402 uint64_t imm64;
1403
1404 LLVM_DEBUG(dbgs() << "readImmediate()");
1405
1406 assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
1407
1408 insn->immediateSize = size;
1409 insn->immediateOffset = insn->readerCursor - insn->startLocation;
1410
1411 switch (size) {
1412 case 1:
1413 if (consume(insn, imm8))
1414 return -1;
1415 insn->immediates[insn->numImmediatesConsumed] = imm8;
1416 break;
1417 case 2:
1418 if (consume(insn, imm16))
1419 return -1;
1420 insn->immediates[insn->numImmediatesConsumed] = imm16;
1421 break;
1422 case 4:
1423 if (consume(insn, imm32))
1424 return -1;
1425 insn->immediates[insn->numImmediatesConsumed] = imm32;
1426 break;
1427 case 8:
1428 if (consume(insn, imm64))
1429 return -1;
1430 insn->immediates[insn->numImmediatesConsumed] = imm64;
1431 break;
1432 default:
1433 llvm_unreachable("invalid size");
1434 }
1435
1436 insn->numImmediatesConsumed++;
1437
1438 return 0;
1439 }
1440
1441 // Consume vvvv from an instruction if it has a VEX prefix.
readVVVV(struct InternalInstruction * insn)1442 static int readVVVV(struct InternalInstruction *insn) {
1443 LLVM_DEBUG(dbgs() << "readVVVV()");
1444
1445 int vvvv;
1446 if (insn->vectorExtensionType == TYPE_EVEX)
1447 vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1448 vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1449 else if (insn->vectorExtensionType == TYPE_VEX_3B)
1450 vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1451 else if (insn->vectorExtensionType == TYPE_VEX_2B)
1452 vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1453 else if (insn->vectorExtensionType == TYPE_XOP)
1454 vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1455 else
1456 return -1;
1457
1458 if (insn->mode != MODE_64BIT)
1459 vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1460
1461 insn->vvvv = static_cast<Reg>(vvvv);
1462 return 0;
1463 }
1464
1465 // Read an mask register from the opcode field of an instruction.
1466 //
1467 // @param insn - The instruction whose opcode field is to be read.
1468 // @return - 0 on success; nonzero otherwise.
readMaskRegister(struct InternalInstruction * insn)1469 static int readMaskRegister(struct InternalInstruction *insn) {
1470 LLVM_DEBUG(dbgs() << "readMaskRegister()");
1471
1472 if (insn->vectorExtensionType != TYPE_EVEX)
1473 return -1;
1474
1475 insn->writemask =
1476 static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1477 return 0;
1478 }
1479
1480 // Consults the specifier for an instruction and consumes all
1481 // operands for that instruction, interpreting them as it goes.
readOperands(struct InternalInstruction * insn)1482 static int readOperands(struct InternalInstruction *insn) {
1483 int hasVVVV, needVVVV;
1484 int sawRegImm = 0;
1485
1486 LLVM_DEBUG(dbgs() << "readOperands()");
1487
1488 // If non-zero vvvv specified, make sure one of the operands uses it.
1489 hasVVVV = !readVVVV(insn);
1490 needVVVV = hasVVVV && (insn->vvvv != 0);
1491
1492 for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1493 switch (Op.encoding) {
1494 case ENCODING_NONE:
1495 case ENCODING_SI:
1496 case ENCODING_DI:
1497 break;
1498 CASE_ENCODING_VSIB:
1499 // VSIB can use the V2 bit so check only the other bits.
1500 if (needVVVV)
1501 needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1502 if (readModRM(insn))
1503 return -1;
1504
1505 // Reject if SIB wasn't used.
1506 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1507 return -1;
1508
1509 // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1510 if (insn->sibIndex == SIB_INDEX_NONE)
1511 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1512
1513 // If EVEX.v2 is set this is one of the 16-31 registers.
1514 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1515 v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1516 insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1517
1518 // Adjust the index register to the correct size.
1519 switch ((OperandType)Op.type) {
1520 default:
1521 debug("Unhandled VSIB index type");
1522 return -1;
1523 case TYPE_MVSIBX:
1524 insn->sibIndex =
1525 (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
1526 break;
1527 case TYPE_MVSIBY:
1528 insn->sibIndex =
1529 (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
1530 break;
1531 case TYPE_MVSIBZ:
1532 insn->sibIndex =
1533 (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
1534 break;
1535 }
1536
1537 // Apply the AVX512 compressed displacement scaling factor.
1538 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1539 insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1540 break;
1541 case ENCODING_SIB:
1542 // Reject if SIB wasn't used.
1543 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1544 return -1;
1545 if (readModRM(insn))
1546 return -1;
1547 if (fixupReg(insn, &Op))
1548 return -1;
1549 break;
1550 case ENCODING_REG:
1551 CASE_ENCODING_RM:
1552 if (readModRM(insn))
1553 return -1;
1554 if (fixupReg(insn, &Op))
1555 return -1;
1556 // Apply the AVX512 compressed displacement scaling factor.
1557 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1558 insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1559 break;
1560 case ENCODING_IB:
1561 if (sawRegImm) {
1562 // Saw a register immediate so don't read again and instead split the
1563 // previous immediate. FIXME: This is a hack.
1564 insn->immediates[insn->numImmediatesConsumed] =
1565 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1566 ++insn->numImmediatesConsumed;
1567 break;
1568 }
1569 if (readImmediate(insn, 1))
1570 return -1;
1571 if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1572 sawRegImm = 1;
1573 break;
1574 case ENCODING_IW:
1575 if (readImmediate(insn, 2))
1576 return -1;
1577 break;
1578 case ENCODING_ID:
1579 if (readImmediate(insn, 4))
1580 return -1;
1581 break;
1582 case ENCODING_IO:
1583 if (readImmediate(insn, 8))
1584 return -1;
1585 break;
1586 case ENCODING_Iv:
1587 if (readImmediate(insn, insn->immediateSize))
1588 return -1;
1589 break;
1590 case ENCODING_Ia:
1591 if (readImmediate(insn, insn->addressSize))
1592 return -1;
1593 break;
1594 case ENCODING_IRC:
1595 insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1596 lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1597 break;
1598 case ENCODING_RB:
1599 if (readOpcodeRegister(insn, 1))
1600 return -1;
1601 break;
1602 case ENCODING_RW:
1603 if (readOpcodeRegister(insn, 2))
1604 return -1;
1605 break;
1606 case ENCODING_RD:
1607 if (readOpcodeRegister(insn, 4))
1608 return -1;
1609 break;
1610 case ENCODING_RO:
1611 if (readOpcodeRegister(insn, 8))
1612 return -1;
1613 break;
1614 case ENCODING_Rv:
1615 if (readOpcodeRegister(insn, 0))
1616 return -1;
1617 break;
1618 case ENCODING_CC:
1619 insn->immediates[1] = insn->opcode & 0xf;
1620 break;
1621 case ENCODING_FP:
1622 break;
1623 case ENCODING_VVVV:
1624 needVVVV = 0; // Mark that we have found a VVVV operand.
1625 if (!hasVVVV)
1626 return -1;
1627 if (insn->mode != MODE_64BIT)
1628 insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1629 if (fixupReg(insn, &Op))
1630 return -1;
1631 break;
1632 case ENCODING_WRITEMASK:
1633 if (readMaskRegister(insn))
1634 return -1;
1635 break;
1636 case ENCODING_DUP:
1637 break;
1638 default:
1639 LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
1640 return -1;
1641 }
1642 }
1643
1644 // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
1645 if (needVVVV)
1646 return -1;
1647
1648 return 0;
1649 }
1650
1651 namespace llvm {
1652
1653 // Fill-ins to make the compiler happy. These constants are never actually
1654 // assigned; they are just filler to make an automatically-generated switch
1655 // statement work.
1656 namespace X86 {
1657 enum {
1658 BX_SI = 500,
1659 BX_DI = 501,
1660 BP_SI = 502,
1661 BP_DI = 503,
1662 sib = 504,
1663 sib64 = 505
1664 };
1665 }
1666
1667 }
1668
1669 static bool translateInstruction(MCInst &target,
1670 InternalInstruction &source,
1671 const MCDisassembler *Dis);
1672
1673 namespace {
1674
1675 /// Generic disassembler for all X86 platforms. All each platform class should
1676 /// have to do is subclass the constructor, and provide a different
1677 /// disassemblerMode value.
1678 class X86GenericDisassembler : public MCDisassembler {
1679 std::unique_ptr<const MCInstrInfo> MII;
1680 public:
1681 X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
1682 std::unique_ptr<const MCInstrInfo> MII);
1683 public:
1684 DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
1685 ArrayRef<uint8_t> Bytes, uint64_t Address,
1686 raw_ostream &cStream) const override;
1687
1688 private:
1689 DisassemblerMode fMode;
1690 };
1691
1692 }
1693
X86GenericDisassembler(const MCSubtargetInfo & STI,MCContext & Ctx,std::unique_ptr<const MCInstrInfo> MII)1694 X86GenericDisassembler::X86GenericDisassembler(
1695 const MCSubtargetInfo &STI,
1696 MCContext &Ctx,
1697 std::unique_ptr<const MCInstrInfo> MII)
1698 : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
1699 const FeatureBitset &FB = STI.getFeatureBits();
1700 if (FB[X86::Mode16Bit]) {
1701 fMode = MODE_16BIT;
1702 return;
1703 } else if (FB[X86::Mode32Bit]) {
1704 fMode = MODE_32BIT;
1705 return;
1706 } else if (FB[X86::Mode64Bit]) {
1707 fMode = MODE_64BIT;
1708 return;
1709 }
1710
1711 llvm_unreachable("Invalid CPU mode");
1712 }
1713
getInstruction(MCInst & Instr,uint64_t & Size,ArrayRef<uint8_t> Bytes,uint64_t Address,raw_ostream & CStream) const1714 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
1715 MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
1716 raw_ostream &CStream) const {
1717 CommentStream = &CStream;
1718
1719 InternalInstruction Insn;
1720 memset(&Insn, 0, sizeof(InternalInstruction));
1721 Insn.bytes = Bytes;
1722 Insn.startLocation = Address;
1723 Insn.readerCursor = Address;
1724 Insn.mode = fMode;
1725
1726 if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
1727 getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
1728 readOperands(&Insn)) {
1729 Size = Insn.readerCursor - Address;
1730 return Fail;
1731 }
1732
1733 Insn.operands = x86OperandSets[Insn.spec->operands];
1734 Insn.length = Insn.readerCursor - Insn.startLocation;
1735 Size = Insn.length;
1736 if (Size > 15)
1737 LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
1738
1739 bool Ret = translateInstruction(Instr, Insn, this);
1740 if (!Ret) {
1741 unsigned Flags = X86::IP_NO_PREFIX;
1742 if (Insn.hasAdSize)
1743 Flags |= X86::IP_HAS_AD_SIZE;
1744 if (!Insn.mandatoryPrefix) {
1745 if (Insn.hasOpSize)
1746 Flags |= X86::IP_HAS_OP_SIZE;
1747 if (Insn.repeatPrefix == 0xf2)
1748 Flags |= X86::IP_HAS_REPEAT_NE;
1749 else if (Insn.repeatPrefix == 0xf3 &&
1750 // It should not be 'pause' f3 90
1751 Insn.opcode != 0x90)
1752 Flags |= X86::IP_HAS_REPEAT;
1753 if (Insn.hasLockPrefix)
1754 Flags |= X86::IP_HAS_LOCK;
1755 }
1756 Instr.setFlags(Flags);
1757 }
1758 return (!Ret) ? Success : Fail;
1759 }
1760
1761 //
1762 // Private code that translates from struct InternalInstructions to MCInsts.
1763 //
1764
1765 /// translateRegister - Translates an internal register to the appropriate LLVM
1766 /// register, and appends it as an operand to an MCInst.
1767 ///
1768 /// @param mcInst - The MCInst to append to.
1769 /// @param reg - The Reg to append.
translateRegister(MCInst & mcInst,Reg reg)1770 static void translateRegister(MCInst &mcInst, Reg reg) {
1771 #define ENTRY(x) X86::x,
1772 static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
1773 #undef ENTRY
1774
1775 MCPhysReg llvmRegnum = llvmRegnums[reg];
1776 mcInst.addOperand(MCOperand::createReg(llvmRegnum));
1777 }
1778
1779 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
1780 /// immediate Value in the MCInst.
1781 ///
1782 /// @param Value - The immediate Value, has had any PC adjustment made by
1783 /// the caller.
1784 /// @param isBranch - If the instruction is a branch instruction
1785 /// @param Address - The starting address of the instruction
1786 /// @param Offset - The byte offset to this immediate in the instruction
1787 /// @param Width - The byte width of this immediate in the instruction
1788 ///
1789 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
1790 /// called then that function is called to get any symbolic information for the
1791 /// immediate in the instruction using the Address, Offset and Width. If that
1792 /// returns non-zero then the symbolic information it returns is used to create
1793 /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo()
1794 /// returns zero and isBranch is true then a symbol look up for immediate Value
1795 /// is done and if a symbol is found an MCExpr is created with that, else
1796 /// an MCExpr with the immediate Value is created. This function returns true
1797 /// if it adds an operand to the MCInst and false otherwise.
tryAddingSymbolicOperand(int64_t Value,bool isBranch,uint64_t Address,uint64_t Offset,uint64_t Width,MCInst & MI,const MCDisassembler * Dis)1798 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
1799 uint64_t Address, uint64_t Offset,
1800 uint64_t Width, MCInst &MI,
1801 const MCDisassembler *Dis) {
1802 return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
1803 Offset, Width);
1804 }
1805
1806 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
1807 /// referenced by a load instruction with the base register that is the rip.
1808 /// These can often be addresses in a literal pool. The Address of the
1809 /// instruction and its immediate Value are used to determine the address
1810 /// being referenced in the literal pool entry. The SymbolLookUp call back will
1811 /// return a pointer to a literal 'C' string if the referenced address is an
1812 /// address into a section with 'C' string literals.
tryAddingPcLoadReferenceComment(uint64_t Address,uint64_t Value,const void * Decoder)1813 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
1814 const void *Decoder) {
1815 const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
1816 Dis->tryAddingPcLoadReferenceComment(Value, Address);
1817 }
1818
1819 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
1820 0, // SEG_OVERRIDE_NONE
1821 X86::CS,
1822 X86::SS,
1823 X86::DS,
1824 X86::ES,
1825 X86::FS,
1826 X86::GS
1827 };
1828
1829 /// translateSrcIndex - Appends a source index operand to an MCInst.
1830 ///
1831 /// @param mcInst - The MCInst to append to.
1832 /// @param insn - The internal instruction.
translateSrcIndex(MCInst & mcInst,InternalInstruction & insn)1833 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
1834 unsigned baseRegNo;
1835
1836 if (insn.mode == MODE_64BIT)
1837 baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
1838 else if (insn.mode == MODE_32BIT)
1839 baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
1840 else {
1841 assert(insn.mode == MODE_16BIT);
1842 baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
1843 }
1844 MCOperand baseReg = MCOperand::createReg(baseRegNo);
1845 mcInst.addOperand(baseReg);
1846
1847 MCOperand segmentReg;
1848 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1849 mcInst.addOperand(segmentReg);
1850 return false;
1851 }
1852
1853 /// translateDstIndex - Appends a destination index operand to an MCInst.
1854 ///
1855 /// @param mcInst - The MCInst to append to.
1856 /// @param insn - The internal instruction.
1857
translateDstIndex(MCInst & mcInst,InternalInstruction & insn)1858 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
1859 unsigned baseRegNo;
1860
1861 if (insn.mode == MODE_64BIT)
1862 baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
1863 else if (insn.mode == MODE_32BIT)
1864 baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
1865 else {
1866 assert(insn.mode == MODE_16BIT);
1867 baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
1868 }
1869 MCOperand baseReg = MCOperand::createReg(baseRegNo);
1870 mcInst.addOperand(baseReg);
1871 return false;
1872 }
1873
1874 /// translateImmediate - Appends an immediate operand to an MCInst.
1875 ///
1876 /// @param mcInst - The MCInst to append to.
1877 /// @param immediate - The immediate value to append.
1878 /// @param operand - The operand, as stored in the descriptor table.
1879 /// @param insn - The internal instruction.
translateImmediate(MCInst & mcInst,uint64_t immediate,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)1880 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
1881 const OperandSpecifier &operand,
1882 InternalInstruction &insn,
1883 const MCDisassembler *Dis) {
1884 // Sign-extend the immediate if necessary.
1885
1886 OperandType type = (OperandType)operand.type;
1887
1888 bool isBranch = false;
1889 uint64_t pcrel = 0;
1890 if (type == TYPE_REL) {
1891 isBranch = true;
1892 pcrel = insn.startLocation +
1893 insn.immediateOffset + insn.immediateSize;
1894 switch (operand.encoding) {
1895 default:
1896 break;
1897 case ENCODING_Iv:
1898 switch (insn.displacementSize) {
1899 default:
1900 break;
1901 case 1:
1902 if(immediate & 0x80)
1903 immediate |= ~(0xffull);
1904 break;
1905 case 2:
1906 if(immediate & 0x8000)
1907 immediate |= ~(0xffffull);
1908 break;
1909 case 4:
1910 if(immediate & 0x80000000)
1911 immediate |= ~(0xffffffffull);
1912 break;
1913 case 8:
1914 break;
1915 }
1916 break;
1917 case ENCODING_IB:
1918 if(immediate & 0x80)
1919 immediate |= ~(0xffull);
1920 break;
1921 case ENCODING_IW:
1922 if(immediate & 0x8000)
1923 immediate |= ~(0xffffull);
1924 break;
1925 case ENCODING_ID:
1926 if(immediate & 0x80000000)
1927 immediate |= ~(0xffffffffull);
1928 break;
1929 }
1930 }
1931 // By default sign-extend all X86 immediates based on their encoding.
1932 else if (type == TYPE_IMM) {
1933 switch (operand.encoding) {
1934 default:
1935 break;
1936 case ENCODING_IB:
1937 if(immediate & 0x80)
1938 immediate |= ~(0xffull);
1939 break;
1940 case ENCODING_IW:
1941 if(immediate & 0x8000)
1942 immediate |= ~(0xffffull);
1943 break;
1944 case ENCODING_ID:
1945 if(immediate & 0x80000000)
1946 immediate |= ~(0xffffffffull);
1947 break;
1948 case ENCODING_IO:
1949 break;
1950 }
1951 }
1952
1953 switch (type) {
1954 case TYPE_XMM:
1955 mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
1956 return;
1957 case TYPE_YMM:
1958 mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
1959 return;
1960 case TYPE_ZMM:
1961 mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
1962 return;
1963 default:
1964 // operand is 64 bits wide. Do nothing.
1965 break;
1966 }
1967
1968 if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
1969 insn.immediateOffset, insn.immediateSize,
1970 mcInst, Dis))
1971 mcInst.addOperand(MCOperand::createImm(immediate));
1972
1973 if (type == TYPE_MOFFS) {
1974 MCOperand segmentReg;
1975 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1976 mcInst.addOperand(segmentReg);
1977 }
1978 }
1979
1980 /// translateRMRegister - Translates a register stored in the R/M field of the
1981 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
1982 /// @param mcInst - The MCInst to append to.
1983 /// @param insn - The internal instruction to extract the R/M field
1984 /// from.
1985 /// @return - 0 on success; -1 otherwise
translateRMRegister(MCInst & mcInst,InternalInstruction & insn)1986 static bool translateRMRegister(MCInst &mcInst,
1987 InternalInstruction &insn) {
1988 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
1989 debug("A R/M register operand may not have a SIB byte");
1990 return true;
1991 }
1992
1993 switch (insn.eaBase) {
1994 default:
1995 debug("Unexpected EA base register");
1996 return true;
1997 case EA_BASE_NONE:
1998 debug("EA_BASE_NONE for ModR/M base");
1999 return true;
2000 #define ENTRY(x) case EA_BASE_##x:
2001 ALL_EA_BASES
2002 #undef ENTRY
2003 debug("A R/M register operand may not have a base; "
2004 "the operand must be a register.");
2005 return true;
2006 #define ENTRY(x) \
2007 case EA_REG_##x: \
2008 mcInst.addOperand(MCOperand::createReg(X86::x)); break;
2009 ALL_REGS
2010 #undef ENTRY
2011 }
2012
2013 return false;
2014 }
2015
2016 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
2017 /// fields of an internal instruction (and possibly its SIB byte) to a memory
2018 /// operand in LLVM's format, and appends it to an MCInst.
2019 ///
2020 /// @param mcInst - The MCInst to append to.
2021 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
2022 /// from.
2023 /// @param ForceSIB - The instruction must use SIB.
2024 /// @return - 0 on success; nonzero otherwise
translateRMMemory(MCInst & mcInst,InternalInstruction & insn,const MCDisassembler * Dis,bool ForceSIB=false)2025 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
2026 const MCDisassembler *Dis,
2027 bool ForceSIB = false) {
2028 // Addresses in an MCInst are represented as five operands:
2029 // 1. basereg (register) The R/M base, or (if there is a SIB) the
2030 // SIB base
2031 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
2032 // scale amount
2033 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
2034 // the index (which is multiplied by the
2035 // scale amount)
2036 // 4. displacement (immediate) 0, or the displacement if there is one
2037 // 5. segmentreg (register) x86_registerNONE for now, but could be set
2038 // if we have segment overrides
2039
2040 MCOperand baseReg;
2041 MCOperand scaleAmount;
2042 MCOperand indexReg;
2043 MCOperand displacement;
2044 MCOperand segmentReg;
2045 uint64_t pcrel = 0;
2046
2047 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2048 if (insn.sibBase != SIB_BASE_NONE) {
2049 switch (insn.sibBase) {
2050 default:
2051 debug("Unexpected sibBase");
2052 return true;
2053 #define ENTRY(x) \
2054 case SIB_BASE_##x: \
2055 baseReg = MCOperand::createReg(X86::x); break;
2056 ALL_SIB_BASES
2057 #undef ENTRY
2058 }
2059 } else {
2060 baseReg = MCOperand::createReg(X86::NoRegister);
2061 }
2062
2063 if (insn.sibIndex != SIB_INDEX_NONE) {
2064 switch (insn.sibIndex) {
2065 default:
2066 debug("Unexpected sibIndex");
2067 return true;
2068 #define ENTRY(x) \
2069 case SIB_INDEX_##x: \
2070 indexReg = MCOperand::createReg(X86::x); break;
2071 EA_BASES_32BIT
2072 EA_BASES_64BIT
2073 REGS_XMM
2074 REGS_YMM
2075 REGS_ZMM
2076 #undef ENTRY
2077 }
2078 } else {
2079 // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
2080 // but no index is used and modrm alone should have been enough.
2081 // -No base register in 32-bit mode. In 64-bit mode this is used to
2082 // avoid rip-relative addressing.
2083 // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
2084 // base always requires a SIB byte.
2085 // -A scale other than 1 is used.
2086 if (!ForceSIB &&
2087 (insn.sibScale != 1 ||
2088 (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
2089 (insn.sibBase != SIB_BASE_NONE &&
2090 insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
2091 insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
2092 indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
2093 X86::RIZ);
2094 } else
2095 indexReg = MCOperand::createReg(X86::NoRegister);
2096 }
2097
2098 scaleAmount = MCOperand::createImm(insn.sibScale);
2099 } else {
2100 switch (insn.eaBase) {
2101 case EA_BASE_NONE:
2102 if (insn.eaDisplacement == EA_DISP_NONE) {
2103 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2104 return true;
2105 }
2106 if (insn.mode == MODE_64BIT){
2107 pcrel = insn.startLocation +
2108 insn.displacementOffset + insn.displacementSize;
2109 tryAddingPcLoadReferenceComment(insn.startLocation +
2110 insn.displacementOffset,
2111 insn.displacement + pcrel, Dis);
2112 // Section 2.2.1.6
2113 baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
2114 X86::RIP);
2115 }
2116 else
2117 baseReg = MCOperand::createReg(X86::NoRegister);
2118
2119 indexReg = MCOperand::createReg(X86::NoRegister);
2120 break;
2121 case EA_BASE_BX_SI:
2122 baseReg = MCOperand::createReg(X86::BX);
2123 indexReg = MCOperand::createReg(X86::SI);
2124 break;
2125 case EA_BASE_BX_DI:
2126 baseReg = MCOperand::createReg(X86::BX);
2127 indexReg = MCOperand::createReg(X86::DI);
2128 break;
2129 case EA_BASE_BP_SI:
2130 baseReg = MCOperand::createReg(X86::BP);
2131 indexReg = MCOperand::createReg(X86::SI);
2132 break;
2133 case EA_BASE_BP_DI:
2134 baseReg = MCOperand::createReg(X86::BP);
2135 indexReg = MCOperand::createReg(X86::DI);
2136 break;
2137 default:
2138 indexReg = MCOperand::createReg(X86::NoRegister);
2139 switch (insn.eaBase) {
2140 default:
2141 debug("Unexpected eaBase");
2142 return true;
2143 // Here, we will use the fill-ins defined above. However,
2144 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
2145 // sib and sib64 were handled in the top-level if, so they're only
2146 // placeholders to keep the compiler happy.
2147 #define ENTRY(x) \
2148 case EA_BASE_##x: \
2149 baseReg = MCOperand::createReg(X86::x); break;
2150 ALL_EA_BASES
2151 #undef ENTRY
2152 #define ENTRY(x) case EA_REG_##x:
2153 ALL_REGS
2154 #undef ENTRY
2155 debug("A R/M memory operand may not be a register; "
2156 "the base field must be a base.");
2157 return true;
2158 }
2159 }
2160
2161 scaleAmount = MCOperand::createImm(1);
2162 }
2163
2164 displacement = MCOperand::createImm(insn.displacement);
2165
2166 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2167
2168 mcInst.addOperand(baseReg);
2169 mcInst.addOperand(scaleAmount);
2170 mcInst.addOperand(indexReg);
2171 if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
2172 insn.startLocation, insn.displacementOffset,
2173 insn.displacementSize, mcInst, Dis))
2174 mcInst.addOperand(displacement);
2175 mcInst.addOperand(segmentReg);
2176 return false;
2177 }
2178
2179 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
2180 /// byte of an instruction to LLVM form, and appends it to an MCInst.
2181 ///
2182 /// @param mcInst - The MCInst to append to.
2183 /// @param operand - The operand, as stored in the descriptor table.
2184 /// @param insn - The instruction to extract Mod, R/M, and SIB fields
2185 /// from.
2186 /// @return - 0 on success; nonzero otherwise
translateRM(MCInst & mcInst,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)2187 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
2188 InternalInstruction &insn, const MCDisassembler *Dis) {
2189 switch (operand.type) {
2190 default:
2191 debug("Unexpected type for a R/M operand");
2192 return true;
2193 case TYPE_R8:
2194 case TYPE_R16:
2195 case TYPE_R32:
2196 case TYPE_R64:
2197 case TYPE_Rv:
2198 case TYPE_MM64:
2199 case TYPE_XMM:
2200 case TYPE_YMM:
2201 case TYPE_ZMM:
2202 case TYPE_TMM:
2203 case TYPE_VK_PAIR:
2204 case TYPE_VK:
2205 case TYPE_DEBUGREG:
2206 case TYPE_CONTROLREG:
2207 case TYPE_BNDR:
2208 return translateRMRegister(mcInst, insn);
2209 case TYPE_M:
2210 case TYPE_MVSIBX:
2211 case TYPE_MVSIBY:
2212 case TYPE_MVSIBZ:
2213 return translateRMMemory(mcInst, insn, Dis);
2214 case TYPE_MSIB:
2215 return translateRMMemory(mcInst, insn, Dis, true);
2216 }
2217 }
2218
2219 /// translateFPRegister - Translates a stack position on the FPU stack to its
2220 /// LLVM form, and appends it to an MCInst.
2221 ///
2222 /// @param mcInst - The MCInst to append to.
2223 /// @param stackPos - The stack position to translate.
translateFPRegister(MCInst & mcInst,uint8_t stackPos)2224 static void translateFPRegister(MCInst &mcInst,
2225 uint8_t stackPos) {
2226 mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
2227 }
2228
2229 /// translateMaskRegister - Translates a 3-bit mask register number to
2230 /// LLVM form, and appends it to an MCInst.
2231 ///
2232 /// @param mcInst - The MCInst to append to.
2233 /// @param maskRegNum - Number of mask register from 0 to 7.
2234 /// @return - false on success; true otherwise.
translateMaskRegister(MCInst & mcInst,uint8_t maskRegNum)2235 static bool translateMaskRegister(MCInst &mcInst,
2236 uint8_t maskRegNum) {
2237 if (maskRegNum >= 8) {
2238 debug("Invalid mask register number");
2239 return true;
2240 }
2241
2242 mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
2243 return false;
2244 }
2245
2246 /// translateOperand - Translates an operand stored in an internal instruction
2247 /// to LLVM's format and appends it to an MCInst.
2248 ///
2249 /// @param mcInst - The MCInst to append to.
2250 /// @param operand - The operand, as stored in the descriptor table.
2251 /// @param insn - The internal instruction.
2252 /// @return - false on success; true otherwise.
translateOperand(MCInst & mcInst,const OperandSpecifier & operand,InternalInstruction & insn,const MCDisassembler * Dis)2253 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
2254 InternalInstruction &insn,
2255 const MCDisassembler *Dis) {
2256 switch (operand.encoding) {
2257 default:
2258 debug("Unhandled operand encoding during translation");
2259 return true;
2260 case ENCODING_REG:
2261 translateRegister(mcInst, insn.reg);
2262 return false;
2263 case ENCODING_WRITEMASK:
2264 return translateMaskRegister(mcInst, insn.writemask);
2265 case ENCODING_SIB:
2266 CASE_ENCODING_RM:
2267 CASE_ENCODING_VSIB:
2268 return translateRM(mcInst, operand, insn, Dis);
2269 case ENCODING_IB:
2270 case ENCODING_IW:
2271 case ENCODING_ID:
2272 case ENCODING_IO:
2273 case ENCODING_Iv:
2274 case ENCODING_Ia:
2275 translateImmediate(mcInst,
2276 insn.immediates[insn.numImmediatesTranslated++],
2277 operand,
2278 insn,
2279 Dis);
2280 return false;
2281 case ENCODING_IRC:
2282 mcInst.addOperand(MCOperand::createImm(insn.RC));
2283 return false;
2284 case ENCODING_SI:
2285 return translateSrcIndex(mcInst, insn);
2286 case ENCODING_DI:
2287 return translateDstIndex(mcInst, insn);
2288 case ENCODING_RB:
2289 case ENCODING_RW:
2290 case ENCODING_RD:
2291 case ENCODING_RO:
2292 case ENCODING_Rv:
2293 translateRegister(mcInst, insn.opcodeRegister);
2294 return false;
2295 case ENCODING_CC:
2296 mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2297 return false;
2298 case ENCODING_FP:
2299 translateFPRegister(mcInst, insn.modRM & 7);
2300 return false;
2301 case ENCODING_VVVV:
2302 translateRegister(mcInst, insn.vvvv);
2303 return false;
2304 case ENCODING_DUP:
2305 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
2306 insn, Dis);
2307 }
2308 }
2309
2310 /// translateInstruction - Translates an internal instruction and all its
2311 /// operands to an MCInst.
2312 ///
2313 /// @param mcInst - The MCInst to populate with the instruction's data.
2314 /// @param insn - The internal instruction.
2315 /// @return - false on success; true otherwise.
translateInstruction(MCInst & mcInst,InternalInstruction & insn,const MCDisassembler * Dis)2316 static bool translateInstruction(MCInst &mcInst,
2317 InternalInstruction &insn,
2318 const MCDisassembler *Dis) {
2319 if (!insn.spec) {
2320 debug("Instruction has no specification");
2321 return true;
2322 }
2323
2324 mcInst.clear();
2325 mcInst.setOpcode(insn.instructionID);
2326 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
2327 // prefix bytes should be disassembled as xrelease and xacquire then set the
2328 // opcode to those instead of the rep and repne opcodes.
2329 if (insn.xAcquireRelease) {
2330 if(mcInst.getOpcode() == X86::REP_PREFIX)
2331 mcInst.setOpcode(X86::XRELEASE_PREFIX);
2332 else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
2333 mcInst.setOpcode(X86::XACQUIRE_PREFIX);
2334 }
2335
2336 insn.numImmediatesTranslated = 0;
2337
2338 for (const auto &Op : insn.operands) {
2339 if (Op.encoding != ENCODING_NONE) {
2340 if (translateOperand(mcInst, Op, insn, Dis)) {
2341 return true;
2342 }
2343 }
2344 }
2345
2346 return false;
2347 }
2348
createX86Disassembler(const Target & T,const MCSubtargetInfo & STI,MCContext & Ctx)2349 static MCDisassembler *createX86Disassembler(const Target &T,
2350 const MCSubtargetInfo &STI,
2351 MCContext &Ctx) {
2352 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
2353 return new X86GenericDisassembler(STI, Ctx, std::move(MII));
2354 }
2355
LLVMInitializeX86Disassembler()2356 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
2357 // Register the disassembler.
2358 TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
2359 createX86Disassembler);
2360 TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
2361 createX86Disassembler);
2362 }
2363