1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10 // srem, urem, frem.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
35 #include "llvm/Transforms/Utils/BuildLibCalls.h"
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <utility>
40 
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 #define DEBUG_TYPE "instcombine"
45 
46 /// The specific integer value is used in a context where it is known to be
47 /// non-zero.  If this allows us to simplify the computation, do so and return
48 /// the new operand, otherwise return null.
simplifyValueKnownNonZero(Value * V,InstCombiner & IC,Instruction & CxtI)49 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
50                                         Instruction &CxtI) {
51   // If V has multiple uses, then we would have to do more analysis to determine
52   // if this is safe.  For example, the use could be in dynamically unreached
53   // code.
54   if (!V->hasOneUse()) return nullptr;
55 
56   bool MadeChange = false;
57 
58   // ((1 << A) >>u B) --> (1 << (A-B))
59   // Because V cannot be zero, we know that B is less than A.
60   Value *A = nullptr, *B = nullptr, *One = nullptr;
61   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
62       match(One, m_One())) {
63     A = IC.Builder.CreateSub(A, B);
64     return IC.Builder.CreateShl(One, A);
65   }
66 
67   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
68   // inexact.  Similarly for <<.
69   BinaryOperator *I = dyn_cast<BinaryOperator>(V);
70   if (I && I->isLogicalShift() &&
71       IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
72     // We know that this is an exact/nuw shift and that the input is a
73     // non-zero context as well.
74     if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
75       IC.replaceOperand(*I, 0, V2);
76       MadeChange = true;
77     }
78 
79     if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
80       I->setIsExact();
81       MadeChange = true;
82     }
83 
84     if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
85       I->setHasNoUnsignedWrap();
86       MadeChange = true;
87     }
88   }
89 
90   // TODO: Lots more we could do here:
91   //    If V is a phi node, we can call this on each of its operands.
92   //    "select cond, X, 0" can simplify to "X".
93 
94   return MadeChange ? V : nullptr;
95 }
96 
97 /// A helper routine of InstCombiner::visitMul().
98 ///
99 /// If C is a scalar/fixed width vector of known powers of 2, then this
100 /// function returns a new scalar/fixed width vector obtained from logBase2
101 /// of C.
102 /// Return a null pointer otherwise.
getLogBase2(Type * Ty,Constant * C)103 static Constant *getLogBase2(Type *Ty, Constant *C) {
104   const APInt *IVal;
105   if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
106     return ConstantInt::get(Ty, IVal->logBase2());
107 
108   // FIXME: We can extract pow of 2 of splat constant for scalable vectors.
109   if (!isa<FixedVectorType>(Ty))
110     return nullptr;
111 
112   SmallVector<Constant *, 4> Elts;
113   for (unsigned I = 0, E = cast<FixedVectorType>(Ty)->getNumElements(); I != E;
114        ++I) {
115     Constant *Elt = C->getAggregateElement(I);
116     if (!Elt)
117       return nullptr;
118     if (isa<UndefValue>(Elt)) {
119       Elts.push_back(UndefValue::get(Ty->getScalarType()));
120       continue;
121     }
122     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
123       return nullptr;
124     Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
125   }
126 
127   return ConstantVector::get(Elts);
128 }
129 
130 // TODO: This is a specific form of a much more general pattern.
131 //       We could detect a select with any binop identity constant, or we
132 //       could use SimplifyBinOp to see if either arm of the select reduces.
133 //       But that needs to be done carefully and/or while removing potential
134 //       reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
foldMulSelectToNegate(BinaryOperator & I,InstCombiner::BuilderTy & Builder)135 static Value *foldMulSelectToNegate(BinaryOperator &I,
136                                     InstCombiner::BuilderTy &Builder) {
137   Value *Cond, *OtherOp;
138 
139   // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
140   // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
141   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
142                         m_Value(OtherOp))))
143     return Builder.CreateSelect(Cond, OtherOp, Builder.CreateNeg(OtherOp));
144 
145   // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
146   // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
147   if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
148                         m_Value(OtherOp))))
149     return Builder.CreateSelect(Cond, Builder.CreateNeg(OtherOp), OtherOp);
150 
151   // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
152   // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
153   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
154                                            m_SpecificFP(-1.0))),
155                          m_Value(OtherOp)))) {
156     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
157     Builder.setFastMathFlags(I.getFastMathFlags());
158     return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
159   }
160 
161   // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
162   // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
163   if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
164                                            m_SpecificFP(1.0))),
165                          m_Value(OtherOp)))) {
166     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
167     Builder.setFastMathFlags(I.getFastMathFlags());
168     return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
169   }
170 
171   return nullptr;
172 }
173 
visitMul(BinaryOperator & I)174 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
175   if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
176                                  SQ.getWithInstruction(&I)))
177     return replaceInstUsesWith(I, V);
178 
179   if (SimplifyAssociativeOrCommutative(I))
180     return &I;
181 
182   if (Instruction *X = foldVectorBinop(I))
183     return X;
184 
185   if (Value *V = SimplifyUsingDistributiveLaws(I))
186     return replaceInstUsesWith(I, V);
187 
188   // X * -1 == 0 - X
189   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
190   if (match(Op1, m_AllOnes())) {
191     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
192     if (I.hasNoSignedWrap())
193       BO->setHasNoSignedWrap();
194     return BO;
195   }
196 
197   // Also allow combining multiply instructions on vectors.
198   {
199     Value *NewOp;
200     Constant *C1, *C2;
201     const APInt *IVal;
202     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
203                         m_Constant(C1))) &&
204         match(C1, m_APInt(IVal))) {
205       // ((X << C2)*C1) == (X * (C1 << C2))
206       Constant *Shl = ConstantExpr::getShl(C1, C2);
207       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
208       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
209       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
210         BO->setHasNoUnsignedWrap();
211       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
212           Shl->isNotMinSignedValue())
213         BO->setHasNoSignedWrap();
214       return BO;
215     }
216 
217     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
218       // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
219       if (Constant *NewCst = getLogBase2(NewOp->getType(), C1)) {
220         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
221 
222         if (I.hasNoUnsignedWrap())
223           Shl->setHasNoUnsignedWrap();
224         if (I.hasNoSignedWrap()) {
225           const APInt *V;
226           if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
227             Shl->setHasNoSignedWrap();
228         }
229 
230         return Shl;
231       }
232     }
233   }
234 
235   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
236     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
237     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
238     // The "* (2**n)" thus becomes a potential shifting opportunity.
239     {
240       const APInt &   Val = CI->getValue();
241       const APInt &PosVal = Val.abs();
242       if (Val.isNegative() && PosVal.isPowerOf2()) {
243         Value *X = nullptr, *Y = nullptr;
244         if (Op0->hasOneUse()) {
245           ConstantInt *C1;
246           Value *Sub = nullptr;
247           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
248             Sub = Builder.CreateSub(X, Y, "suba");
249           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
250             Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc");
251           if (Sub)
252             return
253               BinaryOperator::CreateMul(Sub,
254                                         ConstantInt::get(Y->getType(), PosVal));
255         }
256       }
257     }
258   }
259 
260   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
261     return FoldedMul;
262 
263   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
264     return replaceInstUsesWith(I, FoldedMul);
265 
266   // Simplify mul instructions with a constant RHS.
267   if (isa<Constant>(Op1)) {
268     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
269     Value *X;
270     Constant *C1;
271     if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
272       Value *Mul = Builder.CreateMul(C1, Op1);
273       // Only go forward with the transform if C1*CI simplifies to a tidier
274       // constant.
275       if (!match(Mul, m_Mul(m_Value(), m_Value())))
276         return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
277     }
278   }
279 
280   // abs(X) * abs(X) -> X * X
281   // nabs(X) * nabs(X) -> X * X
282   if (Op0 == Op1) {
283     Value *X, *Y;
284     SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
285     if (SPF == SPF_ABS || SPF == SPF_NABS)
286       return BinaryOperator::CreateMul(X, X);
287   }
288 
289   // -X * C --> X * -C
290   Value *X, *Y;
291   Constant *Op1C;
292   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
293     return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
294 
295   // -X * -Y --> X * Y
296   if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
297     auto *NewMul = BinaryOperator::CreateMul(X, Y);
298     if (I.hasNoSignedWrap() &&
299         cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
300         cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
301       NewMul->setHasNoSignedWrap();
302     return NewMul;
303   }
304 
305   // -X * Y --> -(X * Y)
306   // X * -Y --> -(X * Y)
307   if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
308     return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
309 
310   // (X / Y) *  Y = X - (X % Y)
311   // (X / Y) * -Y = (X % Y) - X
312   {
313     Value *Y = Op1;
314     BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
315     if (!Div || (Div->getOpcode() != Instruction::UDiv &&
316                  Div->getOpcode() != Instruction::SDiv)) {
317       Y = Op0;
318       Div = dyn_cast<BinaryOperator>(Op1);
319     }
320     Value *Neg = dyn_castNegVal(Y);
321     if (Div && Div->hasOneUse() &&
322         (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
323         (Div->getOpcode() == Instruction::UDiv ||
324          Div->getOpcode() == Instruction::SDiv)) {
325       Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
326 
327       // If the division is exact, X % Y is zero, so we end up with X or -X.
328       if (Div->isExact()) {
329         if (DivOp1 == Y)
330           return replaceInstUsesWith(I, X);
331         return BinaryOperator::CreateNeg(X);
332       }
333 
334       auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
335                                                           : Instruction::SRem;
336       Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
337       if (DivOp1 == Y)
338         return BinaryOperator::CreateSub(X, Rem);
339       return BinaryOperator::CreateSub(Rem, X);
340     }
341   }
342 
343   /// i1 mul -> i1 and.
344   if (I.getType()->isIntOrIntVectorTy(1))
345     return BinaryOperator::CreateAnd(Op0, Op1);
346 
347   // X*(1 << Y) --> X << Y
348   // (1 << Y)*X --> X << Y
349   {
350     Value *Y;
351     BinaryOperator *BO = nullptr;
352     bool ShlNSW = false;
353     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
354       BO = BinaryOperator::CreateShl(Op1, Y);
355       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
356     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
357       BO = BinaryOperator::CreateShl(Op0, Y);
358       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
359     }
360     if (BO) {
361       if (I.hasNoUnsignedWrap())
362         BO->setHasNoUnsignedWrap();
363       if (I.hasNoSignedWrap() && ShlNSW)
364         BO->setHasNoSignedWrap();
365       return BO;
366     }
367   }
368 
369   // (zext bool X) * (zext bool Y) --> zext (and X, Y)
370   // (sext bool X) * (sext bool Y) --> zext (and X, Y)
371   // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
372   if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
373        (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
374       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
375       (Op0->hasOneUse() || Op1->hasOneUse())) {
376     Value *And = Builder.CreateAnd(X, Y, "mulbool");
377     return CastInst::Create(Instruction::ZExt, And, I.getType());
378   }
379   // (sext bool X) * (zext bool Y) --> sext (and X, Y)
380   // (zext bool X) * (sext bool Y) --> sext (and X, Y)
381   // Note: -1 * 1 == 1 * -1  == -1
382   if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
383        (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
384       X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
385       (Op0->hasOneUse() || Op1->hasOneUse())) {
386     Value *And = Builder.CreateAnd(X, Y, "mulbool");
387     return CastInst::Create(Instruction::SExt, And, I.getType());
388   }
389 
390   // (bool X) * Y --> X ? Y : 0
391   // Y * (bool X) --> X ? Y : 0
392   if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
393     return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
394   if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
395     return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
396 
397   // (lshr X, 31) * Y --> (ashr X, 31) & Y
398   // Y * (lshr X, 31) --> (ashr X, 31) & Y
399   // TODO: We are not checking one-use because the elimination of the multiply
400   //       is better for analysis?
401   // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
402   //       more similar to what we're doing above.
403   const APInt *C;
404   if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
405     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
406   if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
407     return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
408 
409   if (Instruction *Ext = narrowMathIfNoOverflow(I))
410     return Ext;
411 
412   bool Changed = false;
413   if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
414     Changed = true;
415     I.setHasNoSignedWrap(true);
416   }
417 
418   if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
419     Changed = true;
420     I.setHasNoUnsignedWrap(true);
421   }
422 
423   return Changed ? &I : nullptr;
424 }
425 
foldFPSignBitOps(BinaryOperator & I)426 Instruction *InstCombiner::foldFPSignBitOps(BinaryOperator &I) {
427   BinaryOperator::BinaryOps Opcode = I.getOpcode();
428   assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
429          "Expected fmul or fdiv");
430 
431   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
432   Value *X, *Y;
433 
434   // -X * -Y --> X * Y
435   // -X / -Y --> X / Y
436   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
437     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
438 
439   // fabs(X) * fabs(X) -> X * X
440   // fabs(X) / fabs(X) -> X / X
441   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))))
442     return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
443 
444   // fabs(X) * fabs(Y) --> fabs(X * Y)
445   // fabs(X) / fabs(Y) --> fabs(X / Y)
446   if (match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))) &&
447       match(Op1, m_Intrinsic<Intrinsic::fabs>(m_Value(Y))) &&
448       (Op0->hasOneUse() || Op1->hasOneUse())) {
449     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
450     Builder.setFastMathFlags(I.getFastMathFlags());
451     Value *XY = Builder.CreateBinOp(Opcode, X, Y);
452     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
453     Fabs->takeName(&I);
454     return replaceInstUsesWith(I, Fabs);
455   }
456 
457   return nullptr;
458 }
459 
visitFMul(BinaryOperator & I)460 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
461   if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
462                                   I.getFastMathFlags(),
463                                   SQ.getWithInstruction(&I)))
464     return replaceInstUsesWith(I, V);
465 
466   if (SimplifyAssociativeOrCommutative(I))
467     return &I;
468 
469   if (Instruction *X = foldVectorBinop(I))
470     return X;
471 
472   if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
473     return FoldedMul;
474 
475   if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
476     return replaceInstUsesWith(I, FoldedMul);
477 
478   if (Instruction *R = foldFPSignBitOps(I))
479     return R;
480 
481   // X * -1.0 --> -X
482   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
483   if (match(Op1, m_SpecificFP(-1.0)))
484     return UnaryOperator::CreateFNegFMF(Op0, &I);
485 
486   // -X * C --> X * -C
487   Value *X, *Y;
488   Constant *C;
489   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
490     return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
491 
492   // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
493   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
494     return replaceInstUsesWith(I, V);
495 
496   if (I.hasAllowReassoc()) {
497     // Reassociate constant RHS with another constant to form constant
498     // expression.
499     if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
500       Constant *C1;
501       if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
502         // (C1 / X) * C --> (C * C1) / X
503         Constant *CC1 = ConstantExpr::getFMul(C, C1);
504         if (CC1->isNormalFP())
505           return BinaryOperator::CreateFDivFMF(CC1, X, &I);
506       }
507       if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
508         // (X / C1) * C --> X * (C / C1)
509         Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
510         if (CDivC1->isNormalFP())
511           return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
512 
513         // If the constant was a denormal, try reassociating differently.
514         // (X / C1) * C --> X / (C1 / C)
515         Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
516         if (Op0->hasOneUse() && C1DivC->isNormalFP())
517           return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
518       }
519 
520       // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
521       // canonicalized to 'fadd X, C'. Distributing the multiply may allow
522       // further folds and (X * C) + C2 is 'fma'.
523       if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
524         // (X + C1) * C --> (X * C) + (C * C1)
525         Constant *CC1 = ConstantExpr::getFMul(C, C1);
526         Value *XC = Builder.CreateFMulFMF(X, C, &I);
527         return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
528       }
529       if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
530         // (C1 - X) * C --> (C * C1) - (X * C)
531         Constant *CC1 = ConstantExpr::getFMul(C, C1);
532         Value *XC = Builder.CreateFMulFMF(X, C, &I);
533         return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
534       }
535     }
536 
537     Value *Z;
538     if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
539                            m_Value(Z)))) {
540       // Sink division: (X / Y) * Z --> (X * Z) / Y
541       Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
542       return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
543     }
544 
545     // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
546     // nnan disallows the possibility of returning a number if both operands are
547     // negative (in that case, we should return NaN).
548     if (I.hasNoNaNs() &&
549         match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
550         match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
551       Value *XY = Builder.CreateFMulFMF(X, Y, &I);
552       Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
553       return replaceInstUsesWith(I, Sqrt);
554     }
555 
556     // Like the similar transform in instsimplify, this requires 'nsz' because
557     // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
558     if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
559         Op0->hasNUses(2)) {
560       // Peek through fdiv to find squaring of square root:
561       // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
562       if (match(Op0, m_FDiv(m_Value(X),
563                             m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
564         Value *XX = Builder.CreateFMulFMF(X, X, &I);
565         return BinaryOperator::CreateFDivFMF(XX, Y, &I);
566       }
567       // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
568       if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
569                             m_Value(X)))) {
570         Value *XX = Builder.CreateFMulFMF(X, X, &I);
571         return BinaryOperator::CreateFDivFMF(Y, XX, &I);
572       }
573     }
574 
575     // exp(X) * exp(Y) -> exp(X + Y)
576     // Match as long as at least one of exp has only one use.
577     if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
578         match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y))) &&
579         (Op0->hasOneUse() || Op1->hasOneUse())) {
580       Value *XY = Builder.CreateFAddFMF(X, Y, &I);
581       Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
582       return replaceInstUsesWith(I, Exp);
583     }
584 
585     // exp2(X) * exp2(Y) -> exp2(X + Y)
586     // Match as long as at least one of exp2 has only one use.
587     if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
588         match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y))) &&
589         (Op0->hasOneUse() || Op1->hasOneUse())) {
590       Value *XY = Builder.CreateFAddFMF(X, Y, &I);
591       Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
592       return replaceInstUsesWith(I, Exp2);
593     }
594 
595     // (X*Y) * X => (X*X) * Y where Y != X
596     //  The purpose is two-fold:
597     //   1) to form a power expression (of X).
598     //   2) potentially shorten the critical path: After transformation, the
599     //  latency of the instruction Y is amortized by the expression of X*X,
600     //  and therefore Y is in a "less critical" position compared to what it
601     //  was before the transformation.
602     if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
603         Op1 != Y) {
604       Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
605       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
606     }
607     if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
608         Op0 != Y) {
609       Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
610       return BinaryOperator::CreateFMulFMF(XX, Y, &I);
611     }
612   }
613 
614   // log2(X * 0.5) * Y = log2(X) * Y - Y
615   if (I.isFast()) {
616     IntrinsicInst *Log2 = nullptr;
617     if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
618             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
619       Log2 = cast<IntrinsicInst>(Op0);
620       Y = Op1;
621     }
622     if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
623             m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
624       Log2 = cast<IntrinsicInst>(Op1);
625       Y = Op0;
626     }
627     if (Log2) {
628       Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
629       Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
630       return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
631     }
632   }
633 
634   return nullptr;
635 }
636 
637 /// Fold a divide or remainder with a select instruction divisor when one of the
638 /// select operands is zero. In that case, we can use the other select operand
639 /// because div/rem by zero is undefined.
simplifyDivRemOfSelectWithZeroOp(BinaryOperator & I)640 bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
641   SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
642   if (!SI)
643     return false;
644 
645   int NonNullOperand;
646   if (match(SI->getTrueValue(), m_Zero()))
647     // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
648     NonNullOperand = 2;
649   else if (match(SI->getFalseValue(), m_Zero()))
650     // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
651     NonNullOperand = 1;
652   else
653     return false;
654 
655   // Change the div/rem to use 'Y' instead of the select.
656   replaceOperand(I, 1, SI->getOperand(NonNullOperand));
657 
658   // Okay, we know we replace the operand of the div/rem with 'Y' with no
659   // problem.  However, the select, or the condition of the select may have
660   // multiple uses.  Based on our knowledge that the operand must be non-zero,
661   // propagate the known value for the select into other uses of it, and
662   // propagate a known value of the condition into its other users.
663 
664   // If the select and condition only have a single use, don't bother with this,
665   // early exit.
666   Value *SelectCond = SI->getCondition();
667   if (SI->use_empty() && SelectCond->hasOneUse())
668     return true;
669 
670   // Scan the current block backward, looking for other uses of SI.
671   BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
672   Type *CondTy = SelectCond->getType();
673   while (BBI != BBFront) {
674     --BBI;
675     // If we found an instruction that we can't assume will return, so
676     // information from below it cannot be propagated above it.
677     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
678       break;
679 
680     // Replace uses of the select or its condition with the known values.
681     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
682          I != E; ++I) {
683       if (*I == SI) {
684         replaceUse(*I, SI->getOperand(NonNullOperand));
685         Worklist.push(&*BBI);
686       } else if (*I == SelectCond) {
687         replaceUse(*I, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
688                                            : ConstantInt::getFalse(CondTy));
689         Worklist.push(&*BBI);
690       }
691     }
692 
693     // If we past the instruction, quit looking for it.
694     if (&*BBI == SI)
695       SI = nullptr;
696     if (&*BBI == SelectCond)
697       SelectCond = nullptr;
698 
699     // If we ran out of things to eliminate, break out of the loop.
700     if (!SelectCond && !SI)
701       break;
702 
703   }
704   return true;
705 }
706 
707 /// True if the multiply can not be expressed in an int this size.
multiplyOverflows(const APInt & C1,const APInt & C2,APInt & Product,bool IsSigned)708 static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
709                               bool IsSigned) {
710   bool Overflow;
711   Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
712   return Overflow;
713 }
714 
715 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
isMultiple(const APInt & C1,const APInt & C2,APInt & Quotient,bool IsSigned)716 static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
717                        bool IsSigned) {
718   assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
719 
720   // Bail if we will divide by zero.
721   if (C2.isNullValue())
722     return false;
723 
724   // Bail if we would divide INT_MIN by -1.
725   if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
726     return false;
727 
728   APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
729   if (IsSigned)
730     APInt::sdivrem(C1, C2, Quotient, Remainder);
731   else
732     APInt::udivrem(C1, C2, Quotient, Remainder);
733 
734   return Remainder.isMinValue();
735 }
736 
737 /// This function implements the transforms common to both integer division
738 /// instructions (udiv and sdiv). It is called by the visitors to those integer
739 /// division instructions.
740 /// Common integer divide transforms
commonIDivTransforms(BinaryOperator & I)741 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
742   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
743   bool IsSigned = I.getOpcode() == Instruction::SDiv;
744   Type *Ty = I.getType();
745 
746   // The RHS is known non-zero.
747   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
748     return replaceOperand(I, 1, V);
749 
750   // Handle cases involving: [su]div X, (select Cond, Y, Z)
751   // This does not apply for fdiv.
752   if (simplifyDivRemOfSelectWithZeroOp(I))
753     return &I;
754 
755   const APInt *C2;
756   if (match(Op1, m_APInt(C2))) {
757     Value *X;
758     const APInt *C1;
759 
760     // (X / C1) / C2  -> X / (C1*C2)
761     if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
762         (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
763       APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
764       if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
765         return BinaryOperator::Create(I.getOpcode(), X,
766                                       ConstantInt::get(Ty, Product));
767     }
768 
769     if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
770         (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
771       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
772 
773       // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
774       if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
775         auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
776                                               ConstantInt::get(Ty, Quotient));
777         NewDiv->setIsExact(I.isExact());
778         return NewDiv;
779       }
780 
781       // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
782       if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
783         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
784                                            ConstantInt::get(Ty, Quotient));
785         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
786         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
787         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
788         return Mul;
789       }
790     }
791 
792     if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
793          *C1 != C1->getBitWidth() - 1) ||
794         (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
795       APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
796       APInt C1Shifted = APInt::getOneBitSet(
797           C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
798 
799       // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
800       if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
801         auto *BO = BinaryOperator::Create(I.getOpcode(), X,
802                                           ConstantInt::get(Ty, Quotient));
803         BO->setIsExact(I.isExact());
804         return BO;
805       }
806 
807       // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
808       if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
809         auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
810                                            ConstantInt::get(Ty, Quotient));
811         auto *OBO = cast<OverflowingBinaryOperator>(Op0);
812         Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
813         Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
814         return Mul;
815       }
816     }
817 
818     if (!C2->isNullValue()) // avoid X udiv 0
819       if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
820         return FoldedDiv;
821   }
822 
823   if (match(Op0, m_One())) {
824     assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
825     if (IsSigned) {
826       // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
827       // result is one, if Op1 is -1 then the result is minus one, otherwise
828       // it's zero.
829       Value *Inc = Builder.CreateAdd(Op1, Op0);
830       Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
831       return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
832     } else {
833       // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
834       // result is one, otherwise it's zero.
835       return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
836     }
837   }
838 
839   // See if we can fold away this div instruction.
840   if (SimplifyDemandedInstructionBits(I))
841     return &I;
842 
843   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
844   Value *X, *Z;
845   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
846     if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
847         (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
848       return BinaryOperator::Create(I.getOpcode(), X, Op1);
849 
850   // (X << Y) / X -> 1 << Y
851   Value *Y;
852   if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
853     return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
854   if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
855     return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
856 
857   // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
858   if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
859     bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
860     bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
861     if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
862       replaceOperand(I, 0, ConstantInt::get(Ty, 1));
863       replaceOperand(I, 1, Y);
864       return &I;
865     }
866   }
867 
868   return nullptr;
869 }
870 
871 static const unsigned MaxDepth = 6;
872 
873 namespace {
874 
875 using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
876                                            const BinaryOperator &I,
877                                            InstCombiner &IC);
878 
879 /// Used to maintain state for visitUDivOperand().
880 struct UDivFoldAction {
881   /// Informs visitUDiv() how to fold this operand.  This can be zero if this
882   /// action joins two actions together.
883   FoldUDivOperandCb FoldAction;
884 
885   /// Which operand to fold.
886   Value *OperandToFold;
887 
888   union {
889     /// The instruction returned when FoldAction is invoked.
890     Instruction *FoldResult;
891 
892     /// Stores the LHS action index if this action joins two actions together.
893     size_t SelectLHSIdx;
894   };
895 
UDivFoldAction__anon5dbe3a360111::UDivFoldAction896   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
897       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
UDivFoldAction__anon5dbe3a360111::UDivFoldAction898   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
899       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
900 };
901 
902 } // end anonymous namespace
903 
904 // X udiv 2^C -> X >> C
foldUDivPow2Cst(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombiner & IC)905 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
906                                     const BinaryOperator &I, InstCombiner &IC) {
907   Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1));
908   if (!C1)
909     llvm_unreachable("Failed to constant fold udiv -> logbase2");
910   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
911   if (I.isExact())
912     LShr->setIsExact();
913   return LShr;
914 }
915 
916 // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
917 // X udiv (zext (C1 << N)), where C1 is "1<<C2"  -->  X >> (N+C2)
foldUDivShl(Value * Op0,Value * Op1,const BinaryOperator & I,InstCombiner & IC)918 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
919                                 InstCombiner &IC) {
920   Value *ShiftLeft;
921   if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
922     ShiftLeft = Op1;
923 
924   Constant *CI;
925   Value *N;
926   if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
927     llvm_unreachable("match should never fail here!");
928   Constant *Log2Base = getLogBase2(N->getType(), CI);
929   if (!Log2Base)
930     llvm_unreachable("getLogBase2 should never fail here!");
931   N = IC.Builder.CreateAdd(N, Log2Base);
932   if (Op1 != ShiftLeft)
933     N = IC.Builder.CreateZExt(N, Op1->getType());
934   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
935   if (I.isExact())
936     LShr->setIsExact();
937   return LShr;
938 }
939 
940 // Recursively visits the possible right hand operands of a udiv
941 // instruction, seeing through select instructions, to determine if we can
942 // replace the udiv with something simpler.  If we find that an operand is not
943 // able to simplify the udiv, we abort the entire transformation.
visitUDivOperand(Value * Op0,Value * Op1,const BinaryOperator & I,SmallVectorImpl<UDivFoldAction> & Actions,unsigned Depth=0)944 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
945                                SmallVectorImpl<UDivFoldAction> &Actions,
946                                unsigned Depth = 0) {
947   // Check to see if this is an unsigned division with an exact power of 2,
948   // if so, convert to a right shift.
949   if (match(Op1, m_Power2())) {
950     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
951     return Actions.size();
952   }
953 
954   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
955   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
956       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
957     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
958     return Actions.size();
959   }
960 
961   // The remaining tests are all recursive, so bail out if we hit the limit.
962   if (Depth++ == MaxDepth)
963     return 0;
964 
965   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
966     if (size_t LHSIdx =
967             visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
968       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
969         Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
970         return Actions.size();
971       }
972 
973   return 0;
974 }
975 
976 /// If we have zero-extended operands of an unsigned div or rem, we may be able
977 /// to narrow the operation (sink the zext below the math).
narrowUDivURem(BinaryOperator & I,InstCombiner::BuilderTy & Builder)978 static Instruction *narrowUDivURem(BinaryOperator &I,
979                                    InstCombiner::BuilderTy &Builder) {
980   Instruction::BinaryOps Opcode = I.getOpcode();
981   Value *N = I.getOperand(0);
982   Value *D = I.getOperand(1);
983   Type *Ty = I.getType();
984   Value *X, *Y;
985   if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
986       X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
987     // udiv (zext X), (zext Y) --> zext (udiv X, Y)
988     // urem (zext X), (zext Y) --> zext (urem X, Y)
989     Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
990     return new ZExtInst(NarrowOp, Ty);
991   }
992 
993   Constant *C;
994   if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
995       (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
996     // If the constant is the same in the smaller type, use the narrow version.
997     Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
998     if (ConstantExpr::getZExt(TruncC, Ty) != C)
999       return nullptr;
1000 
1001     // udiv (zext X), C --> zext (udiv X, C')
1002     // urem (zext X), C --> zext (urem X, C')
1003     // udiv C, (zext X) --> zext (udiv C', X)
1004     // urem C, (zext X) --> zext (urem C', X)
1005     Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
1006                                        : Builder.CreateBinOp(Opcode, TruncC, X);
1007     return new ZExtInst(NarrowOp, Ty);
1008   }
1009 
1010   return nullptr;
1011 }
1012 
visitUDiv(BinaryOperator & I)1013 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
1014   if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
1015                                   SQ.getWithInstruction(&I)))
1016     return replaceInstUsesWith(I, V);
1017 
1018   if (Instruction *X = foldVectorBinop(I))
1019     return X;
1020 
1021   // Handle the integer div common cases
1022   if (Instruction *Common = commonIDivTransforms(I))
1023     return Common;
1024 
1025   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1026   Value *X;
1027   const APInt *C1, *C2;
1028   if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1029     // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1030     bool Overflow;
1031     APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1032     if (!Overflow) {
1033       bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1034       BinaryOperator *BO = BinaryOperator::CreateUDiv(
1035           X, ConstantInt::get(X->getType(), C2ShlC1));
1036       if (IsExact)
1037         BO->setIsExact();
1038       return BO;
1039     }
1040   }
1041 
1042   // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1043   // TODO: Could use isKnownNegative() to handle non-constant values.
1044   Type *Ty = I.getType();
1045   if (match(Op1, m_Negative())) {
1046     Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1047     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1048   }
1049   // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1050   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1051     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1052     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1053   }
1054 
1055   if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1056     return NarrowDiv;
1057 
1058   // If the udiv operands are non-overflowing multiplies with a common operand,
1059   // then eliminate the common factor:
1060   // (A * B) / (A * X) --> B / X (and commuted variants)
1061   // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1062   // TODO: If -reassociation handled this generally, we could remove this.
1063   Value *A, *B;
1064   if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
1065     if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
1066         match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
1067       return BinaryOperator::CreateUDiv(B, X);
1068     if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
1069         match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
1070       return BinaryOperator::CreateUDiv(A, X);
1071   }
1072 
1073   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1074   SmallVector<UDivFoldAction, 6> UDivActions;
1075   if (visitUDivOperand(Op0, Op1, I, UDivActions))
1076     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1077       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1078       Value *ActionOp1 = UDivActions[i].OperandToFold;
1079       Instruction *Inst;
1080       if (Action)
1081         Inst = Action(Op0, ActionOp1, I, *this);
1082       else {
1083         // This action joins two actions together.  The RHS of this action is
1084         // simply the last action we processed, we saved the LHS action index in
1085         // the joining action.
1086         size_t SelectRHSIdx = i - 1;
1087         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1088         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1089         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1090         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1091                                   SelectLHS, SelectRHS);
1092       }
1093 
1094       // If this is the last action to process, return it to the InstCombiner.
1095       // Otherwise, we insert it before the UDiv and record it so that we may
1096       // use it as part of a joining action (i.e., a SelectInst).
1097       if (e - i != 1) {
1098         Inst->insertBefore(&I);
1099         UDivActions[i].FoldResult = Inst;
1100       } else
1101         return Inst;
1102     }
1103 
1104   return nullptr;
1105 }
1106 
visitSDiv(BinaryOperator & I)1107 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
1108   if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1109                                   SQ.getWithInstruction(&I)))
1110     return replaceInstUsesWith(I, V);
1111 
1112   if (Instruction *X = foldVectorBinop(I))
1113     return X;
1114 
1115   // Handle the integer div common cases
1116   if (Instruction *Common = commonIDivTransforms(I))
1117     return Common;
1118 
1119   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1120   Value *X;
1121   // sdiv Op0, -1 --> -Op0
1122   // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1123   if (match(Op1, m_AllOnes()) ||
1124       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1125     return BinaryOperator::CreateNeg(Op0);
1126 
1127   // X / INT_MIN --> X == INT_MIN
1128   if (match(Op1, m_SignMask()))
1129     return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType());
1130 
1131   const APInt *Op1C;
1132   if (match(Op1, m_APInt(Op1C))) {
1133     // sdiv exact X, C  -->  ashr exact X, log2(C)
1134     if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
1135       Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
1136       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
1137     }
1138 
1139     // If the dividend is sign-extended and the constant divisor is small enough
1140     // to fit in the source type, shrink the division to the narrower type:
1141     // (sext X) sdiv C --> sext (X sdiv C)
1142     Value *Op0Src;
1143     if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1144         Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1145 
1146       // In the general case, we need to make sure that the dividend is not the
1147       // minimum signed value because dividing that by -1 is UB. But here, we
1148       // know that the -1 divisor case is already handled above.
1149 
1150       Constant *NarrowDivisor =
1151           ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1152       Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1153       return new SExtInst(NarrowOp, Op0->getType());
1154     }
1155 
1156     // -X / C --> X / -C (if the negation doesn't overflow).
1157     // TODO: This could be enhanced to handle arbitrary vector constants by
1158     //       checking if all elements are not the min-signed-val.
1159     if (!Op1C->isMinSignedValue() &&
1160         match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1161       Constant *NegC = ConstantInt::get(I.getType(), -(*Op1C));
1162       Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1163       BO->setIsExact(I.isExact());
1164       return BO;
1165     }
1166   }
1167 
1168   // -X / Y --> -(X / Y)
1169   Value *Y;
1170   if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1171     return BinaryOperator::CreateNSWNeg(
1172         Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1173 
1174   // If the sign bits of both operands are zero (i.e. we can prove they are
1175   // unsigned inputs), turn this into a udiv.
1176   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1177   if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1178     if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1179       // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1180       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1181       BO->setIsExact(I.isExact());
1182       return BO;
1183     }
1184 
1185     if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1186       // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1187       // Safe because the only negative value (1 << Y) can take on is
1188       // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1189       // the sign bit set.
1190       auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1191       BO->setIsExact(I.isExact());
1192       return BO;
1193     }
1194   }
1195 
1196   return nullptr;
1197 }
1198 
1199 /// Remove negation and try to convert division into multiplication.
foldFDivConstantDivisor(BinaryOperator & I)1200 static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1201   Constant *C;
1202   if (!match(I.getOperand(1), m_Constant(C)))
1203     return nullptr;
1204 
1205   // -X / C --> X / -C
1206   Value *X;
1207   if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1208     return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1209 
1210   // If the constant divisor has an exact inverse, this is always safe. If not,
1211   // then we can still create a reciprocal if fast-math-flags allow it and the
1212   // constant is a regular number (not zero, infinite, or denormal).
1213   if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1214     return nullptr;
1215 
1216   // Disallow denormal constants because we don't know what would happen
1217   // on all targets.
1218   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1219   // denorms are flushed?
1220   auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1221   if (!RecipC->isNormalFP())
1222     return nullptr;
1223 
1224   // X / C --> X * (1 / C)
1225   return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1226 }
1227 
1228 /// Remove negation and try to reassociate constant math.
foldFDivConstantDividend(BinaryOperator & I)1229 static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1230   Constant *C;
1231   if (!match(I.getOperand(0), m_Constant(C)))
1232     return nullptr;
1233 
1234   // C / -X --> -C / X
1235   Value *X;
1236   if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1237     return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1238 
1239   if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1240     return nullptr;
1241 
1242   // Try to reassociate C / X expressions where X includes another constant.
1243   Constant *C2, *NewC = nullptr;
1244   if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1245     // C / (X * C2) --> (C / C2) / X
1246     NewC = ConstantExpr::getFDiv(C, C2);
1247   } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1248     // C / (X / C2) --> (C * C2) / X
1249     NewC = ConstantExpr::getFMul(C, C2);
1250   }
1251   // Disallow denormal constants because we don't know what would happen
1252   // on all targets.
1253   // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1254   // denorms are flushed?
1255   if (!NewC || !NewC->isNormalFP())
1256     return nullptr;
1257 
1258   return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1259 }
1260 
visitFDiv(BinaryOperator & I)1261 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
1262   if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1263                                   I.getFastMathFlags(),
1264                                   SQ.getWithInstruction(&I)))
1265     return replaceInstUsesWith(I, V);
1266 
1267   if (Instruction *X = foldVectorBinop(I))
1268     return X;
1269 
1270   if (Instruction *R = foldFDivConstantDivisor(I))
1271     return R;
1272 
1273   if (Instruction *R = foldFDivConstantDividend(I))
1274     return R;
1275 
1276   if (Instruction *R = foldFPSignBitOps(I))
1277     return R;
1278 
1279   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1280   if (isa<Constant>(Op0))
1281     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1282       if (Instruction *R = FoldOpIntoSelect(I, SI))
1283         return R;
1284 
1285   if (isa<Constant>(Op1))
1286     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1287       if (Instruction *R = FoldOpIntoSelect(I, SI))
1288         return R;
1289 
1290   if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1291     Value *X, *Y;
1292     if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1293         (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1294       // (X / Y) / Z => X / (Y * Z)
1295       Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1296       return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1297     }
1298     if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1299         (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1300       // Z / (X / Y) => (Y * Z) / X
1301       Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1302       return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1303     }
1304     // Z / (1.0 / Y) => (Y * Z)
1305     //
1306     // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1307     // m_OneUse check is avoided because even in the case of the multiple uses
1308     // for 1.0/Y, the number of instructions remain the same and a division is
1309     // replaced by a multiplication.
1310     if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1311       return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1312   }
1313 
1314   if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1315     // sin(X) / cos(X) -> tan(X)
1316     // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1317     Value *X;
1318     bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1319                  match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1320     bool IsCot =
1321         !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1322                   match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1323 
1324     if ((IsTan || IsCot) &&
1325         hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
1326       IRBuilder<> B(&I);
1327       IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1328       B.setFastMathFlags(I.getFastMathFlags());
1329       AttributeList Attrs =
1330           cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1331       Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1332                                         LibFunc_tanl, B, Attrs);
1333       if (IsCot)
1334         Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1335       return replaceInstUsesWith(I, Res);
1336     }
1337   }
1338 
1339   // X / (X * Y) --> 1.0 / Y
1340   // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1341   // We can ignore the possibility that X is infinity because INF/INF is NaN.
1342   Value *X, *Y;
1343   if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1344       match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1345     replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1346     replaceOperand(I, 1, Y);
1347     return &I;
1348   }
1349 
1350   // X / fabs(X) -> copysign(1.0, X)
1351   // fabs(X) / X -> copysign(1.0, X)
1352   if (I.hasNoNaNs() && I.hasNoInfs() &&
1353       (match(&I,
1354              m_FDiv(m_Value(X), m_Intrinsic<Intrinsic::fabs>(m_Deferred(X)))) ||
1355        match(&I, m_FDiv(m_Intrinsic<Intrinsic::fabs>(m_Value(X)),
1356                         m_Deferred(X))))) {
1357     Value *V = Builder.CreateBinaryIntrinsic(
1358         Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1359     return replaceInstUsesWith(I, V);
1360   }
1361   return nullptr;
1362 }
1363 
1364 /// This function implements the transforms common to both integer remainder
1365 /// instructions (urem and srem). It is called by the visitors to those integer
1366 /// remainder instructions.
1367 /// Common integer remainder transforms
commonIRemTransforms(BinaryOperator & I)1368 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1369   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1370 
1371   // The RHS is known non-zero.
1372   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1373     return replaceOperand(I, 1, V);
1374 
1375   // Handle cases involving: rem X, (select Cond, Y, Z)
1376   if (simplifyDivRemOfSelectWithZeroOp(I))
1377     return &I;
1378 
1379   if (isa<Constant>(Op1)) {
1380     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1381       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1382         if (Instruction *R = FoldOpIntoSelect(I, SI))
1383           return R;
1384       } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1385         const APInt *Op1Int;
1386         if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1387             (I.getOpcode() == Instruction::URem ||
1388              !Op1Int->isMinSignedValue())) {
1389           // foldOpIntoPhi will speculate instructions to the end of the PHI's
1390           // predecessor blocks, so do this only if we know the srem or urem
1391           // will not fault.
1392           if (Instruction *NV = foldOpIntoPhi(I, PN))
1393             return NV;
1394         }
1395       }
1396 
1397       // See if we can fold away this rem instruction.
1398       if (SimplifyDemandedInstructionBits(I))
1399         return &I;
1400     }
1401   }
1402 
1403   return nullptr;
1404 }
1405 
visitURem(BinaryOperator & I)1406 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1407   if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1408                                   SQ.getWithInstruction(&I)))
1409     return replaceInstUsesWith(I, V);
1410 
1411   if (Instruction *X = foldVectorBinop(I))
1412     return X;
1413 
1414   if (Instruction *common = commonIRemTransforms(I))
1415     return common;
1416 
1417   if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1418     return NarrowRem;
1419 
1420   // X urem Y -> X and Y-1, where Y is a power of 2,
1421   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1422   Type *Ty = I.getType();
1423   if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1424     // This may increase instruction count, we don't enforce that Y is a
1425     // constant.
1426     Constant *N1 = Constant::getAllOnesValue(Ty);
1427     Value *Add = Builder.CreateAdd(Op1, N1);
1428     return BinaryOperator::CreateAnd(Op0, Add);
1429   }
1430 
1431   // 1 urem X -> zext(X != 1)
1432   if (match(Op0, m_One())) {
1433     Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
1434     return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1435   }
1436 
1437   // X urem C -> X < C ? X : X - C, where C >= signbit.
1438   if (match(Op1, m_Negative())) {
1439     Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1440     Value *Sub = Builder.CreateSub(Op0, Op1);
1441     return SelectInst::Create(Cmp, Op0, Sub);
1442   }
1443 
1444   // If the divisor is a sext of a boolean, then the divisor must be max
1445   // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1446   // max unsigned value. In that case, the remainder is 0:
1447   // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1448   Value *X;
1449   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1450     Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1451     return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1452   }
1453 
1454   return nullptr;
1455 }
1456 
visitSRem(BinaryOperator & I)1457 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1458   if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1459                                   SQ.getWithInstruction(&I)))
1460     return replaceInstUsesWith(I, V);
1461 
1462   if (Instruction *X = foldVectorBinop(I))
1463     return X;
1464 
1465   // Handle the integer rem common cases
1466   if (Instruction *Common = commonIRemTransforms(I))
1467     return Common;
1468 
1469   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1470   {
1471     const APInt *Y;
1472     // X % -Y -> X % Y
1473     if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
1474       return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
1475   }
1476 
1477   // -X srem Y --> -(X srem Y)
1478   Value *X, *Y;
1479   if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1480     return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
1481 
1482   // If the sign bits of both operands are zero (i.e. we can prove they are
1483   // unsigned inputs), turn this into a urem.
1484   APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1485   if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1486       MaskedValueIsZero(Op0, Mask, 0, &I)) {
1487     // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1488     return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1489   }
1490 
1491   // If it's a constant vector, flip any negative values positive.
1492   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1493     Constant *C = cast<Constant>(Op1);
1494     unsigned VWidth = cast<VectorType>(C->getType())->getNumElements();
1495 
1496     bool hasNegative = false;
1497     bool hasMissing = false;
1498     for (unsigned i = 0; i != VWidth; ++i) {
1499       Constant *Elt = C->getAggregateElement(i);
1500       if (!Elt) {
1501         hasMissing = true;
1502         break;
1503       }
1504 
1505       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1506         if (RHS->isNegative())
1507           hasNegative = true;
1508     }
1509 
1510     if (hasNegative && !hasMissing) {
1511       SmallVector<Constant *, 16> Elts(VWidth);
1512       for (unsigned i = 0; i != VWidth; ++i) {
1513         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1514         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1515           if (RHS->isNegative())
1516             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1517         }
1518       }
1519 
1520       Constant *NewRHSV = ConstantVector::get(Elts);
1521       if (NewRHSV != C)  // Don't loop on -MININT
1522         return replaceOperand(I, 1, NewRHSV);
1523     }
1524   }
1525 
1526   return nullptr;
1527 }
1528 
visitFRem(BinaryOperator & I)1529 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1530   if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1531                                   I.getFastMathFlags(),
1532                                   SQ.getWithInstruction(&I)))
1533     return replaceInstUsesWith(I, V);
1534 
1535   if (Instruction *X = foldVectorBinop(I))
1536     return X;
1537 
1538   return nullptr;
1539 }
1540