1 /*
2  * Copyright 2010-2011 INRIA Saclay
3  * Copyright 2012-2013 Ecole Normale Superieure
4  * Copyright 2015-2016 Sven Verdoolaege
5  *
6  * Use of this software is governed by the MIT license
7  *
8  * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9  * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10  * 91893 Orsay, France
11  * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
12  */
13 
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <string.h>
17 
18 #include <isl/polynomial.h>
19 #include <isl/union_set.h>
20 #include <isl/aff.h>
21 #include <isl/ilp.h>
22 #include <isl/flow.h>
23 #include <isl/schedule.h>
24 #include <isl/schedule_node.h>
25 #include <isl/options.h>
26 #include <isl/ast_build.h>
27 
28 #include "cpu.h"
29 #include "gpu.h"
30 #include "gpu_array_tile.h"
31 #include "gpu_group.h"
32 #include "gpu_hybrid.h"
33 #include "gpu_tree.h"
34 #include "hybrid.h"
35 #include "schedule.h"
36 #include "ppcg_options.h"
37 #include "print.h"
38 #include "util.h"
39 
40 struct gpu_array_info;
41 
42 /* Return the name of the outer array (of structs) accessed by "access".
43  */
get_outer_array_name(__isl_keep isl_map * access)44 static const char *get_outer_array_name(__isl_keep isl_map *access)
45 {
46 	isl_space *space;
47 	const char *name;
48 
49 	space = isl_space_range(isl_map_get_space(access));
50 	while (space && isl_space_is_wrapping(space))
51 		space = isl_space_domain(isl_space_unwrap(space));
52 	name = isl_space_get_tuple_name(space, isl_dim_set);
53 	isl_space_free(space);
54 
55 	return name;
56 }
57 
58 /* Collect all references to the given array and store pointers to them
59  * in array->refs.
60  */
collect_references(struct gpu_prog * prog,struct gpu_array_info * array)61 void collect_references(struct gpu_prog *prog,
62 	struct gpu_array_info *array)
63 {
64 	int i;
65 	int n;
66 
67 	n = 0;
68 	for (i = 0; i < prog->n_stmts; ++i) {
69 		struct gpu_stmt *stmt = &prog->stmts[i];
70 		struct gpu_stmt_access *access;
71 
72 		for (access = stmt->accesses; access; access = access->next) {
73 			const char *name;
74 			name = get_outer_array_name(access->access);
75 			if (name && !strcmp(array->name, name))
76 				n++;
77 		}
78 	}
79 
80 	array->n_ref = n;
81 	array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
82 	assert(array->refs);
83 
84 	n = 0;
85 	for (i = 0; i < prog->n_stmts; ++i) {
86 		struct gpu_stmt *stmt = &prog->stmts[i];
87 		struct gpu_stmt_access *access;
88 
89 		for (access = stmt->accesses; access; access = access->next) {
90 			const char *name;
91 			name = get_outer_array_name(access->access);
92 			if (!name || strcmp(array->name, name))
93 				continue;
94 
95 			array->refs[n++] = access;
96 		}
97 	}
98 }
99 
100 /* Compute and return the extent of "array", taking into account the set of
101  * accessed elements.
102  *
103  * In particular, the extent in the outer dimension is taken
104  * from "accessed", while the extents in the remaining dimensions
105  * are taken from array->extent.
106  *
107  * The extent in the outer dimension cannot be taken from array->extent
108  * because that may be unbounded.  Furthermore, even if it is bounded,
109  * it may be larger than the piece of the array that is being accessed.
110  */
compute_extent(struct pet_array * array,__isl_keep isl_set * accessed)111 static __isl_give isl_set *compute_extent(struct pet_array *array,
112 	__isl_keep isl_set *accessed)
113 {
114 	int n_index;
115 	isl_id *id;
116 	isl_set *outer;
117 	isl_set *extent;
118 
119 	extent = isl_set_copy(array->extent);
120 
121 	n_index = isl_set_dim(accessed, isl_dim_set);
122 	if (n_index == 0)
123 		return extent;
124 
125 	extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
126 	outer = isl_set_copy(accessed);
127 	outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
128 	extent = isl_set_flat_product(outer, extent);
129 	id = isl_set_get_tuple_id(accessed);
130 	extent = isl_set_set_tuple_id(extent, id);
131 
132 	return extent;
133 }
134 
135 /* Is the array "array" being extracted a read-only scalar?
136  *
137  * That is, is "array" a scalar that is never possibly written to.
138  * An array containing structures is never considered to be a scalar.
139  */
is_read_only_scalar(struct gpu_array_info * array,struct gpu_prog * prog)140 static int is_read_only_scalar(struct gpu_array_info *array,
141 	struct gpu_prog *prog)
142 {
143 	isl_set *space;
144 	isl_union_map *write;
145 	int empty;
146 
147 	if (array->has_compound_element)
148 		return 0;
149 	if (array->n_index != 0)
150 		return 0;
151 
152 	write = isl_union_map_copy(prog->may_write);
153 	space = isl_set_universe(isl_space_copy(array->space));
154 	write = isl_union_map_intersect_range(write,
155 						isl_union_set_from_set(space));
156 	empty = isl_union_map_is_empty(write);
157 	isl_union_map_free(write);
158 
159 	return empty;
160 }
161 
162 /* Is "array" only accessed as individual, fixed elements?
163  * That is, does each access to "array" access a single, fixed element?
164  */
only_fixed_element_accessed(struct gpu_array_info * array)165 isl_bool only_fixed_element_accessed(struct gpu_array_info *array)
166 {
167 	int i;
168 
169 	for (i = 0; i < array->n_ref; ++i)
170 		if (!array->refs[i]->fixed_element)
171 			return isl_bool_false;
172 
173 	return isl_bool_true;
174 }
175 
176 /* Compute bounds on the host array "pa" based on the corresponding
177  * accessed elements in "arrays"
178  * and collect all references to the array.
179  * Store the results in "info".
180  *
181  * If the array is zero-dimensional and does not contain structures,
182  * i.e., if the array is a scalar, we check whether it is read-only.
183  * We also check whether the array is accessed at all.
184  */
extract_array_info(struct gpu_prog * prog,struct gpu_array_info * info,struct pet_array * pa,__isl_keep isl_union_set * arrays)185 static int extract_array_info(struct gpu_prog *prog,
186 	struct gpu_array_info *info, struct pet_array *pa,
187 	__isl_keep isl_union_set *arrays)
188 {
189 	int empty;
190 	const char *name;
191 	int n_index;
192 	isl_multi_pw_aff *bounds;
193 	isl_set *accessed, *extent;
194 
195 	n_index = isl_set_dim(pa->extent, isl_dim_set);
196 	name = isl_set_get_tuple_name(pa->extent);
197 
198 	info->space = isl_set_get_space(pa->extent);
199 	info->name = strdup(name);
200 	info->n_index = n_index;
201 	info->linearize = prog->scop->options->linearize_device_arrays;
202 
203 	info->type = strdup(pa->element_type);
204 	info->size = pa->element_size;
205 	info->local = pa->declared && !pa->exposed;
206 	info->has_compound_element = pa->element_is_record;
207 	info->read_only_scalar = is_read_only_scalar(info, prog);
208 
209 	info->declared_extent = isl_set_copy(pa->extent);
210 	accessed = isl_union_set_extract_set(arrays,
211 					    isl_space_copy(info->space));
212 	empty = isl_set_is_empty(accessed);
213 	extent = compute_extent(pa, accessed);
214 	isl_set_free(accessed);
215 	info->extent = extent;
216 	if (empty < 0)
217 		return -1;
218 	info->accessed = !empty;
219 	bounds = ppcg_size_from_extent(isl_set_copy(extent));
220 	bounds = isl_multi_pw_aff_gist(bounds, isl_set_copy(prog->context));
221 	if (!bounds)
222 		return -1;
223 	if (!isl_multi_pw_aff_is_cst(bounds))
224 		info->linearize = 1;
225 	info->bound = bounds;
226 
227 	collect_references(prog, info);
228 	info->only_fixed_element = only_fixed_element_accessed(info);
229 
230 	return 0;
231 }
232 
233 /* Remove independence from the order constraints "order" on array "array".
234  * Since the pairs of iterations in the filter relation of an independence
235  * are guaranteed to be completely independent by the user, there is
236  * no need to ensure that live ranges are ordered along those pairs.
237  * We make an exception for local variables, though, as the independence
238  * guarantee does not apply to those.
239  *
240  * The order constraints are used in two places.
241  * Those on scalars are used in check_scalar_live_ranges to check if
242  * we need to force the scalar to be private.  Any non-local scalar
243  * should not be forced scalar if it only appears in independent loops.
244  * Those on non-scalars are added to the coincidence constraints
245  * in compute_schedule because we do not support any array expansion.
246  * Accesses to non-local arrays should not prevent a loop from being
247  * considered coincident so we should indeed remove those constraints
248  * from the order constraints.
249  */
remove_independences(struct gpu_prog * prog,struct gpu_array_info * array,__isl_take isl_union_map * order)250 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
251 	struct gpu_array_info *array, __isl_take isl_union_map *order)
252 {
253 	// We do not have independence information in Polly. Hence, make this
254 	// function a no-op.
255 	return order;
256 	int i;
257 
258 	for (i = 0; i < prog->scop->pet->n_independence; ++i) {
259 		struct pet_independence *pi = prog->scop->pet->independences[i];
260 		if (isl_union_set_contains(pi->local, array->space))
261 			continue;
262 
263 		order = isl_union_map_subtract(order,
264 						isl_union_map_copy(pi->filter));
265 	}
266 
267 	return order;
268 }
269 
270 /* For each array in "prog", store the (untagged) order dependences
271  * derived from the array in array->dep_order.
272  * In particular, consider all references that access the given array
273  * and take the order dependences that have one of these references
274  * as source.  (Since an order dependence relates two references to
275  * the same array, the target of these order dependences will also
276  * be one of these references.)
277  * Additionally, store the union of these array->dep_order relations
278  * for all arrays that cannot be mapped to private memory in prog->array_order.
279  */
collect_order_dependences(struct gpu_prog * prog)280 void collect_order_dependences(struct gpu_prog *prog)
281 {
282 	int i;
283 	isl_space *space;
284 	isl_union_map *accesses;
285 
286 	space = isl_union_map_get_space(prog->read);
287 	prog->array_order = isl_union_map_empty(space);
288 
289 	accesses = isl_union_map_copy(prog->scop->tagged_reads);
290 	accesses = isl_union_map_union(accesses,
291 			    isl_union_map_copy(prog->scop->tagged_may_writes));
292 	accesses = isl_union_map_universe(accesses);
293 	accesses = isl_union_map_apply_range(accesses,
294 					    isl_union_map_copy(prog->to_outer));
295 
296 	for (i = 0; i < prog->n_array; ++i) {
297 		struct gpu_array_info *array = &prog->array[i];
298 		isl_set *set;
299 		isl_union_set *uset;
300 		isl_union_map *order;
301 
302 		set = isl_set_universe(isl_space_copy(array->space));
303 		uset = isl_union_set_from_set(set);
304 		uset = isl_union_map_domain(
305 		    isl_union_map_intersect_range(isl_union_map_copy(accesses),
306 						    uset));
307 		order = isl_union_map_copy(prog->scop->tagged_dep_order);
308 		order = isl_union_map_intersect_domain(order, uset);
309 		order = isl_union_map_zip(order);
310 		order = isl_union_set_unwrap(isl_union_map_domain(order));
311 		order = remove_independences(prog, array, order);
312 		array->dep_order = order;
313 
314 		if (gpu_array_can_be_private(array))
315 			continue;
316 
317 		prog->array_order = isl_union_map_union(prog->array_order,
318 					isl_union_map_copy(array->dep_order));
319 	}
320 
321 	isl_union_map_free(accesses);
322 }
323 
324 /* Construct a gpu_array_info for each array referenced by prog->scop and
325  * collect them in prog->array.
326  *
327  * The sizes are based on the extents and the set of possibly accessed
328  * elements by "prog".
329  * If there are any member accesses involved, then they are first mapped
330  * to the outer arrays of structs.
331  * Only extract gpu_array_info entries for these outer arrays.
332  *
333  * If we are allowing live range reordering, then also set
334  * the dep_order field.  Otherwise leave it NULL.
335  */
collect_array_info(struct gpu_prog * prog)336 static int collect_array_info(struct gpu_prog *prog)
337 {
338 	int i;
339 	int r = 0;
340 	isl_union_set *arrays;
341 
342 	arrays = isl_union_map_range(isl_union_map_copy(prog->read));
343 	arrays = isl_union_set_union(arrays,
344 		    isl_union_map_range(isl_union_map_copy(prog->may_write)));
345 
346 	arrays = isl_union_set_apply(arrays,
347 					isl_union_map_copy(prog->to_outer));
348 
349 	arrays = isl_union_set_coalesce(arrays);
350 
351 	prog->n_array = prog->scop->pet->n_array;
352 	prog->array = isl_calloc_array(prog->ctx,
353 				     struct gpu_array_info, prog->n_array);
354 	assert(prog->array);
355 	prog->n_array = 0;
356 	for (i = 0; i < prog->scop->pet->n_array; ++i) {
357 		isl_bool field;
358 
359 		field = isl_set_is_wrapping(prog->scop->pet->arrays[i]->extent);
360 		if (field < 0)
361 			break;
362 		if (field)
363 			continue;
364 		if (extract_array_info(prog, &prog->array[prog->n_array++],
365 					prog->scop->pet->arrays[i], arrays) < 0)
366 			r = -1;
367 	}
368 	if (i < prog->scop->pet->n_array)
369 		r = -1;
370 
371 	isl_union_set_free(arrays);
372 
373 	if (prog->scop->options->live_range_reordering)
374 		collect_order_dependences(prog);
375 
376 	return r;
377 }
378 
free_array_info(struct gpu_prog * prog)379 static void free_array_info(struct gpu_prog *prog)
380 {
381 	int i;
382 
383 	for (i = 0; i < prog->n_array; ++i) {
384 		free(prog->array[i].type);
385 		free(prog->array[i].name);
386 		isl_multi_pw_aff_free(prog->array[i].bound);
387 		isl_ast_expr_free(prog->array[i].bound_expr);
388 		isl_space_free(prog->array[i].space);
389 		isl_set_free(prog->array[i].declared_extent);
390 		isl_set_free(prog->array[i].extent);
391 		isl_ast_expr_free(prog->array[i].declared_size);
392 		free(prog->array[i].refs);
393 		isl_union_map_free(prog->array[i].dep_order);
394 	}
395 	free(prog->array);
396 }
397 
398 /* Check if a gpu array is a scalar.  A scalar is a value that is not stored
399  * as an array or through a pointer reference, but as a single data element.
400  * At the moment, scalars are represented as zero-dimensional arrays.
401  * Note that the single data element may be an entire structure.
402  */
gpu_array_is_scalar(struct gpu_array_info * array)403 int gpu_array_is_scalar(struct gpu_array_info *array)
404 {
405 	return array->n_index == 0;
406 }
407 
408 /* Can "array" be mapped to private memory?
409  * That is, is it only accessed as individual elements with
410  * constant index expressions?
411  */
gpu_array_can_be_private(struct gpu_array_info * array)412 isl_bool gpu_array_can_be_private(struct gpu_array_info *array)
413 {
414 	if (!array)
415 		return isl_bool_error;
416 	return array->only_fixed_element;
417 }
418 
419 /* Is "array" a read-only scalar?
420  */
gpu_array_is_read_only_scalar(struct gpu_array_info * array)421 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
422 {
423 	return array->read_only_scalar;
424 }
425 
426 /* Does "array" need to be allocated on the device?
427  * If it is a read-only scalar, then it will be passed as an argument
428  * to the kernel and therefore does not require any allocation.
429  * If this device memory is not accessed at all, then it does not
430  * need to be allocated either.
431  */
gpu_array_requires_device_allocation(struct gpu_array_info * array)432 int gpu_array_requires_device_allocation(struct gpu_array_info *array)
433 {
434 	if (gpu_array_is_read_only_scalar(array))
435 		return 0;
436 	if (!array->global)
437 		return 0;
438 	return 1;
439 }
440 
441 /* Return the set of parameter values for which the array has a positive
442  * size in all dimensions.
443  * If the sizes are only valid for some parameter values, then those
444  * constraints are also taken into account.
445  */
gpu_array_positive_size_guard(struct gpu_array_info * array)446 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
447 {
448 	int i;
449 	isl_space *space;
450 	isl_set *guard;
451 
452 	if (!array)
453 		return NULL;
454 
455 	space = isl_space_params(isl_space_copy(array->space));
456 	guard = isl_set_universe(space);
457 
458 	for (i = 0; i < array->n_index; ++i) {
459 		isl_pw_aff *bound;
460 		isl_set *guard_i, *zero;
461 
462 		bound = isl_multi_pw_aff_get_pw_aff(array->bound, i);
463 		guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
464 		zero = isl_pw_aff_zero_set(bound);
465 		guard_i = isl_set_subtract(guard_i, zero);
466 		guard = isl_set_intersect(guard, guard_i);
467 	}
468 
469 	return guard;
470 }
471 
472 /* Internal data structure for extract_size_of_type.
473  * "type" specifies the name of the space that we want to extract.
474  * "res" is used to store the subset of that space.
475  */
476 struct ppcg_extract_size_data {
477 	const char *type;
478 	isl_set *res;
479 };
480 
481 /* This function is called for each set in a union_set.
482  * If the name of the set matches data->type, we store the
483  * set in data->res.
484  */
extract_size_of_type(__isl_take isl_set * size,void * user)485 static isl_stat extract_size_of_type(__isl_take isl_set *size, void *user)
486 {
487 	struct ppcg_extract_size_data *data = user;
488 	const char *name;
489 
490 	name = isl_set_get_tuple_name(size);
491 	if (name && !strcmp(name, data->type)) {
492 		data->res = size;
493 		return isl_stat_error;
494 	}
495 
496 	isl_set_free(size);
497 	return isl_stat_ok;
498 }
499 
500 /* Given a union map { kernel[i] -> *[...] },
501  * return the range in the space called "type" for the kernel with
502  * sequence number "id".
503  */
extract_sizes(__isl_keep isl_union_map * sizes,const char * type,int id)504 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
505 	const char *type, int id)
506 {
507 	isl_space *space;
508 	isl_set *dom;
509 	isl_union_set *local_sizes;
510 	struct ppcg_extract_size_data data = { type, NULL };
511 
512 	if (!sizes)
513 		return NULL;
514 
515 	space = isl_union_map_get_space(sizes);
516 	space = isl_space_set_from_params(space);
517 	space = isl_space_add_dims(space, isl_dim_set, 1);
518 	space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
519 	dom = isl_set_universe(space);
520 	dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
521 
522 	local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
523 					isl_union_map_copy(sizes));
524 	isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
525 	isl_union_set_free(local_sizes);
526 	return data.res;
527 }
528 
529 /* Given a singleton set, extract the first (at most *len) elements
530  * of the single integer tuple into *sizes and update *len if needed.
531  */
read_sizes_from_set(__isl_take isl_set * set,int * sizes,int * len)532 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
533 {
534 	int i;
535 	int dim;
536 
537 	if (!set)
538 		return;
539 
540 	dim = isl_set_dim(set, isl_dim_set);
541 	if (dim < *len)
542 		*len = dim;
543 
544 	for (i = 0; i < *len; ++i) {
545 		isl_val *v;
546 
547 		v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
548 		assert(v);
549 
550 		sizes[i] = isl_val_get_num_si(v);
551 		isl_val_free(v);
552 	}
553 
554 	isl_set_free(set);
555 }
556 
557 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
558  * if the option debug->dump_sizes is set.
559  */
set_used_sizes(struct gpu_gen * gen,const char * type,int id,int * sizes,int len)560 static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
561 	int *sizes, int len)
562 {
563 	int i;
564 	isl_space *space;
565 	isl_map *map;
566 
567 	if (!gen->options->debug->dump_sizes)
568 		return;
569 
570 	space = isl_union_map_get_space(gen->used_sizes);
571 	space = isl_space_set_from_params(space);
572 	space = isl_space_add_dims(space, isl_dim_set, 1);
573 	space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
574 	space = isl_space_from_domain(space);
575 	space = isl_space_add_dims(space, isl_dim_out, len);
576 	space = isl_space_set_tuple_name(space, isl_dim_out, type);
577 
578 	map = isl_map_universe(space);
579 	map = isl_map_fix_si(map, isl_dim_in, 0, id);
580 	for (i = 0; i < len; ++i)
581 		map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
582 
583 	gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
584 }
585 
586 /* Extract user specified "tile" sizes from the "sizes" command line option,
587  * defaulting to option->tile_size in each dimension.
588  * *tile_len contains the maximum number of tile sizes needed.
589  * Update *tile_len to the number of specified tile sizes, if any, and
590  * return a pointer to the tile sizes (or NULL on error).
591  * Add the effectively used sizes to gen->used_sizes.
592  */
read_tile_sizes(struct gpu_gen * gen,int * tile_len)593 static int *read_tile_sizes(struct gpu_gen *gen, int *tile_len)
594 {
595 	int n;
596 	int *tile_size;
597 	isl_set *size;
598 
599 	tile_size = isl_alloc_array(gen->ctx, int, *tile_len);
600 	if (!tile_size)
601 		return NULL;
602 	for (n = 0; n < *tile_len; ++n)
603 		tile_size[n] = gen->options->tile_size;
604 
605 	size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
606 	read_sizes_from_set(size, tile_size, tile_len);
607 	set_used_sizes(gen, "tile", gen->kernel_id, tile_size, *tile_len);
608 
609 	return tile_size;
610 }
611 
612 /* Extract user specified "block" sizes from the "sizes" command line option,
613  * after filling in some potentially useful defaults.
614  */
read_block_sizes(struct ppcg_kernel * kernel,__isl_keep isl_union_map * sizes)615 static void read_block_sizes(struct ppcg_kernel *kernel,
616 	__isl_keep isl_union_map *sizes)
617 {
618 	isl_set *size;
619 
620 	if (kernel->n_block > 3)
621 		kernel->n_block = 3;
622 	switch (kernel->n_block) {
623 	case 1:
624 		kernel->block_dim[0] = 512;
625 		break;
626 	case 2:
627 		kernel->block_dim[0] = 32;
628 		kernel->block_dim[1] = 16;
629 		break;
630 	default:
631 		kernel->block_dim[0] = 32;
632 		kernel->block_dim[1] = 4;
633 		kernel->block_dim[2] = 4;
634 		break;
635 	}
636 
637 	size = extract_sizes(sizes, "block", kernel->id);
638 	read_sizes_from_set(size, kernel->block_dim, &kernel->n_block);
639 }
640 
641 /* Extract user specified "grid" sizes from the "sizes" command line option,
642  * after filling in some potentially useful defaults.
643  */
read_grid_sizes(struct ppcg_kernel * kernel,__isl_keep isl_union_map * sizes)644 static void read_grid_sizes(struct ppcg_kernel *kernel,
645 	__isl_keep isl_union_map *sizes)
646 {
647 	isl_set *size;
648 
649 	if (kernel->n_grid > 2)
650 		kernel->n_grid = 2;
651 	switch (kernel->n_grid) {
652 	case 1:
653 		kernel->grid_dim[0] = 32768;
654 		break;
655 	default:
656 		kernel->grid_dim[0] = 256;
657 		kernel->grid_dim[1] = 256;
658 		break;
659 	}
660 
661 	size = extract_sizes(sizes, "grid", kernel->id);
662 	read_sizes_from_set(size, kernel->grid_dim, &kernel->n_grid);
663 }
664 
665 /* Extract user specified grid and block sizes from the gen->sizes
666  * command line option after filling in some potentially useful defaults.
667  * Store the extracted sizes in "kernel".
668  * Add the effectively used sizes to gen->used_sizes.
669  */
read_grid_and_block_sizes(struct ppcg_kernel * kernel,struct gpu_gen * gen)670 static void read_grid_and_block_sizes(struct ppcg_kernel *kernel,
671 	struct gpu_gen *gen)
672 {
673 	read_block_sizes(kernel, gen->sizes);
674 	read_grid_sizes(kernel, gen->sizes);
675 	set_used_sizes(gen, "block", kernel->id,
676 					    kernel->block_dim, kernel->n_block);
677 	set_used_sizes(gen, "grid", kernel->id,
678 					    kernel->grid_dim, kernel->n_grid);
679 }
680 
free_stmts(struct gpu_stmt * stmts,int n)681 static void *free_stmts(struct gpu_stmt *stmts, int n)
682 {
683 	int i;
684 
685 	if (!stmts)
686 		return NULL;
687 
688 	for (i = 0; i < n; ++i) {
689 		struct gpu_stmt_access *access, *next;
690 
691 		for (access = stmts[i].accesses; access; access = next) {
692 			next = access->next;
693 			isl_id_free(access->ref_id);
694 			isl_map_free(access->access);
695 			isl_map_free(access->tagged_access);
696 			free(access);
697 		}
698 
699 		isl_id_free(stmts[i].id);
700 	}
701 	free(stmts);
702 
703 	return NULL;
704 }
705 
706 /* Add parameters p[i] with identifiers "ids" to "set",
707  * with bounds to 0 <= p[i] < size[i].
708  */
add_bounded_parameters(__isl_take isl_set * set,int * size,__isl_keep isl_id_list * ids)709 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
710 	int *size, __isl_keep isl_id_list *ids)
711 {
712 	int i, len;
713 	unsigned nparam;
714 
715 	len = isl_id_list_n_id(ids);
716 	nparam = isl_set_dim(set, isl_dim_param);
717 	set = isl_set_add_dims(set, isl_dim_param, len);
718 
719 	for (i = 0; i < len; ++i) {
720 		isl_id *id;
721 
722 		id = isl_id_list_get_id(ids, i);
723 		set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
724 		set = isl_set_lower_bound_si(set, isl_dim_param, nparam + i, 0);
725 		set = isl_set_upper_bound_si(set, isl_dim_param,
726 					    nparam + i, size[i] - 1);
727 	}
728 
729 	return set;
730 }
731 
732 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
733  * with
734  *
735  *	{ : 0 <= p[i] < size[i] }
736  *
737  * or an overapproximation.
738  */
add_bounded_parameters_dynamic(__isl_take isl_set * set,__isl_keep isl_multi_pw_aff * size,__isl_keep isl_id_list * ids)739 static __isl_give isl_set *add_bounded_parameters_dynamic(
740 	__isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
741 	__isl_keep isl_id_list *ids)
742 {
743 	int i, len;
744 	unsigned nparam;
745 	isl_space *space;
746 	isl_local_space *ls;
747 
748 	len = isl_multi_pw_aff_dim(size, isl_dim_out);
749 	nparam = isl_set_dim(set, isl_dim_param);
750 	set = isl_set_add_dims(set, isl_dim_param, len);
751 
752 	for (i = 0; i < len; ++i) {
753 		isl_id *id;
754 
755 		id = isl_id_list_get_id(ids, i);
756 		set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
757 	}
758 
759 	space = isl_space_params(isl_set_get_space(set));
760 	ls = isl_local_space_from_space(space);
761 	for (i = 0; i < len; ++i) {
762 		isl_pw_aff *param, *size_i, *zero;
763 		isl_set *bound;
764 
765 		param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
766 						isl_dim_param, nparam + i);
767 
768 		size_i = isl_multi_pw_aff_get_pw_aff(size, i);
769 		bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
770 		bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
771 		set = isl_set_intersect_params(set, bound);
772 
773 		zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
774 		bound = isl_pw_aff_ge_set(param, zero);
775 		set = isl_set_intersect_params(set, bound);
776 	}
777 	isl_local_space_free(ls);
778 
779 	return set;
780 }
781 
782 /* Return the union of all tagged access relations in the group.
783  */
group_tagged_access_relation(struct gpu_array_ref_group * group)784 static __isl_give isl_union_map *group_tagged_access_relation(
785 	struct gpu_array_ref_group *group)
786 {
787 	int i;
788 	isl_union_map *access;
789 
790 	access = isl_union_map_empty(isl_map_get_space(group->access));
791 	for (i = 0; i < group->n_ref; ++i) {
792 		isl_map *map_i;
793 
794 		map_i = isl_map_copy(group->refs[i]->tagged_access);
795 		access = isl_union_map_union(access,
796 					    isl_union_map_from_map(map_i));
797 	}
798 
799 	return access;
800 }
801 
802 /* Return the extent of "array", recomputed from the bounds.
803  * The recomputed extent may be simpler than the original extent.
804  */
array_extent(struct gpu_array_info * array)805 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
806 {
807 	int i;
808 	isl_id *id;
809 	isl_space *space;
810 	isl_local_space *ls;
811 	isl_set *extent;
812 
813 	id = isl_set_get_tuple_id(array->extent);
814 	space = isl_set_get_space(array->extent);
815 	extent = isl_set_universe(isl_space_copy(space));
816 	ls = isl_local_space_from_space(space);
817 	for (i = 0; i < array->n_index; ++i) {
818 		isl_pw_aff *bound;
819 		isl_aff *aff;
820 		isl_pw_aff *index;
821 		isl_set *lt;
822 
823 		extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
824 
825 		aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
826 						isl_dim_set, i);
827 		index = isl_pw_aff_from_aff(aff);
828 		bound = isl_multi_pw_aff_get_pw_aff(array->bound, i);
829 		bound = isl_pw_aff_from_range(bound);
830 		bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
831 		bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
832 						isl_id_copy(id));
833 		lt = isl_pw_aff_lt_set(index, bound);
834 		extent = isl_set_intersect(extent, lt);
835 	}
836 	isl_local_space_free(ls);
837 	isl_id_free(id);
838 
839 	return extent;
840 }
841 
842 /* Return a map from the first group->shared_tile->depth dimensions
843  * of the computed schedule to the array tile in
844  * global memory that corresponds to the shared memory copy.
845  *
846  * In particular, return a map
847  *
848  *	{ D[i] -> A[a] }
849  *
850  * with constraints
851  *
852  *	tile_offset(i) <= a <= tile_offset(i) + tile_size - 1		(1)
853  *
854  * and
855  *
856  *	0 <= a <= array_size - 1					(2)
857  *
858  * Note that if some stride has been detected (i.e., when
859  * group->shared_tile->bound[i].shift is set), then a in (1) refers
860  * to the shifted and scaled down version.
861  *
862  * Constraints (1) are obtained by mapping the size constraints on the
863  * shared/private memory tile back to the access relation.
864  * Constraints (2) are obtained from the (recomputed) extent.
865  */
group_tile(struct gpu_array_ref_group * group)866 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
867 {
868 	int i;
869 	int n_index = group->array->n_index;
870 	isl_map *tile;
871 	isl_space *space;
872 	isl_set *local;
873 	isl_set *extent;
874 
875 	space = isl_multi_aff_get_space(group->shared_tile->tiling);
876 	space = isl_space_range(space);
877 	local = isl_set_universe(space);
878 	for (i = 0; i < n_index; ++i) {
879 		isl_val *bound;
880 
881 		local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
882 		bound = isl_val_copy(group->shared_tile->bound[i].size);
883 		bound = isl_val_sub_ui(bound, 1);
884 		local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
885 	}
886 	local = isl_set_preimage_multi_aff(local,
887 				isl_multi_aff_copy(group->shared_tile->tiling));
888 	tile = isl_set_unwrap(local);
889 	extent = array_extent(group->array);
890 	tile = isl_map_intersect_range(tile, extent);
891 
892 	return tile;
893 }
894 
895 /* Given a mapping "iterator_map" from the AST schedule to a domain,
896  * return the corresponding mapping from the AST schedule to
897  * to the outer kernel->copy_schedule_dim dimensions of
898  * the schedule computed by PPCG for this kernel.
899  *
900  * Note that kernel->copy_schedule_dim is at least as large as
901  * the largest depth of any array reference group associated to the kernel.
902  * This is needed as the returned schedule is used to extract a mapping
903  * to the outer tile->depth dimensions in transform_index.
904  */
compute_sched_to_copy(struct ppcg_kernel * kernel,__isl_take isl_pw_multi_aff * iterator_map)905 static __isl_give isl_pw_multi_aff *compute_sched_to_copy(
906 	struct ppcg_kernel *kernel, __isl_take isl_pw_multi_aff *iterator_map)
907 {
908 	isl_union_pw_multi_aff *upma;
909 	isl_pw_multi_aff *pma;
910 	isl_space *space;
911 
912 	space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
913 	space = isl_space_from_domain(space);
914 	space = isl_space_add_dims(space, isl_dim_out,
915 					kernel->copy_schedule_dim);
916 
917 	upma = isl_union_pw_multi_aff_copy(kernel->copy_schedule);
918 	pma = isl_union_pw_multi_aff_extract_pw_multi_aff(upma, space);
919 	isl_union_pw_multi_aff_free(upma);
920 
921 	return isl_pw_multi_aff_pullback_pw_multi_aff(pma, iterator_map);
922 }
923 
924 /* If max_shared_memory is not set to infinity (-1), then make
925  * sure that the total amount of shared memory required by the
926  * array reference groups mapped to shared memory by "kernel"
927  * is no larger than this maximum.
928  *
929  * We apply a greedy approach and discard (keep in global memory)
930  * those groups that would result in a total memory size that
931  * is larger than the maximum.
932  *
933  * This function should be called after any function that may
934  * affect the decision on whether to place a reference group
935  * in private, shared or global memory.
936  */
check_shared_memory_bound(struct ppcg_kernel * kernel)937 static void check_shared_memory_bound(struct ppcg_kernel *kernel)
938 {
939 	int i, j;
940 	isl_val *left, *size;
941 
942 	if (kernel->options->max_shared_memory < 0)
943 		return;
944 
945 	left = isl_val_int_from_si(kernel->ctx,
946 				    kernel->options->max_shared_memory);
947 
948 	for (i = 0; i < kernel->n_array; ++i) {
949 		struct gpu_local_array_info *local = &kernel->array[i];
950 
951 		for (j = 0; j < local->n_group; ++j) {
952 			struct gpu_array_ref_group *group;
953 			enum ppcg_group_access_type type;
954 
955 			group = local->groups[j];
956 			type = gpu_array_ref_group_type(group);
957 			if (type != ppcg_access_shared)
958 				continue;
959 
960 			size = gpu_array_tile_size(group->shared_tile);
961 			size = isl_val_mul_ui(size, local->array->size);
962 
963 			if (isl_val_le(size, left)) {
964 				left = isl_val_sub(left, size);
965 				continue;
966 			}
967 			isl_val_free(size);
968 
969 			group->shared_tile =
970 					gpu_array_tile_free(group->shared_tile);
971 		}
972 	}
973 
974 	isl_val_free(left);
975 }
976 
977 /* Mark all arrays of "kernel" that have an array reference group
978  * that is not mapped to private or shared memory as
979  * accessing the corresponding global device memory.
980  */
mark_global_arrays(struct ppcg_kernel * kernel)981 static void mark_global_arrays(struct ppcg_kernel *kernel)
982 {
983 	int i, j;
984 
985 	for (i = 0; i < kernel->n_array; ++i) {
986 		struct gpu_local_array_info *local = &kernel->array[i];
987 
988 		if (local->global)
989 			continue;
990 		for (j = 0; j < local->n_group; ++j) {
991 			if (gpu_array_ref_group_tile(local->groups[j]))
992 				continue;
993 
994 			local->global = 1;
995 			local->array->global = 1;
996 			break;
997 		}
998 	}
999 }
1000 
1001 /* Compute a tiling for all the array reference groups in "kernel".
1002  */
compute_group_tilings(struct ppcg_kernel * kernel)1003 static void compute_group_tilings(struct ppcg_kernel *kernel)
1004 {
1005 	int i, j;
1006 
1007 	for (i = 0; i < kernel->n_array; ++i) {
1008 		struct gpu_local_array_info *array = &kernel->array[i];
1009 
1010 		for (j = 0; j < array->n_group; ++j)
1011 			gpu_array_ref_group_compute_tiling(array->groups[j]);
1012 	}
1013 }
1014 
1015 /* Compute the effective grid size as a list of the sizes in each dimension.
1016  *
1017  * The grid size specified by the user or set by default
1018  * in read_grid_sizes() and applied by the block filter,
1019  * may be too large for the given code in the sense that
1020  * it may contain blocks that don't need to execute anything.
1021  * We therefore don't return this grid size, but instead the
1022  * smallest grid size that ensures that all blocks that actually
1023  * execute code are included in the grid.
1024  *
1025  * We first extract a description of the grid, i.e., the possible values
1026  * of the block ids, from the domain elements in "domain" and
1027  * kernel->block_filter.
1028  * The block ids are parameters in kernel->block_filter.
1029  * We simply need to change them into set dimensions.
1030  *
1031  * Then, for each block dimension, we compute the maximal value of the block id
1032  * and add one.
1033  */
extract_grid_size(struct ppcg_kernel * kernel,__isl_take isl_union_set * domain)1034 static __isl_give isl_multi_pw_aff *extract_grid_size(
1035 	struct ppcg_kernel *kernel, __isl_take isl_union_set *domain)
1036 {
1037 	int i;
1038 	isl_set *grid;
1039 	isl_set *context;
1040 	isl_multi_pw_aff *size;
1041 
1042 	domain = isl_union_set_intersect(domain,
1043 				    isl_union_set_copy(kernel->block_filter));
1044 	grid = isl_union_set_params(domain);
1045 	grid = isl_set_from_params(grid);
1046 	grid = isl_set_add_dims(grid, isl_dim_set, kernel->n_grid);
1047 	for (i = 0; i < kernel->n_grid; ++i) {
1048 		int pos;
1049 		isl_id *id;
1050 
1051 		id = isl_id_list_get_id(kernel->block_ids, i);
1052 		pos = isl_set_find_dim_by_id(grid, isl_dim_param, id);
1053 		isl_id_free(id);
1054 		assert(pos >= 0);
1055 		grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
1056 		grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
1057 	}
1058 
1059 	grid = isl_set_coalesce(grid);
1060 	size = ppcg_size_from_extent(grid);
1061 	context = isl_set_params(isl_set_copy(kernel->context));
1062 	return isl_multi_pw_aff_gist(size, context);
1063 }
1064 
1065 /* Compute the size of a fixed bounding box around the origin and "set",
1066  * where "set" is assumed to contain only non-negative elements,
1067  * and store the results in "size".
1068  * In particular, compute the maximal value of "set" in each direction
1069  * and add one.
1070  */
extract_fixed_size(__isl_take isl_set * set,int * size)1071 static void extract_fixed_size(__isl_take isl_set *set, int *size)
1072 {
1073 	int i, n;
1074 	isl_local_space *ls;
1075 	isl_aff *obj;
1076 
1077 	n = isl_set_dim(set, isl_dim_set);
1078 	ls = isl_local_space_from_space(isl_set_get_space(set));
1079 	obj = isl_aff_zero_on_domain(ls);
1080 	for (i = 0; i < n; ++i) {
1081 		isl_val *max;
1082 
1083 		obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
1084 		max = isl_set_max_val(set, obj);
1085 		size[i] = isl_val_get_num_si(max) + 1;
1086 		isl_val_free(max);
1087 		obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
1088 	}
1089 	isl_aff_free(obj);
1090 	isl_set_free(set);
1091 }
1092 
1093 /* Compute the effective block size as a list of the sizes in each dimension
1094  * and store the sizes in kernel->block_dim.
1095  *
1096  * The block size specified by the user or set by default
1097  * in read_block_sizes() and applied by the thread filter,
1098  * may be too large for the given code in the sense that
1099  * it may contain threads that don't need to execute anything.
1100  * We therefore update this block size in kernel->block_dim
1101  * to the smallest block size that ensures that all threads
1102  * that actually execute code are included in the block.
1103  *
1104  * The set of possible values of the thread ids is obtained from
1105  * the domain elements "domain" and kernel->thread_filter.
1106  * The current implementation eliminates all parameters, ensuring
1107  * that the size is a fixed constant in each dimension.
1108  * In principle we could also compute parametric sizes.
1109  * We would have to make sure to project out all b%d and t%d parameters,
1110  * however.
1111  */
extract_block_size(struct ppcg_kernel * kernel,__isl_take isl_union_set * domain)1112 static isl_stat extract_block_size(struct ppcg_kernel *kernel,
1113 	__isl_take isl_union_set *domain)
1114 {
1115 	int i;
1116 	int nparam;
1117 	isl_set *block;
1118 
1119 	domain = isl_union_set_intersect(domain,
1120 				    isl_union_set_copy(kernel->thread_filter));
1121 	block = isl_union_set_params(domain);
1122 	block = isl_set_from_params(block);
1123 	block = isl_set_add_dims(block, isl_dim_set, kernel->n_block);
1124 	for (i = 0; i < kernel->n_block; ++i) {
1125 		int pos;
1126 		isl_id *id;
1127 
1128 		if (!block)
1129 			return isl_stat_error;
1130 
1131 		id = isl_id_list_get_id(kernel->thread_ids, i);
1132 		pos = isl_set_find_dim_by_id(block, isl_dim_param, id);
1133 		isl_id_free(id);
1134 		if (pos < 0)
1135 			isl_die(isl_set_get_ctx(block), isl_error_internal,
1136 				"missing constraints on thread identifier",
1137 				block = isl_set_free(block));
1138 		block = isl_set_equate(block, isl_dim_param, pos,
1139 					isl_dim_set, i);
1140 	}
1141 	nparam = isl_set_dim(block, isl_dim_param);
1142 	block = isl_set_project_out(block, isl_dim_param, 0, nparam);
1143 
1144 	if (!block)
1145 		return isl_stat_error;
1146 
1147 	extract_fixed_size(block, kernel->block_dim);
1148 
1149 	return isl_stat_ok;
1150 }
1151 
ppcg_kernel_free(struct ppcg_kernel * kernel)1152 struct ppcg_kernel *ppcg_kernel_free(struct ppcg_kernel *kernel)
1153 {
1154 	int i, j;
1155 
1156 	if (!kernel)
1157 		return NULL;
1158 
1159 	isl_id_list_free(kernel->block_ids);
1160 	isl_id_list_free(kernel->thread_ids);
1161 	isl_multi_pw_aff_free(kernel->grid_size);
1162 	isl_ast_expr_free(kernel->grid_size_expr);
1163 	isl_set_free(kernel->context);
1164 	isl_union_set_free(kernel->core);
1165 	isl_union_set_free(kernel->arrays);
1166 	isl_union_pw_multi_aff_free(kernel->contraction);
1167 	isl_union_set_free(kernel->expanded_domain);
1168 	isl_space_free(kernel->space);
1169 	isl_ast_node_free(kernel->tree);
1170 	isl_union_set_free(kernel->block_filter);
1171 	isl_union_set_free(kernel->thread_filter);
1172 	isl_union_pw_multi_aff_free(kernel->copy_schedule);
1173 	isl_union_set_free(kernel->sync_writes);
1174 
1175 	for (i = 0; i < kernel->n_array; ++i) {
1176 		struct gpu_local_array_info *array = &kernel->array[i];
1177 
1178 		for (j = 0; j < array->n_group; ++j)
1179 			gpu_array_ref_group_free(array->groups[j]);
1180 		free(array->groups);
1181 
1182 		isl_multi_pw_aff_free(array->bound);
1183 		isl_ast_expr_free(array->bound_expr);
1184 	}
1185 	free(kernel->array);
1186 
1187 	for (i = 0; i < kernel->n_var; ++i) {
1188 		free(kernel->var[i].name);
1189 		isl_vec_free(kernel->var[i].size);
1190 	}
1191 	free(kernel->var);
1192 
1193 	free(kernel);
1194 
1195 	return NULL;
1196 }
1197 
1198 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1199  */
ppcg_kernel_free_wrap(void * user)1200 static void ppcg_kernel_free_wrap(void *user)
1201 {
1202 	struct ppcg_kernel *kernel = user;
1203 
1204 	ppcg_kernel_free(kernel);
1205 }
1206 
create_kernel_var(isl_ctx * ctx,struct gpu_array_ref_group * group,struct ppcg_kernel_var * var)1207 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
1208 	struct ppcg_kernel_var *var)
1209 {
1210 	int j;
1211 	struct gpu_array_tile *tile;
1212 	isl_printer *p;
1213 
1214 	var->array = group->array;
1215 
1216 	var->type = gpu_array_ref_group_type(group);
1217 	tile = gpu_array_ref_group_tile(group);
1218 
1219 	p = isl_printer_to_str(ctx);
1220 	p = gpu_array_ref_group_print_name(group, p);
1221 	var->name = isl_printer_get_str(p);
1222 	isl_printer_free(p);
1223 
1224 	var->size = isl_vec_alloc(ctx, group->array->n_index);
1225 
1226 	for (j = 0; j < group->array->n_index; ++j)
1227 		var->size = isl_vec_set_element_val(var->size, j,
1228 					    isl_val_copy(tile->bound[j].size));
1229 }
1230 
create_kernel_vars(struct ppcg_kernel * kernel)1231 static int create_kernel_vars(struct ppcg_kernel *kernel)
1232 {
1233 	int i, j, n;
1234 
1235 	n = 0;
1236 	for (i = 0; i < kernel->n_array; ++i) {
1237 		struct gpu_local_array_info *array = &kernel->array[i];
1238 
1239 		for (j = 0; j < array->n_group; ++j) {
1240 			struct gpu_array_ref_group *group = array->groups[j];
1241 			enum ppcg_group_access_type type;
1242 
1243 			type = gpu_array_ref_group_type(group);
1244 			if (type != ppcg_access_global)
1245 				++n;
1246 		}
1247 	}
1248 
1249 	kernel->n_var = n;
1250 	kernel->var = isl_calloc_array(kernel->ctx, struct ppcg_kernel_var, n);
1251 	if (!kernel->var)
1252 		return -1;
1253 
1254 	n = 0;
1255 	for (i = 0; i < kernel->n_array; ++i) {
1256 		struct gpu_local_array_info *array = &kernel->array[i];
1257 
1258 		for (j = 0; j < array->n_group; ++j) {
1259 			struct gpu_array_ref_group *group = array->groups[j];
1260 			enum ppcg_group_access_type type;
1261 
1262 			type = gpu_array_ref_group_type(group);
1263 			if (type == ppcg_access_global)
1264 				continue;
1265 			create_kernel_var(kernel->ctx, group, &kernel->var[n]);
1266 			++n;
1267 		}
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 /* Replace "pa" by the zero function defined over the universe domain
1274  * in the space of "pa".
1275  */
set_universally_zero(__isl_take isl_pw_aff * pa)1276 static __isl_give isl_pw_aff *set_universally_zero(__isl_take isl_pw_aff *pa)
1277 {
1278 	isl_space *space;
1279 	isl_aff *zero;
1280 
1281 	space = isl_space_domain(isl_pw_aff_get_space(pa));
1282 	isl_pw_aff_free(pa);
1283 	zero = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1284 
1285 	return isl_pw_aff_from_aff(zero);
1286 }
1287 
1288 /* The sizes of the arrays on the host that have been computed by
1289  * extract_array_info may depend on the parameters.  Use the extra
1290  * constraints on the parameters that are valid at "host_domain"
1291  * to simplify these expressions and store the results in kernel->array.
1292  *
1293  * We only need these localized bounds for arrays that are accessed
1294  * by the current kernel.  If we have found at least one reference group
1295  * then the array is accessed by the kernel.
1296  *
1297  * The resulting sizes may be functions that are nowhere defined
1298  * in case the access function cannot possibly access anything inside
1299  * the kernel for some reason.  If so, they are replaced by the zero
1300  * function.  Since the access function cannot actually access anything,
1301  * there is no harm in printing the array sizes as zero.
1302  */
localize_bounds(struct ppcg_kernel * kernel,__isl_keep isl_set * host_domain)1303 static void localize_bounds(struct ppcg_kernel *kernel,
1304 	__isl_keep isl_set *host_domain)
1305 {
1306 	int i, j;
1307 	isl_set *context;
1308 
1309 	context = isl_set_copy(host_domain);
1310 	context = isl_set_params(context);
1311 
1312 	for (i = 0; i < kernel->n_array; ++i) {
1313 		struct gpu_local_array_info *local = &kernel->array[i];
1314 		isl_multi_pw_aff *bound;
1315 		int n_index;
1316 
1317 		if (local->n_group == 0)
1318 			continue;
1319 
1320 		n_index = local->array->n_index;
1321 		bound = isl_multi_pw_aff_copy(local->array->bound);
1322 
1323 		for (j = 0; j < n_index; ++j) {
1324 			isl_pw_aff *pwaff;
1325 			int empty;
1326 
1327 			pwaff = isl_multi_pw_aff_get_pw_aff(bound, j);
1328 			pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
1329 			empty = isl_pw_aff_is_empty(pwaff);
1330 			if (empty < 0)
1331 				pwaff = isl_pw_aff_free(pwaff);
1332 			else if (empty)
1333 				pwaff = set_universally_zero(pwaff);
1334 			bound = isl_multi_pw_aff_set_pw_aff(bound, j, pwaff);
1335 		}
1336 
1337 		local->n_index = n_index;
1338 		local->bound = bound;
1339 	}
1340 	isl_set_free(context);
1341 }
1342 
1343 /* Create the array of gpu_local_array_info structures "array"
1344  * inside "kernel".  The number of elements in this array is
1345  * the same as the number of arrays in "prog".
1346  * Initialize the "array" field of each local array to point
1347  * to the corresponding array in "prog".
1348  */
ppcg_kernel_create_local_arrays(struct ppcg_kernel * kernel,struct gpu_prog * prog)1349 static struct ppcg_kernel *ppcg_kernel_create_local_arrays(
1350 	struct ppcg_kernel *kernel, struct gpu_prog *prog)
1351 {
1352 	int i;
1353 	isl_ctx *ctx;
1354 
1355 	ctx = isl_set_get_ctx(prog->context);
1356 	kernel->array = isl_calloc_array(ctx,
1357 			    struct gpu_local_array_info, prog->n_array);
1358 	if (!kernel->array)
1359 		return ppcg_kernel_free(kernel);
1360 	kernel->n_array = prog->n_array;
1361 
1362 	for (i = 0; i < prog->n_array; ++i)
1363 		kernel->array[i].array = &prog->array[i];
1364 
1365 	return kernel;
1366 }
1367 
1368 /* Does "kernel" need to be passed an argument corresponding to array "i"?
1369  *
1370  * The argument is only needed if the kernel accesses this device memory.
1371  */
ppcg_kernel_requires_array_argument(struct ppcg_kernel * kernel,int i)1372 int ppcg_kernel_requires_array_argument(struct ppcg_kernel *kernel, int i)
1373 {
1374 	return kernel->array[i].global;
1375 }
1376 
1377 /* Find the element in gen->stmt that has the given "id".
1378  * Return NULL if no such gpu_stmt can be found.
1379  */
find_stmt(struct gpu_prog * prog,__isl_keep isl_id * id)1380 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
1381 {
1382 	int i;
1383 
1384 	for (i = 0; i < prog->n_stmts; ++i) {
1385 		if (id == prog->stmts[i].id)
1386 			break;
1387 	}
1388 
1389 	return i < prog->n_stmts ? &prog->stmts[i] : NULL;
1390 }
1391 
ppcg_kernel_stmt_free(void * user)1392 void ppcg_kernel_stmt_free(void *user)
1393 {
1394 	struct ppcg_kernel_stmt *stmt = user;
1395 
1396 	if (!stmt)
1397 		return;
1398 
1399 	switch (stmt->type) {
1400 	case ppcg_kernel_copy:
1401 		isl_ast_expr_free(stmt->u.c.index);
1402 		isl_ast_expr_free(stmt->u.c.local_index);
1403 		break;
1404 	case ppcg_kernel_domain:
1405 		isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
1406 		break;
1407 	case ppcg_kernel_sync:
1408 		break;
1409 	}
1410 
1411 	free(stmt);
1412 }
1413 
1414 /* Return the gpu_stmt_access in the list "accesses" that corresponds
1415  * to "ref_id".
1416  */
find_access(struct gpu_stmt_access * accesses,__isl_keep isl_id * ref_id)1417 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
1418 	__isl_keep isl_id *ref_id)
1419 {
1420 	struct gpu_stmt_access *access;
1421 
1422 	for (access = accesses; access; access = access->next)
1423 		if (access->ref_id == ref_id)
1424 			return access;
1425 
1426 	return NULL;
1427 }
1428 
1429 /* Return the index of the array called "name" in the list of arrays.
1430  */
find_array_index(struct ppcg_kernel * kernel,const char * name)1431 static int find_array_index(struct ppcg_kernel *kernel, const char *name)
1432 {
1433 	int i;
1434 
1435 	for (i = 0; i < kernel->n_array; ++i)
1436 		if (!strcmp(name, kernel->array[i].array->name))
1437 			return i;
1438 
1439 	return -1;
1440 }
1441 
1442 /* Internal data structure for the index and AST expression transformation
1443  * callbacks for pet_stmt_build_ast_exprs.
1444  *
1445  * "kernel" is the kernel for which are computing AST expressions and
1446  * may be NULL if we are not inside a kernel.
1447  * "accesses" is the list of gpu_stmt_access in the statement.
1448  * "iterator_map" expresses the statement iterators in terms of
1449  * the AST loop iterators.
1450  * "sched2copy" expresses the outer copy_schedule_dim dimensions of
1451  * the kernel schedule in terms of the AST loop iterators and
1452  * may be NULL if we are not inside a kernel.
1453  *
1454  * The following fields are set in transform_index and used in transform_expr.
1455  * "array" is the array that is being accessed.
1456  * "global" is set if the global array is accessed (rather than
1457  * shared/private memory).
1458  * "local_array" refers to information on the array specialized
1459  * to the current kernel.
1460  */
1461 struct ppcg_transform_data {
1462     struct ppcg_options *options;
1463     struct ppcg_kernel *kernel;
1464 	struct gpu_stmt_access *accesses;
1465 	isl_pw_multi_aff *iterator_map;
1466 	isl_pw_multi_aff *sched2copy;
1467 
1468 	struct gpu_array_info *array;
1469 	int global;
1470 	struct gpu_local_array_info *local_array;
1471 };
1472 
1473 /* Return a pointer to the gpu_array_ref_group in "local"
1474  * that contains the reference "access".
1475  * Return NULL if no such group can be found.
1476  */
find_ref_group(struct gpu_local_array_info * local,struct gpu_stmt_access * access)1477 static struct gpu_array_ref_group *find_ref_group(
1478 	struct gpu_local_array_info *local, struct gpu_stmt_access *access)
1479 {
1480 	int i, j;
1481 
1482 	for (i = 0; i < local->n_group; ++i) {
1483 		struct gpu_array_ref_group *group = local->groups[i];
1484 
1485 		for (j = 0; j < group->n_ref; ++j)
1486 			if (group->refs[j] == access)
1487 				return group;
1488 	}
1489 
1490 	return NULL;
1491 }
1492 
1493 /* Given an index expression "index" of the form
1494  *
1495  *	L -> F(A),
1496  *
1497  * with F(A) either A or some subfield of A and L the AST loop iterators,
1498  * and a tiling "tiling" of the form
1499  *
1500  *	[L -> A] -> T
1501  *
1502  * apply the tiling to the outer array in the index expression to obtain
1503  *
1504  *	L -> T(A)
1505  *
1506  * If F(A) is some subfield of A, then separate the member access
1507  * into the base index expression and the field index expression,
1508  * apply the tiling to the base index expression and combine the result
1509  * with the field index expression.
1510  *
1511  * If F(A) is A, then modify index to keep track of the iterators
1512  *
1513  *	L -> [L -> A]
1514  *
1515  * and combine the result with the tiling to obtain a tiled index expression
1516  * in terms of the AST loop iterators
1517  *
1518  *	L -> T
1519  */
tile_outer(__isl_take isl_multi_pw_aff * index,__isl_take isl_multi_pw_aff * tiling)1520 static __isl_give isl_multi_pw_aff *tile_outer(
1521 	__isl_take isl_multi_pw_aff *index, __isl_take isl_multi_pw_aff *tiling)
1522 {
1523 	isl_bool is_wrapping;
1524 	isl_space *space;
1525 	isl_multi_pw_aff *mpa;
1526 
1527 	is_wrapping = isl_multi_pw_aff_range_is_wrapping(index);
1528 	if (is_wrapping < 0)
1529 		goto error;
1530 	if (is_wrapping) {
1531 		isl_multi_pw_aff *field;
1532 
1533 		field = isl_multi_pw_aff_copy(index);
1534 		field = isl_multi_pw_aff_range_factor_range(field);
1535 		index = isl_multi_pw_aff_range_factor_domain(index);
1536 		index = tile_outer(index, tiling);
1537 		return isl_multi_pw_aff_range_product(index, field);
1538 	}
1539 
1540 	space = isl_space_domain(isl_multi_pw_aff_get_space(index));
1541 	space = isl_space_map_from_set(space);
1542 	mpa = isl_multi_pw_aff_identity(space);
1543 	index = isl_multi_pw_aff_range_product(mpa, index);
1544 	index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
1545 
1546 	return index;
1547 error:
1548 	isl_multi_pw_aff_free(index);
1549 	isl_multi_pw_aff_free(tiling);
1550 	return NULL;
1551 }
1552 
1553 /* Index transformation callback for pet_stmt_build_ast_exprs.
1554  *
1555  * "index" expresses the array indices in terms of statement iterators
1556  *
1557  * We first reformulate "index" in terms of the AST loop iterators.
1558  * Then we check if we are accessing the global array or
1559  * a shared/private copy.  In particular, if we are not inside a kernel
1560  * then we must be accessing a global array.
1561  * In the former case, we simply return
1562  * the updated index.  If "index" is an affine expression rather
1563  * than an array access, then we also return the updated index here.
1564  *
1565  * If no reference groups have been computed for the array,
1566  * then we can only be accessing the global array.
1567  *
1568  * Otherwise, we apply the tiling to the index.
1569  * This tiling is of the form
1570  *
1571  *	[D -> A] -> T
1572  *
1573  * where D corresponds to the outer tile->depth dimensions of
1574  * the kernel schedule.
1575  * The index is of the form
1576  *
1577  *	L -> A
1578  *
1579  * We update the tiling to refer to the AST loop iterators
1580  *
1581  *	[L -> A] -> T
1582  *
1583  * and combine it with the index to obtain a tiled index expression in terms
1584  * of the AST loop iterators
1585  *
1586  *	L -> T
1587  *
1588  * Note that while the tiling applies directly to an outer array.
1589  * the index may refer to some subfield of this outer array.
1590  * In such cases, the result will refer to the same subfield of the tile.
1591  * That is, an index expression of the form  L -> F(A) will be transformed
1592  * into an index expression of the form L -> F(T).
1593  */
transform_index(__isl_take isl_multi_pw_aff * index,__isl_keep isl_id * ref_id,void * user)1594 static __isl_give isl_multi_pw_aff *transform_index(
1595 	__isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
1596 	void *user)
1597 {
1598 	struct ppcg_transform_data *data = user;
1599 	struct gpu_stmt_access *access;
1600 	struct gpu_array_ref_group *group;
1601 	struct gpu_array_tile *tile;
1602 	isl_pw_multi_aff *iterator_map;
1603 	int i;
1604 	int dim;
1605 	const char *name;
1606 	isl_space *space;
1607 	isl_multi_pw_aff *tiling;
1608 	isl_pw_multi_aff *pma;
1609 	isl_pw_multi_aff *sched2depth;
1610 
1611 	data->array = NULL;
1612 
1613 	iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
1614 	index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
1615 
1616 	if (!data->kernel)
1617 		return index;
1618 
1619 	access = find_access(data->accesses, ref_id);
1620 	if (!access)
1621 		return index;
1622 	if (!isl_map_has_tuple_name(access->access, isl_dim_out))
1623 		return index;
1624 
1625 	name = get_outer_array_name(access->access);
1626 	i = find_array_index(data->kernel, name);
1627 	if (i < 0)
1628 		isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
1629 			"cannot find array",
1630 			return isl_multi_pw_aff_free(index));
1631 	data->local_array = &data->kernel->array[i];
1632 	data->array = data->local_array->array;
1633 
1634 	group = find_ref_group(data->local_array, access);
1635 	if (!group) {
1636 		data->global = 1;
1637 		return index;
1638 	}
1639 
1640 	tile = gpu_array_ref_group_tile(group);
1641 	data->global = !tile;
1642 	if (!tile)
1643 		return index;
1644 
1645 	space = isl_space_domain(isl_multi_aff_get_space(tile->tiling));
1646 	space = isl_space_range(isl_space_unwrap(space));
1647 	space = isl_space_map_from_set(space);
1648 	pma = isl_pw_multi_aff_identity(space);
1649 	sched2depth = isl_pw_multi_aff_copy(data->sched2copy);
1650 	dim = isl_pw_multi_aff_dim(sched2depth, isl_dim_out);
1651 	sched2depth = isl_pw_multi_aff_drop_dims(sched2depth, isl_dim_out,
1652 					    tile->depth, dim - tile->depth);
1653 	pma = isl_pw_multi_aff_product(sched2depth, pma);
1654 	tiling = isl_multi_pw_aff_from_multi_aff(
1655 				    isl_multi_aff_copy(tile->tiling));
1656 	tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
1657 
1658 	index = tile_outer(index, tiling);
1659 
1660 	return index;
1661 }
1662 
1663 /* Dereference "expr" by adding an index [0].
1664  * The original "expr" is assumed not to have any indices.
1665  *
1666  * If "expr" is a member access, then the dereferencing needs
1667  * to be applied to the structure argument of this member access.
1668  */
dereference(__isl_take isl_ast_expr * expr)1669 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
1670 {
1671 	isl_ctx *ctx;
1672 	isl_ast_expr *arg0, *res;
1673 	isl_ast_expr_list *list;
1674 
1675 	arg0 = isl_ast_expr_get_op_arg(expr, 0);
1676 	if (!arg0)
1677 		return isl_ast_expr_free(expr);
1678 	if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
1679 	    isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
1680 		isl_ast_expr *arg;
1681 
1682 		arg = isl_ast_expr_get_op_arg(arg0, 0);
1683 		arg = dereference(arg);
1684 		arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
1685 		expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1686 
1687 		return expr;
1688 	}
1689 	isl_ast_expr_free(arg0);
1690 
1691 	ctx = isl_ast_expr_get_ctx(expr);
1692 	res = isl_ast_expr_from_val(isl_val_zero(ctx));
1693 	list = isl_ast_expr_list_from_ast_expr(res);
1694 	res = isl_ast_expr_get_op_arg(expr, 0);
1695 	res = isl_ast_expr_access(res, list);
1696 	isl_ast_expr_free(expr);
1697 
1698 	return res;
1699 }
1700 
1701 /* Linearize the index expression "expr" based on the array bounds
1702  * of "array".
1703  *
1704  * That is, transform expression
1705  *
1706  *	A[i_0][i_1]...[i_n]
1707  *
1708  * to
1709  *
1710  *	A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
1711  *
1712  * where b_0, b_1, ..., b_n are the bounds on the array.
1713  *
1714  * If the base of "expr" is a member access, then the linearization needs
1715  * to be applied to the structure argument of this member access.
1716  *
1717  * In the base case, if "expr" has no arguments (other than the name of
1718  * the array), then we are passing an entire array to a function.
1719  * In this case, there is nothing to linearize.
1720  * Note that at this point an expression with no arguments can
1721  * only be an entire array because the scalar case and
1722  * the case of single struct are handled by the caller.
1723  *
1724  * If the number of specified index expressions in "expr"
1725  * is smaller than the dimension of the accessed array,
1726  * then the missing i_j also do not appear in the linearized expression.
1727  * Furthermore, since such an expression does not refer to a single
1728  * element while the default linearized expression would refer to
1729  * a single element, we return the expression
1730  *
1731  *	A + (..((i_0 * b_1 + i_1) ... ) * b_l + i_l)
1732  *
1733  * instead.  Note that because of the special case handling above,
1734  * we can assume here that there is at least one index expression.
1735  */
gpu_local_array_info_linearize_index(struct gpu_local_array_info * array,__isl_take isl_ast_expr * expr)1736 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
1737 	struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
1738 {
1739 	int i, n;
1740 	isl_ast_expr *arg0;
1741 	isl_ast_expr *res;
1742 	isl_ast_expr_list *list;
1743 
1744 	arg0 = isl_ast_expr_get_op_arg(expr, 0);
1745 	if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
1746 	    isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
1747 		isl_ast_expr *arg;
1748 
1749 		arg = isl_ast_expr_get_op_arg(arg0, 0);
1750 		arg = gpu_local_array_info_linearize_index(array, arg);
1751 		arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
1752 		expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
1753 
1754 		return expr;
1755 	}
1756 	isl_ast_expr_free(arg0);
1757 
1758 	if (isl_ast_expr_get_op_n_arg(expr) == 1)
1759 		return expr;
1760 
1761 	n = isl_ast_expr_get_op_n_arg(expr);
1762 	res = isl_ast_expr_get_op_arg(expr, 1);
1763 	for (i = 1; i < array->n_index; ++i) {
1764 		isl_ast_expr *expr_i;
1765 
1766 		expr_i = isl_ast_expr_get_op_arg(array->bound_expr, 1 + i);
1767 		res = isl_ast_expr_mul(res, expr_i);
1768 
1769 		if (i + 1 >= n)
1770 			continue;
1771 		expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
1772 		res = isl_ast_expr_add(res, expr_i);
1773 	}
1774 
1775 	if (1 + array->n_index > n) {
1776 		res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
1777 	} else {
1778 		list = isl_ast_expr_list_from_ast_expr(res);
1779 		res = isl_ast_expr_get_op_arg(expr, 0);
1780 		res = isl_ast_expr_access(res, list);
1781 	}
1782 
1783 	isl_ast_expr_free(expr);
1784 
1785 	return res;
1786 }
1787 
1788 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
1789  *
1790  * If the AST expression refers to an array that is not accessed
1791  * at all, then this means the value of the expression is not used,
1792  * so we might as well print zero (NULL pointer) instead.
1793  *
1794  * If the AST expression refers to a global scalar that is not
1795  * a read-only scalar, then its address was passed to the kernel and
1796  * we need to dereference it.
1797  *
1798  * If the AST expression refers to an access to a global array,
1799  * then we linearize the access exploiting the bounds in data->local_array.
1800  */
transform_expr(__isl_take isl_ast_expr * expr,__isl_keep isl_id * id,void * user)1801 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
1802 	__isl_keep isl_id *id, void *user)
1803 {
1804 	struct ppcg_transform_data *data = user;
1805 
1806 	if (!data->array)
1807 		return expr;
1808 	if (!data->array->accessed) {
1809 		isl_ctx *ctx;
1810 
1811 		ctx = isl_ast_expr_get_ctx(expr);
1812 		isl_ast_expr_free(expr);
1813 		return isl_ast_expr_from_val(isl_val_zero(ctx));
1814 	}
1815 	if (gpu_array_is_read_only_scalar(data->array))
1816 		return expr;
1817 	if (!data->global)
1818 		return expr;
1819 	if (data->array->n_index == 0)
1820 		return dereference(expr);
1821 	if (!data->array->linearize)
1822 		return expr;
1823 
1824 	return gpu_local_array_info_linearize_index(data->local_array, expr);
1825 }
1826 
1827 /* This function is called for each instance of a user statement
1828  * in the kernel "kernel", identified by "gpu_stmt".
1829  * "kernel" may be NULL if we are not inside a kernel.
1830  *
1831  * We attach a struct ppcg_kernel_stmt to the "node", containing
1832  * a computed AST expression for each access, through an annotation
1833  * with name "user".
1834  * These AST expressions are computed from iterator_map,
1835  * which expresses the domain
1836  * elements in terms of the generated loops, and sched2copy,
1837  * which expresses the outer copy_schedule_dim dimensions of
1838  * the kernel schedule computed by PPCG in terms of the generated loops.
1839  */
create_domain_leaf(struct ppcg_kernel * kernel,__isl_take isl_ast_node * node,__isl_keep isl_ast_build * build,struct gpu_stmt * gpu_stmt,struct gpu_gen * gen)1840 static __isl_give isl_ast_node *create_domain_leaf(
1841 	struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
1842 	__isl_keep isl_ast_build *build, struct gpu_stmt *gpu_stmt,
1843     struct gpu_gen *gen)
1844 {
1845 	struct ppcg_transform_data data;
1846 	struct ppcg_kernel_stmt *stmt;
1847 	isl_ctx *ctx;
1848 	isl_id *id;
1849 	isl_pw_multi_aff *sched2copy;
1850 	isl_map *map;
1851 	isl_pw_multi_aff *iterator_map;
1852 	isl_union_map *schedule;
1853 
1854 	if (!node)
1855 		return NULL;
1856 	ctx = isl_ast_node_get_ctx(node);
1857 
1858 	stmt = isl_calloc_type(ctx, struct ppcg_kernel_stmt);
1859 	if (!stmt)
1860 		return isl_ast_node_free(node);
1861 
1862 	schedule = isl_ast_build_get_schedule(build);
1863 	map = isl_map_reverse(isl_map_from_union_map(schedule));
1864 	iterator_map = isl_pw_multi_aff_from_map(map);
1865 	if (kernel)
1866 		sched2copy = compute_sched_to_copy(kernel,
1867 					isl_pw_multi_aff_copy(iterator_map));
1868 	else
1869 		sched2copy = NULL;
1870 
1871 	stmt->type = ppcg_kernel_domain;
1872 	stmt->u.d.stmt = gpu_stmt;
1873 
1874 	data.kernel = kernel;
1875 	data.accesses = stmt->u.d.stmt->accesses;
1876 	data.iterator_map = iterator_map;
1877 	data.sched2copy = sched2copy;
1878 	stmt->u.d.ref2expr = gen->build_ast_expr(stmt->u.d.stmt->stmt,
1879 					    build, &transform_index, &data,
1880 					    &transform_expr, &data);
1881 
1882 	isl_pw_multi_aff_free(iterator_map);
1883 	isl_pw_multi_aff_free(sched2copy);
1884 
1885 	id = isl_id_alloc(ctx, "user", stmt);
1886 	id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1887 	return isl_ast_node_set_annotation(node, id);
1888 }
1889 
1890 /* This function is called for each statement node in the AST
1891  * for copying to or from shared/private memory.
1892  * Attach a pointer to a ppcg_kernel_stmt representing the copy
1893  * statement to the node.
1894  * The statement name is "read" or "write", depending on whether we are
1895  * reading from global memory or writing to global memory.
1896  *
1897  * The schedule is of the form
1898  *
1899  *	type[D -> A] -> L
1900  *
1901  * where D corresponds to the outer tile->depth dimensions of
1902  * the kernel schedule, A to the global array and L to the outer
1903  * generated AST schedule.
1904  * We compute the inverse and strip off the type, resulting in
1905  *
1906  *	L -> [D -> A]
1907  *
1908  * We combine this mapping with on the one hand the projection
1909  *
1910  *	[D -> A] -> A
1911  *
1912  * and on the other hand the group tiling
1913  *
1914  *	[D -> A] -> T
1915  *
1916  * resulting in
1917  *
1918  *	L -> A		and 	L -> T
1919  *
1920  * and store the corresponding expressions in stmt->index and stmt->local_index,
1921  * where stmt points to the ppcg_kernel_stmt that is attached to the node.
1922  * stmt->index is linearized if the global memory array is linearized.
1923  */
create_access_leaf(struct ppcg_kernel * kernel,struct gpu_array_ref_group * group,__isl_take isl_ast_node * node,__isl_keep isl_ast_build * build)1924 static __isl_give isl_ast_node *create_access_leaf(struct ppcg_kernel *kernel,
1925 	struct gpu_array_ref_group *group, __isl_take isl_ast_node *node,
1926 	__isl_keep isl_ast_build *build)
1927 {
1928 	struct ppcg_kernel_stmt *stmt;
1929 	struct gpu_array_tile *tile;
1930 	isl_id *id;
1931 	isl_ast_expr *expr;
1932 	isl_space *space;
1933 	isl_map *access;
1934 	isl_pw_multi_aff *pma, *pma2;
1935 	const char *type;
1936 
1937 	stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1938 	if (!stmt)
1939 		return isl_ast_node_free(node);
1940 
1941 	access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
1942 	type = isl_map_get_tuple_name(access, isl_dim_in);
1943 	stmt->u.c.read = !strcmp(type, "read");
1944 	access = isl_map_reverse(access);
1945 	pma = isl_pw_multi_aff_from_map(access);
1946 	pma = isl_pw_multi_aff_reset_tuple_id(pma, isl_dim_out);
1947 
1948 	space = isl_space_range(isl_pw_multi_aff_get_space(pma));
1949 	space = isl_space_unwrap(space);
1950 	pma2 = isl_pw_multi_aff_range_map(space);
1951 	pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2,
1952 						    isl_pw_multi_aff_copy(pma));
1953 	expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
1954 	if (group->array->linearize)
1955 		expr = gpu_local_array_info_linearize_index(group->local_array,
1956 							    expr);
1957 	stmt->u.c.index = expr;
1958 
1959 	tile = gpu_array_ref_group_tile(group);
1960 	pma2 = isl_pw_multi_aff_from_multi_aff(
1961 					    isl_multi_aff_copy(tile->tiling));
1962 	pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2, pma);
1963 	expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
1964 	stmt->u.c.local_index = expr;
1965 
1966 	stmt->u.c.array = group->array;
1967 	stmt->u.c.local_array = group->local_array;
1968 	stmt->type = ppcg_kernel_copy;
1969 
1970 	id = isl_id_alloc(kernel->ctx, "copy", stmt);
1971 	id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1972 	return isl_ast_node_set_annotation(node, id);
1973 }
1974 
1975 /* Create a synchronization ppcg_kernel_stmt and
1976  * attach it to the node "node" representing the synchronization.
1977  */
create_sync_leaf(struct ppcg_kernel * kernel,__isl_take isl_ast_node * node,__isl_keep isl_ast_build * build)1978 static __isl_give isl_ast_node *create_sync_leaf(
1979 	struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
1980 	__isl_keep isl_ast_build *build)
1981 {
1982 	struct ppcg_kernel_stmt *stmt;
1983 	isl_id *id;
1984 
1985 	stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
1986 	if (!stmt)
1987 		return isl_ast_node_free(node);
1988 
1989 	stmt->type = ppcg_kernel_sync;
1990 	id = isl_id_alloc(kernel->ctx, "sync", stmt);
1991 	id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
1992 	return isl_ast_node_set_annotation(node, id);
1993 }
1994 
1995 /* Build AST expressions for the device array sizes of all arrays in "prog"
1996  * that require allocation on the device using "build", as well as
1997  * for the original array sizes of all arrays that need to be declared
1998  * on the host.
1999  * "node" is freed in case of error.
2000  */
build_array_bounds(__isl_take isl_ast_node * node,struct gpu_prog * prog,__isl_keep isl_ast_build * build)2001 static __isl_give isl_ast_node *build_array_bounds(
2002 	__isl_take isl_ast_node *node, struct gpu_prog *prog,
2003 	__isl_keep isl_ast_build *build)
2004 {
2005 	int i;
2006 
2007 	for (i = 0; i < prog->n_array; ++i) {
2008 		struct gpu_array_info *array = &prog->array[i];
2009 		isl_multi_pw_aff *size;
2010 		isl_ast_expr *expr;
2011 
2012 		if (!gpu_array_requires_device_allocation(array))
2013 			continue;
2014 
2015 		size = isl_multi_pw_aff_copy(array->bound);
2016 		expr = ppcg_build_size_expr(size, build);
2017 		array->bound_expr = expr;
2018 		if (!expr)
2019 			return isl_ast_node_free(node);
2020 	}
2021 
2022 	for (i = 0; i < prog->n_array; ++i) {
2023 		struct gpu_array_info *array = &prog->array[i];
2024 		isl_set *extent;
2025 		isl_multi_pw_aff *size;
2026 		isl_ast_expr *expr;
2027 
2028 		if (!array->declare_local)
2029 			continue;
2030 		extent = isl_set_copy(array->declared_extent);
2031 		size = ppcg_size_from_extent(extent);
2032 		expr = ppcg_build_size_expr(size, build);
2033 		array->declared_size = expr;
2034 		if (!expr)
2035 			return isl_ast_node_free(node);
2036 	}
2037 
2038 	return node;
2039 }
2040 
2041 /* Internal data structure for at_domain.
2042  *
2043  * "prog" represents the entire scop.
2044  * "kernel" points to the kernel to which the current schedule node
2045  * belongs.  It is set by before_mark and reset by after_mark.
2046  * It may be NULL if we are outside any kernel.
2047  */
2048 struct ppcg_at_domain_data {
2049     struct gpu_prog *prog;
2050     struct gpu_gen *gen;
2051     struct ppcg_kernel *kernel;
2052 };
2053 
2054 /* This function is called for each instance of a user statement
2055  * in the kernel.  This may be one of the original user statements
2056  * or a statement introduced by PPCG.
2057  *
2058  * We first check if the statement id corresponds to a gpu statement,
2059  * which indicates the statement is an original user statement. Any statement
2060  * that is not an original user statement has been introduced by PPCG and
2061  * requires special handling.
2062  *
2063  * If the user statement is one of the original user statements, then we call
2064  * create_domain_leaf.  If it is "init_device", then we call
2065  * build_array_bounds.  Otherwise, we check if it is a copy or synchronization
2066  * statement and call the appropriate functions.  Statements that copy an array
2067  * to/from the device do not need any further treatment.
2068  * Neither does "clear_device".
2069  */
at_domain(__isl_take isl_ast_node * node,__isl_keep isl_ast_build * build,void * user)2070 static __isl_give isl_ast_node *at_domain(__isl_take isl_ast_node *node,
2071 	__isl_keep isl_ast_build *build, void *user)
2072 {
2073 	struct ppcg_at_domain_data *data = user;
2074 	struct gpu_stmt *gpu_stmt;
2075 	isl_ast_expr *expr, *arg;
2076 	isl_id *id;
2077 	int is_sync;
2078 	const char *name;
2079 	void *p;
2080 
2081 	expr = isl_ast_node_user_get_expr(node);
2082 	arg = isl_ast_expr_get_op_arg(expr, 0);
2083 	id = isl_ast_expr_get_id(arg);
2084 	name = isl_id_get_name(id);
2085 	p = isl_id_get_user(id);
2086 	isl_ast_expr_free(expr);
2087 	isl_ast_expr_free(arg);
2088 
2089 	gpu_stmt = find_stmt(data->prog, id);
2090 	is_sync = gpu_tree_id_is_sync(id, data->kernel);
2091 	isl_id_free(id);
2092 
2093 	if (gpu_stmt)
2094 		return create_domain_leaf(data->kernel, node, build, gpu_stmt,
2095                                   data->gen);
2096 
2097 	if (!prefixcmp(name, "to_device_") || !prefixcmp(name, "from_device_"))
2098 		return node;
2099 	if (!strcmp(name, "init_device"))
2100 		return build_array_bounds(node, data->prog, build);
2101 	if (!strcmp(name, "clear_device"))
2102 		return node;
2103 	if (is_sync < 0)
2104 		return isl_ast_node_free(node);
2105 	if (!strcmp(name, "read") || !strcmp(name, "write")) {
2106 		struct gpu_array_ref_group *group = p;
2107 		return create_access_leaf(data->kernel, group, node, build);
2108 	}
2109 	if (!is_sync)
2110 		isl_die(data->prog->ctx, isl_error_internal,
2111 			"unknown statement type",
2112 			return isl_ast_node_free(node));
2113 	return create_sync_leaf(data->kernel, node, build);
2114 }
2115 
2116 /* Given a set of wrapped references "ref", return the corresponding
2117  * access relations based on the tagged access relations "tagged".
2118  *
2119  * The elements of "ref" are of the form
2120  *
2121  *	[D -> R]
2122  *
2123  * with D an iteration domains and R a reference.
2124  * The elements of "tagged" are of the form
2125  *
2126  *	[D -> R] -> A
2127  *
2128  * with A an array.
2129  *
2130  * Extend "tagged" to include the iteration domain in the range, i.e.,
2131  *
2132  *	[D -> R] -> [D -> A]
2133  *
2134  * apply the result to "ref" and then unwrap the resulting set
2135  * to obtain relations of the form
2136  *
2137  *	D -> A
2138  */
wrapped_reference_to_access(__isl_take isl_union_set * ref,__isl_take isl_union_map * tagged)2139 static __isl_give isl_union_map *wrapped_reference_to_access(
2140 	__isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
2141 {
2142 	isl_union_map *tag2access;
2143 
2144 	tag2access = isl_union_map_copy(tagged);
2145 	tag2access = isl_union_map_universe(tag2access);
2146 	tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
2147 	tag2access = isl_union_map_domain_map(tag2access);
2148 	tag2access = isl_union_map_range_product(tag2access, tagged);
2149 
2150 	ref = isl_union_set_coalesce(ref);
2151 	ref = isl_union_set_apply(ref, tag2access);
2152 
2153 	return isl_union_set_unwrap(ref);
2154 }
2155 
2156 /* Given an access relation "access" from one or more array reference groups,
2157  * remove those reads if ("read" is 1) or writes (if "read" is 0)
2158  * that are only needed to communicate data within
2159  * the same iteration of "sched".
2160  * The domain of "sched" corresponds to the original statement instances,
2161  * i.e., those that appear in the domains of the access relations.
2162  * "tagged" contains all tagged access relations to all
2163  * the array reference groups accessed by "access" from statement
2164  * instances scheduled by "sched".
2165  *
2166  * If the access is a read then it is either an element of
2167  *
2168  *	live_in union (range flow)
2169  *
2170  * where live_in and flow may be overapproximations, or
2171  * it reads an uninitialized value (that is not live-in because
2172  * there is an intermediate kill) or it reads a value that was
2173  * written within the same (compound) statement instance.
2174  * If the access is a write then it is either an element of
2175  *
2176  *	live_out union (domain flow)
2177  *
2178  * or it writes a value that is never read (and is not live-out
2179  * because of an intermediate kill) or only
2180  * within the same (compound) statement instance.
2181  * In both cases, the access relation is also a subset of
2182  * the group access relation.
2183  *
2184  * The cases where an uninitialized value is read or a value is written
2185  * that is never read or where the dataflow occurs within a statement
2186  * instance are also considered local and may also be removed.
2187  *
2188  * Essentially, we compute the intersection of "access" with either
2189  *
2190  *	live_in union (range non-local-flow)
2191  *
2192  * or
2193  *
2194  *	live_out union (domain non-local-flow)
2195  *
2196  * We first construct a relation "local"
2197  *
2198  *	[[D -> R] -> [D' -> R']]
2199  *
2200  * of pairs of domain iterations accessing the reference group
2201  * and references in the group that are coscheduled by "sched".
2202  *
2203  * If this relation does not intersect the dataflow dependences,
2204  * then there is nothing we can possibly remove, unless the dataflow
2205  * dependences themselves only relate a subset of the accesses.
2206  * In particular, the accesses may not be involved in any dataflow
2207  * dependences, either because they are uninitialized reads/dead writes
2208  * or because the dataflow occurs inside a statement instance.
2209  *
2210  * Since the computation below may break up the access relation
2211  * into smaller pieces, we only perform the intersection with
2212  * the non-local dependent accesses if the local pairs
2213  * intersect the dataflow dependences.  Otherwise, we intersect
2214  * with the universe of the non-local dependent accesses.
2215  * This should at least remove accesses from statements that
2216  * do not participate in any dependences.
2217  *
2218  * In particular, we remove the "local" dataflow dependences from
2219  * the set of all dataflow dependences, or at least those
2220  * that may contribute to a domain/range that intersects
2221  * the domain of "access".
2222  * Note that if the potential dataflow dependences are an overapproximation
2223  * of the actual dataflow dependences, then the result remains an
2224  * overapproximation of the non-local dataflow dependences.
2225  * Copying to/from global memory is only needed for the references
2226  * in the domain/range of the result or for accesses that are live out/in
2227  * for the entire scop.
2228  *
2229  * We therefore map the domain/range of the "external" relation
2230  * to the corresponding access relation and take the union with
2231  * the live out/in relation.
2232  */
remove_local_accesses(struct gpu_prog * prog,__isl_take isl_union_map * tagged,__isl_take isl_union_map * access,__isl_take isl_union_map * sched,int read)2233 static __isl_give isl_union_map *remove_local_accesses(
2234 	struct gpu_prog *prog, __isl_take isl_union_map *tagged,
2235 	__isl_take isl_union_map *access, __isl_take isl_union_map *sched,
2236 	int read)
2237 {
2238 	int empty;
2239 	isl_union_pw_multi_aff *tagger;
2240 	isl_union_set *domain, *access_domain;
2241 	isl_union_map *local, *external, *universe;
2242 	isl_union_set *tag_set;
2243 
2244 	if (isl_union_map_is_empty(access)) {
2245 		isl_union_map_free(sched);
2246 		isl_union_map_free(tagged);
2247 		return access;
2248 	}
2249 
2250 	tagger = isl_union_pw_multi_aff_copy(prog->scop->tagger);
2251 	domain = isl_union_map_domain(isl_union_map_copy(tagged));
2252 	tagger = isl_union_pw_multi_aff_intersect_domain(tagger,
2253 					isl_union_set_copy(domain));
2254 	sched = isl_union_map_preimage_domain_union_pw_multi_aff(sched, tagger);
2255 
2256 	local = isl_union_map_apply_range(sched,
2257 			    isl_union_map_reverse(isl_union_map_copy(sched)));
2258 	local = isl_union_map_intersect(local,
2259 			isl_union_map_copy(prog->scop->tagged_dep_flow));
2260 
2261 	empty = isl_union_map_is_empty(local);
2262 
2263 	external = isl_union_map_copy(prog->scop->tagged_dep_flow);
2264 	universe = isl_union_map_universe(isl_union_map_copy(access));
2265 	access_domain = isl_union_map_domain(universe);
2266 	domain = isl_union_set_universe(domain);
2267 	universe = isl_union_set_unwrap(domain);
2268 	universe = isl_union_map_intersect_domain(universe, access_domain);
2269 	domain = isl_union_map_wrap(universe);
2270 	if (read)
2271 		external = isl_union_map_intersect_range(external, domain);
2272 	else
2273 		external = isl_union_map_intersect_domain(external, domain);
2274 	external = isl_union_map_intersect_params(external,
2275 				isl_set_copy(prog->scop->context));
2276 	external = isl_union_map_subtract(external, local);
2277 
2278 	if (read) {
2279 		tag_set = isl_union_map_range(external);
2280 		external = wrapped_reference_to_access(tag_set, tagged);
2281 		external = isl_union_map_union(external,
2282 				isl_union_map_copy(prog->scop->live_in));
2283 	} else {
2284 		tag_set = isl_union_map_domain(external);
2285 		external = wrapped_reference_to_access(tag_set, tagged);
2286 		external = isl_union_map_union(external,
2287 				isl_union_map_copy(prog->scop->live_out));
2288 	}
2289 
2290 	if (empty < 0)
2291 		external = isl_union_map_free(external);
2292 	else if (empty)
2293 		external = isl_union_map_universe(external);
2294 
2295 	access = isl_union_map_intersect(access, external);
2296 
2297 	return access;
2298 }
2299 
2300 /* Given an access relation "access" from "group", remove those reads
2301  * if ("read" is 1) or writes (if "read" is 0) that are only needed to
2302  * communicate data within the same iteration of the schedule "prefix"
2303  * at the position where the copying of the group is inserted.
2304  * That is, the output dimension of "prefix"
2305  * is equal to tile->depth.
2306  * The domain of "prefix" corresponds to the original statement instances,
2307  * i.e., those that appear in the domains of the access relations.
2308  *
2309  * Extract the tagged access relation of "group" and
2310  * then call remove_local_accesses.
2311  */
remove_local_accesses_group(struct ppcg_kernel * kernel,struct gpu_array_ref_group * group,__isl_take isl_union_map * access,__isl_keep isl_union_map * prefix,int read)2312 static __isl_give isl_union_map *remove_local_accesses_group(
2313 	struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
2314 	__isl_take isl_union_map *access, __isl_keep isl_union_map *prefix,
2315 	int read)
2316 {
2317 	isl_union_map *sched, *tagged;
2318 
2319 	if (isl_union_map_is_empty(access))
2320 		return access;
2321 
2322 	tagged = group_tagged_access_relation(group);
2323 	sched = isl_union_map_copy(prefix);
2324 
2325 	return remove_local_accesses(kernel->prog, tagged, access, sched, read);
2326 }
2327 
2328 /* Build an access AST expression for the effective grid size using "build".
2329  * Store the result in kernel->grid_size_expr.
2330  */
build_grid_size(struct ppcg_kernel * kernel,__isl_keep isl_ast_build * build)2331 static isl_stat build_grid_size(struct ppcg_kernel *kernel,
2332 	__isl_keep isl_ast_build *build)
2333 {
2334 	isl_multi_pw_aff *size;
2335 
2336 	size = isl_multi_pw_aff_copy(kernel->grid_size);
2337 	size = isl_multi_pw_aff_set_tuple_name(size, isl_dim_out, "grid");
2338 	kernel->grid_size_expr = ppcg_build_size_expr(size, build);
2339 
2340 	if (!kernel->grid_size_expr)
2341 		return isl_stat_error;
2342 	return isl_stat_ok;
2343 }
2344 
2345 /* Build access AST expressions for the localized array sizes using "build".
2346  * Store the result in local->bound_expr.
2347  * Only do this for arrays for which localized bounds have been computed.
2348  */
build_local_array_sizes(struct ppcg_kernel * kernel,__isl_keep isl_ast_build * build)2349 static isl_stat build_local_array_sizes(struct ppcg_kernel *kernel,
2350 	__isl_keep isl_ast_build *build)
2351 {
2352 	int i;
2353 
2354 	for (i = 0; i < kernel->n_array; ++i) {
2355 		struct gpu_local_array_info *local = &kernel->array[i];
2356 		isl_multi_pw_aff *size;
2357 
2358 		if (local->n_group == 0)
2359 			continue;
2360 		size = isl_multi_pw_aff_copy(local->bound);
2361 		local->bound_expr = ppcg_build_size_expr(size, build);
2362 		if (!local->bound_expr)
2363 			return isl_stat_error;
2364 	}
2365 
2366 	return isl_stat_ok;
2367 }
2368 
2369 /* Build access AST expressions for the effective grid size and
2370  * the localized array sizes using "build".
2371  */
build_grid_and_local_array_sizes(struct ppcg_kernel * kernel,__isl_keep isl_ast_build * build)2372 static isl_stat build_grid_and_local_array_sizes(struct ppcg_kernel *kernel,
2373 	__isl_keep isl_ast_build *build)
2374 {
2375 	if (build_grid_size(kernel, build) < 0)
2376 		return isl_stat_error;
2377 	if (build_local_array_sizes(kernel, build) < 0)
2378 		return isl_stat_error;
2379 	return isl_stat_ok;
2380 }
2381 
2382 /* This function is called before the AST generator starts traversing
2383  * the schedule subtree of a node with mark "mark".
2384  *
2385  * If the mark is called "kernel", store the kernel pointer in data->kernel
2386  * for use in at_domain and build AST expressions for the grid size and
2387  * the localized array sizes.
2388  */
before_mark(__isl_keep isl_id * mark,__isl_keep isl_ast_build * build,void * user)2389 static isl_stat before_mark(__isl_keep isl_id *mark,
2390 	__isl_keep isl_ast_build *build, void *user)
2391 {
2392 	struct ppcg_at_domain_data *data = user;
2393 
2394 	if (!mark)
2395 		return isl_stat_error;
2396 	if (!strcmp(isl_id_get_name(mark), "kernel")) {
2397 		data->kernel = isl_id_get_user(mark);
2398 		if (build_grid_and_local_array_sizes(data->kernel, build) < 0)
2399 			return isl_stat_error;
2400 	}
2401 	return isl_stat_ok;
2402 }
2403 
2404 /* This function is called after the AST generator has finished traversing
2405  * the schedule subtree of a mark node.  "node" points to the corresponding
2406  * mark AST node.
2407  *
2408  * If the mark is called "kernel", then replace "node" by a user node
2409  * that "calls" the kernel, representing the launch of the kernel.
2410  * The original "node" is stored inside the kernel object so that
2411  * it can be used to print the device code.
2412  * Note that this assumes that a kernel is only launched once.
2413  * Also clear data->kernel.
2414  */
after_mark(__isl_take isl_ast_node * node,__isl_keep isl_ast_build * build,void * user)2415 static __isl_give isl_ast_node *after_mark(__isl_take isl_ast_node *node,
2416         __isl_keep isl_ast_build *build, void *user)
2417 {
2418 	isl_ctx *ctx;
2419 	isl_id *id;
2420 	isl_ast_expr *expr;
2421 	isl_ast_expr_list *list;
2422 	struct ppcg_kernel *kernel;
2423 	struct ppcg_at_domain_data *data = user;
2424 
2425 	ctx = isl_ast_node_get_ctx(node);
2426 	id = isl_ast_node_mark_get_id(node);
2427 	if (!id)
2428 		return isl_ast_node_free(node);
2429 	if (strcmp(isl_id_get_name(id), "kernel") || !data->kernel) {
2430 		isl_id_free(id);
2431 		return node;
2432 	}
2433 	kernel = data->kernel;
2434 	data->kernel = NULL;
2435 	kernel->space = isl_ast_build_get_schedule_space(build);
2436 	kernel->tree = isl_ast_node_mark_get_node(node);
2437 	isl_ast_node_free(node);
2438 
2439 	expr = isl_ast_expr_from_id(isl_id_copy(id));
2440 	list = isl_ast_expr_list_alloc(ctx, 0);
2441 	expr = isl_ast_expr_call(expr, list);
2442 	node = isl_ast_node_alloc_user(expr);
2443 	node = isl_ast_node_set_annotation(node, id);
2444 
2445 	return node;
2446 }
2447 
update_depth(__isl_keep isl_schedule_node * node,void * user)2448 static isl_bool update_depth(__isl_keep isl_schedule_node *node, void *user)
2449 {
2450 	int *depth = user;
2451 	int node_depth;
2452 
2453 	if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
2454 		return isl_bool_true;
2455 	node_depth = isl_schedule_node_get_schedule_depth(node);
2456 	if (node_depth > *depth)
2457 		*depth = node_depth;
2458 
2459 	return isl_bool_false;
2460 }
2461 
2462 /* Use isl to generate code for both the host and the device
2463  * from "schedule".
2464  * The device code is marked by "kernel" mark nodes in the schedule tree,
2465  * containing a pointer to a ppcg_kernel object.
2466  * The returned AST only contains the AST for the host code.
2467  * The ASTs for the device code are embedded in ppcg_kernel objects
2468  * attached to the leaf nodes that call "kernel".
2469  */
generate_code(struct gpu_gen * gen,__isl_take isl_schedule * schedule)2470 __isl_give isl_ast_node *generate_code(struct gpu_gen *gen,
2471 	__isl_take isl_schedule *schedule)
2472 {
2473 	struct ppcg_at_domain_data data;
2474 	isl_ast_build *build;
2475 	isl_ast_node *tree;
2476 	isl_id_list *iterators;
2477 	int depth;
2478 
2479     data.prog = gen->prog;
2480     data.gen = gen;
2481 	data.kernel = NULL;
2482 
2483 	depth = 0;
2484 	if (isl_schedule_foreach_schedule_node_top_down(schedule, &update_depth,
2485 						&depth) < 0)
2486 		return NULL;
2487 	build = isl_ast_build_alloc(gen->prog->ctx);
2488 	iterators = ppcg_scop_generate_names(gen->prog->scop, depth, "c");
2489 	build = isl_ast_build_set_iterators(build, iterators);
2490 	build = isl_ast_build_set_at_each_domain(build, &at_domain, &data);
2491 	build = isl_ast_build_set_before_each_mark(build, &before_mark, &data);
2492 	build = isl_ast_build_set_after_each_mark(build, &after_mark, &data);
2493 	if (gen->prog->scop->options->debug->dump_final_schedule)
2494 		isl_schedule_dump(schedule);
2495 	tree = isl_ast_build_node_from_schedule(build, schedule);
2496 	isl_ast_build_free(build);
2497 
2498 	return tree;
2499 }
2500 
extract_sizes_from_str(isl_ctx * ctx,const char * str)2501 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
2502 {
2503 	if (!str)
2504 		return NULL;
2505 	return isl_union_map_read_from_str(ctx, str);
2506 }
2507 
2508 /* Can "node" be tiled and then mapped to block and thread identifiers?
2509  * That is, is it permutable with at least one coincident dimension?
2510  */
is_permutable(__isl_keep isl_schedule_node * node)2511 static int is_permutable(__isl_keep isl_schedule_node *node)
2512 {
2513 	if (!node)
2514 		return -1;
2515 
2516 	if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
2517 		return 0;
2518 	if (!isl_schedule_node_band_get_permutable(node))
2519 		return 0;
2520 	if (isl_schedule_node_band_n_member(node) < 1)
2521 		return 0;
2522 	if (!isl_schedule_node_band_member_get_coincident(node, 0))
2523 		return 0;
2524 
2525 	return 1;
2526 }
2527 
2528 /* A isl_schedule_foreach_schedule_node_top_down callback
2529  * for setting *any_permutable and aborting the search
2530  * if "node" is a permutable band with coincident dimensions.
2531  * Otherwise, continue searching.
2532  */
set_permutable(__isl_keep isl_schedule_node * node,void * user)2533 static isl_bool set_permutable(__isl_keep isl_schedule_node *node, void *user)
2534 {
2535 	int *any_permutable = user;
2536 	int permutable;
2537 
2538 	permutable = is_permutable(node);
2539 	if (permutable < 0)
2540 		return isl_bool_error;
2541 	if (!permutable)
2542 		return isl_bool_true;
2543 
2544 	*any_permutable = 1;
2545 
2546 	return isl_bool_error;
2547 }
2548 
2549 /* Does the subtree rooted at "node" have any suitably permutable band nodes?
2550  * That is, does it have any nodes that are permutable and that
2551  * have a least one coincident dimension?
2552  */
subtree_has_permutable_bands(__isl_keep isl_schedule_node * node)2553 static int subtree_has_permutable_bands(__isl_keep isl_schedule_node *node)
2554 {
2555 	int any_parallelism = 0;
2556 
2557 	if (isl_schedule_node_foreach_descendant_top_down(node, &set_permutable,
2558 						&any_parallelism) < 0 &&
2559 	    !any_parallelism)
2560 		return -1;
2561 
2562 	return any_parallelism;
2563 }
2564 
2565 /* Does "schedule" contain any permutable band with at least one coincident
2566  * member?
2567  */
has_any_permutable_node(__isl_keep isl_schedule * schedule)2568 int has_any_permutable_node(__isl_keep isl_schedule *schedule)
2569 {
2570 	isl_schedule_node *root;
2571 	int any_permutable;
2572 
2573 	root = isl_schedule_get_root(schedule);
2574 	any_permutable = subtree_has_permutable_bands(root);
2575 	isl_schedule_node_free(root);
2576 
2577 	return any_permutable;
2578 }
2579 
2580 /* Is "node" a candidate for mapping to block and thread identifiers?
2581  * In particular, is it permutable with at least one coincident dimension?
2582  * Alternatively, does the subtree rooted at "node" not contain
2583  * any such permutable node?  Filter nodes are skipped in this case,
2584  * because a band node will be inserted in front of the returned
2585  * node and this is not possible for filter nodes that are children
2586  * of set or sequence nodes.
2587  */
is_candidate(__isl_keep isl_schedule_node * node)2588 static int is_candidate(__isl_keep isl_schedule_node *node)
2589 {
2590 	int permutable;
2591 
2592 	if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
2593 		return 1;
2594 	permutable = is_permutable(node);
2595 	if (permutable < 0 || permutable)
2596 		return permutable;
2597 	if (isl_schedule_node_get_type(node) == isl_schedule_node_filter)
2598 		return 0;
2599 	permutable = subtree_has_permutable_bands(node);
2600 	if (permutable < 0)
2601 		return -1;
2602 	return !permutable;
2603 }
2604 
2605 /* Is "node" the outermost node in its branch that can be tiled
2606  * and then mapped to block and thread identifiers?
2607  * If there are no such nodes in the subtree at "node" and
2608  * if "node" is not a filter node, then it is accepted too.
2609  */
is_outer_tilable(__isl_keep isl_schedule_node * node)2610 static int is_outer_tilable(__isl_keep isl_schedule_node *node)
2611 {
2612 	int tilable;
2613 	isl_schedule_node *ancestor;
2614 
2615 	tilable = is_candidate(node);
2616 	if (tilable < 0)
2617 		return -1;
2618 	if (!tilable)
2619 		return 0;
2620 
2621 	tilable = 0;
2622 	ancestor = isl_schedule_node_copy(node);
2623 	while (isl_schedule_node_has_parent(ancestor)) {
2624 		ancestor = isl_schedule_node_parent(ancestor);
2625 
2626 		tilable = is_candidate(ancestor);
2627 		if (tilable < 0 || tilable)
2628 			break;
2629 	}
2630 
2631 	isl_schedule_node_free(ancestor);
2632 	return tilable < 0 ? -1 : !tilable;
2633 }
2634 
2635 /* Collect the references to all writes in "group".
2636  * Each reference is represented by a universe set in a space
2637  *
2638  *	[S[i,j] -> R[]]
2639  *
2640  * with S[i,j] the statement instance space and R[] the array reference.
2641  */
group_tagged_writes(struct gpu_array_ref_group * group)2642 static __isl_give isl_union_set *group_tagged_writes(
2643 	struct gpu_array_ref_group *group)
2644 {
2645 	int i;
2646 	isl_space *space;
2647 	isl_union_set *writes;
2648 
2649 	space = isl_map_get_space(group->access);
2650 	writes = isl_union_set_empty(space);
2651 	for (i = 0; i < group->n_ref; ++i) {
2652 		isl_space *space;
2653 		isl_set *writes_i;
2654 
2655 		if (!group->refs[i]->write)
2656 			continue;
2657 
2658 		space = isl_map_get_space(group->refs[i]->tagged_access);
2659 		space = isl_space_domain(space);
2660 		writes_i = isl_set_universe(space);
2661 		writes = isl_union_set_add_set(writes, writes_i);
2662 	}
2663 
2664 	return writes;
2665 }
2666 
2667 /* Is there any write access in "group" that requires synchronization
2668  * on a write to global memory?
2669  * We currently take into account all writes that would require
2670  * synchronization at the thread level depth, but if the copying
2671  * for this group is performed at an outer level, then we do not
2672  * actually need to take into account dependences at intermediate levels.
2673  */
any_sync_writes_in_group(struct ppcg_kernel * kernel,struct gpu_array_ref_group * group)2674 static int any_sync_writes_in_group(struct ppcg_kernel *kernel,
2675 	struct gpu_array_ref_group *group)
2676 {
2677 	isl_union_set *writes;
2678 	int empty, disjoint;
2679 
2680 	empty = isl_union_set_is_empty(kernel->sync_writes);
2681 	if (empty < 0)
2682 		return -1;
2683 	if (empty)
2684 		return 0;
2685 
2686 	writes = group_tagged_writes(group);
2687 	disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
2688 	isl_union_set_free(writes);
2689 
2690 	return disjoint < 0 ? -1 : !disjoint;
2691 }
2692 
2693 /* Collect the references to all writes in "kernel" that write directly
2694  * to global or shared memory, i.e., that are not mapped to private memory.
2695  * Each reference is represented by a universe set in a space
2696  *
2697  *	[S[i,j] -> R[]]
2698  *
2699  * with S[i,j] the statement instance space and R[] the array reference.
2700  */
collect_non_private_tagged_writes(struct ppcg_kernel * kernel)2701 static __isl_give isl_union_set *collect_non_private_tagged_writes(
2702 	struct ppcg_kernel *kernel)
2703 {
2704 	isl_union_set *writes;
2705 	int i, j;
2706 
2707 	writes = isl_union_set_empty(isl_union_set_get_space(kernel->arrays));
2708 
2709 	for (i = 0; i < kernel->n_array; ++i) {
2710 		struct gpu_local_array_info *array = &kernel->array[i];
2711 
2712 		for (j = 0; j < array->n_group; ++j) {
2713 			struct gpu_array_ref_group *group = array->groups[j];
2714 			enum ppcg_group_access_type type;
2715 			isl_union_set *writes_ij;
2716 
2717 			if (!group->write)
2718 				continue;
2719 			type = gpu_array_ref_group_type(group);
2720 			if (type == ppcg_access_private)
2721 				continue;
2722 			writes_ij = group_tagged_writes(group);
2723 			writes = isl_union_set_union(writes, writes_ij);
2724 		}
2725 	}
2726 
2727 	return writes;
2728 }
2729 
2730 /* Are there any direct writes to global memory that require
2731  * synchronization?
2732  */
any_global_or_shared_sync_writes(struct ppcg_kernel * kernel)2733 static int any_global_or_shared_sync_writes(struct ppcg_kernel *kernel)
2734 {
2735 	isl_union_set *writes;
2736 	int empty, disjoint;
2737 
2738 	empty = isl_union_set_is_empty(kernel->sync_writes);
2739 	if (empty < 0)
2740 		return -1;
2741 	if (empty)
2742 		return 0;
2743 
2744 	writes = collect_non_private_tagged_writes(kernel);
2745 	disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
2746 	isl_union_set_free(writes);
2747 
2748 	return disjoint < 0 ? -1 : !disjoint;
2749 }
2750 
2751 /* Construct an isl_multi_val for use as tile sizes for tiling "node"
2752  * from the elements in "tile_size".
2753  */
construct_band_tiles_sizes(__isl_keep isl_schedule_node * node,int * tile_size)2754 static __isl_give isl_multi_val *construct_band_tiles_sizes(
2755 	__isl_keep isl_schedule_node *node, int *tile_size)
2756 {
2757 	isl_space *space;
2758 
2759 	if (!node)
2760 		return NULL;
2761 
2762 	space = isl_schedule_node_band_get_space(node);
2763 	return ppcg_multi_val_from_int_list(space, tile_size);
2764 }
2765 
2766 /* Replace the partial schedule S of the band node "node" by
2767  *
2768  *	floor(S/f)
2769  *
2770  * or
2771  *
2772  *	f * floor(S/f)
2773  *
2774  * if scale_tile_loops is set, with f the integers in "factor".
2775  * The list that "factor" points to is assumed to contain at least
2776  * as many elements as the number of members in the band.
2777  */
snap_band_to_sizes(__isl_take isl_schedule_node * node,int * factor,struct ppcg_options * options)2778 static __isl_give isl_schedule_node *snap_band_to_sizes(
2779 	__isl_take isl_schedule_node *node, int *factor,
2780 	struct ppcg_options *options)
2781 {
2782 	isl_multi_val *mv;
2783 
2784 	mv = construct_band_tiles_sizes(node, factor);
2785 	node = isl_schedule_node_band_scale_down(node, isl_multi_val_copy(mv));
2786 	if (options->scale_tile_loops)
2787 		node = isl_schedule_node_band_scale(node,
2788 							isl_multi_val_copy(mv));
2789 	isl_multi_val_free(mv);
2790 
2791 	return node;
2792 }
2793 
2794 /* Tile "band" with tile size specified by "sizes".
2795  *
2796  * Since the tile loops will be mapped to block ids, we forcibly
2797  * turn off tile loop scaling.  We may want to enable tile loop scaling
2798  * at some later point, but then we would have to support the detection
2799  * of strides during the mapping to block ids.
2800  * Similarly, since the point loops will be mapped to thread ids,
2801  * we forcibly shift the point loops so that they start at zero.
2802  */
tile_band(__isl_take isl_schedule_node * node,__isl_take isl_multi_val * sizes)2803 static __isl_give isl_schedule_node *tile_band(
2804 	__isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
2805 {
2806 	isl_ctx *ctx = isl_schedule_node_get_ctx(node);
2807 	int scale_tile;
2808 	int shift_point;
2809 
2810 	scale_tile = isl_options_get_tile_scale_tile_loops(ctx);
2811 	isl_options_set_tile_scale_tile_loops(ctx, 0);
2812 	shift_point = isl_options_get_tile_shift_point_loops(ctx);
2813 	isl_options_set_tile_shift_point_loops(ctx, 1);
2814 
2815 	node = isl_schedule_node_band_tile(node, sizes);
2816 
2817 	isl_options_set_tile_scale_tile_loops(ctx, scale_tile);
2818 	isl_options_set_tile_shift_point_loops(ctx, shift_point);
2819 
2820 	return node;
2821 }
2822 
2823 /* Extract the set of parameter values and outer schedule dimensions
2824  * for which any statement instance
2825  * in the kernel inserted at "node" needs to be executed.
2826  * Intersect the set of parameter values derived from the host schedule
2827  * relation with the context of "prog".
2828  */
extract_context(__isl_keep isl_schedule_node * node,struct gpu_prog * prog)2829 static __isl_give isl_set *extract_context(__isl_keep isl_schedule_node *node,
2830 	struct gpu_prog *prog)
2831 {
2832 	isl_union_map *schedule;
2833 	isl_union_set *schedule_domain;
2834 	isl_set *context;
2835 	int empty;
2836 
2837 	schedule = isl_schedule_node_get_prefix_schedule_relation(node);
2838 	schedule_domain = isl_union_map_range(schedule);
2839 	empty = isl_union_set_is_empty(schedule_domain);
2840 	if (empty < 0) {
2841 		isl_union_set_free(schedule_domain);
2842 		return NULL;
2843 	}
2844 	if (empty) {
2845 		int depth;
2846 		isl_space *space;
2847 
2848 		space = isl_union_set_get_space(schedule_domain);
2849 		isl_union_set_free(schedule_domain);
2850 		space = isl_space_set_from_params(space);
2851 		depth = isl_schedule_node_get_schedule_depth(node);
2852 		space = isl_space_add_dims(space, isl_dim_set, depth);
2853 		context = isl_set_empty(space);
2854 	} else {
2855 		context = isl_set_from_union_set(schedule_domain);
2856 	}
2857 	context = isl_set_intersect_params(context,
2858 					    isl_set_copy(prog->context));
2859 
2860 	return context;
2861 }
2862 
2863 /* Return the set of outer array elements accessed by
2864  * by the statement instances in "domain" in "prog".
2865  * The instances in "domain" are those that appear
2866  * in the domains of the access relations in "prog".
2867  */
accessed_by_domain(__isl_take isl_union_set * domain,struct gpu_prog * prog)2868 static __isl_give isl_union_set *accessed_by_domain(
2869 	__isl_take isl_union_set *domain, struct gpu_prog *prog)
2870 {
2871 	isl_union_map *access;
2872 	isl_union_set *arrays;
2873 
2874 	access = isl_union_map_union(isl_union_map_copy(prog->read),
2875 				     isl_union_map_copy(prog->may_write));
2876 	access = isl_union_map_intersect_domain(access, domain);
2877 	arrays = isl_union_map_range(access);
2878 	arrays = isl_union_set_apply(arrays,
2879 				isl_union_map_copy(prog->to_outer));
2880 
2881 	return arrays;
2882 }
2883 
2884 /* Return the number of outer band members of the band node "node"
2885  * that are marked coincident.
2886  */
n_outer_coincidence(__isl_keep isl_schedule_node * node)2887 static int n_outer_coincidence(__isl_keep isl_schedule_node *node)
2888 {
2889 	int i, n;
2890 
2891 	n = isl_schedule_node_band_n_member(node);
2892 
2893 	for (i = 0; i < n; ++i)
2894 		if (!isl_schedule_node_band_member_get_coincident(node, i))
2895 			break;
2896 
2897 	return i;
2898 }
2899 
2900 /* If the band node "node" has more than "n" members, then split off
2901  * the first "n" of them.
2902  */
split_band(__isl_take isl_schedule_node * node,int n)2903 static __isl_give isl_schedule_node *split_band(
2904 	__isl_take isl_schedule_node *node, int n)
2905 {
2906 	int dim;
2907 
2908 	dim = isl_schedule_node_band_n_member(node);
2909 	if (n < dim)
2910 		node = isl_schedule_node_band_split(node, n);
2911 
2912 	return node;
2913 }
2914 
2915 /* Scale a band node that may have been split by split_band.
2916  * "sizes" are the scaling factors for the original node.
2917  * "node" either points to the original band node, or the outer
2918  * of the two pieces after splitting.
2919  *
2920  * If the number of elements in "node" is smaller than the number of
2921  * elements in "sizes", then some splitting has occurred and we split
2922  * "sizes" in the same way.
2923  */
scale_band(__isl_take isl_schedule_node * node,__isl_take isl_multi_val * sizes)2924 static __isl_give isl_schedule_node *scale_band(
2925 	__isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
2926 {
2927 	int n, dim;
2928 
2929 	n = isl_multi_val_dim(sizes, isl_dim_set);
2930 	dim = isl_schedule_node_band_n_member(node);
2931 	if (n > dim) {
2932 		isl_multi_val *sizes2;
2933 
2934 		sizes2 = isl_multi_val_copy(sizes);
2935 		sizes = isl_multi_val_drop_dims(sizes,
2936 						isl_dim_set, dim, n - dim);
2937 		sizes2 = isl_multi_val_drop_dims(sizes2, isl_dim_set, 0, dim);
2938 		node = isl_schedule_node_child(node, 0);
2939 		node = isl_schedule_node_band_scale(node, sizes2);
2940 		node = isl_schedule_node_parent(node);
2941 	}
2942 
2943 	return isl_schedule_node_band_scale(node, sizes);
2944 }
2945 
2946 /* Return an isl_multi_aff, with as elements the parameters in "space"
2947  * that have the names specified by the elements in "names".
2948  * If (some of) these parameters do not already appear in "space",
2949  * then they are added first.
2950  */
parameter_vector(__isl_take isl_space * space,__isl_keep isl_id_list * names)2951 static __isl_give isl_multi_aff *parameter_vector(__isl_take isl_space *space,
2952 	__isl_keep isl_id_list *names)
2953 {
2954 	int i, n;
2955 	isl_local_space *ls;
2956 	isl_multi_aff *ma;
2957 
2958 	if (!names)
2959 		space = isl_space_free(space);
2960 
2961 	n = isl_id_list_n_id(names);
2962 	for (i = 0; i < n; ++i) {
2963 		int pos;
2964 		isl_id *id;
2965 
2966 		id = isl_id_list_get_id(names, i);
2967 		pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2968 		if (pos >= 0) {
2969 			isl_id_free(id);
2970 			continue;
2971 		}
2972 		pos = isl_space_dim(space, isl_dim_param);
2973 		space = isl_space_add_dims(space, isl_dim_param, 1);
2974 		space = isl_space_set_dim_id(space, isl_dim_param, pos, id);
2975 	}
2976 	ma = isl_multi_aff_zero(isl_space_copy(space));
2977 	ls = isl_local_space_from_space(isl_space_domain(space));
2978 	for (i = 0; i < n; ++i) {
2979 		int pos;
2980 		isl_id *id;
2981 		isl_aff *aff;
2982 
2983 		id = isl_id_list_get_id(names, i);
2984 		pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
2985 		isl_id_free(id);
2986 		aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
2987 					    isl_dim_param, pos);
2988 		ma = isl_multi_aff_set_aff(ma, i, aff);
2989 	}
2990 	isl_local_space_free(ls);
2991 
2992 	return ma;
2993 }
2994 
2995 /* Return constraints on the domain elements that equate a sequence of
2996  * parameters called "names", to the partial schedule
2997  * of "node" modulo the integers in "size".
2998  * The number of elements in the array "size" should be equal
2999  * to the number of elements in "names".
3000  * The number of members of the band node "node" should be smaller
3001  * than or equal to this number.  If it is smaller, then the first
3002  * elements of "names" are equated to zero.
3003  */
set_schedule_modulo(__isl_keep isl_schedule_node * node,__isl_keep isl_id_list * names,int * size)3004 static __isl_give isl_union_set *set_schedule_modulo(
3005 	__isl_keep isl_schedule_node *node, __isl_keep isl_id_list *names,
3006 	int *size)
3007 {
3008 	int n, n_zero;
3009 	isl_space *space;
3010 	isl_multi_aff *ma;
3011 	isl_multi_union_pw_aff *mupa, *mupa2;
3012 	isl_multi_val *mv;
3013 	isl_union_set *domain;
3014 
3015 	if (!node)
3016 		return NULL;
3017 	n = isl_id_list_n_id(names);
3018 	if (n == 0)
3019 		return isl_schedule_node_get_universe_domain(node);
3020 	n_zero = n - isl_schedule_node_band_n_member(node);
3021 
3022 	mupa = isl_schedule_node_band_get_partial_schedule(node);
3023 	mv = construct_band_tiles_sizes(node, size + n_zero);
3024 	mupa = isl_multi_union_pw_aff_mod_multi_val(mupa, mv);
3025 
3026 	space = isl_multi_union_pw_aff_get_space(mupa);
3027 	space = isl_space_params(space);
3028 	space = isl_space_set_from_params(space);
3029 	space = isl_space_add_dims(space, isl_dim_set, n_zero);
3030 	ma = isl_multi_aff_zero(space);
3031 
3032 	domain = isl_schedule_node_get_universe_domain(node);
3033 	mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(
3034 						isl_union_set_copy(domain), ma);
3035 	mupa = isl_multi_union_pw_aff_range_product(mupa2, mupa);
3036 
3037 	space = isl_multi_union_pw_aff_get_space(mupa);
3038 	ma = parameter_vector(space, names);
3039 
3040 	mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(domain, ma);
3041 	mupa = isl_multi_union_pw_aff_sub(mupa, mupa2);
3042 
3043 	return isl_multi_union_pw_aff_zero_union_set(mupa);
3044 }
3045 
3046 /* Insert a context node at "node" introducing the block and thread
3047  * identifiers along with their bounds, which are stored in kernel->grid_size
3048  * and kernel->block_dim.
3049  * Note that the bounds on the block identifiers may implicitly impose
3050  * constraints on the parameters.  A guard needs to be inserted
3051  * in the schedule tree to ensure that those bounds hold at "node".
3052  * This guard is inserted in insert_guard.
3053  */
insert_context(struct ppcg_kernel * kernel,__isl_take isl_schedule_node * node)3054 static __isl_give isl_schedule_node *insert_context(struct ppcg_kernel *kernel,
3055 	__isl_take isl_schedule_node *node)
3056 {
3057 	isl_set *context;
3058 
3059 	context = isl_set_universe(isl_set_get_space(kernel->context));
3060 
3061 	context = add_bounded_parameters_dynamic(context,
3062 					kernel->grid_size, kernel->block_ids);
3063 	context = add_bounded_parameters(context,
3064 					kernel->block_dim, kernel->thread_ids);
3065 
3066 	node = isl_schedule_node_insert_context(node, context);
3067 
3068 	return node;
3069 }
3070 
3071 /* Insert a guard that eliminates kernel launches where the kernel
3072  * obviously does not have any work to do.
3073  *
3074  * In particular, eliminate kernel launches where there are obviously
3075  * zero blocks.
3076  * Use the same block size constraints that are used to create the context
3077  * to ensure that all constraints implicit in the constructed context
3078  * are imposed by the guard.
3079  *
3080  * Additionally, add other constraints that are valid
3081  * for each executed instance ("context"), as long as this does not result
3082  * in a disjunction.
3083  */
insert_guard(__isl_take isl_schedule_node * node,__isl_keep isl_set * context,__isl_keep isl_multi_pw_aff * size,struct ppcg_scop * scop)3084 static __isl_give isl_schedule_node *insert_guard(
3085 	__isl_take isl_schedule_node *node, __isl_keep isl_set *context,
3086 	__isl_keep isl_multi_pw_aff *size, struct ppcg_scop *scop)
3087 {
3088 	unsigned nparam, n;
3089 	isl_set *guard;
3090 	isl_id_list *ids;
3091 
3092 	guard = isl_set_copy(context);
3093 	guard = isl_set_compute_divs(guard);
3094 	guard = isl_set_from_basic_set(isl_set_simple_hull(guard));
3095 
3096 	nparam = isl_set_dim(guard, isl_dim_param);
3097 	n = isl_multi_pw_aff_dim(size, isl_dim_out);
3098 	ids = ppcg_scop_generate_names(scop, n, "__ppcg_tmp");
3099 	guard = add_bounded_parameters_dynamic(guard, size, ids);
3100 	isl_id_list_free(ids);
3101 	guard = isl_set_project_out(guard, isl_dim_param, nparam, n);
3102 
3103 	node = isl_schedule_node_insert_guard(node, guard);
3104 
3105 	return node;
3106 }
3107 
3108 /* Does any array reference group mapping require the band that is mapped
3109  * to threads to be unrolled?
3110  */
kernel_requires_unroll(struct ppcg_kernel * kernel)3111 static int kernel_requires_unroll(struct ppcg_kernel *kernel)
3112 {
3113 	int i, j;
3114 
3115 	for (i = 0; i < kernel->n_array; ++i) {
3116 		struct gpu_local_array_info *array = &kernel->array[i];
3117 
3118 		for (j = 0; j < array->n_group; ++j) {
3119 			struct gpu_array_ref_group *group = array->groups[j];
3120 			if (gpu_array_ref_group_requires_unroll(group))
3121 				return 1;
3122 		}
3123 	}
3124 
3125 	return 0;
3126 }
3127 
3128 /* Mark the given band node "node" for unrolling by the AST generator and
3129  * then sink it to the leaves of the schedule tree.
3130  * All dimensions of "node" are assumed to be coincident, such that this
3131  * sinking is a valid operation.
3132  */
unroll(__isl_take isl_schedule_node * node)3133 static __isl_give isl_schedule_node *unroll(__isl_take isl_schedule_node *node)
3134 {
3135 	node = ppcg_set_schedule_node_type(node, isl_ast_loop_unroll);
3136 
3137 	node = isl_schedule_node_band_sink(node);
3138 
3139 	return node;
3140 }
3141 
3142 /* Insert a synchronization node in the schedule tree of "node"
3143  * after the core computation of "kernel" at the level of the band
3144  * that is mapped to threads, except if that level is equal to
3145  * that of the band that is mapped to blocks or if there are no writes
3146  * to global or shared memory in the core computation that require
3147  * synchronization.
3148  * If there are any writes to shared memory and the shared memory
3149  * copying is performed at the same level, then synchronization
3150  * is needed between the core and the copying anyway, so we might
3151  * as well add it here.  If the copying is performed at a higher
3152  * level, then different iterations of intermediate schedule dimensions
3153  * may have a different mapping from between shared memory elements and
3154  * threads, such that synchronization is required after the core.
3155  * "node" is assumed to point to the kernel node.
3156  *
3157  * If the shared and the thread mark point to the same node, then make
3158  * sure the synchronization is inserted outside of the shared mark.
3159  */
add_sync(struct ppcg_kernel * kernel,__isl_take isl_schedule_node * node)3160 static __isl_give isl_schedule_node *add_sync(struct ppcg_kernel *kernel,
3161 	__isl_take isl_schedule_node *node)
3162 {
3163 	int depth;
3164 	int need_sync;
3165 
3166 	need_sync = any_global_or_shared_sync_writes(kernel);
3167 	if (need_sync < 0)
3168 		return isl_schedule_node_free(node);
3169 	if (!need_sync)
3170 		return node;
3171 
3172 	node = gpu_tree_move_down_to_thread(node, kernel->core);
3173 	depth = isl_schedule_node_get_schedule_depth(node);
3174 	node = gpu_tree_move_up_to_kernel(node);
3175 	if (depth == isl_schedule_node_get_schedule_depth(node))
3176 		return node;
3177 
3178 	node = gpu_tree_move_down_to_depth(node, depth, kernel->core);
3179 	node = gpu_tree_ensure_following_sync(node, kernel);
3180 
3181 	node = gpu_tree_move_up_to_kernel(node);
3182 
3183 	return node;
3184 }
3185 
3186 /* Return a read ("read" is 1) or write access relation for "group"
3187  * with those accesses removed that are only needed to communicate data
3188  * within the subtree of the schedule rooted at "node".
3189  * Furthermore, include the prefix schedule at "node".
3190  * That is, return a relation of the form
3191  *
3192  *	S -> [D -> A]
3193  *
3194  * with D the outer schedule dimensions at "node".
3195  */
anchored_non_local_accesses(struct ppcg_kernel * kernel,struct gpu_array_ref_group * group,__isl_take isl_schedule_node * node,int read)3196 static __isl_give isl_union_map *anchored_non_local_accesses(
3197 	struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3198 	__isl_take isl_schedule_node *node, int read)
3199 {
3200 	isl_union_map *access;
3201 	isl_union_map *prefix;
3202 
3203 	prefix = isl_schedule_node_get_prefix_schedule_relation(node);
3204 	prefix = isl_union_map_preimage_domain_union_pw_multi_aff(prefix,
3205 			    isl_union_pw_multi_aff_copy(kernel->contraction));
3206 	access = gpu_array_ref_group_access_relation(group, read, !read);
3207 	access = remove_local_accesses_group(kernel, group, access, prefix,
3208 						read);
3209 	access = isl_union_map_range_product(prefix, access);
3210 
3211 	return access;
3212 }
3213 
3214 /* Given an array reference group "group", create a mapping
3215  *
3216  *	read[D -> A] -> [D -> A]
3217  *
3218  * if "read" is set or
3219  *
3220  *	write[D -> A] -> [D -> A]
3221  *
3222  * if "read" is not set.
3223  * D corresponds to the outer tile->depth dimensions of
3224  * the kernel schedule.
3225  */
create_from_access(isl_ctx * ctx,struct gpu_array_ref_group * group,int read)3226 static __isl_give isl_multi_aff *create_from_access(isl_ctx *ctx,
3227 	struct gpu_array_ref_group *group, int read)
3228 {
3229 	struct gpu_array_tile *tile;
3230 	isl_space *space;
3231 	isl_id *id;
3232 
3233 	tile = gpu_array_ref_group_tile(group);
3234 	space = isl_space_copy(group->array->space);
3235 	space = isl_space_from_range(space);
3236 	space = isl_space_add_dims(space, isl_dim_in, tile->depth);
3237 	space = isl_space_wrap(space);
3238 	space = isl_space_map_from_set(space);
3239 
3240 	id = isl_id_alloc(ctx, read ? "read" : "write", group);
3241 	space = isl_space_set_tuple_id(space, isl_dim_in, id);
3242 
3243 	return isl_multi_aff_identity(space);
3244 }
3245 
3246 /* If any writes in "group" require synchronization, then make sure
3247  * that there is a synchronization node for "kernel" after the node
3248  * following "node" in a sequence.
3249  *
3250  * If "shared" is set and no synchronization is needed for
3251  * the writes to global memory, then add synchronization before
3252  * the kernel to protect shared memory from being overwritten
3253  * by the next iteration of the core computation.
3254  * No additional synchronization is needed to protect against
3255  * the next copy into shared memory because each element of
3256  * the shared memory tile is always copied by the same thread.
3257  */
add_group_write_sync(__isl_take isl_schedule_node * node,struct ppcg_kernel * kernel,struct gpu_array_ref_group * group,int shared)3258 static __isl_give isl_schedule_node *add_group_write_sync(
3259 	__isl_take isl_schedule_node *node, struct ppcg_kernel *kernel,
3260 	struct gpu_array_ref_group *group, int shared)
3261 {
3262 	int need_sync;
3263 
3264 	need_sync = any_sync_writes_in_group(kernel, group);
3265 	if (need_sync < 0)
3266 		return isl_schedule_node_free(node);
3267 	if (need_sync) {
3268 		node = isl_schedule_node_parent(node);
3269 		node = isl_schedule_node_next_sibling(node);
3270 		node = isl_schedule_node_child(node, 0);
3271 		node = gpu_tree_ensure_following_sync(node, kernel);
3272 	} else if (shared) {
3273 		struct gpu_array_tile *tile;
3274 
3275 		tile = gpu_array_ref_group_tile(group);
3276 		node = isl_schedule_node_parent(node);
3277 		node = isl_schedule_node_parent(node);
3278 		node = gpu_tree_move_down_to_depth(node, tile->depth,
3279 							kernel->core);
3280 		node = gpu_tree_move_left_to_sync(node, kernel);
3281 	}
3282 
3283 	return node;
3284 }
3285 
3286 /* Add copy statements to the schedule tree of "node"
3287  * for reading from global memory to private memory (if "read" is set) or
3288  * for writing back from private memory to global memory
3289  * (if "read" is not set) for the array reference group "group" that
3290  * is mapped to private memory.
3291  * On input, "node" points to the kernel node, and it is moved
3292  * back there on output.
3293  *
3294  * The copies are performed in the order of the array elements.
3295  * The copy statement instances include a reference to the outer
3296  * tile->depth dimensions of the kernel schedule for ease of
3297  * combining them with the group tiling.
3298  *
3299  * That is, the extra schedule is of the form
3300  *
3301  *	type[D -> A] -> A
3302  *
3303  * where D corresponds to the outer tile->depth dimensions of
3304  * the kernel schedule and A to the global array.
3305  * This schedule is unrolled because registers are not addressable.
3306  *
3307  * The copying is inserted in the schedule tree through an extension
3308  * of the form
3309  *
3310  *	D -> type[D -> A]
3311  *
3312  * where the extra domain elements type[D -> A] are those accessed
3313  * by the group.
3314  * A filter is inserted on type[D -> A] to ensure that the element
3315  * is read/written by the same thread that needs the element.
3316  * This filter is obtained by applying
3317  *
3318  *	S -> type[D -> A]
3319  *
3320  * to the thread filter for the core statements.
3321  *
3322  * The extension is inserted before the core computation in case of a read
3323  * and after the core computation in case of a write.
3324  * In the latter case, we also make sure that there is a synchronization
3325  * node after the write to global memory, unless this write is performed
3326  * at the outer level of the kernel.
3327  * In principle, this synchronization could be inserted higher
3328  * in the schedule tree depending on where the corresponding reads
3329  * from global memory are performed.
3330  */
add_copies_group_private(struct ppcg_kernel * kernel,struct gpu_array_ref_group * group,__isl_take isl_schedule_node * node,int read)3331 static __isl_give isl_schedule_node *add_copies_group_private(
3332 	struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3333 	__isl_take isl_schedule_node *node, int read)
3334 {
3335 	struct gpu_array_tile *tile;
3336 	isl_union_map *access;
3337 	isl_union_set *domain;
3338 	isl_space *space;
3339 	isl_multi_aff *from_access;
3340 	isl_multi_pw_aff *mpa;
3341 	isl_multi_union_pw_aff *mupa;
3342 	isl_union_pw_multi_aff *contraction;
3343 	isl_schedule_node *graft;
3344 	isl_union_set *filter;
3345 	int kernel_depth;
3346 	int empty;
3347 
3348 	kernel_depth = isl_schedule_node_get_schedule_depth(node);
3349 	tile = gpu_array_ref_group_tile(group);
3350 	node = gpu_tree_move_down_to_depth(node, tile->depth, kernel->core);
3351 
3352 	access = anchored_non_local_accesses(kernel, group, node, read);
3353 	empty = isl_union_map_is_empty(access);
3354 	if (empty < 0 || empty) {
3355 		isl_union_map_free(access);
3356 		if (empty < 0)
3357 			return isl_schedule_node_free(node);
3358 		return gpu_tree_move_up_to_kernel(node);
3359 	}
3360 
3361 	group->array->global = 1;
3362 	group->local_array->global = 1;
3363 
3364 	from_access = create_from_access(kernel->ctx, group, read);
3365 	space = isl_space_domain(isl_multi_aff_get_space(from_access));
3366 	access = isl_union_map_preimage_range_multi_aff(access, from_access);
3367 
3368 	filter = isl_union_set_copy(kernel->thread_filter);
3369 	contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
3370 	filter = isl_union_set_preimage_union_pw_multi_aff(filter, contraction);
3371 	filter = isl_union_set_apply(filter, isl_union_map_copy(access));
3372 	filter = isl_union_set_detect_equalities(filter);
3373 	filter = isl_union_set_coalesce(filter);
3374 
3375 	domain = isl_union_map_range(access);
3376 	access = isl_union_set_wrapped_domain_map(domain);
3377 	access = isl_union_map_reverse(access);
3378 	access = isl_union_map_coalesce(access);
3379 	graft = isl_schedule_node_from_extension(access);
3380 
3381 	space = isl_space_map_from_set(space);
3382 	mpa = isl_multi_pw_aff_identity(space);
3383 	mpa = isl_multi_pw_aff_range_factor_range(mpa);
3384 	mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3385 
3386 	graft = isl_schedule_node_child(graft, 0);
3387 	graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3388 	graft = unroll(graft);
3389 
3390 	graft = isl_schedule_node_insert_filter(graft, filter);
3391 
3392 	graft = isl_schedule_node_parent(graft);
3393 
3394 	if (read)
3395 		node = isl_schedule_node_graft_before(node, graft);
3396 	else {
3397 		node = isl_schedule_node_graft_after(node, graft);
3398 		if (kernel_depth < tile->depth)
3399 			node = add_group_write_sync(node, kernel, group, 0);
3400 	}
3401 
3402 	node = gpu_tree_move_up_to_kernel(node);
3403 
3404 	return node;
3405 }
3406 
3407 /* Add copy statements to the schedule tree of "node"
3408  * for reading from global memory to shared memory (if "read" is set) or
3409  * for writing back from shared memory to global memory
3410  * (if "read" is not set) for the array reference group "group" that
3411  * is mapped to shared memory.
3412  * On input, "node" points to the kernel node, and it is moved
3413  * back there on output.
3414  *
3415  * The copies are performed in the order of the corresponding shared
3416  * memory tile.
3417  * The copy statement instances include a reference to the outer
3418  * tile->depth dimensions of the kernel schedule for ease of
3419  * combining them with the group tiling.
3420  *
3421  * If we are performing a read from global memory to shared memory and
3422  * if the array involved is not a scalar, then we copy
3423  * the entire tile to shared memory.  This may result in some extra
3424  * elements getting copied, but it should lead to simpler code
3425  * (which means that fewer registers may be needed) and less divergence.
3426  *
3427  * Otherwise, we only copy the elements that will be read or have been written
3428  * in the kernel.
3429  *
3430  * That is, the extra schedule is of the form
3431  *
3432  *	type[D -> A] -> T
3433  *
3434  * where D corresponds to the outer tile->depth dimensions of
3435  * the kernel schedule, A to the global array and T is the corresponding
3436  * shared memory tile.
3437  *
3438  * The copying is inserted in the schedule tree through an extension
3439  * of the form
3440  *
3441  *	D -> type[D -> A]
3442  *
3443  * where the extra domain elements type[D -> A] are those accessed
3444  * by the group.  In the case of read from a non-scalar, this set
3445  * is replaced by the entire shared memory tile.
3446  *
3447  * If the "unroll_copy_shared" option is set, then the AST generator
3448  * is instructed to unroll the copying code.
3449  *
3450  * A filter is inserted on type[D -> A] to map the copy instances
3451  * to the threads.  In particular, the thread identifiers are
3452  * equated to the position inside the shared memory tile (T)
3453  * modulo the block size.
3454  * We try to align the innermost tile dimension with the innermost
3455  * thread identifier (x) as a heuristic to improve coalescing.
3456  * In particular, if the dimension of the tile is greater than
3457  * the dimension of the block, then the schedule mapping to the tile
3458  * is broken up into two pieces and the filter is applied to the inner part.
3459  * If, on the other hand, the dimension of the tile is smaller than
3460  * the dimension of the block, then the initial thread identifiers
3461  * are equated to zero and the remaining thread identifiers are
3462  * matched to the memory tile.
3463  *
3464  * The extension is inserted before the core computation in case of a read
3465  * and after the core computation in case of a write.
3466  * In the case of a read, we first need to make sure there is some
3467  * synchronization before the core computation such that we can put the read
3468  * from global memory to shared memory before that synchronization.
3469  * This ensures that all threads have finished copying into shared memory
3470  * before the shared memory is used.
3471  * We also need to make sure that there is a synchronization node after
3472  * the core computation to ensure that the next load into shared memory
3473  * only happens after all data has been used.  There is no need for
3474  * this synchronization if we are at the outer level since then there
3475  * won't be a next load.
3476  * In the case of a write, we need to make sure there is some synchronization
3477  * after the core computation such taht we can put the write from shared
3478  * memory to global memory after that synchronization.
3479  * Unless we are at the outer level, we also need a synchronization node
3480  * after the write to ensure the data is saved to global memory
3481  * before the next iteration write to the same shared memory.
3482  * It also makes sure the data has arrived in global memory before
3483  * it is read in a subsequent iteration.
3484  */
add_copies_group_shared(struct ppcg_kernel * kernel,struct gpu_array_ref_group * group,__isl_take isl_schedule_node * node,int read)3485 static __isl_give isl_schedule_node *add_copies_group_shared(
3486 	struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3487 	__isl_take isl_schedule_node *node, int read)
3488 {
3489 	struct gpu_array_tile *tile;
3490 	isl_union_map *access;
3491 	isl_union_set *domain;
3492 	isl_multi_aff *ma;
3493 	isl_multi_aff *from_access;
3494 	isl_multi_pw_aff *mpa;
3495 	isl_multi_union_pw_aff *mupa;
3496 	isl_schedule_node *graft;
3497 	isl_union_set *filter;
3498 	int skip;
3499 	int kernel_depth;
3500 	int empty;
3501 
3502 	tile = gpu_array_ref_group_tile(group);
3503 	kernel_depth = isl_schedule_node_get_schedule_depth(node);
3504 	node = gpu_tree_move_down_to_depth(node, tile->depth, kernel->core);
3505 
3506 	access = anchored_non_local_accesses(kernel, group, node, read);
3507 	empty = isl_union_map_is_empty(access);
3508 	if (empty < 0 || empty) {
3509 		isl_union_map_free(access);
3510 		if (empty < 0)
3511 			return isl_schedule_node_free(node);
3512 		return gpu_tree_move_up_to_kernel(node);
3513 	}
3514 
3515 	group->array->global = 1;
3516 	group->local_array->global = 1;
3517 
3518 	from_access = create_from_access(kernel->ctx, group, read);
3519 
3520 	ma = isl_multi_aff_copy(tile->tiling);
3521 	ma = isl_multi_aff_pullback_multi_aff(ma,
3522 					    isl_multi_aff_copy(from_access));
3523 	mpa = isl_multi_pw_aff_from_multi_aff(ma);
3524 	mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
3525 
3526 	domain = isl_union_map_range(access);
3527 
3528 	if (read && !gpu_array_is_scalar(group->array)) {
3529 		isl_map *map;
3530 		isl_union_set_free(domain);
3531 		map = group_tile(group);
3532 		domain = isl_union_set_from_set(isl_map_wrap(map));
3533 	}
3534 
3535 	domain = isl_union_set_preimage_multi_aff(domain, from_access);
3536 	access = isl_union_set_wrapped_domain_map(domain);
3537 	access = isl_union_map_reverse(access);
3538 	access = isl_union_map_coalesce(access);
3539 	graft = isl_schedule_node_from_extension(access);
3540 
3541 	graft = isl_schedule_node_child(graft, 0);
3542 
3543 	graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
3544 	if (kernel->options->unroll_copy_shared)
3545 		graft = ppcg_set_schedule_node_type(graft, isl_ast_loop_unroll);
3546 
3547 	if (tile->n > kernel->n_block && kernel->n_block > 0) {
3548 		graft = isl_schedule_node_band_split(graft,
3549 						tile->n - kernel->n_block);
3550 		graft = isl_schedule_node_child(graft, 0);
3551 	}
3552 	if (tile->n < kernel->n_block)
3553 		skip = kernel->n_block - tile->n;
3554 	else
3555 		skip = 0;
3556 	filter = set_schedule_modulo(graft, kernel->thread_ids,
3557 					kernel->block_dim);
3558 	if (!kernel->options->wrap)
3559 		graft = snap_band_to_sizes(graft, kernel->block_dim + skip,
3560 			    kernel->options);
3561 	if (tile->n > kernel->n_block && kernel->n_block > 0)
3562 		graft = isl_schedule_node_parent(graft);
3563 	graft = isl_schedule_node_insert_filter(graft, filter);
3564 
3565 	while (graft && isl_schedule_node_has_parent(graft))
3566 		graft = isl_schedule_node_parent(graft);
3567 
3568 	if (read) {
3569 		if (kernel_depth < tile->depth)
3570 			node = gpu_tree_ensure_sync_after_core(node, kernel);
3571 		node = gpu_tree_move_left_to_sync(node, kernel);
3572 		node = isl_schedule_node_graft_before(node, graft);
3573 	} else {
3574 		node = gpu_tree_move_right_to_sync(node, kernel);
3575 		node = isl_schedule_node_graft_after(node, graft);
3576 		if (kernel_depth < tile->depth)
3577 			node = add_group_write_sync(node, kernel, group, 1);
3578 	}
3579 
3580 	node = gpu_tree_move_up_to_kernel(node);
3581 
3582 	return node;
3583 }
3584 
3585 /* Check whether the array reference group "group" is mapped to
3586  * private or shared memory and, if so,
3587  * add copy statements to the schedule tree of "node"
3588  * for reading from global memory to private or shared memory
3589  * (if "read" is set) or for writing back from private or shared memory
3590  * to global memory (if "read" is not set) for this group.
3591  * On input, "node" points to the kernel node, and it is moved
3592  * back there on output.
3593  */
add_copies_group(struct ppcg_kernel * kernel,struct gpu_array_ref_group * group,__isl_take isl_schedule_node * node,int read)3594 static __isl_give isl_schedule_node *add_copies_group(
3595 	struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
3596 	__isl_take isl_schedule_node *node, int read)
3597 {
3598 	enum ppcg_group_access_type type;
3599 
3600 	type = gpu_array_ref_group_type(group);
3601 	if (type == ppcg_access_private)
3602 		return add_copies_group_private(kernel, group, node, read);
3603 	if (type == ppcg_access_shared)
3604 		return add_copies_group_shared(kernel, group, node, read);
3605 	return node;
3606 }
3607 
3608 /* For each array reference group that is mapped to private or shared memory,
3609  * add copy statements to the schedule tree of "node"
3610  * for reading from global memory to private or shared memory
3611  * and for writing back.
3612  * On input, "node" points to the kernel node, and it is moved
3613  * back there on output.
3614  */
add_copies(struct ppcg_kernel * kernel,__isl_take isl_schedule_node * node)3615 static __isl_give isl_schedule_node *add_copies(struct ppcg_kernel *kernel,
3616 	__isl_take isl_schedule_node *node)
3617 {
3618 	int i, j;
3619 
3620 	for (i = 0; i < kernel->n_array; ++i) {
3621 		struct gpu_local_array_info *array = &kernel->array[i];
3622 
3623 		for (j = 0; j < array->n_group; ++j) {
3624 			struct gpu_array_ref_group *group = array->groups[j];
3625 
3626 			node = add_copies_group(kernel, group, node, 1);
3627 			if (!node)
3628 				return NULL;
3629 			node = add_copies_group(kernel, group, node, 0);
3630 			if (!node)
3631 				return NULL;
3632 		}
3633 	}
3634 
3635 	return node;
3636 }
3637 
3638 /* Mark all dimensions in the current band node atomic.
3639  */
atomic(__isl_take isl_schedule_node * node)3640 static __isl_give isl_schedule_node *atomic(__isl_take isl_schedule_node *node)
3641 {
3642 	return ppcg_set_schedule_node_type(node, isl_ast_loop_atomic);
3643 }
3644 
3645 /* Mark "node" atomic, if it is a band node.
3646  * Do the same for all ancestors.
3647  * Return a pointer to "node" (in the updated schedule tree).
3648  */
atomic_ancestors(__isl_take isl_schedule_node * node)3649 static __isl_give isl_schedule_node *atomic_ancestors(
3650 	__isl_take isl_schedule_node *node)
3651 {
3652 	int pos;
3653 
3654 	if (!node)
3655 		return NULL;
3656 	if (!isl_schedule_node_has_parent(node))
3657 		return node;
3658 
3659 	pos = isl_schedule_node_get_child_position(node);
3660 	node = isl_schedule_node_parent(node);
3661 	if (isl_schedule_node_get_type(node) == isl_schedule_node_band)
3662 		node = atomic(node);
3663 	node = atomic_ancestors(node);
3664 	node = isl_schedule_node_child(node, pos);
3665 
3666 	return node;
3667 }
3668 
3669 /* Collect all write references that require synchronization.
3670  * "node" is assumed to point to the kernel node.
3671  * Each reference is represented by a universe set in a space
3672  *
3673  *	[S[i,j] -> R[]]
3674  *
3675  * with S[i,j] the statement instance space and R[] the array reference.
3676  *
3677  * This function should be called before block and thread filters are added.
3678  *
3679  * Synchronization is needed after a write if there is a subsequent read
3680  * within the same block that may not be performed by the same thread.
3681  * There should not be any dependences between different blocks,
3682  * so we start with the flow dependences within the same kernel invocation
3683  * and we subtract from these those dependences that are mapped
3684  * to the same iteration of the bands where synchronization is inserted.
3685  * We do not remove pairs of instances that are known to map to
3686  * the same thread across different iterations of the intermediate
3687  * bands because the read may be performed by a different thread
3688  * than the one that needs the value if shared memory is involved.
3689  *
3690  * We also consider all pairs of possible writes that access the same
3691  * memory location and that may be mapped to the same block but not
3692  * to the same iteration of the intermediate bands.
3693  * In theory, it would be possible for one thread to still be in
3694  * a previous iteration of a loop in these bands.
3695  * A write to global memory in this delayed thread could then overwrite
3696  * a write from another thread that has already moved on to
3697  * the next iteration.
3698  *
3699  * After computing the above writes paired off with reads or writes
3700  * that depend on them, we project onto the domain writes.
3701  * Sychronization is needed after writes to global memory
3702  * through these references.
3703  */
compute_sync_writes(struct ppcg_kernel * kernel,__isl_keep isl_schedule_node * node)3704 static __isl_give isl_union_set *compute_sync_writes(
3705 	struct ppcg_kernel *kernel, __isl_keep isl_schedule_node *node)
3706 {
3707 	isl_union_map *local;
3708 	isl_union_map *may_writes, *shared_access;
3709 	isl_union_map *kernel_prefix, *thread_prefix;
3710 	isl_union_map *equal;
3711 	isl_union_set *wrap;
3712 	isl_union_set *domain;
3713 	isl_union_pw_multi_aff *contraction;
3714 
3715 	kernel_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3716 	node = isl_schedule_node_copy(node);
3717 	node = gpu_tree_move_down_to_thread(node, kernel->core);
3718 	thread_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3719 	isl_schedule_node_free(node);
3720 
3721 	contraction = kernel->contraction;
3722 	kernel_prefix = isl_union_map_preimage_domain_union_pw_multi_aff(
3723 		    kernel_prefix, isl_union_pw_multi_aff_copy(contraction));
3724 	thread_prefix = isl_union_map_preimage_domain_union_pw_multi_aff(
3725 		    thread_prefix, isl_union_pw_multi_aff_copy(contraction));
3726 	domain = isl_union_set_copy(kernel->expanded_domain);
3727 	domain = isl_union_set_universe(domain);
3728 
3729 	may_writes = isl_union_map_copy(kernel->prog->scop->tagged_may_writes);
3730 	may_writes = isl_union_map_curry(may_writes);
3731 	may_writes = isl_union_map_intersect_domain(may_writes, domain);
3732 	may_writes = isl_union_map_uncurry(may_writes);
3733 	shared_access = isl_union_map_copy(may_writes);
3734 	shared_access = isl_union_map_apply_range(shared_access,
3735 					isl_union_map_reverse(may_writes));
3736 
3737 	local = isl_union_map_copy(kernel->prog->scop->tagged_dep_flow);
3738 	local = isl_union_map_union(local, shared_access);
3739 	local = isl_union_map_zip(local);
3740 
3741 	equal = isl_union_map_apply_range(kernel_prefix,
3742 		    isl_union_map_reverse(isl_union_map_copy(kernel_prefix)));
3743 	wrap = isl_union_map_wrap(equal);
3744 	local = isl_union_map_intersect_domain(local, wrap);
3745 	equal = isl_union_map_apply_range(thread_prefix,
3746 		    isl_union_map_reverse(isl_union_map_copy(thread_prefix)));
3747 	wrap = isl_union_map_wrap(equal);
3748 	local = isl_union_map_subtract_domain(local, wrap);
3749 
3750 	local = isl_union_map_zip(local);
3751 	local = isl_union_map_universe(local);
3752 
3753 	return isl_union_map_domain(local);
3754 }
3755 
3756 /* Group the domain elements into a single space, named kernelX,
3757  * with X the kernel sequence number "kernel_id".
3758  */
group_statements(__isl_take isl_schedule_node * node,int kernel_id)3759 static __isl_give isl_schedule_node *group_statements(
3760 	__isl_take isl_schedule_node *node, int kernel_id)
3761 {
3762 	char buffer[20];
3763 	isl_id *id;
3764 
3765 	if (!node)
3766 		return NULL;
3767 
3768 	snprintf(buffer, sizeof(buffer), "kernel%d", kernel_id);
3769 	id = isl_id_alloc(isl_schedule_node_get_ctx(node), buffer, NULL);
3770 	return isl_schedule_node_group(node, id);
3771 }
3772 
3773 /* Create a ppcg_kernel representing the domain instances that reach "node"
3774  * and insert a mark node pointing to the ppcg_kernel before "node".
3775  * The band that "node" points to is the band that needs to be mapped
3776  * to block identifiers.  The band that needs to be mapped to thread
3777  * identifiers should be marked by a "thread" mark by the caller.
3778  * The linear branch between the current node and the "thread" mark
3779  * may also have a "shared" mark.  If present, the mapping to shared
3780  * memory is computed at that point.
3781  * Both marks are removed by this function.
3782  * If "scale" is set, then the band that "node" points to is scaled
3783  * by "sizes".
3784  *
3785  * Mark all outer band nodes as atomic to ensure each kernel is only
3786  * scheduled once.
3787  * If the domain elements that reach "node" live in more than one space,
3788  * then group the domain elements into a single space, named kernelX,
3789  * with X the kernel sequence number.
3790  *
3791  * Insert a guard node governing the kernel node to ensure that
3792  * no kernels with zero blocks are launched.
3793  *
3794  * Insert a context node describing the block and thread
3795  * identifiers inside the kernel mark.
3796  * The context node needs to be inserted after the effective block size
3797  * has been determined such that the bounds on the thread identifiers
3798  * would reflect the effective block size.
3799  * Insert a filter node inside the context node mapping the statement
3800  * instances to block identifiers.  In particular, the block identifiers
3801  * are equated to the partial schedule of band that was marked for mapping
3802  * to blocks modulo the grid size.
3803  * Insert a filter node inside the "thread" mark mapping the statement
3804  * instances to thread identifiers.  In particular, the thread identifiers
3805  * are equated to the partial schedule of band that was marked for mapping
3806  * to threads modulo the block size.
3807  *
3808  * Compute array reference groups for all arrays, set the local
3809  * array bounds based on the set of domain instances that reach
3810  * the kernel node, check the total amount of shared memory used
3811  * and compute all group tilings.
3812  * The array reference groups are computed after the block filter
3813  * has been inserted because it affects the mapping to shared or
3814  * private memory.  This computation also requires the thread filter
3815  * (in the ppcg_kernel object), but this thread filter should not
3816  * have been added to the schedule tree yet since the computation
3817  * requires the schedule of the band that needs to be mapped to
3818  * threads before the privatization is applied.
3819  *
3820  * If any array reference group requires the band mapped to threads
3821  * to be unrolled, then we perform the required unrolling.
3822  *
3823  * We save a copy of the schedule that may influence the mappings
3824  * to shared or private memory in kernel->copy_schedule.
3825  *
3826  * Finally, we add synchronization and copy statements to the schedule tree,
3827  * remove the "thread" mark and create representations for the local
3828  * variables in the kernel.
3829  *
3830  * We keep a copy of the isl_id that points to the kernel to ensure
3831  * that the kernel does not get destroyed if the schedule node
3832  * is freed due to some error condition.
3833  */
gpu_create_kernel(struct gpu_gen * gen,__isl_take isl_schedule_node * node,int scale,__isl_keep isl_multi_val * sizes)3834 __isl_give isl_schedule_node *gpu_create_kernel(struct gpu_gen *gen,
3835 	__isl_take isl_schedule_node *node, int scale,
3836 	__isl_keep isl_multi_val *sizes)
3837 {
3838 	struct ppcg_kernel *kernel;
3839 	isl_id *id;
3840 	isl_schedule_node *node_thread;
3841 	isl_union_map *host_schedule;
3842 	isl_union_pw_multi_aff *contraction;
3843 	isl_set *host_domain;
3844 	isl_union_set *domain, *expanded;
3845 	int single_statement;
3846 
3847 	node = gpu_tree_insert_shared_before_thread(node);
3848 	if (!node)
3849 		return NULL;
3850 
3851 	kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
3852 	kernel = ppcg_kernel_create_local_arrays(kernel, gen->prog);
3853 	if (!kernel)
3854 		return isl_schedule_node_free(node);
3855 
3856 	domain = isl_schedule_node_get_domain(node);
3857 	single_statement = isl_union_set_n_set(domain) == 1;
3858 
3859 	kernel->ctx = gen->ctx;
3860 	kernel->prog = gen->prog;
3861 	kernel->options = gen->options;
3862 	kernel->context = extract_context(node, gen->prog);
3863 	kernel->core = isl_union_set_universe(isl_union_set_copy(domain));
3864 	contraction = isl_schedule_node_get_subtree_contraction(node);
3865 	kernel->contraction = isl_union_pw_multi_aff_copy(contraction);
3866 	expanded = isl_union_set_copy(domain);
3867 	expanded = isl_union_set_preimage_union_pw_multi_aff(expanded,
3868 						contraction);
3869 	kernel->expanded_domain = isl_union_set_copy(expanded);
3870 	kernel->arrays = accessed_by_domain(expanded, gen->prog);
3871 	kernel->n_grid = n_outer_coincidence(node);
3872 	node_thread = isl_schedule_node_copy(node);
3873 	node_thread = gpu_tree_move_down_to_thread(node_thread, kernel->core);
3874 	node_thread = isl_schedule_node_child(node_thread, 0);
3875 	kernel->n_block = n_outer_coincidence(node_thread);
3876 	isl_schedule_node_free(node_thread);
3877 	kernel->id = gen->kernel_id++;
3878 	read_grid_and_block_sizes(kernel, gen);
3879 
3880 	kernel->sync_writes = compute_sync_writes(kernel, node);
3881 
3882 	host_schedule = isl_schedule_node_get_prefix_schedule_union_map(node);
3883 	host_domain = isl_set_from_union_set(isl_union_map_range(
3884 								host_schedule));
3885 
3886 	node = atomic_ancestors(node);
3887 
3888 	id = isl_id_alloc(gen->ctx, "kernel", kernel);
3889 	id = isl_id_set_free_user(id, &ppcg_kernel_free_wrap);
3890 	node = isl_schedule_node_insert_mark(node, isl_id_copy(id));
3891 
3892 	if (!single_statement)
3893 		node = group_statements(node, kernel->id);
3894 
3895 	node = isl_schedule_node_child(node, 0);
3896 	node = split_band(node, kernel->n_grid);
3897 	kernel->block_ids = ppcg_scop_generate_names(gen->prog->scop,
3898 						kernel->n_grid, "b");
3899 	kernel->block_filter = set_schedule_modulo(node, kernel->block_ids,
3900 						kernel->grid_dim);
3901 	kernel->grid_size = extract_grid_size(kernel,
3902 						isl_union_set_copy(domain));
3903 	if (!kernel->options->wrap)
3904 		node = snap_band_to_sizes(node, kernel->grid_dim,
3905 						kernel->options);
3906 	if (scale)
3907 		node = scale_band(node, isl_multi_val_copy(sizes));
3908 	node = isl_schedule_node_parent(node);
3909 	if (!single_statement)
3910 		node = isl_schedule_node_parent(node);
3911 	node = insert_guard(node, kernel->context, kernel->grid_size,
3912 				gen->prog->scop);
3913 	node = gpu_tree_move_down_to_thread(node, kernel->core);
3914 	node = isl_schedule_node_child(node, 0);
3915 	node = split_band(node, kernel->n_block);
3916 	kernel->thread_ids = ppcg_scop_generate_names(gen->prog->scop,
3917 						kernel->n_block, "t");
3918 	kernel->thread_filter = set_schedule_modulo(node, kernel->thread_ids,
3919 						kernel->block_dim);
3920 	if (extract_block_size(kernel, domain) < 0)
3921 		node = isl_schedule_node_free(node);
3922 
3923 	node = gpu_tree_move_up_to_kernel(node);
3924 	node = isl_schedule_node_child(node, 0);
3925 	node = insert_context(kernel, node);
3926 	node = isl_schedule_node_child(node, 0);
3927 	node = isl_schedule_node_insert_filter(node,
3928 				    isl_union_set_copy(kernel->block_filter));
3929 
3930 	node = gpu_tree_move_up_to_kernel(node);
3931 
3932 	if (gpu_group_references(kernel, node) < 0)
3933 		node = isl_schedule_node_free(node);
3934 	localize_bounds(kernel, host_domain);
3935 	isl_set_free(host_domain);
3936 
3937 	check_shared_memory_bound(kernel);
3938 	mark_global_arrays(kernel);
3939 	compute_group_tilings(kernel);
3940 
3941 	node = gpu_tree_move_down_to_thread(node, kernel->core);
3942 	node = isl_schedule_node_child(node, 0);
3943 	if (!kernel->options->wrap)
3944 		node = snap_band_to_sizes(node, kernel->block_dim,
3945 						kernel->options);
3946 	node = isl_schedule_node_insert_filter(node,
3947 				    isl_union_set_copy(kernel->thread_filter));
3948 	if (kernel_requires_unroll(kernel)) {
3949 		node = isl_schedule_node_child(node, 0);
3950 		node = unroll(node);
3951 	}
3952 
3953 	node = gpu_tree_move_up_to_thread(node);
3954 	kernel->copy_schedule_dim = isl_schedule_node_get_schedule_depth(node);
3955 	kernel->copy_schedule =
3956 		isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node);
3957 	contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
3958 	kernel->copy_schedule =
3959 		isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
3960 					    kernel->copy_schedule, contraction);
3961 
3962 	node = gpu_tree_move_up_to_kernel(node);
3963 
3964 	node = add_sync(kernel, node);
3965 	node = add_copies(kernel, node);
3966 
3967 	node = gpu_tree_move_down_to_shared(node, kernel->core);
3968 	node = isl_schedule_node_delete(node);
3969 
3970 	node = gpu_tree_move_down_to_thread(node, kernel->core);
3971 	node = isl_schedule_node_delete(node);
3972 
3973 	node = gpu_tree_move_up_to_kernel(node);
3974 
3975 	if (create_kernel_vars(kernel) < 0)
3976 		node = isl_schedule_node_free(node);
3977 
3978 	if (!single_statement)
3979 		node = isl_schedule_node_parent(node);
3980 	node = isl_schedule_node_parent(node);
3981 
3982 	isl_id_free(id);
3983 	return node;
3984 }
3985 
3986 /* Insert a zero-dimensional permutable band at "node".
3987  */
insert_empty_permutable_band(__isl_take isl_schedule_node * node)3988 static __isl_give isl_schedule_node *insert_empty_permutable_band(
3989 	__isl_take isl_schedule_node *node)
3990 {
3991 	isl_space *space;
3992 	isl_schedule *schedule;
3993 	isl_union_set *domain;
3994 	isl_multi_union_pw_aff *mupa;
3995 
3996 	schedule = isl_schedule_node_get_schedule(node);
3997 	domain = isl_schedule_get_domain(schedule);
3998 	space = isl_union_set_get_space(domain);
3999 	isl_union_set_free(domain);
4000 	isl_schedule_free(schedule);
4001 
4002 	space = isl_space_set_from_params(space);
4003 	mupa = isl_multi_union_pw_aff_zero(space);
4004 	node = isl_schedule_node_insert_partial_schedule(node, mupa);
4005 	node = isl_schedule_node_band_set_permutable(node, 1);
4006 
4007 	return node;
4008 }
4009 
4010 /* See if hybrid tiling can be performed on "node" and its parent.
4011  * If so, apply hybrid tiling and return the updated schedule tree.
4012  * If not, return the original schedule tree.
4013  * Return NULL on error.
4014  *
4015  * First check if "node", together with its parent, meets
4016  * the basic requirements for hybrid tiling.
4017  * If so, compute the relative dependence distances of "node"
4018  * with respect to its parent and check if they are sufficiently bounded.
4019  * If so, apply hybrid tiling using user specified tile sizes.
4020  *
4021  * The tile sizes are read before the dependence distance bounds are
4022  * computed, because the user may have specified fewer dimensions
4023  * than are available.  In this case, the remaining schedule dimensions
4024  * are split off and the dependence distances should be computed
4025  * after these dimensions have been split off.
4026  */
try_hybrid_tile(struct gpu_gen * gen,__isl_take isl_schedule_node * node)4027 static __isl_give isl_schedule_node *try_hybrid_tile(struct gpu_gen *gen,
4028 	__isl_take isl_schedule_node *node)
4029 {
4030 	int tile_len;
4031 	int *tile_size;
4032 	isl_bool ok;
4033 	isl_schedule_node *orig = node;
4034 	ppcg_ht_bounds *bounds;
4035 
4036 	ok = ppcg_ht_parent_has_input_pattern(node);
4037 	if (ok < 0)
4038 		return isl_schedule_node_free(node);
4039 	if (!ok)
4040 		return orig;
4041 
4042 	tile_len = 1 + isl_schedule_node_band_n_member(node);
4043 	tile_size = read_tile_sizes(gen, &tile_len);
4044 	if (!tile_size)
4045 		return isl_schedule_node_free(node);
4046 
4047 	node = isl_schedule_node_copy(node);
4048 	node = split_band(node, tile_len - 1);
4049 	node = isl_schedule_node_parent(node);
4050 	bounds = ppcg_ht_compute_bounds(gen->prog->scop, node);
4051 	node = isl_schedule_node_child(node, 0);
4052 
4053 	ok = ppcg_ht_bounds_is_valid(bounds);
4054 	if (ok >= 0 && ok)
4055 		node = gpu_hybrid_tile(gen, node, bounds, tile_size);
4056 	else
4057 		ppcg_ht_bounds_free(bounds);
4058 	free(tile_size);
4059 
4060 	if (ok >= 0 && !ok) {
4061 		isl_schedule_node_free(node);
4062 		return orig;
4063 	}
4064 	isl_schedule_node_free(orig);
4065 	if (ok < 0)
4066 		return isl_schedule_node_free(node);
4067 	return node;
4068 }
4069 
4070 /* If "node" is the outermost permutable band that can be mapped to block and
4071  * thread identifiers in its branch (or the root of a subtree with
4072  * no such outer bands),
4073  * then mark the band as such, attaching a ppcg_kernel to the mark.
4074  *
4075  * If hybrid tiling is allowed, then first try and apply it
4076  * to "node" and its parent.
4077  *
4078  * If "node" is the root of a subtree without permutable bands,
4079  * then insert a zero-dimensional permutable band such that
4080  * we can assume that "node" always points to a band node.
4081  * This includes the case where "node" already points to a band node,
4082  * but one without any coincident dimension.  In this case,
4083  * the extra node ensures that this original node does not get tiled.
4084  *
4085  * Tile "node" using user specified tile sizes, after splitting the band
4086  * if the number of specified tile sizes is smaller than the dimension
4087  * of the band.  Mark the point band of this tiling as the band that
4088  * needs to be mapped to threads and instruct the AST generator to unroll
4089  * the band if the "unroll_gpu_tile" option is set.
4090  * Create a kernel representing the domain instances that reach "node" and
4091  * insert a mark node pointing to the ppcg_kernel before the band node.
4092  */
mark_outer_permutable(__isl_take isl_schedule_node * node,void * user)4093 static __isl_give isl_schedule_node *mark_outer_permutable(
4094 	__isl_take isl_schedule_node *node, void *user)
4095 {
4096 	struct gpu_gen *gen = user;
4097 	int outer;
4098 	int scale;
4099 	int tile_len;
4100 	int *tile_size;
4101 	isl_id *id;
4102 	isl_multi_val *sizes;
4103 
4104 	outer = is_outer_tilable(node);
4105 	if (outer < 0)
4106 		return isl_schedule_node_free(node);
4107 	if (!outer)
4108 		return node;
4109 
4110 	if (gen->options->hybrid) {
4111 		isl_schedule_node *saved = isl_schedule_node_copy(node);
4112 		node = try_hybrid_tile(gen, node);
4113 		isl_schedule_node_free(saved);
4114 		if (node != saved)
4115 			return node;
4116 	}
4117 
4118 	if (isl_schedule_node_get_type(node) != isl_schedule_node_band ||
4119 	    !isl_schedule_node_band_member_get_coincident(node, 0))
4120 		node = insert_empty_permutable_band(node);
4121 
4122 	tile_len = isl_schedule_node_band_n_member(node);
4123 	tile_size = read_tile_sizes(gen, &tile_len);
4124 	if (!tile_size)
4125 		return isl_schedule_node_free(node);
4126 	if (tile_len < isl_schedule_node_band_n_member(node))
4127 		node = isl_schedule_node_band_split(node, tile_len);
4128 	sizes = construct_band_tiles_sizes(node, tile_size);
4129 	node = tile_band(node, isl_multi_val_copy(sizes));
4130 	node = isl_schedule_node_child(node, 0);
4131 	if (gen->options->unroll_gpu_tile)
4132 		node = ppcg_set_schedule_node_type(node, isl_ast_loop_unroll);
4133 	id = isl_id_alloc(gen->ctx, "thread", NULL);
4134 	node = isl_schedule_node_insert_mark(node, id);
4135 	node = isl_schedule_node_parent(node);
4136 
4137 	scale = gen->options->scale_tile_loops;
4138 	node = gpu_create_kernel(gen, node, scale, sizes);
4139 	isl_multi_val_free(sizes);
4140 	free(tile_size);
4141 
4142 	return node;
4143 }
4144 
4145 /* Given a set or sequence node, return the union the filters of either all
4146  * (if "only_initial" is not set) or the initial (if "only_initial" is set)
4147  * direct subtrees that do not contain any suitably permutable bands
4148  * (according to subtree_has_permutable_bands).
4149  */
get_non_parallel_subtree_filters(__isl_keep isl_schedule_node * node,int only_initial)4150 static __isl_give isl_union_set *get_non_parallel_subtree_filters(
4151 	__isl_keep isl_schedule_node *node, int only_initial)
4152 {
4153 	isl_space *space;
4154 	isl_union_set *filter;
4155 	int i, n;
4156 
4157 	n = isl_schedule_node_n_children(node);
4158 	if (n < 0)
4159 		return NULL;
4160 
4161 	node = isl_schedule_node_copy(node);
4162 	node = isl_schedule_node_child(node, 0);
4163 	filter = isl_schedule_node_filter_get_filter(node);
4164 	node = isl_schedule_node_parent(node);
4165 	space = isl_union_set_get_space(filter);
4166 	isl_union_set_free(filter);
4167 	filter = isl_union_set_empty(space);
4168 
4169 	for (i = 0; i < n; ++i) {
4170 		int parallelism;
4171 
4172 		node = isl_schedule_node_child(node, i);
4173 		parallelism = subtree_has_permutable_bands(node);
4174 		if (parallelism < 0) {
4175 			filter = isl_union_set_free(filter);
4176 		} else if (!parallelism) {
4177 			isl_union_set *filter_i;
4178 			filter_i = isl_schedule_node_filter_get_filter(node);
4179 			filter = isl_union_set_union(filter, filter_i);
4180 		} else if (only_initial)
4181 			break;
4182 		node = isl_schedule_node_parent(node);
4183 	}
4184 
4185 	isl_schedule_node_free(node);
4186 
4187 	return filter;
4188 }
4189 
4190 /* Given a set or sequence node, return the union of the filters of
4191  * the direct subtrees that do not contain any suitably permutable bands
4192  * (according to subtree_has_permutable_bands).
4193  */
get_all_non_parallel_subtree_filters(__isl_keep isl_schedule_node * node)4194 static __isl_give isl_union_set *get_all_non_parallel_subtree_filters(
4195 	__isl_keep isl_schedule_node *node)
4196 {
4197 	return get_non_parallel_subtree_filters(node, 0);
4198 }
4199 
4200 /* Given a set or sequence node, return the union of the filters of
4201  * the initial direct subtrees that do not contain any suitably permutable
4202  * bands (according to subtree_has_permutable_bands).
4203  */
get_initial_non_parallel_subtree_filters(__isl_keep isl_schedule_node * node)4204 static __isl_give isl_union_set *get_initial_non_parallel_subtree_filters(
4205 	__isl_keep isl_schedule_node *node)
4206 {
4207 	return get_non_parallel_subtree_filters(node, 1);
4208 }
4209 
4210 /* Mark all variables that are accessed by the statement instances in "domain"
4211  * and that are local to "prog" as requiring a declaration in the host code.
4212  * The statement instances in "domain" correspond to (a subset of)
4213  * the active instances at "node".
4214  * "node" is not modified by this function, except that NULL is returned
4215  * in case of error.
4216  */
declare_accessed_local_variables(__isl_take isl_schedule_node * node,struct gpu_prog * prog,__isl_keep isl_union_set * domain)4217 static __isl_give isl_schedule_node *declare_accessed_local_variables(
4218 	__isl_take isl_schedule_node *node, struct gpu_prog *prog,
4219 	__isl_keep isl_union_set *domain)
4220 {
4221 	isl_union_pw_multi_aff *contraction;
4222 	isl_union_set *arrays;
4223 	int i;
4224 
4225 	if (!ppcg_scop_any_hidden_declarations(prog->scop))
4226 		return node;
4227 	contraction = isl_schedule_node_get_subtree_contraction(node);
4228 	domain = isl_union_set_copy(domain);
4229 	domain = isl_union_set_preimage_union_pw_multi_aff(domain, contraction);
4230 	arrays = accessed_by_domain(domain, prog);
4231 
4232 	for (i = 0; i < prog->n_array; ++i) {
4233 		isl_space *space;
4234 		isl_set *set;
4235 		int empty;
4236 
4237 		if (!prog->array[i].local)
4238 			continue;
4239 		space = isl_set_get_space(prog->array[i].extent);
4240 		set = isl_union_set_extract_set(arrays, space);
4241 		empty = isl_set_plain_is_empty(set);
4242 		isl_set_free(set);
4243 		if (empty < 0)
4244 			goto error;
4245 		if (!empty)
4246 			prog->array[i].declare_local = 1;
4247 	}
4248 
4249 	isl_union_set_free(arrays);
4250 	return node;
4251 error:
4252 	isl_union_set_free(arrays);
4253 	return isl_schedule_node_free(node);
4254 }
4255 
4256 /* If "node" points to a set node, then separate its children
4257  * into subtrees that have suitably permutable bands and
4258  * those that do not.
4259  * Adjust the schedule tree in order to execute the second group
4260  * after the first group and return a pointer to the first group,
4261  * assuming there are any such subtrees.
4262  * If "node" points to a sequence node, then separate the initial
4263  * children that do not have suitably permutable bands and
4264  * return a pointer to the subsequence of children that do have such bands,
4265  * assuming there are any such subtrees.
4266  *
4267  * In both cases, mark all local variables in "prog" that are accessed by
4268  * the group without permutable bands as requiring a declaration on the host.
4269  */
isolate_permutable_subtrees(__isl_take isl_schedule_node * node,struct gpu_prog * prog)4270 static __isl_give isl_schedule_node *isolate_permutable_subtrees(
4271 	__isl_take isl_schedule_node *node, struct gpu_prog *prog)
4272 {
4273 	isl_union_set *filter;
4274 	enum isl_schedule_node_type type;
4275 
4276 	if (!node)
4277 		return NULL;
4278 	type = isl_schedule_node_get_type(node);
4279 	if (type == isl_schedule_node_set) {
4280 		filter = get_all_non_parallel_subtree_filters(node);
4281 		node = declare_accessed_local_variables(node, prog, filter);
4282 		node = isl_schedule_node_order_after(node, filter);
4283 	} else if (type == isl_schedule_node_sequence) {
4284 		filter = get_initial_non_parallel_subtree_filters(node);
4285 		node = declare_accessed_local_variables(node, prog, filter);
4286 		node = isl_schedule_node_order_before(node, filter);
4287 	}
4288 
4289 	return node;
4290 }
4291 
4292 /* Replace any reference to an array element in the range of "copy"
4293  * by a reference to all array elements (defined by the extent of the array).
4294  */
approximate_copy_out(__isl_take isl_union_map * copy,struct gpu_prog * prog)4295 static __isl_give isl_union_map *approximate_copy_out(
4296 	__isl_take isl_union_map *copy, struct gpu_prog *prog)
4297 {
4298 	int i;
4299 	isl_union_map *res;
4300 
4301 	res = isl_union_map_empty(isl_union_map_get_space(copy));
4302 
4303 	for (i = 0; i < prog->n_array; ++i) {
4304 		isl_space *space;
4305 		isl_set *set;
4306 		isl_union_map *copy_i;
4307 		isl_union_set *extent, *domain;
4308 
4309 		space = isl_space_copy(prog->array[i].space);
4310 		extent = isl_union_set_from_set(isl_set_universe(space));
4311 		copy_i = isl_union_map_copy(copy);
4312 		copy_i = isl_union_map_intersect_range(copy_i, extent);
4313 		set = isl_set_copy(prog->array[i].extent);
4314 		extent = isl_union_set_from_set(set);
4315 		domain = isl_union_map_domain(copy_i);
4316 		copy_i = isl_union_map_from_domain_and_range(domain, extent);
4317 		res = isl_union_map_union(res, copy_i);
4318 	}
4319 
4320 	isl_union_map_free(copy);
4321 
4322 	return res;
4323 }
4324 
4325 /* Insert "kernel" marks that point to a ppcg_kernel structure
4326  * in front of all outermost tilable band that (by construction)
4327  * have at least one parallel loop.
4328  */
mark_kernels(struct gpu_gen * gen,__isl_take isl_schedule_node * node)4329 static __isl_give isl_schedule_node *mark_kernels(struct gpu_gen *gen,
4330 	__isl_take isl_schedule_node *node)
4331 {
4332 	return isl_schedule_node_map_descendant_bottom_up(node,
4333 						&mark_outer_permutable, gen);
4334 }
4335 
4336 /* Construct schedule constraints from the dependences in prog->scop and
4337  * the array order dependences in prog->array_order.
4338  *
4339  * If live range reordering is allowed, then we need to make sure
4340  * that live ranges on arrays are not run in parallel since doing
4341  * so would require array expansion.  We therefore add the array
4342  * order dependences to the coincidence dependences.  Non-zero array
4343  * order dependences will then prevent a schedule dimension from being
4344  * considered parallel.
4345  * Live ranges derived from scalars are allowed to be run in parallel
4346  * since we force the scalars to be mapped to private memory in
4347  * check_scalar_live_ranges.
4348  * If live range reordering is allowed, then the false dependences
4349  * are not added to the validity constraints as that would prevent
4350  * reordering.  Instead, the external false dependences that enforce that reads
4351  * from potentially live-in data precede any later write and
4352  * that writes of potentially live-out data follow any other earlier write
4353  * are added to the validity and the coincidence constraints.
4354  * The false dependences are still added to the proximity constraints
4355  * for consistency with the case where live range reordering is not allowed.
4356  * The coincidence constraints then consist of flow dependences,
4357  * external false dependences and array order dependences.
4358  * The independences can be filtered out from the first two sets.
4359  * They have already been filtered out from the array order dependences
4360  * on a per array basis in collect_order_dependences.
4361  * There is no need for a per array handling of the other two sets
4362  * as there should be no flow or external false dependence on local
4363  * variables that can be filtered out.
4364  */
construct_schedule_constraints(struct gpu_prog * prog)4365 static __isl_give isl_schedule_constraints *construct_schedule_constraints(
4366 	struct gpu_prog *prog)
4367 {
4368 	isl_union_set *domain;
4369 	isl_union_map *dep_raw, *dep;
4370 	isl_union_map *validity, *proximity, *coincidence;
4371 	isl_schedule_constraints *sc;
4372 
4373 	domain = isl_union_set_copy(prog->scop->domain);
4374 	sc = isl_schedule_constraints_on_domain(domain);
4375 	sc = isl_schedule_constraints_set_context(sc,
4376 				isl_set_copy(prog->scop->context));
4377 	if (prog->scop->options->live_range_reordering) {
4378 		sc = isl_schedule_constraints_set_conditional_validity(sc,
4379 			isl_union_map_copy(prog->scop->tagged_dep_flow),
4380 			isl_union_map_copy(prog->scop->tagged_dep_order));
4381 		proximity = isl_union_map_copy(prog->scop->dep_flow);
4382 		validity = isl_union_map_copy(proximity);
4383 		validity = isl_union_map_union(validity,
4384 			    isl_union_map_copy(prog->scop->dep_forced));
4385 		proximity = isl_union_map_union(proximity,
4386 			    isl_union_map_copy(prog->scop->dep_false));
4387 		coincidence = isl_union_map_copy(validity);
4388 		coincidence = isl_union_map_subtract(coincidence,
4389 			isl_union_map_copy(prog->scop->independence));
4390 		coincidence = isl_union_map_union(coincidence,
4391 				isl_union_map_copy(prog->array_order));
4392 	} else {
4393 		dep_raw = isl_union_map_copy(prog->scop->dep_flow);
4394 		dep = isl_union_map_copy(prog->scop->dep_false);
4395 		dep = isl_union_map_union(dep, dep_raw);
4396 		dep = isl_union_map_coalesce(dep);
4397 		proximity = isl_union_map_copy(dep);
4398 		coincidence = isl_union_map_copy(dep);
4399 		validity = dep;
4400 	}
4401 	sc = isl_schedule_constraints_set_validity(sc, validity);
4402 	sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
4403 	sc = isl_schedule_constraints_set_proximity(sc, proximity);
4404 
4405 	if (prog->scop->options->debug->dump_schedule_constraints)
4406 		isl_schedule_constraints_dump(sc);
4407 	return sc;
4408 }
4409 
4410 /* Compute an appropriate schedule based on the accesses in
4411  * gen->read and gen->write.
4412  *
4413  * We derive schedule constraints from the dependences in gen->prog->scop
4414  * and then use isl to compute a schedule that has a parallel loop
4415  * in each tilable band.
4416  * During the schedule construction, some statement instances
4417  * may be grouped first based on the input schedule.
4418  */
compute_schedule(struct gpu_gen * gen)4419 static __isl_give isl_schedule *compute_schedule(struct gpu_gen *gen)
4420 {
4421 	isl_schedule_constraints *sc;
4422 	isl_schedule *schedule;
4423 
4424 	sc = construct_schedule_constraints(gen->prog);
4425 	schedule = gen->prog->scop->schedule;
4426 	schedule = ppcg_compute_schedule(sc, schedule, gen->options);
4427 
4428 	return schedule;
4429 }
4430 
4431 /* If the band node "node" has exactly one member then mark it permutable.
4432  */
band_set_permutable(__isl_take isl_schedule_node * node,__isl_keep isl_schedule_constraints * sc)4433 static __isl_give isl_schedule_node *band_set_permutable(
4434 	__isl_take isl_schedule_node *node,
4435 	__isl_keep isl_schedule_constraints *sc)
4436 {
4437 	if (isl_schedule_node_band_n_member(node) == 1)
4438 		node = isl_schedule_node_band_set_permutable(node, 1);
4439 
4440 	return node;
4441 }
4442 
4443 /* Return the coincidence constraints between pairs of instances
4444  * that are scheduled together by the ancestors of "node".
4445  * That is, select those coincidence constraints that relate
4446  * pairs of instances that have the same value for the prefix schedule.
4447  * If the schedule depth is zero, then the prefix schedule does not
4448  * contain any information, so we intersect domain and range
4449  * of the schedule constraints with the reaching domain elements instead.
4450  */
get_local_coincidence(__isl_keep isl_schedule_node * node,__isl_keep isl_schedule_constraints * sc)4451 static __isl_give isl_union_map *get_local_coincidence(
4452 	__isl_keep isl_schedule_node *node,
4453 	__isl_keep isl_schedule_constraints *sc)
4454 {
4455 	isl_union_map *coincidence;
4456 	isl_multi_union_pw_aff *prefix;
4457 	isl_union_pw_multi_aff *contraction;
4458 
4459 	coincidence = isl_schedule_constraints_get_coincidence(sc);
4460 	contraction = isl_schedule_node_get_subtree_contraction(node);
4461 	if (isl_schedule_node_get_schedule_depth(node) == 0) {
4462 		isl_union_set *domain;
4463 
4464 		domain = isl_schedule_node_get_domain(node);
4465 		domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4466 						    contraction);
4467 		coincidence = isl_union_map_intersect_domain(coincidence,
4468 						    isl_union_set_copy(domain));
4469 		coincidence = isl_union_map_intersect_range(coincidence,
4470 						    domain);
4471 		return coincidence;
4472 	}
4473 
4474 	prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
4475 	prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
4476 								contraction);
4477 	return isl_union_map_eq_at_multi_union_pw_aff(coincidence, prefix);
4478 }
4479 
4480 /* For each member in the band node "node", determine whether
4481  * it is coincident with respect to the outer nodes and mark
4482  * it accordingly.
4483  *
4484  * That is, for each coincidence constraint between pairs
4485  * of instances that are scheduled together by the outer nodes,
4486  * check that domain and range are assigned the same value
4487  * by the band member.  This test is performed by checking
4488  * that imposing the same value for the band member does not
4489  * remove any elements from the set of coincidence constraints.
4490  */
band_set_coincident(__isl_take isl_schedule_node * node,__isl_keep isl_schedule_constraints * sc)4491 static __isl_give isl_schedule_node *band_set_coincident(
4492 	__isl_take isl_schedule_node *node,
4493 	__isl_keep isl_schedule_constraints *sc)
4494 {
4495 	isl_union_map *coincidence;
4496 	isl_union_pw_multi_aff *contraction;
4497 	isl_multi_union_pw_aff *partial;
4498 	int i, n;
4499 
4500 	coincidence = get_local_coincidence(node, sc);
4501 
4502 	partial = isl_schedule_node_band_get_partial_schedule(node);
4503 	contraction = isl_schedule_node_get_subtree_contraction(node);
4504 	partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4505 								contraction);
4506 	n = isl_schedule_node_band_n_member(node);
4507 	for (i = 0; i < n; ++i) {
4508 		isl_union_map *coincidence_i;
4509 		isl_union_pw_aff *upa;
4510 		isl_multi_union_pw_aff *partial_i;
4511 		int subset;
4512 
4513 		upa = isl_multi_union_pw_aff_get_union_pw_aff(partial, i);
4514 		partial_i = isl_multi_union_pw_aff_from_union_pw_aff(upa);
4515 		coincidence_i = isl_union_map_copy(coincidence);
4516 		coincidence_i = isl_union_map_eq_at_multi_union_pw_aff(
4517 						    coincidence_i, partial_i);
4518 		subset = isl_union_map_is_subset(coincidence, coincidence_i);
4519 		isl_union_map_free(coincidence_i);
4520 
4521 		if (subset < 0)
4522 			break;
4523 		node = isl_schedule_node_band_member_set_coincident(node, i,
4524 								    subset);
4525 	}
4526 	if (i < n)
4527 		node = isl_schedule_node_free(node);
4528 	isl_multi_union_pw_aff_free(partial);
4529 	isl_union_map_free(coincidence);
4530 
4531 	return node;
4532 }
4533 
4534 /* If "node" is a band, then set its properties.
4535  *
4536  * In particular, if the band has exactly one member, then mark it permutable.
4537  * Mark the band member coincident based on the coincidence constraints
4538  * of "sc".
4539  */
set_band_properties(__isl_take isl_schedule_node * node,void * user)4540 static __isl_give isl_schedule_node *set_band_properties(
4541 	__isl_take isl_schedule_node *node, void *user)
4542 {
4543 	isl_schedule_constraints *sc = user;
4544 
4545 	if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
4546 		return node;
4547 	if (isl_schedule_node_band_n_member(node) == 0)
4548 		return node;
4549 
4550 	node = band_set_permutable(node, sc);
4551 	node = band_set_coincident(node, sc);
4552 
4553 	return node;
4554 }
4555 
4556 /* Return the original schedule with all bands marked permutable and
4557  * all band members marked coincident based on the coincidence constraints.
4558  * The bands are explicitly marked permutable so that they will be considered
4559  * by mark_outer_permutable.
4560  */
determine_properties_original_schedule(struct gpu_gen * gen)4561 static __isl_give isl_schedule *determine_properties_original_schedule(
4562 	struct gpu_gen *gen)
4563 {
4564 	isl_schedule *schedule;
4565 	isl_schedule_constraints *sc;
4566 
4567 	schedule = isl_schedule_copy(gen->prog->scop->schedule);
4568 	sc = construct_schedule_constraints(gen->prog);
4569 	schedule = isl_schedule_map_schedule_node_bottom_up(schedule,
4570 						    &set_band_properties, sc);
4571 	isl_schedule_constraints_free(sc);
4572 
4573 	return schedule;
4574 }
4575 
4576 /* Compute a schedule or determine the properties of the original schedule
4577  * depending on the value of the "reschedule" option.
4578  */
compute_or_set_properties(void * user)4579 static __isl_give isl_schedule *compute_or_set_properties(void *user)
4580 {
4581 	struct gpu_gen *gen = user;
4582 
4583 	if (gen->options->reschedule)
4584 		return compute_schedule(gen);
4585 	else
4586 		return determine_properties_original_schedule(gen);
4587 }
4588 
4589 /* Obtain a schedule for the scop, by reading it from
4590  * a file, by computing one or by determining the properties
4591  * of the original schedule.
4592  */
get_schedule(struct gpu_gen * gen)4593 __isl_give isl_schedule *get_schedule(struct gpu_gen *gen)
4594 {
4595 	return ppcg_get_schedule(gen->ctx, gen->options,
4596 				&compute_or_set_properties, gen);
4597 }
4598 
4599 /* Construct the string "<a>_<b>".
4600  */
concat(isl_ctx * ctx,const char * a,const char * b)4601 static char *concat(isl_ctx *ctx, const char *a, const char *b)
4602 {
4603 	isl_printer *p;
4604 	char *s;
4605 
4606 	p = isl_printer_to_str(ctx);
4607 	p = isl_printer_print_str(p, a);
4608 	p = isl_printer_print_str(p, "_");
4609 	p = isl_printer_print_str(p, b);
4610 	s = isl_printer_get_str(p);
4611 	isl_printer_free(p);
4612 
4613 	return s;
4614 }
4615 
4616 /* For each array in "prog" of which an element appears in "accessed" and
4617  * that is not a read only scalar, create a zero-dimensional universe set
4618  * of which the tuple id has name "<prefix>_<name of array>" and a user
4619  * pointer pointing to the array (gpu_array_info).
4620  *
4621  * If the array is local to "prog", then make sure it will be declared
4622  * in the host code.
4623  *
4624  * Return the list of these universe sets.
4625  */
create_copy_filters(struct gpu_prog * prog,const char * prefix,__isl_take isl_union_set * accessed)4626 static __isl_give isl_union_set_list *create_copy_filters(struct gpu_prog *prog,
4627 	const char *prefix, __isl_take isl_union_set *accessed)
4628 {
4629 	int i;
4630 	isl_ctx *ctx;
4631 	isl_union_set_list *filters;
4632 
4633 	ctx = prog->ctx;
4634 	filters = isl_union_set_list_alloc(ctx, 0);
4635 	for (i = 0; i < prog->n_array; ++i) {
4636 		struct gpu_array_info *array = &prog->array[i];
4637 		isl_space *space;
4638 		isl_set *accessed_i;
4639 		int empty;
4640 		char *name;
4641 		isl_id *id;
4642 		isl_union_set *uset;
4643 
4644 		if (gpu_array_is_read_only_scalar(array))
4645 			continue;
4646 
4647 		space = isl_space_copy(array->space);
4648 		accessed_i = isl_union_set_extract_set(accessed, space);
4649 		empty = isl_set_plain_is_empty(accessed_i);
4650 		isl_set_free(accessed_i);
4651 		if (empty < 0) {
4652 			filters = isl_union_set_list_free(filters);
4653 			break;
4654 		}
4655 		if (empty)
4656 			continue;
4657 
4658 		array->global = 1;
4659 		if (array->local)
4660 			array->declare_local = 1;
4661 
4662 		name = concat(ctx, prefix, array->name);
4663 		id = name ? isl_id_alloc(ctx, name, array) : NULL;
4664 		free(name);
4665 		space = isl_space_set_alloc(ctx, 0, 0);
4666 		space = isl_space_set_tuple_id(space, isl_dim_set, id);
4667 		uset = isl_union_set_from_set(isl_set_universe(space));
4668 
4669 		filters = isl_union_set_list_add(filters, uset);
4670 	}
4671 	isl_union_set_free(accessed);
4672 
4673 	return filters;
4674 }
4675 
4676 /* Make sure that code for the statements in "filters" that
4677  * copy arrays to or from the device is only generated when
4678  * the size of the corresponding array is positive.
4679  * That is, add a set node underneath "graft" with "filters" as children
4680  * and for each child add a guard that the selects the parameter
4681  * values for which the corresponding array has a positive size.
4682  * The array is available in the user pointer of the statement identifier.
4683  * "depth" is the schedule depth of the position where "graft"
4684  * will be added.
4685  */
insert_positive_size_guards(__isl_take isl_schedule_node * graft,__isl_take isl_union_set_list * filters,int depth)4686 static __isl_give isl_schedule_node *insert_positive_size_guards(
4687 	__isl_take isl_schedule_node *graft,
4688 	__isl_take isl_union_set_list *filters, int depth)
4689 {
4690 	int i, n;
4691 
4692 	graft = isl_schedule_node_child(graft, 0);
4693 	graft = isl_schedule_node_insert_set(graft, filters);
4694 	n = isl_schedule_node_n_children(graft);
4695 	for (i = 0; i < n; ++i) {
4696 		isl_union_set *filter;
4697 		isl_set *domain, *guard;
4698 		isl_id *id;
4699 		struct gpu_array_info *array;
4700 
4701 		graft = isl_schedule_node_child(graft, i);
4702 		filter = isl_schedule_node_filter_get_filter(graft);
4703 		domain = isl_set_from_union_set(filter);
4704 		id = isl_set_get_tuple_id(domain);
4705 		array = isl_id_get_user(id);
4706 		isl_id_free(id);
4707 		isl_set_free(domain);
4708 		guard = gpu_array_positive_size_guard(array);
4709 		guard = isl_set_from_params(guard);
4710 		guard = isl_set_add_dims(guard, isl_dim_set, depth);
4711 		graft = isl_schedule_node_child(graft, 0);
4712 		graft = isl_schedule_node_insert_guard(graft, guard);
4713 		graft = isl_schedule_node_parent(graft);
4714 		graft = isl_schedule_node_parent(graft);
4715 	}
4716 	graft = isl_schedule_node_parent(graft);
4717 
4718 	return graft;
4719 }
4720 
4721 /* Create a graft for copying arrays to or from the device,
4722  * whenever the size of the array is strictly positive.
4723  * Each statement is called "<prefix>_<name of array>" and
4724  * the identifier has a user pointer pointing to the array.
4725  * The graft will be added at the position specified by "node".
4726  * "copy" contains the array elements that need to be copied.
4727  * Only arrays of which some elements need to be copied
4728  * will have a corresponding statement in the graph.
4729  * Note though that each such statement will copy the entire array.
4730  */
create_copy_device(struct gpu_prog * prog,__isl_keep isl_schedule_node * node,const char * prefix,__isl_take isl_union_set * copy)4731 static __isl_give isl_schedule_node *create_copy_device(struct gpu_prog *prog,
4732 	__isl_keep isl_schedule_node *node, const char *prefix,
4733 	__isl_take isl_union_set *copy)
4734 {
4735 	int depth;
4736 	isl_ctx *ctx;
4737 	isl_space *space;
4738 	isl_union_set *all, *domain;
4739 	isl_union_set_list *filters;
4740 	isl_union_map *extension;
4741 	isl_schedule_node *graft;
4742 
4743 	ctx = prog->ctx;
4744 	depth = isl_schedule_node_get_schedule_depth(node);
4745 	filters = create_copy_filters(prog, prefix, copy);
4746 	all = isl_union_set_list_union(isl_union_set_list_copy(filters));
4747 
4748 	space = depth < 0 ? NULL : isl_space_set_alloc(ctx, 0, depth);
4749 	domain = isl_union_set_from_set(isl_set_universe(space));
4750 	extension = isl_union_map_from_domain_and_range(domain, all);
4751 	graft = isl_schedule_node_from_extension(extension);
4752 
4753 	if (!filters)
4754 		return isl_schedule_node_free(graft);
4755 	if (isl_union_set_list_n_union_set(filters) == 0) {
4756 		isl_union_set_list_free(filters);
4757 		return graft;
4758 	}
4759 
4760 	return insert_positive_size_guards(graft, filters, depth);
4761 }
4762 
4763 /* Return (the universe spaces of) the arrays that are declared
4764  * inside the scop corresponding to "prog" and for which all
4765  * potential writes inside the scop form a subset of "domain".
4766  */
extract_local_accesses(struct gpu_prog * prog,__isl_keep isl_union_set * domain)4767 static __isl_give isl_union_set *extract_local_accesses(struct gpu_prog *prog,
4768 	__isl_keep isl_union_set *domain)
4769 {
4770 	int i;
4771 	isl_union_set *local;
4772 
4773 	local = isl_union_set_empty(isl_union_set_get_space(domain));
4774 
4775 	for (i = 0; i < prog->n_array; ++i) {
4776 		isl_set *set;
4777 		isl_union_map *to_outer;
4778 		isl_union_map *may_write;
4779 		isl_union_set *write_domain;
4780 		isl_union_set *fields;
4781 		int subset;
4782 
4783 		if (!prog->array[i].local)
4784 			continue;
4785 
4786 		set = isl_set_universe(isl_space_copy(prog->array[i].space));
4787 		to_outer = isl_union_map_copy(prog->to_outer);
4788 		to_outer = isl_union_map_intersect_range(to_outer,
4789 				    isl_union_set_from_set(isl_set_copy(set)));
4790 		fields = isl_union_map_domain(to_outer);
4791 		may_write = isl_union_map_copy(prog->may_write);
4792 		may_write = isl_union_map_intersect_range(may_write, fields);
4793 		write_domain = isl_union_map_domain(may_write);
4794 		subset = isl_union_set_is_subset(write_domain, domain);
4795 		isl_union_set_free(write_domain);
4796 
4797 		if (subset < 0) {
4798 			isl_set_free(set);
4799 			return isl_union_set_free(local);
4800 		} else if (subset) {
4801 			local = isl_union_set_add_set(local, set);
4802 		} else {
4803 			isl_set_free(set);
4804 		}
4805 	}
4806 
4807 	return local;
4808 }
4809 
4810 /* Internal data structure for node_may_persist.
4811  *
4812  * "tagger" maps tagged iteration domains to the corresponding untagged
4813  *	iteration domain.
4814  *
4815  * "may_persist_flow" is the set of all tagged dataflow dependences
4816  * with those dependences removed that either precede or follow
4817  * the kernel launch in a sequence.
4818  * "inner_band_flow" is the set of all tagged dataflow dependences
4819  * that are local to a given iteration of the outer band nodes
4820  * with respect to the current node.
4821  * "local_flow" is equal to "inner_band_flow", except that the domain
4822  * and the range have been intersected with intermediate filters
4823  * on children of sets or sequences.
4824  */
4825 struct ppcg_may_persist_data {
4826 	isl_union_pw_multi_aff *tagger;
4827 
4828 	isl_union_map *local_flow;
4829 	isl_union_map *inner_band_flow;
4830 	isl_union_map *may_persist_flow;
4831 };
4832 
4833 /* Update the information in "data" based on the band ancestor "node".
4834  *
4835  * In particular, we restrict the dependences in data->local_flow
4836  * to those dependence where the source and the sink occur in
4837  * the same iteration of the given band node.
4838  * We also update data->inner_band_flow to the new value of
4839  * data->local_flow.
4840  */
update_may_persist_at_band(__isl_keep isl_schedule_node * node,struct ppcg_may_persist_data * data)4841 static int update_may_persist_at_band(__isl_keep isl_schedule_node *node,
4842 	struct ppcg_may_persist_data *data)
4843 {
4844 	isl_multi_union_pw_aff *partial;
4845 	isl_union_pw_multi_aff *contraction;
4846 	isl_union_map *flow;
4847 
4848 	if (isl_schedule_node_band_n_member(node) == 0)
4849 		return 0;
4850 
4851 	partial = isl_schedule_node_band_get_partial_schedule(node);
4852 	contraction = isl_schedule_node_get_subtree_contraction(node);
4853 	partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4854 								contraction);
4855 	partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
4856 				isl_union_pw_multi_aff_copy(data->tagger));
4857 
4858 	flow = data->local_flow;
4859 	flow = isl_union_map_eq_at_multi_union_pw_aff(flow, partial);
4860 	data->local_flow = flow;
4861 
4862 	isl_union_map_free(data->inner_band_flow);
4863 	data->inner_band_flow = isl_union_map_copy(data->local_flow);
4864 
4865 	return 0;
4866 }
4867 
4868 /* Given a set of local reaching domain elements "domain",
4869  * expand them to the corresponding leaf domain elements using "contraction"
4870  * and insert the array references tags using data->tagger.
4871  */
expand_and_tag(__isl_take isl_union_set * domain,__isl_take isl_union_pw_multi_aff * contraction,struct ppcg_may_persist_data * data)4872 static __isl_give isl_union_set *expand_and_tag(
4873 	__isl_take isl_union_set *domain,
4874 	__isl_take isl_union_pw_multi_aff *contraction,
4875 	struct ppcg_may_persist_data *data)
4876 {
4877 	domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4878 			    contraction);
4879 	domain = isl_union_set_preimage_union_pw_multi_aff(domain,
4880 			    isl_union_pw_multi_aff_copy(data->tagger));
4881 	return domain;
4882 }
4883 
4884 /* Given a filter node that is the child of a set or sequence node,
4885  * restrict data->local_flow to refer only to those elements
4886  * in the filter of the node.
4887  * "contraction" maps the leaf domain elements of the schedule tree
4888  * to the corresponding domain elements at (the parent of) "node".
4889  */
filter_flow(__isl_keep isl_schedule_node * node,struct ppcg_may_persist_data * data,__isl_take isl_union_pw_multi_aff * contraction)4890 static int filter_flow(__isl_keep isl_schedule_node *node,
4891 	struct ppcg_may_persist_data *data,
4892 	__isl_take isl_union_pw_multi_aff *contraction)
4893 {
4894 	isl_union_set *filter;
4895 	isl_union_map *flow;
4896 
4897 	flow = data->local_flow;
4898 	filter = isl_schedule_node_filter_get_filter(node);
4899 	filter = expand_and_tag(filter, contraction, data);
4900 	flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(filter));
4901 	flow = isl_union_map_intersect_range(flow, filter);
4902 	data->local_flow = flow;
4903 
4904 	return 0;
4905 }
4906 
4907 /* Given a filter node "node", collect the filters on all preceding siblings
4908  * (which are also filter nodes), add them to "filters" and return the result.
4909  */
add_previous_filters(__isl_take isl_union_set * filters,__isl_keep isl_schedule_node * node)4910 static __isl_give isl_union_set *add_previous_filters(
4911 	__isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
4912 {
4913 	isl_schedule_node *sibling;
4914 
4915 	sibling = isl_schedule_node_copy(node);
4916 	while (sibling && isl_schedule_node_has_previous_sibling(sibling)) {
4917 		isl_union_set *filter;
4918 
4919 		sibling = isl_schedule_node_previous_sibling(sibling);
4920 		filter = isl_schedule_node_filter_get_filter(sibling);
4921 		filters = isl_union_set_union(filters, filter);
4922 	}
4923 	isl_schedule_node_free(sibling);
4924 	if (!sibling)
4925 		return isl_union_set_free(filters);
4926 
4927 	return filters;
4928 }
4929 
4930 /* Given a filter node "node", collect the filters on all following siblings
4931  * (which are also filter nodes), add them to "filters" and return the result.
4932  */
add_next_filters(__isl_take isl_union_set * filters,__isl_keep isl_schedule_node * node)4933 static __isl_give isl_union_set *add_next_filters(
4934 	__isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
4935 {
4936 	isl_schedule_node *sibling;
4937 
4938 	sibling = isl_schedule_node_copy(node);
4939 	while (sibling && isl_schedule_node_has_next_sibling(sibling)) {
4940 		isl_union_set *filter;
4941 
4942 		sibling = isl_schedule_node_next_sibling(sibling);
4943 		filter = isl_schedule_node_filter_get_filter(sibling);
4944 		filters = isl_union_set_union(filters, filter);
4945 	}
4946 	isl_schedule_node_free(sibling);
4947 	if (!sibling)
4948 		return isl_union_set_free(filters);
4949 
4950 	return filters;
4951 }
4952 
4953 /* Remove those flow dependences from data->may_persist_flow
4954  * that flow between elements of "domain" within the same iteration
4955  * of all outer band nodes.
4956  * "contraction" maps the leaf domain elements of the schedule tree
4957  * to the corresponding elements "domain".
4958  */
remove_external_flow(struct ppcg_may_persist_data * data,__isl_take isl_union_set * domain,__isl_keep isl_union_pw_multi_aff * contraction)4959 static void remove_external_flow(struct ppcg_may_persist_data *data,
4960 	__isl_take isl_union_set *domain,
4961 	__isl_keep isl_union_pw_multi_aff *contraction)
4962 {
4963 	isl_union_map *flow;
4964 
4965 	contraction = isl_union_pw_multi_aff_copy(contraction);
4966 	domain = expand_and_tag(domain, contraction, data);
4967 	flow = isl_union_map_copy(data->local_flow);
4968 	flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(domain));
4969 	flow = isl_union_map_intersect_range(flow, domain);
4970 
4971 	data->may_persist_flow = isl_union_map_subtract(data->may_persist_flow,
4972 							flow);
4973 }
4974 
4975 /* Update the information in "data" based on the filter ancestor "node".
4976  * We only need to modify anything if the filter is the child
4977  * of a set or sequence node.
4978  *
4979  * In the case of a sequence, we remove the dependences between
4980  * statement instances that are both executed either before or
4981  * after the subtree that will be mapped to a kernel, within
4982  * the same iteration of outer bands.
4983  *
4984  * In both cases, we restrict data->local_flow to the current child.
4985  */
update_may_persist_at_filter(__isl_keep isl_schedule_node * node,struct ppcg_may_persist_data * data)4986 static int update_may_persist_at_filter(__isl_keep isl_schedule_node *node,
4987 	struct ppcg_may_persist_data *data)
4988 {
4989 	enum isl_schedule_node_type type;
4990 	isl_schedule_node *parent;
4991 	isl_space *space;
4992 	isl_union_pw_multi_aff *contraction;
4993 	isl_union_set *before, *after, *filter;
4994 
4995 	type = isl_schedule_node_get_parent_type(node);
4996 	if (type != isl_schedule_node_sequence && type != isl_schedule_node_set)
4997 		return 0;
4998 
4999 	parent = isl_schedule_node_copy(node);
5000 	parent = isl_schedule_node_parent(parent);
5001 	contraction = isl_schedule_node_get_subtree_contraction(parent);
5002 	isl_schedule_node_free(parent);
5003 
5004 	if (type == isl_schedule_node_set)
5005 		return filter_flow(node, data, contraction);
5006 
5007 	filter = isl_schedule_node_filter_get_filter(node);
5008 	space = isl_union_set_get_space(filter);
5009 	isl_union_set_free(filter);
5010 	before = isl_union_set_empty(space);
5011 	after = isl_union_set_copy(before);
5012 	before = add_previous_filters(before, node);
5013 	after = add_next_filters(after, node);
5014 
5015 	remove_external_flow(data, before, contraction);
5016 	remove_external_flow(data, after, contraction);
5017 
5018 	return filter_flow(node, data, contraction);
5019 }
5020 
5021 /* Update the information in "data" based on the ancestor "node".
5022  */
update_may_persist_at(__isl_keep isl_schedule_node * node,void * user)5023 static isl_stat update_may_persist_at(__isl_keep isl_schedule_node *node,
5024 	void *user)
5025 {
5026 	struct ppcg_may_persist_data *data = user;
5027 
5028 	switch (isl_schedule_node_get_type(node)) {
5029 	case isl_schedule_node_error:
5030 		return isl_stat_error;
5031 	case isl_schedule_node_context:
5032 	case isl_schedule_node_domain:
5033 	case isl_schedule_node_expansion:
5034 	case isl_schedule_node_extension:
5035 	case isl_schedule_node_guard:
5036 	case isl_schedule_node_leaf:
5037 	case isl_schedule_node_mark:
5038 	case isl_schedule_node_sequence:
5039 	case isl_schedule_node_set:
5040 		break;
5041 	case isl_schedule_node_band:
5042 		if (update_may_persist_at_band(node, data) < 0)
5043 			return isl_stat_error;
5044 		break;
5045 	case isl_schedule_node_filter:
5046 		if (update_may_persist_at_filter(node, data) < 0)
5047 			return isl_stat_error;
5048 		break;
5049 	}
5050 
5051 	return isl_stat_ok;
5052 }
5053 
5054 /* Determine the set of array elements that may need to be perserved
5055  * by a kernel constructed from the subtree at "node".
5056  * This includes the set of array elements that may need to be preserved
5057  * by the entire scop (prog->may_persist) and the elements for which
5058  * there is a potential flow dependence that may cross a kernel launch.
5059  *
5060  * To determine the second set, we start from all flow dependences.
5061  * From this set of dependences, we remove those that cannot possibly
5062  * require data to be preserved by a kernel launch.
5063  * In particular, we consider the following sets of dependences.
5064  * - dependences of which the write occurs inside the kernel.
5065  *   If the data is needed outside the kernel, then it will
5066  *   be copied out immediately after the kernel launch, so there
5067  *   is no need for any special care.
5068  * - dependences of which the read occurs inside the kernel and the
5069  *   corresponding write occurs inside the same iteration of the
5070  *   outer band nodes.  This means that the data is needed in
5071  *   the first kernel launch after the write, which is already
5072  *   taken care of by the standard copy-in.  That is, the data
5073  *   do not need to be preserved by any intermediate call to
5074  *   the same kernel.
5075  * - dependences of which the write and the read either both occur
5076  *   before the kernel launch or both occur after the kernel launch,
5077  *   within the same iteration of the outer band nodes with respect
5078  *   to the sequence that determines the ordering of the dependence
5079  *   and the kernel launch.  Such flow dependences cannot cross
5080  *   any kernel launch.
5081  *
5082  * For the remaining (tagged) dependences, we take the domain
5083  * (i.e., the tagged writes) and apply the tagged access relation
5084  * to obtain the accessed data elements.
5085  * These are then combined with the elements that may need to be
5086  * preserved by the entire scop.
5087  */
node_may_persist(__isl_keep isl_schedule_node * node,struct gpu_prog * prog)5088 static __isl_give isl_union_set *node_may_persist(
5089 	__isl_keep isl_schedule_node *node, struct gpu_prog *prog)
5090 {
5091 	struct ppcg_may_persist_data data;
5092 	isl_union_pw_multi_aff *contraction;
5093 	isl_union_set *domain;
5094 	isl_union_set *persist;
5095 	isl_union_map *flow, *local_flow;
5096 
5097 	data.tagger = prog->scop->tagger;
5098 
5099 	flow = isl_union_map_copy(prog->scop->tagged_dep_flow);
5100 	data.local_flow = isl_union_map_copy(flow);
5101 	data.inner_band_flow = isl_union_map_copy(flow);
5102 	data.may_persist_flow = flow;
5103 	if (isl_schedule_node_foreach_ancestor_top_down(node,
5104 					&update_may_persist_at, &data) < 0)
5105 		data.may_persist_flow =
5106 				    isl_union_map_free(data.may_persist_flow);
5107 	flow = data.may_persist_flow;
5108 	isl_union_map_free(data.local_flow);
5109 
5110 	domain = isl_schedule_node_get_domain(node);
5111 	contraction = isl_schedule_node_get_subtree_contraction(node);
5112 	domain = isl_union_set_preimage_union_pw_multi_aff(domain,
5113 				    contraction);
5114 	domain = isl_union_set_preimage_union_pw_multi_aff(domain,
5115 				    isl_union_pw_multi_aff_copy(data.tagger));
5116 	flow = isl_union_map_subtract_domain(flow, isl_union_set_copy(domain));
5117 	local_flow = data.inner_band_flow;
5118 	local_flow = isl_union_map_intersect_range(local_flow, domain);
5119 	flow = isl_union_map_subtract(flow, local_flow);
5120 
5121 	persist = isl_union_map_domain(flow);
5122 	persist = isl_union_set_apply(persist,
5123 			isl_union_map_copy(prog->scop->tagged_may_writes));
5124 	persist = isl_union_set_union(persist,
5125 			isl_union_set_copy(prog->may_persist));
5126 
5127 	return persist;
5128 }
5129 
5130 /* Add nodes for copying outer arrays in and out of the device
5131  * before and after the subtree "node", which contains one or more kernels.
5132  * "domain" contains the original statement instances, i.e.,
5133  * those that correspond to the domains of the access relations in "prog".
5134  * In particular, the domain has not been contracted in any way.
5135  * "prefix" contains the prefix schedule at that point, in terms
5136  * of the same original statement instances.
5137  *
5138  * We first compute the sets of outer array elements that need
5139  * to be copied in and out and then graft in the nodes for
5140  * performing this copying.
5141  *
5142  * In particular, for each array that is possibly written anywhere in
5143  * the subtree "node" and that may be used after "node"
5144  * or that may be visible outside the corresponding scop,
5145  * we copy out its entire extent.
5146  *
5147  * Any array elements that is read without first being written inside
5148  * the subtree "node" needs to be copied in.
5149  * Furthermore, if there are any array elements that
5150  * are copied out, but that may not be written inside "node, then
5151  * they also need to be copied in to ensure that the value after execution
5152  * is the same as the value before execution, at least for those array
5153  * elements that may have their values preserved by the scop or that
5154  * may be written before "node" and read after "node".
5155  * In case the array elements are structures, we need to take into
5156  * account that all members of the structures need to be written
5157  * by "node" before we can avoid copying the data structure in.
5158  *
5159  * Note that the may_write relation is intersected with the domain,
5160  * which has been intersected with the context.
5161  * This helps in those cases where the arrays are declared with a fixed size,
5162  * while the accesses are parametric and the context assigns a fixed value
5163  * to the parameters.
5164  *
5165  * If an element from a local array is read without first being written,
5166  * then there is no point in copying it in since it cannot have been
5167  * written prior to the scop.  Warn about the uninitialized read instead.
5168  */
add_to_from_device(__isl_take isl_schedule_node * node,__isl_take isl_union_set * domain,__isl_take isl_union_map * prefix,struct gpu_prog * prog)5169 static __isl_give isl_schedule_node *add_to_from_device(
5170 	__isl_take isl_schedule_node *node, __isl_take isl_union_set *domain,
5171 	__isl_take isl_union_map *prefix, struct gpu_prog *prog)
5172 {
5173 	isl_union_set *local;
5174 	isl_union_set *may_persist;
5175 	isl_union_map *may_write, *must_write, *copy_out, *not_written;
5176 	isl_union_map *read, *copy_in;
5177 	isl_union_map *tagged;
5178 	isl_union_map *local_uninitialized;
5179 	isl_schedule_node *graft;
5180 
5181 	tagged = isl_union_map_copy(prog->scop->tagged_reads);
5182 	tagged = isl_union_map_union(tagged,
5183 			    isl_union_map_copy(prog->scop->tagged_may_writes));
5184 
5185 	may_write = isl_union_map_copy(prog->may_write);
5186 	may_write = isl_union_map_intersect_domain(may_write,
5187 					isl_union_set_copy(domain));
5188 	may_write = remove_local_accesses(prog,
5189 					isl_union_map_copy(tagged), may_write,
5190 					isl_union_map_copy(prefix), 0);
5191 	may_write = isl_union_map_apply_range(may_write,
5192 					isl_union_map_copy(prog->to_outer));
5193 	may_write = isl_union_map_apply_domain(may_write,
5194 					isl_union_map_copy(prefix));
5195 	may_write = approximate_copy_out(may_write, prog);
5196 	copy_out = isl_union_map_copy(may_write);
5197 	may_write = isl_union_map_apply_range(may_write,
5198 					isl_union_map_copy(prog->to_inner));
5199 	must_write = isl_union_map_copy(prog->must_write);
5200 	must_write = isl_union_map_apply_domain(must_write,
5201 					isl_union_map_copy(prefix));
5202 	may_persist = node_may_persist(node, prog);
5203 	may_write = isl_union_map_intersect_range(may_write, may_persist);
5204 	not_written = isl_union_map_subtract(may_write, must_write);
5205 
5206 	local = extract_local_accesses(prog, domain);
5207 	read = isl_union_map_copy(prog->read);
5208 	read = isl_union_map_intersect_domain(read, domain);
5209 	read = remove_local_accesses(prog, tagged, read,
5210 					isl_union_map_copy(prefix), 1);
5211 	local = isl_union_set_apply(local, isl_union_map_copy(prog->to_inner));
5212 	local_uninitialized = isl_union_map_copy(prog->scop->live_in);
5213 	local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
5214 							    local);
5215 	local_uninitialized = isl_union_map_intersect(local_uninitialized,
5216 						    isl_union_map_copy(read));
5217 	if (!isl_union_map_is_empty(local_uninitialized)) {
5218 		fprintf(stderr,
5219 			"possibly uninitialized reads (not copied in):\n");
5220 		isl_union_map_dump(local_uninitialized);
5221 	}
5222 	read = isl_union_map_subtract(read, local_uninitialized);
5223 	read = isl_union_map_apply_domain(read, prefix);
5224 	copy_in = isl_union_map_union(read, not_written);
5225 	copy_in = isl_union_map_apply_range(copy_in,
5226 				    isl_union_map_copy(prog->to_outer));
5227 
5228 	graft = create_copy_device(prog, node, "to_device",
5229 						isl_union_map_range(copy_in));
5230 	node = isl_schedule_node_graft_before(node, graft);
5231 	graft = create_copy_device(prog, node, "from_device",
5232 						isl_union_map_range(copy_out));
5233 	node = isl_schedule_node_graft_after(node, graft);
5234 
5235 	return node;
5236 }
5237 
5238 /* Add nodes for initializing ("init_device") and clearing ("clear_device")
5239  * the device before and after "node".
5240  */
add_init_clear_device(__isl_take isl_schedule_node * node)5241 static __isl_give isl_schedule_node *add_init_clear_device(
5242 	__isl_take isl_schedule_node *node)
5243 {
5244 	isl_ctx *ctx;
5245 	isl_space *space;
5246 	isl_union_set *domain;
5247 	isl_schedule_node *graft;
5248 
5249 	ctx = isl_schedule_node_get_ctx(node);
5250 
5251 	space = isl_space_set_alloc(ctx, 0, 0);
5252 	space = isl_space_set_tuple_name(space, isl_dim_set, "init_device");
5253 	domain = isl_union_set_from_set(isl_set_universe(space));
5254 	graft = isl_schedule_node_from_domain(domain);
5255 
5256 	node = isl_schedule_node_graft_before(node, graft);
5257 
5258 	space = isl_space_set_alloc(ctx, 0, 0);
5259 	space = isl_space_set_tuple_name(space, isl_dim_set, "clear_device");
5260 	domain = isl_union_set_from_set(isl_set_universe(space));
5261 	graft = isl_schedule_node_from_domain(domain);
5262 
5263 	node = isl_schedule_node_graft_after(node, graft);
5264 
5265 	return node;
5266 }
5267 
5268 /* Update "schedule" for mapping to a GPU device.
5269  *
5270  * In particular, insert a context node, create kernels for
5271  * each outermost tilable band and introduce nodes for copying arrays
5272  * in and out of the device and for initializing and clearing the device.
5273  * If the child of the initial root points to a set node,
5274  * then children of this node that do not contain any tilable bands
5275  * are separated from the other children and are not mapped to
5276  * the device.
5277  *
5278  * The GPU code is generated in a context where at least one
5279  * statement instance is executed.  The corresponding guard is inserted
5280  * around the entire schedule.
5281  */
map_to_device(struct gpu_gen * gen,__isl_take isl_schedule * schedule,int to_from_device)5282 __isl_give isl_schedule *map_to_device(struct gpu_gen *gen,
5283 	__isl_take isl_schedule *schedule, int to_from_device)
5284 {
5285 	isl_schedule_node *node;
5286 	isl_set *context;
5287 	isl_set *guard;
5288 	isl_union_set *domain;
5289 	isl_union_map *prefix;
5290 	isl_union_pw_multi_aff *contraction;
5291 	struct gpu_prog *prog;
5292 
5293 	context = isl_set_copy(gen->prog->context);
5294 	context = isl_set_from_params(context);
5295 	schedule = isl_schedule_insert_context(schedule, context);
5296 
5297 	prog = gen->prog;
5298 	guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
5299 	prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
5300 	guard = isl_set_from_params(guard);
5301 
5302 	node = isl_schedule_get_root(schedule);
5303 	isl_schedule_free(schedule);
5304 	node = isl_schedule_node_child(node, 0);
5305 	node = isl_schedule_node_child(node, 0);
5306 	node = isolate_permutable_subtrees(node, gen->prog);
5307 	domain = isl_schedule_node_get_domain(node);
5308 	contraction = isl_schedule_node_get_subtree_contraction(node);
5309 	domain = isl_union_set_preimage_union_pw_multi_aff(domain,
5310 				    isl_union_pw_multi_aff_copy(contraction));
5311 	prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
5312 	prefix = isl_union_map_preimage_domain_union_pw_multi_aff(prefix,
5313 				    contraction);
5314 	node = mark_kernels(gen, node);
5315 	if (to_from_device) {
5316 		node = add_to_from_device(node, domain, prefix, gen->prog);
5317 	} else {
5318 		isl_union_set_free(domain);
5319 		isl_union_map_free(prefix);
5320 	}
5321 	node = isl_schedule_node_root(node);
5322 	node = isl_schedule_node_child(node, 0);
5323 	node = isl_schedule_node_child(node, 0);
5324 	node = isl_schedule_node_insert_guard(node, guard);
5325 	node = isl_schedule_node_child(node, 0);
5326 	node = add_init_clear_device(node);
5327 	schedule = isl_schedule_node_get_schedule(node);
5328 	isl_schedule_node_free(node);
5329 
5330 	return schedule;
5331 }
5332 
5333 /* Internal data structure for extract_access.
5334  * "next_access" points to the end of a linked list that is extended
5335  * by extract_access.
5336  * "single_expression" is set if the access expressions belong to
5337  * an expression statement (i.e., a statement without internal control).
5338  * "any_to_outer" maps all intermediate arrays to their outer arrays.
5339  */
5340 struct ppcg_extract_access_data {
5341 	struct gpu_stmt_access **next_access;
5342 	int single_expression;
5343 	isl_union_map *any_to_outer;
5344 };
5345 
5346 /* Given a tagged access relation to a single array "tagged", extract it
5347  * as a map, taking into account that the input may be empty.
5348  * If the access relation is empty, then it does not contain
5349  * any space information, so we try to recover it from the index
5350  * expression.
5351  * The space of the index expression is of the form I -> A,
5352  * with I the statement instances and A the array, or [I -> F] -> A,
5353  * with F the filters corresponding to arguments.
5354  * We first drop F, if present, obtaining I -> A.
5355  * Then we construct I -> R, with R the reference tag,
5356  * combine the two into I -> [R -> A] and uncurry to obtain
5357  * the final result [I -> R] -> A.
5358  * Note that the index expression may have a lower dimension
5359  * than that of the array, but this dimension is not used
5360  * if the access relation is empty.
5361  */
extract_single_tagged_access(__isl_take isl_union_map * tagged,__isl_keep pet_expr * expr)5362 static __isl_give isl_map *extract_single_tagged_access(
5363 	__isl_take isl_union_map *tagged, __isl_keep pet_expr *expr)
5364 {
5365 	int empty;
5366 	isl_id *id;
5367 	isl_space *space, *space2;
5368 	isl_multi_pw_aff *index;
5369 
5370 	empty = isl_union_map_is_empty(tagged);
5371 	if (empty < 0)
5372 		goto error;
5373 	if (!empty)
5374 		return isl_map_from_union_map(tagged);
5375 	isl_union_map_free(tagged);
5376 
5377 	index = pet_expr_access_get_index(expr);
5378 	space = isl_multi_pw_aff_get_space(index);
5379 	isl_multi_pw_aff_free(index);
5380 	if (isl_space_domain_is_wrapping(space))
5381 		space = isl_space_domain_factor_domain(space);
5382 	space2 = isl_space_copy(space);
5383 	space2 = isl_space_from_domain(isl_space_domain(space));
5384 	id = pet_expr_access_get_ref_id(expr);
5385 	space2 = isl_space_set_tuple_id(space2, isl_dim_out, id);
5386 	space = isl_space_range_product(space2, space);
5387 	space = isl_space_uncurry(space);
5388 
5389 	return isl_map_empty(space);
5390 error:
5391 	isl_union_map_free(tagged);
5392 	return NULL;
5393 }
5394 
5395 /* Does the index expression "index" of "expr" represent an access
5396  * to a single element?
5397  * That is, is "index" completely specified?
5398  *
5399  * If "expr" accesses elements from different spaces (i.e., fields
5400  * of a structure), then it does not access a single element.
5401  * Otherwise, if the single space of the access matches the space
5402  * of "index", then the index expression is completely specified
5403  * (no pointer to a lower-dimensional slice of the accessed array)
5404  * and a single element is being accessed.
5405  */
complete_index(__isl_keep pet_expr * expr,__isl_keep isl_multi_pw_aff * index)5406 static isl_bool complete_index(__isl_keep pet_expr *expr,
5407 	__isl_keep isl_multi_pw_aff *index)
5408 {
5409 	isl_union_map *read, *write, *all;
5410 	isl_map *map;
5411 	isl_space *space1, *space2;
5412 	isl_bool complete;
5413 
5414 	read = pet_expr_access_get_may_read(expr);
5415 	write = pet_expr_access_get_may_write(expr);
5416 	all = isl_union_map_union(read, write);
5417 	if (!all)
5418 		return isl_bool_error;
5419 	if (isl_union_map_n_map(all) != 1) {
5420 		isl_union_map_free(all);
5421 		return isl_bool_false;
5422 	}
5423 	map = isl_map_from_union_map(all);
5424 	space1 = isl_map_get_space(map);
5425 	isl_map_free(map);
5426 	space2 = isl_multi_pw_aff_get_space(index);
5427 	complete = isl_space_tuple_is_equal(space1, isl_dim_out,
5428 					    space2, isl_dim_out);
5429 	isl_space_free(space1);
5430 	isl_space_free(space2);
5431 
5432 	return complete;
5433 }
5434 
5435 /* Does "expr" access a single, fixed element (independently of the statement
5436  * instance)?
5437  * That is, does it have a completely specified constant index expression?
5438  *
5439  * Note that it is not sufficient for the index expression to be
5440  * piecewise constant.  isl_multi_pw_aff_is_cst can therefore not be used.
5441  */
accesses_fixed_element(__isl_keep pet_expr * expr)5442 static isl_bool accesses_fixed_element(__isl_keep pet_expr *expr)
5443 {
5444 	int i, n;
5445 	isl_multi_pw_aff *index;
5446 	isl_bool fixed = isl_bool_true;
5447 
5448 	index = pet_expr_access_get_index(expr);
5449 	if (index < 0)
5450 		return isl_bool_error;
5451 	n = isl_multi_pw_aff_dim(index, isl_dim_out);
5452 	for (i = 0; i < n; ++i) {
5453 		isl_pw_aff *pa;
5454 
5455 		pa = isl_multi_pw_aff_get_pw_aff(index, 0);
5456 		fixed = isl_pw_aff_n_piece(pa) == 1;
5457 		if (fixed)
5458 			fixed = isl_pw_aff_is_cst(pa);
5459 		isl_pw_aff_free(pa);
5460 		if (fixed < 0 || !fixed)
5461 			break;
5462 	}
5463 	if (fixed >= 0 && fixed)
5464 		fixed = complete_index(expr, index);
5465 	isl_multi_pw_aff_free(index);
5466 
5467 	return fixed;
5468 }
5469 
5470 /* Extract a gpu_stmt_access from "expr", append it to the list
5471  * that ends in *data->next_access and update the end of the list.
5472  * If the access expression performs a write, then it is considered
5473  * exact only if it appears in a single expression statement and
5474  * if its may access relation is equal to its must access relation.
5475  *
5476  * The combined set of may accesses may be a union if member accesses
5477  * are involved, but the entire set is derived from a single reference and
5478  * therefore from a single index expression.  These accesses therefore
5479  * all map to the same outer array.
5480  */
extract_access(__isl_keep pet_expr * expr,void * user)5481 static int extract_access(__isl_keep pet_expr *expr, void *user)
5482 {
5483 	struct ppcg_extract_access_data *data = user;
5484 	isl_union_map *tagged;
5485 	struct gpu_stmt_access *access;
5486 	isl_ctx *ctx = pet_expr_get_ctx(expr);
5487 	isl_multi_pw_aff *index;
5488 
5489 	access = isl_alloc_type(ctx, struct gpu_stmt_access);
5490 	assert(access);
5491 	access->next = NULL;
5492 	access->read = pet_expr_access_is_read(expr);
5493 	access->write = pet_expr_access_is_write(expr);
5494 	tagged = pet_expr_access_get_tagged_may_read(expr);
5495 	tagged = isl_union_map_union(tagged,
5496 				pet_expr_access_get_tagged_may_write(expr));
5497 	tagged = isl_union_map_apply_range(tagged,
5498 					isl_union_map_copy(data->any_to_outer));
5499 	if (!access->write) {
5500 		access->exact_write = 1;
5501 	} else if (!data->single_expression) {
5502 		access->exact_write = 0;
5503 	} else {
5504 		isl_union_map *must, *may;
5505 		may = isl_union_map_copy(tagged);
5506 		may = isl_union_map_domain_factor_domain(may);
5507 		must = pet_expr_access_get_must_write(expr);
5508 		access->exact_write = isl_union_map_is_equal(must, may);
5509 		isl_union_map_free(must);
5510 		isl_union_map_free(may);
5511 	}
5512 	index = pet_expr_access_get_index(expr);
5513 	access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
5514 	isl_multi_pw_aff_free(index);
5515 	access->ref_id = pet_expr_access_get_ref_id(expr);
5516 	access->tagged_access = extract_single_tagged_access(tagged, expr);
5517 	access->access = isl_map_copy(access->tagged_access);
5518 	access->access = isl_map_domain_factor_domain(access->access);
5519 	access->fixed_element = accesses_fixed_element(expr);
5520 
5521 	*data->next_access = access;
5522 	data->next_access = &(*data->next_access)->next;
5523 
5524 	if (!access->access || access->fixed_element < 0)
5525 		return -1;
5526 
5527 	return 0;
5528 }
5529 
5530 /* Construct a linked list of gpu_stmt_access objects,
5531  * one for each access expression in the statement body.
5532  * "any_to_outer" maps all intermediate arrays to their outer arrays.
5533  */
pet_stmt_extract_accesses(struct gpu_stmt * stmt,__isl_keep isl_union_map * any_to_outer)5534 static int pet_stmt_extract_accesses(struct gpu_stmt *stmt,
5535 	__isl_keep isl_union_map *any_to_outer)
5536 {
5537 	struct ppcg_extract_access_data data;
5538 
5539 	stmt->accesses = NULL;
5540 	data.next_access = &stmt->accesses;
5541 	data.single_expression =
5542 		pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
5543 	data.any_to_outer = any_to_outer;
5544 	return pet_tree_foreach_access_expr(stmt->stmt->body,
5545 						&extract_access, &data);
5546 }
5547 
5548 /* Has statement "stmt" been killed from "scop"?
5549  * That is, is the instance set of "scop" free from any
5550  * instances of "stmt"?
5551  */
is_stmt_killed(struct ppcg_scop * scop,struct pet_stmt * stmt)5552 static isl_bool is_stmt_killed(struct ppcg_scop *scop, struct pet_stmt *stmt)
5553 {
5554 	isl_space *space;
5555 	isl_set *left;
5556 	isl_bool empty;
5557 
5558 	if (!scop || !stmt)
5559 		return isl_bool_error;
5560 	space = isl_set_get_space(stmt->domain);
5561 	left = isl_union_set_extract_set(scop->domain, space);
5562 	empty = isl_set_plain_is_empty(left);
5563 	isl_set_free(left);
5564 
5565 	return empty;
5566 }
5567 
5568 /* Return an array of gpu_stmt representing the statements in "scop".
5569  * Do not collect array accesses for statements that have been killed.
5570  */
extract_stmts(isl_ctx * ctx,struct ppcg_scop * scop,__isl_keep isl_union_map * any_to_outer)5571 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
5572 	__isl_keep isl_union_map *any_to_outer)
5573 {
5574 	int i;
5575 	struct gpu_stmt *stmts;
5576 
5577 	stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
5578 	if (!stmts)
5579 		return NULL;
5580 
5581 	for (i = 0; i < scop->pet->n_stmt; ++i) {
5582 		struct gpu_stmt *s = &stmts[i];
5583 		isl_bool killed;
5584 
5585 		s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
5586 		s->stmt = scop->pet->stmts[i];
5587 		killed = is_stmt_killed(scop, scop->pet->stmts[i]);
5588 		if (killed < 0)
5589 			return free_stmts(stmts, i + 1);
5590 		if (killed)
5591 			continue;
5592 		if (pet_stmt_extract_accesses(s, any_to_outer) < 0)
5593 			return free_stmts(stmts, i + 1);
5594 	}
5595 
5596 	return stmts;
5597 }
5598 
5599 /* Generate CUDA code for "scop" and print it to "p".
5600  * After generating an AST for the transformed scop as explained below,
5601  * we call "gen->print" to print the AST in the desired output format
5602  * to "p".
5603  *
5604  * If it turns out that it does not make sense to generate GPU code,
5605  * then we generate CPU code instead.
5606  *
5607  * The declarations of the arrays that are visible outside of the scop
5608  * are printed outside of the code generated from the schedule,
5609  * because the generated code may involve a guard around the entire code.
5610  *
5611  * We first compute a schedule that respects the dependences
5612  * of the original program and select the outermost bands
5613  * of tilable dimensions that have at least one parallel loop.
5614  * If the --load-schedule is specified, then the loaded schedule
5615  * is used instead of a computed schedule.
5616  *
5617  * Each of these bands B is then tiled according to "tile" sizes, resulting
5618  * in two nested bands, with a kernel marker on top
5619  *
5620  *		K
5621  *		|
5622  *		T
5623  *		|
5624  *		P
5625  *
5626  * We then split off at most 2 parallel dimensions from the T band and
5627  * at most 3 parallel dimension from the P band
5628  *
5629  *		K
5630  *		|
5631  *		T
5632  *		T1
5633  *		|
5634  *		T2
5635  *		|
5636  *		P1
5637  *		|
5638  *		P2
5639  *
5640  * A filter is introduced in front of T1 that maps the domain instances
5641  * to block identifiers.  Similarly, a filter is introduced in front of P1
5642  * that maps the domain instances to thread identifiers.
5643  *
5644  * For each iteration of the T2 band and for each array, we compute
5645  * the array elements accessed by that iteration, construct a rectangular
5646  * box around it and shift it to the origin.  The result is used
5647  * as shared memory for the array.
5648  *
5649  * Copying and synchronization statements are added to this schedule tree.
5650  * In principle, these are added in front of the P1 band, but some of
5651  * them may get hoisted up to higher levels.
5652  *
5653  * The entire AST is then generated from the single resulting schedule tree.
5654  * During the generation the subtrees at kernel nodes (K) are saved
5655  * aside and replaced by kernel calls.  The result is printed as host code
5656  * while the saved subtrees are printed as device code.
5657  */
generate(__isl_take isl_printer * p,struct gpu_gen * gen,struct ppcg_scop * scop,struct ppcg_options * options)5658 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
5659 	struct gpu_gen *gen, struct ppcg_scop *scop,
5660 	struct ppcg_options *options)
5661 {
5662 	struct gpu_prog *prog;
5663 	isl_ctx *ctx;
5664 	isl_schedule *schedule;
5665 	int any_permutable;
5666 
5667 	if (!scop)
5668 		return isl_printer_free(p);
5669 
5670 	ctx = isl_printer_get_ctx(p);
5671 	prog = gpu_prog_alloc(ctx, scop);
5672 	if (!prog)
5673 		return isl_printer_free(p);
5674 
5675 	gen->prog = prog;
5676 	schedule = get_schedule(gen);
5677 
5678 	any_permutable = has_any_permutable_node(schedule);
5679 	if (any_permutable < 0 || !any_permutable) {
5680 		if (any_permutable < 0)
5681 			p = isl_printer_free(p);
5682 		else
5683 			p = print_cpu(p, scop, options);
5684 		isl_schedule_free(schedule);
5685 	} else {
5686 		const int create_to_from_device = 1;
5687 		schedule = map_to_device(gen, schedule, create_to_from_device);
5688 		gen->tree = generate_code(gen, schedule);
5689 		p = ppcg_set_macro_names(p);
5690 		p = ppcg_print_exposed_declarations(p, prog->scop);
5691 		p = gen->print(p, gen->prog, gen->tree, &gen->types,
5692 				    gen->print_user);
5693 		isl_ast_node_free(gen->tree);
5694 	}
5695 
5696 	gpu_prog_free(prog);
5697 
5698 	return p;
5699 }
5700 
5701 /* Wrapper around generate for use as a ppcg_transform callback.
5702  */
generate_wrap(__isl_take isl_printer * p,struct ppcg_scop * scop,void * user)5703 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
5704 	struct ppcg_scop *scop, void *user)
5705 {
5706 	struct gpu_gen *gen = user;
5707 
5708 	return generate(p, gen, scop, gen->options);
5709 }
5710 
5711 /* Transform the code in the file called "input" by replacing
5712  * all scops by corresponding GPU code and write the results to "out".
5713  */
generate_gpu(isl_ctx * ctx,const char * input,FILE * out,struct ppcg_options * options,__isl_give isl_printer * (* print)(__isl_take isl_printer * p,struct gpu_prog * prog,__isl_keep isl_ast_node * tree,struct gpu_types * types,void * user),void * user)5714 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
5715 	struct ppcg_options *options,
5716 	__isl_give isl_printer *(*print)(__isl_take isl_printer *p,
5717 		struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
5718 		struct gpu_types *types, void *user), void *user)
5719 {
5720 	struct gpu_gen gen;
5721 	int r;
5722 	int i;
5723 
5724 	gen.ctx = ctx;
5725 	gen.sizes = extract_sizes_from_str(ctx, options->sizes);
5726 	gen.options = options;
5727 	gen.kernel_id = 0;
5728 	gen.print = print;
5729 	gen.print_user = user;
5730 	gen.types.n = 0;
5731 	gen.types.name = NULL;
5732 
5733 	if (options->debug->dump_sizes) {
5734 		isl_space *space = isl_space_params_alloc(ctx, 0);
5735 		gen.used_sizes = isl_union_map_empty(space);
5736 	}
5737 
5738 	r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
5739 
5740 	if (options->debug->dump_sizes) {
5741 		isl_union_map_dump(gen.used_sizes);
5742 		isl_union_map_free(gen.used_sizes);
5743 	}
5744 
5745 	isl_union_map_free(gen.sizes);
5746 	for (i = 0; i < gen.types.n; ++i)
5747 		free(gen.types.name[i]);
5748 	free(gen.types.name);
5749 
5750 	return r;
5751 }
5752 
5753 /* Compute the set of inner array elements that may have their values
5754  * preserved by "prog".  In particular, collect the array elements of
5755  * arrays that are not local to "prog" and remove those elements that
5756  * are definitely killed or definitely written by "prog".
5757  */
compute_may_persist(struct gpu_prog * prog)5758 __isl_give isl_union_set *compute_may_persist(struct gpu_prog *prog)
5759 {
5760 	int i;
5761 	isl_union_set *may_persist, *killed;
5762 	isl_union_map *must_kill;
5763 
5764 	may_persist = isl_union_set_empty(isl_set_get_space(prog->context));
5765 	for (i = 0; i < prog->n_array; ++i) {
5766 		isl_set *extent;
5767 
5768 		if (prog->array[i].local)
5769 			continue;
5770 
5771 		extent = isl_set_copy(prog->array[i].extent);
5772 		may_persist = isl_union_set_add_set(may_persist, extent);
5773 	}
5774 
5775 	may_persist = isl_union_set_intersect_params(may_persist,
5776 						isl_set_copy(prog->context));
5777 	may_persist = isl_union_set_apply(may_persist,
5778 					isl_union_map_copy(prog->to_inner));
5779 	must_kill = isl_union_map_copy(prog->tagged_must_kill);
5780 	killed = isl_union_map_range(must_kill);
5781 	must_kill = isl_union_map_copy(prog->must_write);
5782 	killed = isl_union_set_union(killed, isl_union_map_range(must_kill));
5783 
5784 	may_persist = isl_union_set_subtract(may_persist, killed);
5785 	return may_persist;
5786 }
5787 
gpu_prog_alloc(isl_ctx * ctx,struct ppcg_scop * scop)5788 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
5789 {
5790 	struct gpu_prog *prog;
5791 	isl_space *space;
5792 	isl_map *id;
5793 
5794 	if (!scop)
5795 		return NULL;
5796 
5797 	prog = isl_calloc_type(ctx, struct gpu_prog);
5798 	assert(prog);
5799 
5800 	prog->ctx = ctx;
5801 	prog->scop = scop;
5802 	prog->context = isl_set_copy(scop->context);
5803 	prog->n_stmts = scop->pet->n_stmt;
5804 	prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
5805 	prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
5806 	space = isl_union_map_get_space(prog->any_to_outer);
5807 	space = isl_space_set_from_params(space);
5808 	space = isl_space_add_dims(space, isl_dim_set, 1);
5809 	space = isl_space_map_from_set(space);
5810 	id = isl_map_identity(space);
5811 	prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
5812 	prog->stmts = extract_stmts(ctx, scop, prog->any_to_outer);
5813 	prog->read = isl_union_map_copy(scop->reads);
5814 	prog->may_write = isl_union_map_copy(scop->may_writes);
5815 	prog->must_write = isl_union_map_copy(scop->must_writes);
5816 	prog->tagged_must_kill = isl_union_map_copy(scop->tagged_must_kills);
5817 	prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
5818 	prog->to_outer = isl_union_map_copy(prog->to_inner);
5819 	prog->to_outer = isl_union_map_reverse(prog->to_outer);
5820 
5821 	if (!prog->stmts)
5822 		return gpu_prog_free(prog);
5823 
5824 	if (collect_array_info(prog) < 0)
5825 		return gpu_prog_free(prog);
5826 	prog->may_persist = compute_may_persist(prog);
5827 
5828 	return prog;
5829 }
5830 
gpu_prog_free(struct gpu_prog * prog)5831 void *gpu_prog_free(struct gpu_prog *prog)
5832 {
5833 	if (!prog)
5834 		return NULL;
5835 	free_array_info(prog);
5836 	free_stmts(prog->stmts, prog->n_stmts);
5837 	isl_union_map_free(prog->any_to_outer);
5838 	isl_union_map_free(prog->to_outer);
5839 	isl_union_map_free(prog->to_inner);
5840 	isl_union_map_free(prog->read);
5841 	isl_union_map_free(prog->may_write);
5842 	isl_union_map_free(prog->must_write);
5843 	isl_union_map_free(prog->tagged_must_kill);
5844 	isl_union_map_free(prog->array_order);
5845 	isl_union_set_free(prog->may_persist);
5846 	isl_set_free(prog->context);
5847 	free(prog);
5848 	return NULL;
5849 }
5850