1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the ASTContext interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "CXXABI.h"
15 #include "Interp/Context.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/ASTTypeTraits.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/AttrIterator.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Comment.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclBase.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclContextInternals.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/DeclarationName.h"
32 #include "clang/AST/DependenceFlags.h"
33 #include "clang/AST/Expr.h"
34 #include "clang/AST/ExprCXX.h"
35 #include "clang/AST/ExprConcepts.h"
36 #include "clang/AST/ExternalASTSource.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/MangleNumberingContext.h"
39 #include "clang/AST/NestedNameSpecifier.h"
40 #include "clang/AST/ParentMapContext.h"
41 #include "clang/AST/RawCommentList.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/Stmt.h"
44 #include "clang/AST/TemplateBase.h"
45 #include "clang/AST/TemplateName.h"
46 #include "clang/AST/Type.h"
47 #include "clang/AST/TypeLoc.h"
48 #include "clang/AST/UnresolvedSet.h"
49 #include "clang/AST/VTableBuilder.h"
50 #include "clang/Basic/AddressSpaces.h"
51 #include "clang/Basic/Builtins.h"
52 #include "clang/Basic/CommentOptions.h"
53 #include "clang/Basic/ExceptionSpecificationType.h"
54 #include "clang/Basic/IdentifierTable.h"
55 #include "clang/Basic/LLVM.h"
56 #include "clang/Basic/LangOptions.h"
57 #include "clang/Basic/Linkage.h"
58 #include "clang/Basic/Module.h"
59 #include "clang/Basic/NoSanitizeList.h"
60 #include "clang/Basic/ObjCRuntime.h"
61 #include "clang/Basic/SourceLocation.h"
62 #include "clang/Basic/SourceManager.h"
63 #include "clang/Basic/Specifiers.h"
64 #include "clang/Basic/TargetCXXABI.h"
65 #include "clang/Basic/TargetInfo.h"
66 #include "clang/Basic/XRayLists.h"
67 #include "llvm/ADT/APFixedPoint.h"
68 #include "llvm/ADT/APInt.h"
69 #include "llvm/ADT/APSInt.h"
70 #include "llvm/ADT/ArrayRef.h"
71 #include "llvm/ADT/DenseMap.h"
72 #include "llvm/ADT/DenseSet.h"
73 #include "llvm/ADT/FoldingSet.h"
74 #include "llvm/ADT/None.h"
75 #include "llvm/ADT/Optional.h"
76 #include "llvm/ADT/PointerUnion.h"
77 #include "llvm/ADT/STLExtras.h"
78 #include "llvm/ADT/SmallPtrSet.h"
79 #include "llvm/ADT/SmallVector.h"
80 #include "llvm/ADT/StringExtras.h"
81 #include "llvm/ADT/StringRef.h"
82 #include "llvm/ADT/Triple.h"
83 #include "llvm/Support/Capacity.h"
84 #include "llvm/Support/Casting.h"
85 #include "llvm/Support/Compiler.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/MD5.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstddef>
93 #include <cstdint>
94 #include <cstdlib>
95 #include <map>
96 #include <memory>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 
101 using namespace clang;
102 
103 enum FloatingRank {
104   BFloat16Rank,
105   Float16Rank,
106   HalfRank,
107   FloatRank,
108   DoubleRank,
109   LongDoubleRank,
110   Float128Rank,
111   Ibm128Rank
112 };
113 
114 /// \returns location that is relevant when searching for Doc comments related
115 /// to \p D.
getDeclLocForCommentSearch(const Decl * D,SourceManager & SourceMgr)116 static SourceLocation getDeclLocForCommentSearch(const Decl *D,
117                                                  SourceManager &SourceMgr) {
118   assert(D);
119 
120   // User can not attach documentation to implicit declarations.
121   if (D->isImplicit())
122     return {};
123 
124   // User can not attach documentation to implicit instantiations.
125   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
126     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
127       return {};
128   }
129 
130   if (const auto *VD = dyn_cast<VarDecl>(D)) {
131     if (VD->isStaticDataMember() &&
132         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
133       return {};
134   }
135 
136   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
137     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
138       return {};
139   }
140 
141   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
142     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
143     if (TSK == TSK_ImplicitInstantiation ||
144         TSK == TSK_Undeclared)
145       return {};
146   }
147 
148   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
149     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
150       return {};
151   }
152   if (const auto *TD = dyn_cast<TagDecl>(D)) {
153     // When tag declaration (but not definition!) is part of the
154     // decl-specifier-seq of some other declaration, it doesn't get comment
155     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
156       return {};
157   }
158   // TODO: handle comments for function parameters properly.
159   if (isa<ParmVarDecl>(D))
160     return {};
161 
162   // TODO: we could look up template parameter documentation in the template
163   // documentation.
164   if (isa<TemplateTypeParmDecl>(D) ||
165       isa<NonTypeTemplateParmDecl>(D) ||
166       isa<TemplateTemplateParmDecl>(D))
167     return {};
168 
169   // Find declaration location.
170   // For Objective-C declarations we generally don't expect to have multiple
171   // declarators, thus use declaration starting location as the "declaration
172   // location".
173   // For all other declarations multiple declarators are used quite frequently,
174   // so we use the location of the identifier as the "declaration location".
175   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
176       isa<ObjCPropertyDecl>(D) ||
177       isa<RedeclarableTemplateDecl>(D) ||
178       isa<ClassTemplateSpecializationDecl>(D) ||
179       // Allow association with Y across {} in `typedef struct X {} Y`.
180       isa<TypedefDecl>(D))
181     return D->getBeginLoc();
182 
183   const SourceLocation DeclLoc = D->getLocation();
184   if (DeclLoc.isMacroID()) {
185     if (isa<TypedefDecl>(D)) {
186       // If location of the typedef name is in a macro, it is because being
187       // declared via a macro. Try using declaration's starting location as
188       // the "declaration location".
189       return D->getBeginLoc();
190     }
191 
192     if (const auto *TD = dyn_cast<TagDecl>(D)) {
193       // If location of the tag decl is inside a macro, but the spelling of
194       // the tag name comes from a macro argument, it looks like a special
195       // macro like NS_ENUM is being used to define the tag decl.  In that
196       // case, adjust the source location to the expansion loc so that we can
197       // attach the comment to the tag decl.
198       if (SourceMgr.isMacroArgExpansion(DeclLoc) && TD->isCompleteDefinition())
199         return SourceMgr.getExpansionLoc(DeclLoc);
200     }
201   }
202 
203   return DeclLoc;
204 }
205 
getRawCommentForDeclNoCacheImpl(const Decl * D,const SourceLocation RepresentativeLocForDecl,const std::map<unsigned,RawComment * > & CommentsInTheFile) const206 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
207     const Decl *D, const SourceLocation RepresentativeLocForDecl,
208     const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
209   // If the declaration doesn't map directly to a location in a file, we
210   // can't find the comment.
211   if (RepresentativeLocForDecl.isInvalid() ||
212       !RepresentativeLocForDecl.isFileID())
213     return nullptr;
214 
215   // If there are no comments anywhere, we won't find anything.
216   if (CommentsInTheFile.empty())
217     return nullptr;
218 
219   // Decompose the location for the declaration and find the beginning of the
220   // file buffer.
221   const std::pair<FileID, unsigned> DeclLocDecomp =
222       SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
223 
224   // Slow path.
225   auto OffsetCommentBehindDecl =
226       CommentsInTheFile.lower_bound(DeclLocDecomp.second);
227 
228   // First check whether we have a trailing comment.
229   if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
230     RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
231     if ((CommentBehindDecl->isDocumentation() ||
232          LangOpts.CommentOpts.ParseAllComments) &&
233         CommentBehindDecl->isTrailingComment() &&
234         (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
235          isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
236 
237       // Check that Doxygen trailing comment comes after the declaration, starts
238       // on the same line and in the same file as the declaration.
239       if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
240           Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
241                                        OffsetCommentBehindDecl->first)) {
242         return CommentBehindDecl;
243       }
244     }
245   }
246 
247   // The comment just after the declaration was not a trailing comment.
248   // Let's look at the previous comment.
249   if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
250     return nullptr;
251 
252   auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
253   RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
254 
255   // Check that we actually have a non-member Doxygen comment.
256   if (!(CommentBeforeDecl->isDocumentation() ||
257         LangOpts.CommentOpts.ParseAllComments) ||
258       CommentBeforeDecl->isTrailingComment())
259     return nullptr;
260 
261   // Decompose the end of the comment.
262   const unsigned CommentEndOffset =
263       Comments.getCommentEndOffset(CommentBeforeDecl);
264 
265   // Get the corresponding buffer.
266   bool Invalid = false;
267   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
268                                                &Invalid).data();
269   if (Invalid)
270     return nullptr;
271 
272   // Extract text between the comment and declaration.
273   StringRef Text(Buffer + CommentEndOffset,
274                  DeclLocDecomp.second - CommentEndOffset);
275 
276   // There should be no other declarations or preprocessor directives between
277   // comment and declaration.
278   if (Text.find_first_of(";{}#@") != StringRef::npos)
279     return nullptr;
280 
281   return CommentBeforeDecl;
282 }
283 
getRawCommentForDeclNoCache(const Decl * D) const284 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
285   const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
286 
287   // If the declaration doesn't map directly to a location in a file, we
288   // can't find the comment.
289   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
290     return nullptr;
291 
292   if (ExternalSource && !CommentsLoaded) {
293     ExternalSource->ReadComments();
294     CommentsLoaded = true;
295   }
296 
297   if (Comments.empty())
298     return nullptr;
299 
300   const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
301   const auto CommentsInThisFile = Comments.getCommentsInFile(File);
302   if (!CommentsInThisFile || CommentsInThisFile->empty())
303     return nullptr;
304 
305   return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
306 }
307 
addComment(const RawComment & RC)308 void ASTContext::addComment(const RawComment &RC) {
309   assert(LangOpts.RetainCommentsFromSystemHeaders ||
310          !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
311   Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
312 }
313 
314 /// If we have a 'templated' declaration for a template, adjust 'D' to
315 /// refer to the actual template.
316 /// If we have an implicit instantiation, adjust 'D' to refer to template.
adjustDeclToTemplate(const Decl & D)317 static const Decl &adjustDeclToTemplate(const Decl &D) {
318   if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
319     // Is this function declaration part of a function template?
320     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
321       return *FTD;
322 
323     // Nothing to do if function is not an implicit instantiation.
324     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
325       return D;
326 
327     // Function is an implicit instantiation of a function template?
328     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
329       return *FTD;
330 
331     // Function is instantiated from a member definition of a class template?
332     if (const FunctionDecl *MemberDecl =
333             FD->getInstantiatedFromMemberFunction())
334       return *MemberDecl;
335 
336     return D;
337   }
338   if (const auto *VD = dyn_cast<VarDecl>(&D)) {
339     // Static data member is instantiated from a member definition of a class
340     // template?
341     if (VD->isStaticDataMember())
342       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
343         return *MemberDecl;
344 
345     return D;
346   }
347   if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
348     // Is this class declaration part of a class template?
349     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
350       return *CTD;
351 
352     // Class is an implicit instantiation of a class template or partial
353     // specialization?
354     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
355       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
356         return D;
357       llvm::PointerUnion<ClassTemplateDecl *,
358                          ClassTemplatePartialSpecializationDecl *>
359           PU = CTSD->getSpecializedTemplateOrPartial();
360       return PU.is<ClassTemplateDecl *>()
361                  ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
362                  : *static_cast<const Decl *>(
363                        PU.get<ClassTemplatePartialSpecializationDecl *>());
364     }
365 
366     // Class is instantiated from a member definition of a class template?
367     if (const MemberSpecializationInfo *Info =
368             CRD->getMemberSpecializationInfo())
369       return *Info->getInstantiatedFrom();
370 
371     return D;
372   }
373   if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
374     // Enum is instantiated from a member definition of a class template?
375     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
376       return *MemberDecl;
377 
378     return D;
379   }
380   // FIXME: Adjust alias templates?
381   return D;
382 }
383 
getRawCommentForAnyRedecl(const Decl * D,const Decl ** OriginalDecl) const384 const RawComment *ASTContext::getRawCommentForAnyRedecl(
385                                                 const Decl *D,
386                                                 const Decl **OriginalDecl) const {
387   if (!D) {
388     if (OriginalDecl)
389       OriginalDecl = nullptr;
390     return nullptr;
391   }
392 
393   D = &adjustDeclToTemplate(*D);
394 
395   // Any comment directly attached to D?
396   {
397     auto DeclComment = DeclRawComments.find(D);
398     if (DeclComment != DeclRawComments.end()) {
399       if (OriginalDecl)
400         *OriginalDecl = D;
401       return DeclComment->second;
402     }
403   }
404 
405   // Any comment attached to any redeclaration of D?
406   const Decl *CanonicalD = D->getCanonicalDecl();
407   if (!CanonicalD)
408     return nullptr;
409 
410   {
411     auto RedeclComment = RedeclChainComments.find(CanonicalD);
412     if (RedeclComment != RedeclChainComments.end()) {
413       if (OriginalDecl)
414         *OriginalDecl = RedeclComment->second;
415       auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
416       assert(CommentAtRedecl != DeclRawComments.end() &&
417              "This decl is supposed to have comment attached.");
418       return CommentAtRedecl->second;
419     }
420   }
421 
422   // Any redeclarations of D that we haven't checked for comments yet?
423   // We can't use DenseMap::iterator directly since it'd get invalid.
424   auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
425     auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
426     if (LookupRes != CommentlessRedeclChains.end())
427       return LookupRes->second;
428     return nullptr;
429   }();
430 
431   for (const auto Redecl : D->redecls()) {
432     assert(Redecl);
433     // Skip all redeclarations that have been checked previously.
434     if (LastCheckedRedecl) {
435       if (LastCheckedRedecl == Redecl) {
436         LastCheckedRedecl = nullptr;
437       }
438       continue;
439     }
440     const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
441     if (RedeclComment) {
442       cacheRawCommentForDecl(*Redecl, *RedeclComment);
443       if (OriginalDecl)
444         *OriginalDecl = Redecl;
445       return RedeclComment;
446     }
447     CommentlessRedeclChains[CanonicalD] = Redecl;
448   }
449 
450   if (OriginalDecl)
451     *OriginalDecl = nullptr;
452   return nullptr;
453 }
454 
cacheRawCommentForDecl(const Decl & OriginalD,const RawComment & Comment) const455 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
456                                         const RawComment &Comment) const {
457   assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
458   DeclRawComments.try_emplace(&OriginalD, &Comment);
459   const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
460   RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
461   CommentlessRedeclChains.erase(CanonicalDecl);
462 }
463 
addRedeclaredMethods(const ObjCMethodDecl * ObjCMethod,SmallVectorImpl<const NamedDecl * > & Redeclared)464 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
465                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
466   const DeclContext *DC = ObjCMethod->getDeclContext();
467   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
468     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
469     if (!ID)
470       return;
471     // Add redeclared method here.
472     for (const auto *Ext : ID->known_extensions()) {
473       if (ObjCMethodDecl *RedeclaredMethod =
474             Ext->getMethod(ObjCMethod->getSelector(),
475                                   ObjCMethod->isInstanceMethod()))
476         Redeclared.push_back(RedeclaredMethod);
477     }
478   }
479 }
480 
attachCommentsToJustParsedDecls(ArrayRef<Decl * > Decls,const Preprocessor * PP)481 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
482                                                  const Preprocessor *PP) {
483   if (Comments.empty() || Decls.empty())
484     return;
485 
486   FileID File;
487   for (Decl *D : Decls) {
488     SourceLocation Loc = D->getLocation();
489     if (Loc.isValid()) {
490       // See if there are any new comments that are not attached to a decl.
491       // The location doesn't have to be precise - we care only about the file.
492       File = SourceMgr.getDecomposedLoc(Loc).first;
493       break;
494     }
495   }
496 
497   if (File.isInvalid())
498     return;
499 
500   auto CommentsInThisFile = Comments.getCommentsInFile(File);
501   if (!CommentsInThisFile || CommentsInThisFile->empty() ||
502       CommentsInThisFile->rbegin()->second->isAttached())
503     return;
504 
505   // There is at least one comment not attached to a decl.
506   // Maybe it should be attached to one of Decls?
507   //
508   // Note that this way we pick up not only comments that precede the
509   // declaration, but also comments that *follow* the declaration -- thanks to
510   // the lookahead in the lexer: we've consumed the semicolon and looked
511   // ahead through comments.
512 
513   for (const Decl *D : Decls) {
514     assert(D);
515     if (D->isInvalidDecl())
516       continue;
517 
518     D = &adjustDeclToTemplate(*D);
519 
520     const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
521 
522     if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
523       continue;
524 
525     if (DeclRawComments.count(D) > 0)
526       continue;
527 
528     if (RawComment *const DocComment =
529             getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
530       cacheRawCommentForDecl(*D, *DocComment);
531       comments::FullComment *FC = DocComment->parse(*this, PP, D);
532       ParsedComments[D->getCanonicalDecl()] = FC;
533     }
534   }
535 }
536 
cloneFullComment(comments::FullComment * FC,const Decl * D) const537 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
538                                                     const Decl *D) const {
539   auto *ThisDeclInfo = new (*this) comments::DeclInfo;
540   ThisDeclInfo->CommentDecl = D;
541   ThisDeclInfo->IsFilled = false;
542   ThisDeclInfo->fill();
543   ThisDeclInfo->CommentDecl = FC->getDecl();
544   if (!ThisDeclInfo->TemplateParameters)
545     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
546   comments::FullComment *CFC =
547     new (*this) comments::FullComment(FC->getBlocks(),
548                                       ThisDeclInfo);
549   return CFC;
550 }
551 
getLocalCommentForDeclUncached(const Decl * D) const552 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
553   const RawComment *RC = getRawCommentForDeclNoCache(D);
554   return RC ? RC->parse(*this, nullptr, D) : nullptr;
555 }
556 
getCommentForDecl(const Decl * D,const Preprocessor * PP) const557 comments::FullComment *ASTContext::getCommentForDecl(
558                                               const Decl *D,
559                                               const Preprocessor *PP) const {
560   if (!D || D->isInvalidDecl())
561     return nullptr;
562   D = &adjustDeclToTemplate(*D);
563 
564   const Decl *Canonical = D->getCanonicalDecl();
565   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
566       ParsedComments.find(Canonical);
567 
568   if (Pos != ParsedComments.end()) {
569     if (Canonical != D) {
570       comments::FullComment *FC = Pos->second;
571       comments::FullComment *CFC = cloneFullComment(FC, D);
572       return CFC;
573     }
574     return Pos->second;
575   }
576 
577   const Decl *OriginalDecl = nullptr;
578 
579   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
580   if (!RC) {
581     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
582       SmallVector<const NamedDecl*, 8> Overridden;
583       const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
584       if (OMD && OMD->isPropertyAccessor())
585         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
586           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
587             return cloneFullComment(FC, D);
588       if (OMD)
589         addRedeclaredMethods(OMD, Overridden);
590       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
591       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
592         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
593           return cloneFullComment(FC, D);
594     }
595     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
596       // Attach any tag type's documentation to its typedef if latter
597       // does not have one of its own.
598       QualType QT = TD->getUnderlyingType();
599       if (const auto *TT = QT->getAs<TagType>())
600         if (const Decl *TD = TT->getDecl())
601           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
602             return cloneFullComment(FC, D);
603     }
604     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
605       while (IC->getSuperClass()) {
606         IC = IC->getSuperClass();
607         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
608           return cloneFullComment(FC, D);
609       }
610     }
611     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
612       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
613         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
614           return cloneFullComment(FC, D);
615     }
616     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
617       if (!(RD = RD->getDefinition()))
618         return nullptr;
619       // Check non-virtual bases.
620       for (const auto &I : RD->bases()) {
621         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
622           continue;
623         QualType Ty = I.getType();
624         if (Ty.isNull())
625           continue;
626         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
627           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
628             continue;
629 
630           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
631             return cloneFullComment(FC, D);
632         }
633       }
634       // Check virtual bases.
635       for (const auto &I : RD->vbases()) {
636         if (I.getAccessSpecifier() != AS_public)
637           continue;
638         QualType Ty = I.getType();
639         if (Ty.isNull())
640           continue;
641         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
642           if (!(VirtualBase= VirtualBase->getDefinition()))
643             continue;
644           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
645             return cloneFullComment(FC, D);
646         }
647       }
648     }
649     return nullptr;
650   }
651 
652   // If the RawComment was attached to other redeclaration of this Decl, we
653   // should parse the comment in context of that other Decl.  This is important
654   // because comments can contain references to parameter names which can be
655   // different across redeclarations.
656   if (D != OriginalDecl && OriginalDecl)
657     return getCommentForDecl(OriginalDecl, PP);
658 
659   comments::FullComment *FC = RC->parse(*this, PP, D);
660   ParsedComments[Canonical] = FC;
661   return FC;
662 }
663 
664 void
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & C,TemplateTemplateParmDecl * Parm)665 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
666                                                    const ASTContext &C,
667                                                TemplateTemplateParmDecl *Parm) {
668   ID.AddInteger(Parm->getDepth());
669   ID.AddInteger(Parm->getPosition());
670   ID.AddBoolean(Parm->isParameterPack());
671 
672   TemplateParameterList *Params = Parm->getTemplateParameters();
673   ID.AddInteger(Params->size());
674   for (TemplateParameterList::const_iterator P = Params->begin(),
675                                           PEnd = Params->end();
676        P != PEnd; ++P) {
677     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
678       ID.AddInteger(0);
679       ID.AddBoolean(TTP->isParameterPack());
680       const TypeConstraint *TC = TTP->getTypeConstraint();
681       ID.AddBoolean(TC != nullptr);
682       if (TC)
683         TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
684                                                         /*Canonical=*/true);
685       if (TTP->isExpandedParameterPack()) {
686         ID.AddBoolean(true);
687         ID.AddInteger(TTP->getNumExpansionParameters());
688       } else
689         ID.AddBoolean(false);
690       continue;
691     }
692 
693     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
694       ID.AddInteger(1);
695       ID.AddBoolean(NTTP->isParameterPack());
696       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
697       if (NTTP->isExpandedParameterPack()) {
698         ID.AddBoolean(true);
699         ID.AddInteger(NTTP->getNumExpansionTypes());
700         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
701           QualType T = NTTP->getExpansionType(I);
702           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
703         }
704       } else
705         ID.AddBoolean(false);
706       continue;
707     }
708 
709     auto *TTP = cast<TemplateTemplateParmDecl>(*P);
710     ID.AddInteger(2);
711     Profile(ID, C, TTP);
712   }
713   Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
714   ID.AddBoolean(RequiresClause != nullptr);
715   if (RequiresClause)
716     RequiresClause->Profile(ID, C, /*Canonical=*/true);
717 }
718 
719 static Expr *
canonicalizeImmediatelyDeclaredConstraint(const ASTContext & C,Expr * IDC,QualType ConstrainedType)720 canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
721                                           QualType ConstrainedType) {
722   // This is a bit ugly - we need to form a new immediately-declared
723   // constraint that references the new parameter; this would ideally
724   // require semantic analysis (e.g. template<C T> struct S {}; - the
725   // converted arguments of C<T> could be an argument pack if C is
726   // declared as template<typename... T> concept C = ...).
727   // We don't have semantic analysis here so we dig deep into the
728   // ready-made constraint expr and change the thing manually.
729   ConceptSpecializationExpr *CSE;
730   if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
731     CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
732   else
733     CSE = cast<ConceptSpecializationExpr>(IDC);
734   ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
735   SmallVector<TemplateArgument, 3> NewConverted;
736   NewConverted.reserve(OldConverted.size());
737   if (OldConverted.front().getKind() == TemplateArgument::Pack) {
738     // The case:
739     // template<typename... T> concept C = true;
740     // template<C<int> T> struct S; -> constraint is C<{T, int}>
741     NewConverted.push_back(ConstrainedType);
742     for (auto &Arg : OldConverted.front().pack_elements().drop_front(1))
743       NewConverted.push_back(Arg);
744     TemplateArgument NewPack(NewConverted);
745 
746     NewConverted.clear();
747     NewConverted.push_back(NewPack);
748     assert(OldConverted.size() == 1 &&
749            "Template parameter pack should be the last parameter");
750   } else {
751     assert(OldConverted.front().getKind() == TemplateArgument::Type &&
752            "Unexpected first argument kind for immediately-declared "
753            "constraint");
754     NewConverted.push_back(ConstrainedType);
755     for (auto &Arg : OldConverted.drop_front(1))
756       NewConverted.push_back(Arg);
757   }
758   Expr *NewIDC = ConceptSpecializationExpr::Create(
759       C, CSE->getNamedConcept(), NewConverted, nullptr,
760       CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
761 
762   if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
763     NewIDC = new (C) CXXFoldExpr(
764         OrigFold->getType(), /*Callee*/nullptr, SourceLocation(), NewIDC,
765         BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr,
766         SourceLocation(), /*NumExpansions=*/None);
767   return NewIDC;
768 }
769 
770 TemplateTemplateParmDecl *
getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl * TTP) const771 ASTContext::getCanonicalTemplateTemplateParmDecl(
772                                           TemplateTemplateParmDecl *TTP) const {
773   // Check if we already have a canonical template template parameter.
774   llvm::FoldingSetNodeID ID;
775   CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
776   void *InsertPos = nullptr;
777   CanonicalTemplateTemplateParm *Canonical
778     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
779   if (Canonical)
780     return Canonical->getParam();
781 
782   // Build a canonical template parameter list.
783   TemplateParameterList *Params = TTP->getTemplateParameters();
784   SmallVector<NamedDecl *, 4> CanonParams;
785   CanonParams.reserve(Params->size());
786   for (TemplateParameterList::const_iterator P = Params->begin(),
787                                           PEnd = Params->end();
788        P != PEnd; ++P) {
789     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
790       TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
791           getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
792           TTP->getDepth(), TTP->getIndex(), nullptr, false,
793           TTP->isParameterPack(), TTP->hasTypeConstraint(),
794           TTP->isExpandedParameterPack() ?
795           llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
796       if (const auto *TC = TTP->getTypeConstraint()) {
797         QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
798         Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
799                 *this, TC->getImmediatelyDeclaredConstraint(),
800                 ParamAsArgument);
801         TemplateArgumentListInfo CanonArgsAsWritten;
802         if (auto *Args = TC->getTemplateArgsAsWritten())
803           for (const auto &ArgLoc : Args->arguments())
804             CanonArgsAsWritten.addArgument(
805                 TemplateArgumentLoc(ArgLoc.getArgument(),
806                                     TemplateArgumentLocInfo()));
807         NewTTP->setTypeConstraint(
808             NestedNameSpecifierLoc(),
809             DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
810                                 SourceLocation()), /*FoundDecl=*/nullptr,
811             // Actually canonicalizing a TemplateArgumentLoc is difficult so we
812             // simply omit the ArgsAsWritten
813             TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
814       }
815       CanonParams.push_back(NewTTP);
816     } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
817       QualType T = getCanonicalType(NTTP->getType());
818       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
819       NonTypeTemplateParmDecl *Param;
820       if (NTTP->isExpandedParameterPack()) {
821         SmallVector<QualType, 2> ExpandedTypes;
822         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
823         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
824           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
825           ExpandedTInfos.push_back(
826                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
827         }
828 
829         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
830                                                 SourceLocation(),
831                                                 SourceLocation(),
832                                                 NTTP->getDepth(),
833                                                 NTTP->getPosition(), nullptr,
834                                                 T,
835                                                 TInfo,
836                                                 ExpandedTypes,
837                                                 ExpandedTInfos);
838       } else {
839         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
840                                                 SourceLocation(),
841                                                 SourceLocation(),
842                                                 NTTP->getDepth(),
843                                                 NTTP->getPosition(), nullptr,
844                                                 T,
845                                                 NTTP->isParameterPack(),
846                                                 TInfo);
847       }
848       if (AutoType *AT = T->getContainedAutoType()) {
849         if (AT->isConstrained()) {
850           Param->setPlaceholderTypeConstraint(
851               canonicalizeImmediatelyDeclaredConstraint(
852                   *this, NTTP->getPlaceholderTypeConstraint(), T));
853         }
854       }
855       CanonParams.push_back(Param);
856 
857     } else
858       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
859                                            cast<TemplateTemplateParmDecl>(*P)));
860   }
861 
862   Expr *CanonRequiresClause = nullptr;
863   if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
864     CanonRequiresClause = RequiresClause;
865 
866   TemplateTemplateParmDecl *CanonTTP
867     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
868                                        SourceLocation(), TTP->getDepth(),
869                                        TTP->getPosition(),
870                                        TTP->isParameterPack(),
871                                        nullptr,
872                          TemplateParameterList::Create(*this, SourceLocation(),
873                                                        SourceLocation(),
874                                                        CanonParams,
875                                                        SourceLocation(),
876                                                        CanonRequiresClause));
877 
878   // Get the new insert position for the node we care about.
879   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
880   assert(!Canonical && "Shouldn't be in the map!");
881   (void)Canonical;
882 
883   // Create the canonical template template parameter entry.
884   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
885   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
886   return CanonTTP;
887 }
888 
getCXXABIKind() const889 TargetCXXABI::Kind ASTContext::getCXXABIKind() const {
890   auto Kind = getTargetInfo().getCXXABI().getKind();
891   return getLangOpts().CXXABI.getValueOr(Kind);
892 }
893 
createCXXABI(const TargetInfo & T)894 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
895   if (!LangOpts.CPlusPlus) return nullptr;
896 
897   switch (getCXXABIKind()) {
898   case TargetCXXABI::AppleARM64:
899   case TargetCXXABI::Fuchsia:
900   case TargetCXXABI::GenericARM: // Same as Itanium at this level
901   case TargetCXXABI::iOS:
902   case TargetCXXABI::WatchOS:
903   case TargetCXXABI::GenericAArch64:
904   case TargetCXXABI::GenericMIPS:
905   case TargetCXXABI::GenericItanium:
906   case TargetCXXABI::WebAssembly:
907   case TargetCXXABI::XL:
908     return CreateItaniumCXXABI(*this);
909   case TargetCXXABI::Microsoft:
910     return CreateMicrosoftCXXABI(*this);
911   }
912   llvm_unreachable("Invalid CXXABI type!");
913 }
914 
getInterpContext()915 interp::Context &ASTContext::getInterpContext() {
916   if (!InterpContext) {
917     InterpContext.reset(new interp::Context(*this));
918   }
919   return *InterpContext.get();
920 }
921 
getParentMapContext()922 ParentMapContext &ASTContext::getParentMapContext() {
923   if (!ParentMapCtx)
924     ParentMapCtx.reset(new ParentMapContext(*this));
925   return *ParentMapCtx.get();
926 }
927 
getAddressSpaceMap(const TargetInfo & T,const LangOptions & LOpts)928 static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
929                                            const LangOptions &LOpts) {
930   if (LOpts.FakeAddressSpaceMap) {
931     // The fake address space map must have a distinct entry for each
932     // language-specific address space.
933     static const unsigned FakeAddrSpaceMap[] = {
934         0,  // Default
935         1,  // opencl_global
936         3,  // opencl_local
937         2,  // opencl_constant
938         0,  // opencl_private
939         4,  // opencl_generic
940         5,  // opencl_global_device
941         6,  // opencl_global_host
942         7,  // cuda_device
943         8,  // cuda_constant
944         9,  // cuda_shared
945         1,  // sycl_global
946         5,  // sycl_global_device
947         6,  // sycl_global_host
948         3,  // sycl_local
949         0,  // sycl_private
950         10, // ptr32_sptr
951         11, // ptr32_uptr
952         12  // ptr64
953     };
954     return &FakeAddrSpaceMap;
955   } else {
956     return &T.getAddressSpaceMap();
957   }
958 }
959 
isAddrSpaceMapManglingEnabled(const TargetInfo & TI,const LangOptions & LangOpts)960 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
961                                           const LangOptions &LangOpts) {
962   switch (LangOpts.getAddressSpaceMapMangling()) {
963   case LangOptions::ASMM_Target:
964     return TI.useAddressSpaceMapMangling();
965   case LangOptions::ASMM_On:
966     return true;
967   case LangOptions::ASMM_Off:
968     return false;
969   }
970   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
971 }
972 
ASTContext(LangOptions & LOpts,SourceManager & SM,IdentifierTable & idents,SelectorTable & sels,Builtin::Context & builtins,TranslationUnitKind TUKind)973 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
974                        IdentifierTable &idents, SelectorTable &sels,
975                        Builtin::Context &builtins, TranslationUnitKind TUKind)
976     : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
977       TemplateSpecializationTypes(this_()),
978       DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
979       SubstTemplateTemplateParmPacks(this_()),
980       CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
981       NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)),
982       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
983                                         LangOpts.XRayNeverInstrumentFiles,
984                                         LangOpts.XRayAttrListFiles, SM)),
985       ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)),
986       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
987       BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this),
988       Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
989       CompCategories(this_()), LastSDM(nullptr, 0) {
990   addTranslationUnitDecl();
991 }
992 
~ASTContext()993 ASTContext::~ASTContext() {
994   // Release the DenseMaps associated with DeclContext objects.
995   // FIXME: Is this the ideal solution?
996   ReleaseDeclContextMaps();
997 
998   // Call all of the deallocation functions on all of their targets.
999   for (auto &Pair : Deallocations)
1000     (Pair.first)(Pair.second);
1001 
1002   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
1003   // because they can contain DenseMaps.
1004   for (llvm::DenseMap<const ObjCContainerDecl*,
1005        const ASTRecordLayout*>::iterator
1006        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
1007     // Increment in loop to prevent using deallocated memory.
1008     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
1009       R->Destroy(*this);
1010 
1011   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
1012        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
1013     // Increment in loop to prevent using deallocated memory.
1014     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
1015       R->Destroy(*this);
1016   }
1017 
1018   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
1019                                                     AEnd = DeclAttrs.end();
1020        A != AEnd; ++A)
1021     A->second->~AttrVec();
1022 
1023   for (const auto &Value : ModuleInitializers)
1024     Value.second->~PerModuleInitializers();
1025 }
1026 
setTraversalScope(const std::vector<Decl * > & TopLevelDecls)1027 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
1028   TraversalScope = TopLevelDecls;
1029   getParentMapContext().clear();
1030 }
1031 
AddDeallocation(void (* Callback)(void *),void * Data) const1032 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
1033   Deallocations.push_back({Callback, Data});
1034 }
1035 
1036 void
setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source)1037 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
1038   ExternalSource = std::move(Source);
1039 }
1040 
PrintStats() const1041 void ASTContext::PrintStats() const {
1042   llvm::errs() << "\n*** AST Context Stats:\n";
1043   llvm::errs() << "  " << Types.size() << " types total.\n";
1044 
1045   unsigned counts[] = {
1046 #define TYPE(Name, Parent) 0,
1047 #define ABSTRACT_TYPE(Name, Parent)
1048 #include "clang/AST/TypeNodes.inc"
1049     0 // Extra
1050   };
1051 
1052   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1053     Type *T = Types[i];
1054     counts[(unsigned)T->getTypeClass()]++;
1055   }
1056 
1057   unsigned Idx = 0;
1058   unsigned TotalBytes = 0;
1059 #define TYPE(Name, Parent)                                              \
1060   if (counts[Idx])                                                      \
1061     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
1062                  << " types, " << sizeof(Name##Type) << " each "        \
1063                  << "(" << counts[Idx] * sizeof(Name##Type)             \
1064                  << " bytes)\n";                                        \
1065   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
1066   ++Idx;
1067 #define ABSTRACT_TYPE(Name, Parent)
1068 #include "clang/AST/TypeNodes.inc"
1069 
1070   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1071 
1072   // Implicit special member functions.
1073   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1074                << NumImplicitDefaultConstructors
1075                << " implicit default constructors created\n";
1076   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1077                << NumImplicitCopyConstructors
1078                << " implicit copy constructors created\n";
1079   if (getLangOpts().CPlusPlus)
1080     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1081                  << NumImplicitMoveConstructors
1082                  << " implicit move constructors created\n";
1083   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1084                << NumImplicitCopyAssignmentOperators
1085                << " implicit copy assignment operators created\n";
1086   if (getLangOpts().CPlusPlus)
1087     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1088                  << NumImplicitMoveAssignmentOperators
1089                  << " implicit move assignment operators created\n";
1090   llvm::errs() << NumImplicitDestructorsDeclared << "/"
1091                << NumImplicitDestructors
1092                << " implicit destructors created\n";
1093 
1094   if (ExternalSource) {
1095     llvm::errs() << "\n";
1096     ExternalSource->PrintStats();
1097   }
1098 
1099   BumpAlloc.PrintStats();
1100 }
1101 
mergeDefinitionIntoModule(NamedDecl * ND,Module * M,bool NotifyListeners)1102 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1103                                            bool NotifyListeners) {
1104   if (NotifyListeners)
1105     if (auto *Listener = getASTMutationListener())
1106       Listener->RedefinedHiddenDefinition(ND, M);
1107 
1108   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1109 }
1110 
deduplicateMergedDefinitonsFor(NamedDecl * ND)1111 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1112   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1113   if (It == MergedDefModules.end())
1114     return;
1115 
1116   auto &Merged = It->second;
1117   llvm::DenseSet<Module*> Found;
1118   for (Module *&M : Merged)
1119     if (!Found.insert(M).second)
1120       M = nullptr;
1121   Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
1122 }
1123 
1124 ArrayRef<Module *>
getModulesWithMergedDefinition(const NamedDecl * Def)1125 ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
1126   auto MergedIt =
1127       MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1128   if (MergedIt == MergedDefModules.end())
1129     return None;
1130   return MergedIt->second;
1131 }
1132 
resolve(ASTContext & Ctx)1133 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1134   if (LazyInitializers.empty())
1135     return;
1136 
1137   auto *Source = Ctx.getExternalSource();
1138   assert(Source && "lazy initializers but no external source");
1139 
1140   auto LazyInits = std::move(LazyInitializers);
1141   LazyInitializers.clear();
1142 
1143   for (auto ID : LazyInits)
1144     Initializers.push_back(Source->GetExternalDecl(ID));
1145 
1146   assert(LazyInitializers.empty() &&
1147          "GetExternalDecl for lazy module initializer added more inits");
1148 }
1149 
addModuleInitializer(Module * M,Decl * D)1150 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1151   // One special case: if we add a module initializer that imports another
1152   // module, and that module's only initializer is an ImportDecl, simplify.
1153   if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1154     auto It = ModuleInitializers.find(ID->getImportedModule());
1155 
1156     // Maybe the ImportDecl does nothing at all. (Common case.)
1157     if (It == ModuleInitializers.end())
1158       return;
1159 
1160     // Maybe the ImportDecl only imports another ImportDecl.
1161     auto &Imported = *It->second;
1162     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1163       Imported.resolve(*this);
1164       auto *OnlyDecl = Imported.Initializers.front();
1165       if (isa<ImportDecl>(OnlyDecl))
1166         D = OnlyDecl;
1167     }
1168   }
1169 
1170   auto *&Inits = ModuleInitializers[M];
1171   if (!Inits)
1172     Inits = new (*this) PerModuleInitializers;
1173   Inits->Initializers.push_back(D);
1174 }
1175 
addLazyModuleInitializers(Module * M,ArrayRef<uint32_t> IDs)1176 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1177   auto *&Inits = ModuleInitializers[M];
1178   if (!Inits)
1179     Inits = new (*this) PerModuleInitializers;
1180   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1181                                  IDs.begin(), IDs.end());
1182 }
1183 
getModuleInitializers(Module * M)1184 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1185   auto It = ModuleInitializers.find(M);
1186   if (It == ModuleInitializers.end())
1187     return None;
1188 
1189   auto *Inits = It->second;
1190   Inits->resolve(*this);
1191   return Inits->Initializers;
1192 }
1193 
getExternCContextDecl() const1194 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1195   if (!ExternCContext)
1196     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1197 
1198   return ExternCContext;
1199 }
1200 
1201 BuiltinTemplateDecl *
buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,const IdentifierInfo * II) const1202 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1203                                      const IdentifierInfo *II) const {
1204   auto *BuiltinTemplate =
1205       BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK);
1206   BuiltinTemplate->setImplicit();
1207   getTranslationUnitDecl()->addDecl(BuiltinTemplate);
1208 
1209   return BuiltinTemplate;
1210 }
1211 
1212 BuiltinTemplateDecl *
getMakeIntegerSeqDecl() const1213 ASTContext::getMakeIntegerSeqDecl() const {
1214   if (!MakeIntegerSeqDecl)
1215     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1216                                                   getMakeIntegerSeqName());
1217   return MakeIntegerSeqDecl;
1218 }
1219 
1220 BuiltinTemplateDecl *
getTypePackElementDecl() const1221 ASTContext::getTypePackElementDecl() const {
1222   if (!TypePackElementDecl)
1223     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1224                                                    getTypePackElementName());
1225   return TypePackElementDecl;
1226 }
1227 
buildImplicitRecord(StringRef Name,RecordDecl::TagKind TK) const1228 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1229                                             RecordDecl::TagKind TK) const {
1230   SourceLocation Loc;
1231   RecordDecl *NewDecl;
1232   if (getLangOpts().CPlusPlus)
1233     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1234                                     Loc, &Idents.get(Name));
1235   else
1236     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1237                                  &Idents.get(Name));
1238   NewDecl->setImplicit();
1239   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1240       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1241   return NewDecl;
1242 }
1243 
buildImplicitTypedef(QualType T,StringRef Name) const1244 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1245                                               StringRef Name) const {
1246   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1247   TypedefDecl *NewDecl = TypedefDecl::Create(
1248       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1249       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1250   NewDecl->setImplicit();
1251   return NewDecl;
1252 }
1253 
getInt128Decl() const1254 TypedefDecl *ASTContext::getInt128Decl() const {
1255   if (!Int128Decl)
1256     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1257   return Int128Decl;
1258 }
1259 
getUInt128Decl() const1260 TypedefDecl *ASTContext::getUInt128Decl() const {
1261   if (!UInt128Decl)
1262     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1263   return UInt128Decl;
1264 }
1265 
InitBuiltinType(CanQualType & R,BuiltinType::Kind K)1266 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1267   auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1268   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1269   Types.push_back(Ty);
1270 }
1271 
InitBuiltinTypes(const TargetInfo & Target,const TargetInfo * AuxTarget)1272 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1273                                   const TargetInfo *AuxTarget) {
1274   assert((!this->Target || this->Target == &Target) &&
1275          "Incorrect target reinitialization");
1276   assert(VoidTy.isNull() && "Context reinitialized?");
1277 
1278   this->Target = &Target;
1279   this->AuxTarget = AuxTarget;
1280 
1281   ABI.reset(createCXXABI(Target));
1282   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1283   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1284 
1285   // C99 6.2.5p19.
1286   InitBuiltinType(VoidTy,              BuiltinType::Void);
1287 
1288   // C99 6.2.5p2.
1289   InitBuiltinType(BoolTy,              BuiltinType::Bool);
1290   // C99 6.2.5p3.
1291   if (LangOpts.CharIsSigned)
1292     InitBuiltinType(CharTy,            BuiltinType::Char_S);
1293   else
1294     InitBuiltinType(CharTy,            BuiltinType::Char_U);
1295   // C99 6.2.5p4.
1296   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1297   InitBuiltinType(ShortTy,             BuiltinType::Short);
1298   InitBuiltinType(IntTy,               BuiltinType::Int);
1299   InitBuiltinType(LongTy,              BuiltinType::Long);
1300   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1301 
1302   // C99 6.2.5p6.
1303   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1304   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1305   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1306   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1307   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1308 
1309   // C99 6.2.5p10.
1310   InitBuiltinType(FloatTy,             BuiltinType::Float);
1311   InitBuiltinType(DoubleTy,            BuiltinType::Double);
1312   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1313 
1314   // GNU extension, __float128 for IEEE quadruple precision
1315   InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1316 
1317   // __ibm128 for IBM extended precision
1318   InitBuiltinType(Ibm128Ty, BuiltinType::Ibm128);
1319 
1320   // C11 extension ISO/IEC TS 18661-3
1321   InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1322 
1323   // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1324   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1325   InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1326   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1327   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1328   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1329   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1330   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1331   InitBuiltinType(FractTy,                 BuiltinType::Fract);
1332   InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1333   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1334   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1335   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1336   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1337   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1338   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1339   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1340   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1341   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1342   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1343   InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1344   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1345   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1346   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1347   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1348 
1349   // GNU extension, 128-bit integers.
1350   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1351   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1352 
1353   // C++ 3.9.1p5
1354   if (TargetInfo::isTypeSigned(Target.getWCharType()))
1355     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1356   else  // -fshort-wchar makes wchar_t be unsigned.
1357     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1358   if (LangOpts.CPlusPlus && LangOpts.WChar)
1359     WideCharTy = WCharTy;
1360   else {
1361     // C99 (or C++ using -fno-wchar).
1362     WideCharTy = getFromTargetType(Target.getWCharType());
1363   }
1364 
1365   WIntTy = getFromTargetType(Target.getWIntType());
1366 
1367   // C++20 (proposed)
1368   InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1369 
1370   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1371     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1372   else // C99
1373     Char16Ty = getFromTargetType(Target.getChar16Type());
1374 
1375   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1376     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1377   else // C99
1378     Char32Ty = getFromTargetType(Target.getChar32Type());
1379 
1380   // Placeholder type for type-dependent expressions whose type is
1381   // completely unknown. No code should ever check a type against
1382   // DependentTy and users should never see it; however, it is here to
1383   // help diagnose failures to properly check for type-dependent
1384   // expressions.
1385   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1386 
1387   // Placeholder type for functions.
1388   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1389 
1390   // Placeholder type for bound members.
1391   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1392 
1393   // Placeholder type for pseudo-objects.
1394   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1395 
1396   // "any" type; useful for debugger-like clients.
1397   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1398 
1399   // Placeholder type for unbridged ARC casts.
1400   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1401 
1402   // Placeholder type for builtin functions.
1403   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1404 
1405   // Placeholder type for OMP array sections.
1406   if (LangOpts.OpenMP) {
1407     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1408     InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
1409     InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
1410   }
1411   if (LangOpts.MatrixTypes)
1412     InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
1413 
1414   // Builtin types for 'id', 'Class', and 'SEL'.
1415   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1416   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1417   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1418 
1419   if (LangOpts.OpenCL) {
1420 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1421     InitBuiltinType(SingletonId, BuiltinType::Id);
1422 #include "clang/Basic/OpenCLImageTypes.def"
1423 
1424     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1425     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1426     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1427     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1428     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1429 
1430 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1431     InitBuiltinType(Id##Ty, BuiltinType::Id);
1432 #include "clang/Basic/OpenCLExtensionTypes.def"
1433   }
1434 
1435   if (Target.hasAArch64SVETypes()) {
1436 #define SVE_TYPE(Name, Id, SingletonId) \
1437     InitBuiltinType(SingletonId, BuiltinType::Id);
1438 #include "clang/Basic/AArch64SVEACLETypes.def"
1439   }
1440 
1441   if (Target.getTriple().isPPC64()) {
1442 #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
1443       InitBuiltinType(Id##Ty, BuiltinType::Id);
1444 #include "clang/Basic/PPCTypes.def"
1445 #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
1446     InitBuiltinType(Id##Ty, BuiltinType::Id);
1447 #include "clang/Basic/PPCTypes.def"
1448   }
1449 
1450   if (Target.hasRISCVVTypes()) {
1451 #define RVV_TYPE(Name, Id, SingletonId)                                        \
1452   InitBuiltinType(SingletonId, BuiltinType::Id);
1453 #include "clang/Basic/RISCVVTypes.def"
1454   }
1455 
1456   // Builtin type for __objc_yes and __objc_no
1457   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1458                        SignedCharTy : BoolTy);
1459 
1460   ObjCConstantStringType = QualType();
1461 
1462   ObjCSuperType = QualType();
1463 
1464   // void * type
1465   if (LangOpts.OpenCLGenericAddressSpace) {
1466     auto Q = VoidTy.getQualifiers();
1467     Q.setAddressSpace(LangAS::opencl_generic);
1468     VoidPtrTy = getPointerType(getCanonicalType(
1469         getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1470   } else {
1471     VoidPtrTy = getPointerType(VoidTy);
1472   }
1473 
1474   // nullptr type (C++0x 2.14.7)
1475   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1476 
1477   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1478   InitBuiltinType(HalfTy, BuiltinType::Half);
1479 
1480   InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
1481 
1482   // Builtin type used to help define __builtin_va_list.
1483   VaListTagDecl = nullptr;
1484 
1485   // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
1486   if (LangOpts.MicrosoftExt || LangOpts.Borland) {
1487     MSGuidTagDecl = buildImplicitRecord("_GUID");
1488     getTranslationUnitDecl()->addDecl(MSGuidTagDecl);
1489   }
1490 }
1491 
getDiagnostics() const1492 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1493   return SourceMgr.getDiagnostics();
1494 }
1495 
getDeclAttrs(const Decl * D)1496 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1497   AttrVec *&Result = DeclAttrs[D];
1498   if (!Result) {
1499     void *Mem = Allocate(sizeof(AttrVec));
1500     Result = new (Mem) AttrVec;
1501   }
1502 
1503   return *Result;
1504 }
1505 
1506 /// Erase the attributes corresponding to the given declaration.
eraseDeclAttrs(const Decl * D)1507 void ASTContext::eraseDeclAttrs(const Decl *D) {
1508   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1509   if (Pos != DeclAttrs.end()) {
1510     Pos->second->~AttrVec();
1511     DeclAttrs.erase(Pos);
1512   }
1513 }
1514 
1515 // FIXME: Remove ?
1516 MemberSpecializationInfo *
getInstantiatedFromStaticDataMember(const VarDecl * Var)1517 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1518   assert(Var->isStaticDataMember() && "Not a static data member");
1519   return getTemplateOrSpecializationInfo(Var)
1520       .dyn_cast<MemberSpecializationInfo *>();
1521 }
1522 
1523 ASTContext::TemplateOrSpecializationInfo
getTemplateOrSpecializationInfo(const VarDecl * Var)1524 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1525   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1526       TemplateOrInstantiation.find(Var);
1527   if (Pos == TemplateOrInstantiation.end())
1528     return {};
1529 
1530   return Pos->second;
1531 }
1532 
1533 void
setInstantiatedFromStaticDataMember(VarDecl * Inst,VarDecl * Tmpl,TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)1534 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1535                                                 TemplateSpecializationKind TSK,
1536                                           SourceLocation PointOfInstantiation) {
1537   assert(Inst->isStaticDataMember() && "Not a static data member");
1538   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1539   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1540                                             Tmpl, TSK, PointOfInstantiation));
1541 }
1542 
1543 void
setTemplateOrSpecializationInfo(VarDecl * Inst,TemplateOrSpecializationInfo TSI)1544 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1545                                             TemplateOrSpecializationInfo TSI) {
1546   assert(!TemplateOrInstantiation[Inst] &&
1547          "Already noted what the variable was instantiated from");
1548   TemplateOrInstantiation[Inst] = TSI;
1549 }
1550 
1551 NamedDecl *
getInstantiatedFromUsingDecl(NamedDecl * UUD)1552 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1553   auto Pos = InstantiatedFromUsingDecl.find(UUD);
1554   if (Pos == InstantiatedFromUsingDecl.end())
1555     return nullptr;
1556 
1557   return Pos->second;
1558 }
1559 
1560 void
setInstantiatedFromUsingDecl(NamedDecl * Inst,NamedDecl * Pattern)1561 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1562   assert((isa<UsingDecl>(Pattern) ||
1563           isa<UnresolvedUsingValueDecl>(Pattern) ||
1564           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1565          "pattern decl is not a using decl");
1566   assert((isa<UsingDecl>(Inst) ||
1567           isa<UnresolvedUsingValueDecl>(Inst) ||
1568           isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1569          "instantiation did not produce a using decl");
1570   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1571   InstantiatedFromUsingDecl[Inst] = Pattern;
1572 }
1573 
1574 UsingEnumDecl *
getInstantiatedFromUsingEnumDecl(UsingEnumDecl * UUD)1575 ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) {
1576   auto Pos = InstantiatedFromUsingEnumDecl.find(UUD);
1577   if (Pos == InstantiatedFromUsingEnumDecl.end())
1578     return nullptr;
1579 
1580   return Pos->second;
1581 }
1582 
setInstantiatedFromUsingEnumDecl(UsingEnumDecl * Inst,UsingEnumDecl * Pattern)1583 void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
1584                                                   UsingEnumDecl *Pattern) {
1585   assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists");
1586   InstantiatedFromUsingEnumDecl[Inst] = Pattern;
1587 }
1588 
1589 UsingShadowDecl *
getInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst)1590 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1591   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1592     = InstantiatedFromUsingShadowDecl.find(Inst);
1593   if (Pos == InstantiatedFromUsingShadowDecl.end())
1594     return nullptr;
1595 
1596   return Pos->second;
1597 }
1598 
1599 void
setInstantiatedFromUsingShadowDecl(UsingShadowDecl * Inst,UsingShadowDecl * Pattern)1600 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1601                                                UsingShadowDecl *Pattern) {
1602   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1603   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1604 }
1605 
getInstantiatedFromUnnamedFieldDecl(FieldDecl * Field)1606 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1607   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1608     = InstantiatedFromUnnamedFieldDecl.find(Field);
1609   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1610     return nullptr;
1611 
1612   return Pos->second;
1613 }
1614 
setInstantiatedFromUnnamedFieldDecl(FieldDecl * Inst,FieldDecl * Tmpl)1615 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1616                                                      FieldDecl *Tmpl) {
1617   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1618   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1619   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1620          "Already noted what unnamed field was instantiated from");
1621 
1622   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1623 }
1624 
1625 ASTContext::overridden_cxx_method_iterator
overridden_methods_begin(const CXXMethodDecl * Method) const1626 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1627   return overridden_methods(Method).begin();
1628 }
1629 
1630 ASTContext::overridden_cxx_method_iterator
overridden_methods_end(const CXXMethodDecl * Method) const1631 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1632   return overridden_methods(Method).end();
1633 }
1634 
1635 unsigned
overridden_methods_size(const CXXMethodDecl * Method) const1636 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1637   auto Range = overridden_methods(Method);
1638   return Range.end() - Range.begin();
1639 }
1640 
1641 ASTContext::overridden_method_range
overridden_methods(const CXXMethodDecl * Method) const1642 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1643   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1644       OverriddenMethods.find(Method->getCanonicalDecl());
1645   if (Pos == OverriddenMethods.end())
1646     return overridden_method_range(nullptr, nullptr);
1647   return overridden_method_range(Pos->second.begin(), Pos->second.end());
1648 }
1649 
addOverriddenMethod(const CXXMethodDecl * Method,const CXXMethodDecl * Overridden)1650 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1651                                      const CXXMethodDecl *Overridden) {
1652   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1653   OverriddenMethods[Method].push_back(Overridden);
1654 }
1655 
getOverriddenMethods(const NamedDecl * D,SmallVectorImpl<const NamedDecl * > & Overridden) const1656 void ASTContext::getOverriddenMethods(
1657                       const NamedDecl *D,
1658                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1659   assert(D);
1660 
1661   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1662     Overridden.append(overridden_methods_begin(CXXMethod),
1663                       overridden_methods_end(CXXMethod));
1664     return;
1665   }
1666 
1667   const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1668   if (!Method)
1669     return;
1670 
1671   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1672   Method->getOverriddenMethods(OverDecls);
1673   Overridden.append(OverDecls.begin(), OverDecls.end());
1674 }
1675 
addedLocalImportDecl(ImportDecl * Import)1676 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1677   assert(!Import->getNextLocalImport() &&
1678          "Import declaration already in the chain");
1679   assert(!Import->isFromASTFile() && "Non-local import declaration");
1680   if (!FirstLocalImport) {
1681     FirstLocalImport = Import;
1682     LastLocalImport = Import;
1683     return;
1684   }
1685 
1686   LastLocalImport->setNextLocalImport(Import);
1687   LastLocalImport = Import;
1688 }
1689 
1690 //===----------------------------------------------------------------------===//
1691 //                         Type Sizing and Analysis
1692 //===----------------------------------------------------------------------===//
1693 
1694 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1695 /// scalar floating point type.
getFloatTypeSemantics(QualType T) const1696 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1697   switch (T->castAs<BuiltinType>()->getKind()) {
1698   default:
1699     llvm_unreachable("Not a floating point type!");
1700   case BuiltinType::BFloat16:
1701     return Target->getBFloat16Format();
1702   case BuiltinType::Float16:
1703   case BuiltinType::Half:
1704     return Target->getHalfFormat();
1705   case BuiltinType::Float:      return Target->getFloatFormat();
1706   case BuiltinType::Double:     return Target->getDoubleFormat();
1707   case BuiltinType::Ibm128:
1708     return Target->getIbm128Format();
1709   case BuiltinType::LongDouble:
1710     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1711       return AuxTarget->getLongDoubleFormat();
1712     return Target->getLongDoubleFormat();
1713   case BuiltinType::Float128:
1714     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1715       return AuxTarget->getFloat128Format();
1716     return Target->getFloat128Format();
1717   }
1718 }
1719 
getDeclAlign(const Decl * D,bool ForAlignof) const1720 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1721   unsigned Align = Target->getCharWidth();
1722 
1723   bool UseAlignAttrOnly = false;
1724   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1725     Align = AlignFromAttr;
1726 
1727     // __attribute__((aligned)) can increase or decrease alignment
1728     // *except* on a struct or struct member, where it only increases
1729     // alignment unless 'packed' is also specified.
1730     //
1731     // It is an error for alignas to decrease alignment, so we can
1732     // ignore that possibility;  Sema should diagnose it.
1733     if (isa<FieldDecl>(D)) {
1734       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1735         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1736     } else {
1737       UseAlignAttrOnly = true;
1738     }
1739   }
1740   else if (isa<FieldDecl>(D))
1741       UseAlignAttrOnly =
1742         D->hasAttr<PackedAttr>() ||
1743         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1744 
1745   // If we're using the align attribute only, just ignore everything
1746   // else about the declaration and its type.
1747   if (UseAlignAttrOnly) {
1748     // do nothing
1749   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1750     QualType T = VD->getType();
1751     if (const auto *RT = T->getAs<ReferenceType>()) {
1752       if (ForAlignof)
1753         T = RT->getPointeeType();
1754       else
1755         T = getPointerType(RT->getPointeeType());
1756     }
1757     QualType BaseT = getBaseElementType(T);
1758     if (T->isFunctionType())
1759       Align = getTypeInfoImpl(T.getTypePtr()).Align;
1760     else if (!BaseT->isIncompleteType()) {
1761       // Adjust alignments of declarations with array type by the
1762       // large-array alignment on the target.
1763       if (const ArrayType *arrayType = getAsArrayType(T)) {
1764         unsigned MinWidth = Target->getLargeArrayMinWidth();
1765         if (!ForAlignof && MinWidth) {
1766           if (isa<VariableArrayType>(arrayType))
1767             Align = std::max(Align, Target->getLargeArrayAlign());
1768           else if (isa<ConstantArrayType>(arrayType) &&
1769                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1770             Align = std::max(Align, Target->getLargeArrayAlign());
1771         }
1772       }
1773       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1774       if (BaseT.getQualifiers().hasUnaligned())
1775         Align = Target->getCharWidth();
1776       if (const auto *VD = dyn_cast<VarDecl>(D)) {
1777         if (VD->hasGlobalStorage() && !ForAlignof) {
1778           uint64_t TypeSize = getTypeSize(T.getTypePtr());
1779           Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1780         }
1781       }
1782     }
1783 
1784     // Fields can be subject to extra alignment constraints, like if
1785     // the field is packed, the struct is packed, or the struct has a
1786     // a max-field-alignment constraint (#pragma pack).  So calculate
1787     // the actual alignment of the field within the struct, and then
1788     // (as we're expected to) constrain that by the alignment of the type.
1789     if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1790       const RecordDecl *Parent = Field->getParent();
1791       // We can only produce a sensible answer if the record is valid.
1792       if (!Parent->isInvalidDecl()) {
1793         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1794 
1795         // Start with the record's overall alignment.
1796         unsigned FieldAlign = toBits(Layout.getAlignment());
1797 
1798         // Use the GCD of that and the offset within the record.
1799         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1800         if (Offset > 0) {
1801           // Alignment is always a power of 2, so the GCD will be a power of 2,
1802           // which means we get to do this crazy thing instead of Euclid's.
1803           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1804           if (LowBitOfOffset < FieldAlign)
1805             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1806         }
1807 
1808         Align = std::min(Align, FieldAlign);
1809       }
1810     }
1811   }
1812 
1813   // Some targets have hard limitation on the maximum requestable alignment in
1814   // aligned attribute for static variables.
1815   const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute();
1816   const auto *VD = dyn_cast<VarDecl>(D);
1817   if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static)
1818     Align = std::min(Align, MaxAlignedAttr);
1819 
1820   return toCharUnitsFromBits(Align);
1821 }
1822 
getExnObjectAlignment() const1823 CharUnits ASTContext::getExnObjectAlignment() const {
1824   return toCharUnitsFromBits(Target->getExnObjectAlignment());
1825 }
1826 
1827 // getTypeInfoDataSizeInChars - Return the size of a type, in
1828 // chars. If the type is a record, its data size is returned.  This is
1829 // the size of the memcpy that's performed when assigning this type
1830 // using a trivial copy/move assignment operator.
getTypeInfoDataSizeInChars(QualType T) const1831 TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1832   TypeInfoChars Info = getTypeInfoInChars(T);
1833 
1834   // In C++, objects can sometimes be allocated into the tail padding
1835   // of a base-class subobject.  We decide whether that's possible
1836   // during class layout, so here we can just trust the layout results.
1837   if (getLangOpts().CPlusPlus) {
1838     if (const auto *RT = T->getAs<RecordType>()) {
1839       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1840       Info.Width = layout.getDataSize();
1841     }
1842   }
1843 
1844   return Info;
1845 }
1846 
1847 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1848 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1849 TypeInfoChars
getConstantArrayInfoInChars(const ASTContext & Context,const ConstantArrayType * CAT)1850 static getConstantArrayInfoInChars(const ASTContext &Context,
1851                                    const ConstantArrayType *CAT) {
1852   TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
1853   uint64_t Size = CAT->getSize().getZExtValue();
1854   assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
1855               (uint64_t)(-1)/Size) &&
1856          "Overflow in array type char size evaluation");
1857   uint64_t Width = EltInfo.Width.getQuantity() * Size;
1858   unsigned Align = EltInfo.Align.getQuantity();
1859   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1860       Context.getTargetInfo().getPointerWidth(0) == 64)
1861     Width = llvm::alignTo(Width, Align);
1862   return TypeInfoChars(CharUnits::fromQuantity(Width),
1863                        CharUnits::fromQuantity(Align),
1864                        EltInfo.AlignRequirement);
1865 }
1866 
getTypeInfoInChars(const Type * T) const1867 TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
1868   if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1869     return getConstantArrayInfoInChars(*this, CAT);
1870   TypeInfo Info = getTypeInfo(T);
1871   return TypeInfoChars(toCharUnitsFromBits(Info.Width),
1872                        toCharUnitsFromBits(Info.Align), Info.AlignRequirement);
1873 }
1874 
getTypeInfoInChars(QualType T) const1875 TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
1876   return getTypeInfoInChars(T.getTypePtr());
1877 }
1878 
isAlignmentRequired(const Type * T) const1879 bool ASTContext::isAlignmentRequired(const Type *T) const {
1880   return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None;
1881 }
1882 
isAlignmentRequired(QualType T) const1883 bool ASTContext::isAlignmentRequired(QualType T) const {
1884   return isAlignmentRequired(T.getTypePtr());
1885 }
1886 
getTypeAlignIfKnown(QualType T,bool NeedsPreferredAlignment) const1887 unsigned ASTContext::getTypeAlignIfKnown(QualType T,
1888                                          bool NeedsPreferredAlignment) const {
1889   // An alignment on a typedef overrides anything else.
1890   if (const auto *TT = T->getAs<TypedefType>())
1891     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1892       return Align;
1893 
1894   // If we have an (array of) complete type, we're done.
1895   T = getBaseElementType(T);
1896   if (!T->isIncompleteType())
1897     return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
1898 
1899   // If we had an array type, its element type might be a typedef
1900   // type with an alignment attribute.
1901   if (const auto *TT = T->getAs<TypedefType>())
1902     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1903       return Align;
1904 
1905   // Otherwise, see if the declaration of the type had an attribute.
1906   if (const auto *TT = T->getAs<TagType>())
1907     return TT->getDecl()->getMaxAlignment();
1908 
1909   return 0;
1910 }
1911 
getTypeInfo(const Type * T) const1912 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1913   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1914   if (I != MemoizedTypeInfo.end())
1915     return I->second;
1916 
1917   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1918   TypeInfo TI = getTypeInfoImpl(T);
1919   MemoizedTypeInfo[T] = TI;
1920   return TI;
1921 }
1922 
1923 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1924 /// method does not work on incomplete types.
1925 ///
1926 /// FIXME: Pointers into different addr spaces could have different sizes and
1927 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1928 /// should take a QualType, &c.
getTypeInfoImpl(const Type * T) const1929 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1930   uint64_t Width = 0;
1931   unsigned Align = 8;
1932   AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1933   unsigned AS = 0;
1934   switch (T->getTypeClass()) {
1935 #define TYPE(Class, Base)
1936 #define ABSTRACT_TYPE(Class, Base)
1937 #define NON_CANONICAL_TYPE(Class, Base)
1938 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1939 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1940   case Type::Class:                                                            \
1941   assert(!T->isDependentType() && "should not see dependent types here");      \
1942   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1943 #include "clang/AST/TypeNodes.inc"
1944     llvm_unreachable("Should not see dependent types");
1945 
1946   case Type::FunctionNoProto:
1947   case Type::FunctionProto:
1948     // GCC extension: alignof(function) = 32 bits
1949     Width = 0;
1950     Align = 32;
1951     break;
1952 
1953   case Type::IncompleteArray:
1954   case Type::VariableArray:
1955   case Type::ConstantArray: {
1956     // Model non-constant sized arrays as size zero, but track the alignment.
1957     uint64_t Size = 0;
1958     if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1959       Size = CAT->getSize().getZExtValue();
1960 
1961     TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
1962     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1963            "Overflow in array type bit size evaluation");
1964     Width = EltInfo.Width * Size;
1965     Align = EltInfo.Align;
1966     AlignRequirement = EltInfo.AlignRequirement;
1967     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1968         getTargetInfo().getPointerWidth(0) == 64)
1969       Width = llvm::alignTo(Width, Align);
1970     break;
1971   }
1972 
1973   case Type::ExtVector:
1974   case Type::Vector: {
1975     const auto *VT = cast<VectorType>(T);
1976     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1977     Width = EltInfo.Width * VT->getNumElements();
1978     Align = Width;
1979     // If the alignment is not a power of 2, round up to the next power of 2.
1980     // This happens for non-power-of-2 length vectors.
1981     if (Align & (Align-1)) {
1982       Align = llvm::NextPowerOf2(Align);
1983       Width = llvm::alignTo(Width, Align);
1984     }
1985     // Adjust the alignment based on the target max.
1986     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1987     if (TargetVectorAlign && TargetVectorAlign < Align)
1988       Align = TargetVectorAlign;
1989     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
1990       // Adjust the alignment for fixed-length SVE vectors. This is important
1991       // for non-power-of-2 vector lengths.
1992       Align = 128;
1993     else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
1994       // Adjust the alignment for fixed-length SVE predicates.
1995       Align = 16;
1996     break;
1997   }
1998 
1999   case Type::ConstantMatrix: {
2000     const auto *MT = cast<ConstantMatrixType>(T);
2001     TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
2002     // The internal layout of a matrix value is implementation defined.
2003     // Initially be ABI compatible with arrays with respect to alignment and
2004     // size.
2005     Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
2006     Align = ElementInfo.Align;
2007     break;
2008   }
2009 
2010   case Type::Builtin:
2011     switch (cast<BuiltinType>(T)->getKind()) {
2012     default: llvm_unreachable("Unknown builtin type!");
2013     case BuiltinType::Void:
2014       // GCC extension: alignof(void) = 8 bits.
2015       Width = 0;
2016       Align = 8;
2017       break;
2018     case BuiltinType::Bool:
2019       Width = Target->getBoolWidth();
2020       Align = Target->getBoolAlign();
2021       break;
2022     case BuiltinType::Char_S:
2023     case BuiltinType::Char_U:
2024     case BuiltinType::UChar:
2025     case BuiltinType::SChar:
2026     case BuiltinType::Char8:
2027       Width = Target->getCharWidth();
2028       Align = Target->getCharAlign();
2029       break;
2030     case BuiltinType::WChar_S:
2031     case BuiltinType::WChar_U:
2032       Width = Target->getWCharWidth();
2033       Align = Target->getWCharAlign();
2034       break;
2035     case BuiltinType::Char16:
2036       Width = Target->getChar16Width();
2037       Align = Target->getChar16Align();
2038       break;
2039     case BuiltinType::Char32:
2040       Width = Target->getChar32Width();
2041       Align = Target->getChar32Align();
2042       break;
2043     case BuiltinType::UShort:
2044     case BuiltinType::Short:
2045       Width = Target->getShortWidth();
2046       Align = Target->getShortAlign();
2047       break;
2048     case BuiltinType::UInt:
2049     case BuiltinType::Int:
2050       Width = Target->getIntWidth();
2051       Align = Target->getIntAlign();
2052       break;
2053     case BuiltinType::ULong:
2054     case BuiltinType::Long:
2055       Width = Target->getLongWidth();
2056       Align = Target->getLongAlign();
2057       break;
2058     case BuiltinType::ULongLong:
2059     case BuiltinType::LongLong:
2060       Width = Target->getLongLongWidth();
2061       Align = Target->getLongLongAlign();
2062       break;
2063     case BuiltinType::Int128:
2064     case BuiltinType::UInt128:
2065       Width = 128;
2066       Align = 128; // int128_t is 128-bit aligned on all targets.
2067       break;
2068     case BuiltinType::ShortAccum:
2069     case BuiltinType::UShortAccum:
2070     case BuiltinType::SatShortAccum:
2071     case BuiltinType::SatUShortAccum:
2072       Width = Target->getShortAccumWidth();
2073       Align = Target->getShortAccumAlign();
2074       break;
2075     case BuiltinType::Accum:
2076     case BuiltinType::UAccum:
2077     case BuiltinType::SatAccum:
2078     case BuiltinType::SatUAccum:
2079       Width = Target->getAccumWidth();
2080       Align = Target->getAccumAlign();
2081       break;
2082     case BuiltinType::LongAccum:
2083     case BuiltinType::ULongAccum:
2084     case BuiltinType::SatLongAccum:
2085     case BuiltinType::SatULongAccum:
2086       Width = Target->getLongAccumWidth();
2087       Align = Target->getLongAccumAlign();
2088       break;
2089     case BuiltinType::ShortFract:
2090     case BuiltinType::UShortFract:
2091     case BuiltinType::SatShortFract:
2092     case BuiltinType::SatUShortFract:
2093       Width = Target->getShortFractWidth();
2094       Align = Target->getShortFractAlign();
2095       break;
2096     case BuiltinType::Fract:
2097     case BuiltinType::UFract:
2098     case BuiltinType::SatFract:
2099     case BuiltinType::SatUFract:
2100       Width = Target->getFractWidth();
2101       Align = Target->getFractAlign();
2102       break;
2103     case BuiltinType::LongFract:
2104     case BuiltinType::ULongFract:
2105     case BuiltinType::SatLongFract:
2106     case BuiltinType::SatULongFract:
2107       Width = Target->getLongFractWidth();
2108       Align = Target->getLongFractAlign();
2109       break;
2110     case BuiltinType::BFloat16:
2111       Width = Target->getBFloat16Width();
2112       Align = Target->getBFloat16Align();
2113       break;
2114     case BuiltinType::Float16:
2115     case BuiltinType::Half:
2116       if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2117           !getLangOpts().OpenMPIsDevice) {
2118         Width = Target->getHalfWidth();
2119         Align = Target->getHalfAlign();
2120       } else {
2121         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2122                "Expected OpenMP device compilation.");
2123         Width = AuxTarget->getHalfWidth();
2124         Align = AuxTarget->getHalfAlign();
2125       }
2126       break;
2127     case BuiltinType::Float:
2128       Width = Target->getFloatWidth();
2129       Align = Target->getFloatAlign();
2130       break;
2131     case BuiltinType::Double:
2132       Width = Target->getDoubleWidth();
2133       Align = Target->getDoubleAlign();
2134       break;
2135     case BuiltinType::Ibm128:
2136       Width = Target->getIbm128Width();
2137       Align = Target->getIbm128Align();
2138       break;
2139     case BuiltinType::LongDouble:
2140       if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2141           (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2142            Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2143         Width = AuxTarget->getLongDoubleWidth();
2144         Align = AuxTarget->getLongDoubleAlign();
2145       } else {
2146         Width = Target->getLongDoubleWidth();
2147         Align = Target->getLongDoubleAlign();
2148       }
2149       break;
2150     case BuiltinType::Float128:
2151       if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2152           !getLangOpts().OpenMPIsDevice) {
2153         Width = Target->getFloat128Width();
2154         Align = Target->getFloat128Align();
2155       } else {
2156         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2157                "Expected OpenMP device compilation.");
2158         Width = AuxTarget->getFloat128Width();
2159         Align = AuxTarget->getFloat128Align();
2160       }
2161       break;
2162     case BuiltinType::NullPtr:
2163       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
2164       Align = Target->getPointerAlign(0); //   == sizeof(void*)
2165       break;
2166     case BuiltinType::ObjCId:
2167     case BuiltinType::ObjCClass:
2168     case BuiltinType::ObjCSel:
2169       Width = Target->getPointerWidth(0);
2170       Align = Target->getPointerAlign(0);
2171       break;
2172     case BuiltinType::OCLSampler:
2173     case BuiltinType::OCLEvent:
2174     case BuiltinType::OCLClkEvent:
2175     case BuiltinType::OCLQueue:
2176     case BuiltinType::OCLReserveID:
2177 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2178     case BuiltinType::Id:
2179 #include "clang/Basic/OpenCLImageTypes.def"
2180 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2181   case BuiltinType::Id:
2182 #include "clang/Basic/OpenCLExtensionTypes.def"
2183       AS = getTargetAddressSpace(
2184           Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
2185       Width = Target->getPointerWidth(AS);
2186       Align = Target->getPointerAlign(AS);
2187       break;
2188     // The SVE types are effectively target-specific.  The length of an
2189     // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2190     // of 128 bits.  There is one predicate bit for each vector byte, so the
2191     // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2192     //
2193     // Because the length is only known at runtime, we use a dummy value
2194     // of 0 for the static length.  The alignment values are those defined
2195     // by the Procedure Call Standard for the Arm Architecture.
2196 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
2197                         IsSigned, IsFP, IsBF)                                  \
2198   case BuiltinType::Id:                                                        \
2199     Width = 0;                                                                 \
2200     Align = 128;                                                               \
2201     break;
2202 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
2203   case BuiltinType::Id:                                                        \
2204     Width = 0;                                                                 \
2205     Align = 16;                                                                \
2206     break;
2207 #include "clang/Basic/AArch64SVEACLETypes.def"
2208 #define PPC_VECTOR_TYPE(Name, Id, Size)                                        \
2209   case BuiltinType::Id:                                                        \
2210     Width = Size;                                                              \
2211     Align = Size;                                                              \
2212     break;
2213 #include "clang/Basic/PPCTypes.def"
2214 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned,   \
2215                         IsFP)                                                  \
2216   case BuiltinType::Id:                                                        \
2217     Width = 0;                                                                 \
2218     Align = ElBits;                                                            \
2219     break;
2220 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind)                      \
2221   case BuiltinType::Id:                                                        \
2222     Width = 0;                                                                 \
2223     Align = 8;                                                                 \
2224     break;
2225 #include "clang/Basic/RISCVVTypes.def"
2226     }
2227     break;
2228   case Type::ObjCObjectPointer:
2229     Width = Target->getPointerWidth(0);
2230     Align = Target->getPointerAlign(0);
2231     break;
2232   case Type::BlockPointer:
2233     AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
2234     Width = Target->getPointerWidth(AS);
2235     Align = Target->getPointerAlign(AS);
2236     break;
2237   case Type::LValueReference:
2238   case Type::RValueReference:
2239     // alignof and sizeof should never enter this code path here, so we go
2240     // the pointer route.
2241     AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
2242     Width = Target->getPointerWidth(AS);
2243     Align = Target->getPointerAlign(AS);
2244     break;
2245   case Type::Pointer:
2246     AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
2247     Width = Target->getPointerWidth(AS);
2248     Align = Target->getPointerAlign(AS);
2249     break;
2250   case Type::MemberPointer: {
2251     const auto *MPT = cast<MemberPointerType>(T);
2252     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2253     Width = MPI.Width;
2254     Align = MPI.Align;
2255     break;
2256   }
2257   case Type::Complex: {
2258     // Complex types have the same alignment as their elements, but twice the
2259     // size.
2260     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2261     Width = EltInfo.Width * 2;
2262     Align = EltInfo.Align;
2263     break;
2264   }
2265   case Type::ObjCObject:
2266     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2267   case Type::Adjusted:
2268   case Type::Decayed:
2269     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2270   case Type::ObjCInterface: {
2271     const auto *ObjCI = cast<ObjCInterfaceType>(T);
2272     if (ObjCI->getDecl()->isInvalidDecl()) {
2273       Width = 8;
2274       Align = 8;
2275       break;
2276     }
2277     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2278     Width = toBits(Layout.getSize());
2279     Align = toBits(Layout.getAlignment());
2280     break;
2281   }
2282   case Type::ExtInt: {
2283     const auto *EIT = cast<ExtIntType>(T);
2284     Align =
2285         std::min(static_cast<unsigned>(std::max(
2286                      getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))),
2287                  Target->getLongLongAlign());
2288     Width = llvm::alignTo(EIT->getNumBits(), Align);
2289     break;
2290   }
2291   case Type::Record:
2292   case Type::Enum: {
2293     const auto *TT = cast<TagType>(T);
2294 
2295     if (TT->getDecl()->isInvalidDecl()) {
2296       Width = 8;
2297       Align = 8;
2298       break;
2299     }
2300 
2301     if (const auto *ET = dyn_cast<EnumType>(TT)) {
2302       const EnumDecl *ED = ET->getDecl();
2303       TypeInfo Info =
2304           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2305       if (unsigned AttrAlign = ED->getMaxAlignment()) {
2306         Info.Align = AttrAlign;
2307         Info.AlignRequirement = AlignRequirementKind::RequiredByEnum;
2308       }
2309       return Info;
2310     }
2311 
2312     const auto *RT = cast<RecordType>(TT);
2313     const RecordDecl *RD = RT->getDecl();
2314     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2315     Width = toBits(Layout.getSize());
2316     Align = toBits(Layout.getAlignment());
2317     AlignRequirement = RD->hasAttr<AlignedAttr>()
2318                            ? AlignRequirementKind::RequiredByRecord
2319                            : AlignRequirementKind::None;
2320     break;
2321   }
2322 
2323   case Type::SubstTemplateTypeParm:
2324     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2325                        getReplacementType().getTypePtr());
2326 
2327   case Type::Auto:
2328   case Type::DeducedTemplateSpecialization: {
2329     const auto *A = cast<DeducedType>(T);
2330     assert(!A->getDeducedType().isNull() &&
2331            "cannot request the size of an undeduced or dependent auto type");
2332     return getTypeInfo(A->getDeducedType().getTypePtr());
2333   }
2334 
2335   case Type::Paren:
2336     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2337 
2338   case Type::MacroQualified:
2339     return getTypeInfo(
2340         cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2341 
2342   case Type::ObjCTypeParam:
2343     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2344 
2345   case Type::Typedef: {
2346     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2347     TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2348     // If the typedef has an aligned attribute on it, it overrides any computed
2349     // alignment we have.  This violates the GCC documentation (which says that
2350     // attribute(aligned) can only round up) but matches its implementation.
2351     if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2352       Align = AttrAlign;
2353       AlignRequirement = AlignRequirementKind::RequiredByTypedef;
2354     } else {
2355       Align = Info.Align;
2356       AlignRequirement = Info.AlignRequirement;
2357     }
2358     Width = Info.Width;
2359     break;
2360   }
2361 
2362   case Type::Elaborated:
2363     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2364 
2365   case Type::Attributed:
2366     return getTypeInfo(
2367                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2368 
2369   case Type::Atomic: {
2370     // Start with the base type information.
2371     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2372     Width = Info.Width;
2373     Align = Info.Align;
2374 
2375     if (!Width) {
2376       // An otherwise zero-sized type should still generate an
2377       // atomic operation.
2378       Width = Target->getCharWidth();
2379       assert(Align);
2380     } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2381       // If the size of the type doesn't exceed the platform's max
2382       // atomic promotion width, make the size and alignment more
2383       // favorable to atomic operations:
2384 
2385       // Round the size up to a power of 2.
2386       if (!llvm::isPowerOf2_64(Width))
2387         Width = llvm::NextPowerOf2(Width);
2388 
2389       // Set the alignment equal to the size.
2390       Align = static_cast<unsigned>(Width);
2391     }
2392   }
2393   break;
2394 
2395   case Type::Pipe:
2396     Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
2397     Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
2398     break;
2399   }
2400 
2401   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2402   return TypeInfo(Width, Align, AlignRequirement);
2403 }
2404 
getTypeUnadjustedAlign(const Type * T) const2405 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2406   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2407   if (I != MemoizedUnadjustedAlign.end())
2408     return I->second;
2409 
2410   unsigned UnadjustedAlign;
2411   if (const auto *RT = T->getAs<RecordType>()) {
2412     const RecordDecl *RD = RT->getDecl();
2413     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2414     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2415   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2416     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2417     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2418   } else {
2419     UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2420   }
2421 
2422   MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2423   return UnadjustedAlign;
2424 }
2425 
getOpenMPDefaultSimdAlign(QualType T) const2426 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2427   unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2428   return SimdAlign;
2429 }
2430 
2431 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
toCharUnitsFromBits(int64_t BitSize) const2432 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2433   return CharUnits::fromQuantity(BitSize / getCharWidth());
2434 }
2435 
2436 /// toBits - Convert a size in characters to a size in characters.
toBits(CharUnits CharSize) const2437 int64_t ASTContext::toBits(CharUnits CharSize) const {
2438   return CharSize.getQuantity() * getCharWidth();
2439 }
2440 
2441 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2442 /// This method does not work on incomplete types.
getTypeSizeInChars(QualType T) const2443 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2444   return getTypeInfoInChars(T).Width;
2445 }
getTypeSizeInChars(const Type * T) const2446 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2447   return getTypeInfoInChars(T).Width;
2448 }
2449 
2450 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2451 /// characters. This method does not work on incomplete types.
getTypeAlignInChars(QualType T) const2452 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2453   return toCharUnitsFromBits(getTypeAlign(T));
2454 }
getTypeAlignInChars(const Type * T) const2455 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2456   return toCharUnitsFromBits(getTypeAlign(T));
2457 }
2458 
2459 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2460 /// type, in characters, before alignment adustments. This method does
2461 /// not work on incomplete types.
getTypeUnadjustedAlignInChars(QualType T) const2462 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2463   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2464 }
getTypeUnadjustedAlignInChars(const Type * T) const2465 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2466   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2467 }
2468 
2469 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2470 /// type for the current target in bits.  This can be different than the ABI
2471 /// alignment in cases where it is beneficial for performance or backwards
2472 /// compatibility preserving to overalign a data type. (Note: despite the name,
2473 /// the preferred alignment is ABI-impacting, and not an optimization.)
getPreferredTypeAlign(const Type * T) const2474 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2475   TypeInfo TI = getTypeInfo(T);
2476   unsigned ABIAlign = TI.Align;
2477 
2478   T = T->getBaseElementTypeUnsafe();
2479 
2480   // The preferred alignment of member pointers is that of a pointer.
2481   if (T->isMemberPointerType())
2482     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2483 
2484   if (!Target->allowsLargerPreferedTypeAlignment())
2485     return ABIAlign;
2486 
2487   if (const auto *RT = T->getAs<RecordType>()) {
2488     const RecordDecl *RD = RT->getDecl();
2489 
2490     // When used as part of a typedef, or together with a 'packed' attribute,
2491     // the 'aligned' attribute can be used to decrease alignment. Note that the
2492     // 'packed' case is already taken into consideration when computing the
2493     // alignment, we only need to handle the typedef case here.
2494     if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
2495         RD->isInvalidDecl())
2496       return ABIAlign;
2497 
2498     unsigned PreferredAlign = static_cast<unsigned>(
2499         toBits(getASTRecordLayout(RD).PreferredAlignment));
2500     assert(PreferredAlign >= ABIAlign &&
2501            "PreferredAlign should be at least as large as ABIAlign.");
2502     return PreferredAlign;
2503   }
2504 
2505   // Double (and, for targets supporting AIX `power` alignment, long double) and
2506   // long long should be naturally aligned (despite requiring less alignment) if
2507   // possible.
2508   if (const auto *CT = T->getAs<ComplexType>())
2509     T = CT->getElementType().getTypePtr();
2510   if (const auto *ET = T->getAs<EnumType>())
2511     T = ET->getDecl()->getIntegerType().getTypePtr();
2512   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2513       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2514       T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2515       (T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
2516        Target->defaultsToAIXPowerAlignment()))
2517     // Don't increase the alignment if an alignment attribute was specified on a
2518     // typedef declaration.
2519     if (!TI.isAlignRequired())
2520       return std::max(ABIAlign, (unsigned)getTypeSize(T));
2521 
2522   return ABIAlign;
2523 }
2524 
2525 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2526 /// for __attribute__((aligned)) on this target, to be used if no alignment
2527 /// value is specified.
getTargetDefaultAlignForAttributeAligned() const2528 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2529   return getTargetInfo().getDefaultAlignForAttributeAligned();
2530 }
2531 
2532 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2533 /// to a global variable of the specified type.
getAlignOfGlobalVar(QualType T) const2534 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2535   uint64_t TypeSize = getTypeSize(T.getTypePtr());
2536   return std::max(getPreferredTypeAlign(T),
2537                   getTargetInfo().getMinGlobalAlign(TypeSize));
2538 }
2539 
2540 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2541 /// should be given to a global variable of the specified type.
getAlignOfGlobalVarInChars(QualType T) const2542 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2543   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2544 }
2545 
getOffsetOfBaseWithVBPtr(const CXXRecordDecl * RD) const2546 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2547   CharUnits Offset = CharUnits::Zero();
2548   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2549   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2550     Offset += Layout->getBaseClassOffset(Base);
2551     Layout = &getASTRecordLayout(Base);
2552   }
2553   return Offset;
2554 }
2555 
getMemberPointerPathAdjustment(const APValue & MP) const2556 CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
2557   const ValueDecl *MPD = MP.getMemberPointerDecl();
2558   CharUnits ThisAdjustment = CharUnits::Zero();
2559   ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
2560   bool DerivedMember = MP.isMemberPointerToDerivedMember();
2561   const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
2562   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
2563     const CXXRecordDecl *Base = RD;
2564     const CXXRecordDecl *Derived = Path[I];
2565     if (DerivedMember)
2566       std::swap(Base, Derived);
2567     ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
2568     RD = Path[I];
2569   }
2570   if (DerivedMember)
2571     ThisAdjustment = -ThisAdjustment;
2572   return ThisAdjustment;
2573 }
2574 
2575 /// DeepCollectObjCIvars -
2576 /// This routine first collects all declared, but not synthesized, ivars in
2577 /// super class and then collects all ivars, including those synthesized for
2578 /// current class. This routine is used for implementation of current class
2579 /// when all ivars, declared and synthesized are known.
DeepCollectObjCIvars(const ObjCInterfaceDecl * OI,bool leafClass,SmallVectorImpl<const ObjCIvarDecl * > & Ivars) const2580 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2581                                       bool leafClass,
2582                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2583   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2584     DeepCollectObjCIvars(SuperClass, false, Ivars);
2585   if (!leafClass) {
2586     for (const auto *I : OI->ivars())
2587       Ivars.push_back(I);
2588   } else {
2589     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2590     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2591          Iv= Iv->getNextIvar())
2592       Ivars.push_back(Iv);
2593   }
2594 }
2595 
2596 /// CollectInheritedProtocols - Collect all protocols in current class and
2597 /// those inherited by it.
CollectInheritedProtocols(const Decl * CDecl,llvm::SmallPtrSet<ObjCProtocolDecl *,8> & Protocols)2598 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2599                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2600   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2601     // We can use protocol_iterator here instead of
2602     // all_referenced_protocol_iterator since we are walking all categories.
2603     for (auto *Proto : OI->all_referenced_protocols()) {
2604       CollectInheritedProtocols(Proto, Protocols);
2605     }
2606 
2607     // Categories of this Interface.
2608     for (const auto *Cat : OI->visible_categories())
2609       CollectInheritedProtocols(Cat, Protocols);
2610 
2611     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2612       while (SD) {
2613         CollectInheritedProtocols(SD, Protocols);
2614         SD = SD->getSuperClass();
2615       }
2616   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2617     for (auto *Proto : OC->protocols()) {
2618       CollectInheritedProtocols(Proto, Protocols);
2619     }
2620   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2621     // Insert the protocol.
2622     if (!Protocols.insert(
2623           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2624       return;
2625 
2626     for (auto *Proto : OP->protocols())
2627       CollectInheritedProtocols(Proto, Protocols);
2628   }
2629 }
2630 
unionHasUniqueObjectRepresentations(const ASTContext & Context,const RecordDecl * RD)2631 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2632                                                 const RecordDecl *RD) {
2633   assert(RD->isUnion() && "Must be union type");
2634   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2635 
2636   for (const auto *Field : RD->fields()) {
2637     if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2638       return false;
2639     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2640     if (FieldSize != UnionSize)
2641       return false;
2642   }
2643   return !RD->field_empty();
2644 }
2645 
getSubobjectOffset(const FieldDecl * Field,const ASTContext & Context,const clang::ASTRecordLayout &)2646 static int64_t getSubobjectOffset(const FieldDecl *Field,
2647                                   const ASTContext &Context,
2648                                   const clang::ASTRecordLayout & /*Layout*/) {
2649   return Context.getFieldOffset(Field);
2650 }
2651 
getSubobjectOffset(const CXXRecordDecl * RD,const ASTContext & Context,const clang::ASTRecordLayout & Layout)2652 static int64_t getSubobjectOffset(const CXXRecordDecl *RD,
2653                                   const ASTContext &Context,
2654                                   const clang::ASTRecordLayout &Layout) {
2655   return Context.toBits(Layout.getBaseClassOffset(RD));
2656 }
2657 
2658 static llvm::Optional<int64_t>
2659 structHasUniqueObjectRepresentations(const ASTContext &Context,
2660                                      const RecordDecl *RD);
2661 
2662 static llvm::Optional<int64_t>
getSubobjectSizeInBits(const FieldDecl * Field,const ASTContext & Context)2663 getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context) {
2664   if (Field->getType()->isRecordType()) {
2665     const RecordDecl *RD = Field->getType()->getAsRecordDecl();
2666     if (!RD->isUnion())
2667       return structHasUniqueObjectRepresentations(Context, RD);
2668   }
2669   if (!Field->getType()->isReferenceType() &&
2670       !Context.hasUniqueObjectRepresentations(Field->getType()))
2671     return llvm::None;
2672 
2673   int64_t FieldSizeInBits =
2674       Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2675   if (Field->isBitField()) {
2676     int64_t BitfieldSize = Field->getBitWidthValue(Context);
2677     if (BitfieldSize > FieldSizeInBits)
2678       return llvm::None;
2679     FieldSizeInBits = BitfieldSize;
2680   }
2681   return FieldSizeInBits;
2682 }
2683 
2684 static llvm::Optional<int64_t>
getSubobjectSizeInBits(const CXXRecordDecl * RD,const ASTContext & Context)2685 getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context) {
2686   return structHasUniqueObjectRepresentations(Context, RD);
2687 }
2688 
2689 template <typename RangeT>
structSubobjectsHaveUniqueObjectRepresentations(const RangeT & Subobjects,int64_t CurOffsetInBits,const ASTContext & Context,const clang::ASTRecordLayout & Layout)2690 static llvm::Optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations(
2691     const RangeT &Subobjects, int64_t CurOffsetInBits,
2692     const ASTContext &Context, const clang::ASTRecordLayout &Layout) {
2693   for (const auto *Subobject : Subobjects) {
2694     llvm::Optional<int64_t> SizeInBits =
2695         getSubobjectSizeInBits(Subobject, Context);
2696     if (!SizeInBits)
2697       return llvm::None;
2698     if (*SizeInBits != 0) {
2699       int64_t Offset = getSubobjectOffset(Subobject, Context, Layout);
2700       if (Offset != CurOffsetInBits)
2701         return llvm::None;
2702       CurOffsetInBits += *SizeInBits;
2703     }
2704   }
2705   return CurOffsetInBits;
2706 }
2707 
2708 static llvm::Optional<int64_t>
structHasUniqueObjectRepresentations(const ASTContext & Context,const RecordDecl * RD)2709 structHasUniqueObjectRepresentations(const ASTContext &Context,
2710                                      const RecordDecl *RD) {
2711   assert(!RD->isUnion() && "Must be struct/class type");
2712   const auto &Layout = Context.getASTRecordLayout(RD);
2713 
2714   int64_t CurOffsetInBits = 0;
2715   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2716     if (ClassDecl->isDynamicClass())
2717       return llvm::None;
2718 
2719     SmallVector<CXXRecordDecl *, 4> Bases;
2720     for (const auto &Base : ClassDecl->bases()) {
2721       // Empty types can be inherited from, and non-empty types can potentially
2722       // have tail padding, so just make sure there isn't an error.
2723       Bases.emplace_back(Base.getType()->getAsCXXRecordDecl());
2724     }
2725 
2726     llvm::sort(Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
2727       return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
2728     });
2729 
2730     llvm::Optional<int64_t> OffsetAfterBases =
2731         structSubobjectsHaveUniqueObjectRepresentations(Bases, CurOffsetInBits,
2732                                                         Context, Layout);
2733     if (!OffsetAfterBases)
2734       return llvm::None;
2735     CurOffsetInBits = *OffsetAfterBases;
2736   }
2737 
2738   llvm::Optional<int64_t> OffsetAfterFields =
2739       structSubobjectsHaveUniqueObjectRepresentations(
2740           RD->fields(), CurOffsetInBits, Context, Layout);
2741   if (!OffsetAfterFields)
2742     return llvm::None;
2743   CurOffsetInBits = *OffsetAfterFields;
2744 
2745   return CurOffsetInBits;
2746 }
2747 
hasUniqueObjectRepresentations(QualType Ty) const2748 bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
2749   // C++17 [meta.unary.prop]:
2750   //   The predicate condition for a template specialization
2751   //   has_unique_object_representations<T> shall be
2752   //   satisfied if and only if:
2753   //     (9.1) - T is trivially copyable, and
2754   //     (9.2) - any two objects of type T with the same value have the same
2755   //     object representation, where two objects
2756   //   of array or non-union class type are considered to have the same value
2757   //   if their respective sequences of
2758   //   direct subobjects have the same values, and two objects of union type
2759   //   are considered to have the same
2760   //   value if they have the same active member and the corresponding members
2761   //   have the same value.
2762   //   The set of scalar types for which this condition holds is
2763   //   implementation-defined. [ Note: If a type has padding
2764   //   bits, the condition does not hold; otherwise, the condition holds true
2765   //   for unsigned integral types. -- end note ]
2766   assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2767 
2768   // Arrays are unique only if their element type is unique.
2769   if (Ty->isArrayType())
2770     return hasUniqueObjectRepresentations(getBaseElementType(Ty));
2771 
2772   // (9.1) - T is trivially copyable...
2773   if (!Ty.isTriviallyCopyableType(*this))
2774     return false;
2775 
2776   // All integrals and enums are unique.
2777   if (Ty->isIntegralOrEnumerationType())
2778     return true;
2779 
2780   // All other pointers are unique.
2781   if (Ty->isPointerType())
2782     return true;
2783 
2784   if (Ty->isMemberPointerType()) {
2785     const auto *MPT = Ty->getAs<MemberPointerType>();
2786     return !ABI->getMemberPointerInfo(MPT).HasPadding;
2787   }
2788 
2789   if (Ty->isRecordType()) {
2790     const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2791 
2792     if (Record->isInvalidDecl())
2793       return false;
2794 
2795     if (Record->isUnion())
2796       return unionHasUniqueObjectRepresentations(*this, Record);
2797 
2798     Optional<int64_t> StructSize =
2799         structHasUniqueObjectRepresentations(*this, Record);
2800 
2801     return StructSize &&
2802            StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
2803   }
2804 
2805   // FIXME: More cases to handle here (list by rsmith):
2806   // vectors (careful about, eg, vector of 3 foo)
2807   // _Complex int and friends
2808   // _Atomic T
2809   // Obj-C block pointers
2810   // Obj-C object pointers
2811   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2812   // clk_event_t, queue_t, reserve_id_t)
2813   // There're also Obj-C class types and the Obj-C selector type, but I think it
2814   // makes sense for those to return false here.
2815 
2816   return false;
2817 }
2818 
CountNonClassIvars(const ObjCInterfaceDecl * OI) const2819 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2820   unsigned count = 0;
2821   // Count ivars declared in class extension.
2822   for (const auto *Ext : OI->known_extensions())
2823     count += Ext->ivar_size();
2824 
2825   // Count ivar defined in this class's implementation.  This
2826   // includes synthesized ivars.
2827   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2828     count += ImplDecl->ivar_size();
2829 
2830   return count;
2831 }
2832 
isSentinelNullExpr(const Expr * E)2833 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2834   if (!E)
2835     return false;
2836 
2837   // nullptr_t is always treated as null.
2838   if (E->getType()->isNullPtrType()) return true;
2839 
2840   if (E->getType()->isAnyPointerType() &&
2841       E->IgnoreParenCasts()->isNullPointerConstant(*this,
2842                                                 Expr::NPC_ValueDependentIsNull))
2843     return true;
2844 
2845   // Unfortunately, __null has type 'int'.
2846   if (isa<GNUNullExpr>(E)) return true;
2847 
2848   return false;
2849 }
2850 
2851 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2852 /// exists.
getObjCImplementation(ObjCInterfaceDecl * D)2853 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2854   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2855     I = ObjCImpls.find(D);
2856   if (I != ObjCImpls.end())
2857     return cast<ObjCImplementationDecl>(I->second);
2858   return nullptr;
2859 }
2860 
2861 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2862 /// exists.
getObjCImplementation(ObjCCategoryDecl * D)2863 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2864   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2865     I = ObjCImpls.find(D);
2866   if (I != ObjCImpls.end())
2867     return cast<ObjCCategoryImplDecl>(I->second);
2868   return nullptr;
2869 }
2870 
2871 /// Set the implementation of ObjCInterfaceDecl.
setObjCImplementation(ObjCInterfaceDecl * IFaceD,ObjCImplementationDecl * ImplD)2872 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2873                            ObjCImplementationDecl *ImplD) {
2874   assert(IFaceD && ImplD && "Passed null params");
2875   ObjCImpls[IFaceD] = ImplD;
2876 }
2877 
2878 /// Set the implementation of ObjCCategoryDecl.
setObjCImplementation(ObjCCategoryDecl * CatD,ObjCCategoryImplDecl * ImplD)2879 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2880                            ObjCCategoryImplDecl *ImplD) {
2881   assert(CatD && ImplD && "Passed null params");
2882   ObjCImpls[CatD] = ImplD;
2883 }
2884 
2885 const ObjCMethodDecl *
getObjCMethodRedeclaration(const ObjCMethodDecl * MD) const2886 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2887   return ObjCMethodRedecls.lookup(MD);
2888 }
2889 
setObjCMethodRedeclaration(const ObjCMethodDecl * MD,const ObjCMethodDecl * Redecl)2890 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2891                                             const ObjCMethodDecl *Redecl) {
2892   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2893   ObjCMethodRedecls[MD] = Redecl;
2894 }
2895 
getObjContainingInterface(const NamedDecl * ND) const2896 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2897                                               const NamedDecl *ND) const {
2898   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2899     return ID;
2900   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2901     return CD->getClassInterface();
2902   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2903     return IMD->getClassInterface();
2904 
2905   return nullptr;
2906 }
2907 
2908 /// Get the copy initialization expression of VarDecl, or nullptr if
2909 /// none exists.
getBlockVarCopyInit(const VarDecl * VD) const2910 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2911   assert(VD && "Passed null params");
2912   assert(VD->hasAttr<BlocksAttr>() &&
2913          "getBlockVarCopyInits - not __block var");
2914   auto I = BlockVarCopyInits.find(VD);
2915   if (I != BlockVarCopyInits.end())
2916     return I->second;
2917   return {nullptr, false};
2918 }
2919 
2920 /// Set the copy initialization expression of a block var decl.
setBlockVarCopyInit(const VarDecl * VD,Expr * CopyExpr,bool CanThrow)2921 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2922                                      bool CanThrow) {
2923   assert(VD && CopyExpr && "Passed null params");
2924   assert(VD->hasAttr<BlocksAttr>() &&
2925          "setBlockVarCopyInits - not __block var");
2926   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2927 }
2928 
CreateTypeSourceInfo(QualType T,unsigned DataSize) const2929 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2930                                                  unsigned DataSize) const {
2931   if (!DataSize)
2932     DataSize = TypeLoc::getFullDataSizeForType(T);
2933   else
2934     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2935            "incorrect data size provided to CreateTypeSourceInfo!");
2936 
2937   auto *TInfo =
2938     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2939   new (TInfo) TypeSourceInfo(T);
2940   return TInfo;
2941 }
2942 
getTrivialTypeSourceInfo(QualType T,SourceLocation L) const2943 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2944                                                      SourceLocation L) const {
2945   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2946   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2947   return DI;
2948 }
2949 
2950 const ASTRecordLayout &
getASTObjCInterfaceLayout(const ObjCInterfaceDecl * D) const2951 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2952   return getObjCLayout(D, nullptr);
2953 }
2954 
2955 const ASTRecordLayout &
getASTObjCImplementationLayout(const ObjCImplementationDecl * D) const2956 ASTContext::getASTObjCImplementationLayout(
2957                                         const ObjCImplementationDecl *D) const {
2958   return getObjCLayout(D->getClassInterface(), D);
2959 }
2960 
2961 //===----------------------------------------------------------------------===//
2962 //                   Type creation/memoization methods
2963 //===----------------------------------------------------------------------===//
2964 
2965 QualType
getExtQualType(const Type * baseType,Qualifiers quals) const2966 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2967   unsigned fastQuals = quals.getFastQualifiers();
2968   quals.removeFastQualifiers();
2969 
2970   // Check if we've already instantiated this type.
2971   llvm::FoldingSetNodeID ID;
2972   ExtQuals::Profile(ID, baseType, quals);
2973   void *insertPos = nullptr;
2974   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2975     assert(eq->getQualifiers() == quals);
2976     return QualType(eq, fastQuals);
2977   }
2978 
2979   // If the base type is not canonical, make the appropriate canonical type.
2980   QualType canon;
2981   if (!baseType->isCanonicalUnqualified()) {
2982     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2983     canonSplit.Quals.addConsistentQualifiers(quals);
2984     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2985 
2986     // Re-find the insert position.
2987     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2988   }
2989 
2990   auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2991   ExtQualNodes.InsertNode(eq, insertPos);
2992   return QualType(eq, fastQuals);
2993 }
2994 
getAddrSpaceQualType(QualType T,LangAS AddressSpace) const2995 QualType ASTContext::getAddrSpaceQualType(QualType T,
2996                                           LangAS AddressSpace) const {
2997   QualType CanT = getCanonicalType(T);
2998   if (CanT.getAddressSpace() == AddressSpace)
2999     return T;
3000 
3001   // If we are composing extended qualifiers together, merge together
3002   // into one ExtQuals node.
3003   QualifierCollector Quals;
3004   const Type *TypeNode = Quals.strip(T);
3005 
3006   // If this type already has an address space specified, it cannot get
3007   // another one.
3008   assert(!Quals.hasAddressSpace() &&
3009          "Type cannot be in multiple addr spaces!");
3010   Quals.addAddressSpace(AddressSpace);
3011 
3012   return getExtQualType(TypeNode, Quals);
3013 }
3014 
removeAddrSpaceQualType(QualType T) const3015 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
3016   // If the type is not qualified with an address space, just return it
3017   // immediately.
3018   if (!T.hasAddressSpace())
3019     return T;
3020 
3021   // If we are composing extended qualifiers together, merge together
3022   // into one ExtQuals node.
3023   QualifierCollector Quals;
3024   const Type *TypeNode;
3025 
3026   while (T.hasAddressSpace()) {
3027     TypeNode = Quals.strip(T);
3028 
3029     // If the type no longer has an address space after stripping qualifiers,
3030     // jump out.
3031     if (!QualType(TypeNode, 0).hasAddressSpace())
3032       break;
3033 
3034     // There might be sugar in the way. Strip it and try again.
3035     T = T.getSingleStepDesugaredType(*this);
3036   }
3037 
3038   Quals.removeAddressSpace();
3039 
3040   // Removal of the address space can mean there are no longer any
3041   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
3042   // or required.
3043   if (Quals.hasNonFastQualifiers())
3044     return getExtQualType(TypeNode, Quals);
3045   else
3046     return QualType(TypeNode, Quals.getFastQualifiers());
3047 }
3048 
getObjCGCQualType(QualType T,Qualifiers::GC GCAttr) const3049 QualType ASTContext::getObjCGCQualType(QualType T,
3050                                        Qualifiers::GC GCAttr) const {
3051   QualType CanT = getCanonicalType(T);
3052   if (CanT.getObjCGCAttr() == GCAttr)
3053     return T;
3054 
3055   if (const auto *ptr = T->getAs<PointerType>()) {
3056     QualType Pointee = ptr->getPointeeType();
3057     if (Pointee->isAnyPointerType()) {
3058       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
3059       return getPointerType(ResultType);
3060     }
3061   }
3062 
3063   // If we are composing extended qualifiers together, merge together
3064   // into one ExtQuals node.
3065   QualifierCollector Quals;
3066   const Type *TypeNode = Quals.strip(T);
3067 
3068   // If this type already has an ObjCGC specified, it cannot get
3069   // another one.
3070   assert(!Quals.hasObjCGCAttr() &&
3071          "Type cannot have multiple ObjCGCs!");
3072   Quals.addObjCGCAttr(GCAttr);
3073 
3074   return getExtQualType(TypeNode, Quals);
3075 }
3076 
removePtrSizeAddrSpace(QualType T) const3077 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
3078   if (const PointerType *Ptr = T->getAs<PointerType>()) {
3079     QualType Pointee = Ptr->getPointeeType();
3080     if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
3081       return getPointerType(removeAddrSpaceQualType(Pointee));
3082     }
3083   }
3084   return T;
3085 }
3086 
adjustFunctionType(const FunctionType * T,FunctionType::ExtInfo Info)3087 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
3088                                                    FunctionType::ExtInfo Info) {
3089   if (T->getExtInfo() == Info)
3090     return T;
3091 
3092   QualType Result;
3093   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
3094     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
3095   } else {
3096     const auto *FPT = cast<FunctionProtoType>(T);
3097     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3098     EPI.ExtInfo = Info;
3099     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
3100   }
3101 
3102   return cast<FunctionType>(Result.getTypePtr());
3103 }
3104 
adjustDeducedFunctionResultType(FunctionDecl * FD,QualType ResultType)3105 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
3106                                                  QualType ResultType) {
3107   FD = FD->getMostRecentDecl();
3108   while (true) {
3109     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
3110     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3111     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
3112     if (FunctionDecl *Next = FD->getPreviousDecl())
3113       FD = Next;
3114     else
3115       break;
3116   }
3117   if (ASTMutationListener *L = getASTMutationListener())
3118     L->DeducedReturnType(FD, ResultType);
3119 }
3120 
3121 /// Get a function type and produce the equivalent function type with the
3122 /// specified exception specification. Type sugar that can be present on a
3123 /// declaration of a function with an exception specification is permitted
3124 /// and preserved. Other type sugar (for instance, typedefs) is not.
getFunctionTypeWithExceptionSpec(QualType Orig,const FunctionProtoType::ExceptionSpecInfo & ESI)3125 QualType ASTContext::getFunctionTypeWithExceptionSpec(
3126     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
3127   // Might have some parens.
3128   if (const auto *PT = dyn_cast<ParenType>(Orig))
3129     return getParenType(
3130         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
3131 
3132   // Might be wrapped in a macro qualified type.
3133   if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
3134     return getMacroQualifiedType(
3135         getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
3136         MQT->getMacroIdentifier());
3137 
3138   // Might have a calling-convention attribute.
3139   if (const auto *AT = dyn_cast<AttributedType>(Orig))
3140     return getAttributedType(
3141         AT->getAttrKind(),
3142         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
3143         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3144 
3145   // Anything else must be a function type. Rebuild it with the new exception
3146   // specification.
3147   const auto *Proto = Orig->castAs<FunctionProtoType>();
3148   return getFunctionType(
3149       Proto->getReturnType(), Proto->getParamTypes(),
3150       Proto->getExtProtoInfo().withExceptionSpec(ESI));
3151 }
3152 
hasSameFunctionTypeIgnoringExceptionSpec(QualType T,QualType U)3153 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3154                                                           QualType U) {
3155   return hasSameType(T, U) ||
3156          (getLangOpts().CPlusPlus17 &&
3157           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3158                       getFunctionTypeWithExceptionSpec(U, EST_None)));
3159 }
3160 
getFunctionTypeWithoutPtrSizes(QualType T)3161 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3162   if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3163     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3164     SmallVector<QualType, 16> Args(Proto->param_types());
3165     for (unsigned i = 0, n = Args.size(); i != n; ++i)
3166       Args[i] = removePtrSizeAddrSpace(Args[i]);
3167     return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3168   }
3169 
3170   if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3171     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3172     return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3173   }
3174 
3175   return T;
3176 }
3177 
hasSameFunctionTypeIgnoringPtrSizes(QualType T,QualType U)3178 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3179   return hasSameType(T, U) ||
3180          hasSameType(getFunctionTypeWithoutPtrSizes(T),
3181                      getFunctionTypeWithoutPtrSizes(U));
3182 }
3183 
adjustExceptionSpec(FunctionDecl * FD,const FunctionProtoType::ExceptionSpecInfo & ESI,bool AsWritten)3184 void ASTContext::adjustExceptionSpec(
3185     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3186     bool AsWritten) {
3187   // Update the type.
3188   QualType Updated =
3189       getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3190   FD->setType(Updated);
3191 
3192   if (!AsWritten)
3193     return;
3194 
3195   // Update the type in the type source information too.
3196   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3197     // If the type and the type-as-written differ, we may need to update
3198     // the type-as-written too.
3199     if (TSInfo->getType() != FD->getType())
3200       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3201 
3202     // FIXME: When we get proper type location information for exceptions,
3203     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3204     // up the TypeSourceInfo;
3205     assert(TypeLoc::getFullDataSizeForType(Updated) ==
3206                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3207            "TypeLoc size mismatch from updating exception specification");
3208     TSInfo->overrideType(Updated);
3209   }
3210 }
3211 
3212 /// getComplexType - Return the uniqued reference to the type for a complex
3213 /// number with the specified element type.
getComplexType(QualType T) const3214 QualType ASTContext::getComplexType(QualType T) const {
3215   // Unique pointers, to guarantee there is only one pointer of a particular
3216   // structure.
3217   llvm::FoldingSetNodeID ID;
3218   ComplexType::Profile(ID, T);
3219 
3220   void *InsertPos = nullptr;
3221   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3222     return QualType(CT, 0);
3223 
3224   // If the pointee type isn't canonical, this won't be a canonical type either,
3225   // so fill in the canonical type field.
3226   QualType Canonical;
3227   if (!T.isCanonical()) {
3228     Canonical = getComplexType(getCanonicalType(T));
3229 
3230     // Get the new insert position for the node we care about.
3231     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3232     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3233   }
3234   auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3235   Types.push_back(New);
3236   ComplexTypes.InsertNode(New, InsertPos);
3237   return QualType(New, 0);
3238 }
3239 
3240 /// getPointerType - Return the uniqued reference to the type for a pointer to
3241 /// the specified type.
getPointerType(QualType T) const3242 QualType ASTContext::getPointerType(QualType T) const {
3243   // Unique pointers, to guarantee there is only one pointer of a particular
3244   // structure.
3245   llvm::FoldingSetNodeID ID;
3246   PointerType::Profile(ID, T);
3247 
3248   void *InsertPos = nullptr;
3249   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3250     return QualType(PT, 0);
3251 
3252   // If the pointee type isn't canonical, this won't be a canonical type either,
3253   // so fill in the canonical type field.
3254   QualType Canonical;
3255   if (!T.isCanonical()) {
3256     Canonical = getPointerType(getCanonicalType(T));
3257 
3258     // Get the new insert position for the node we care about.
3259     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3260     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3261   }
3262   auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3263   Types.push_back(New);
3264   PointerTypes.InsertNode(New, InsertPos);
3265   return QualType(New, 0);
3266 }
3267 
getAdjustedType(QualType Orig,QualType New) const3268 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3269   llvm::FoldingSetNodeID ID;
3270   AdjustedType::Profile(ID, Orig, New);
3271   void *InsertPos = nullptr;
3272   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3273   if (AT)
3274     return QualType(AT, 0);
3275 
3276   QualType Canonical = getCanonicalType(New);
3277 
3278   // Get the new insert position for the node we care about.
3279   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3280   assert(!AT && "Shouldn't be in the map!");
3281 
3282   AT = new (*this, TypeAlignment)
3283       AdjustedType(Type::Adjusted, Orig, New, Canonical);
3284   Types.push_back(AT);
3285   AdjustedTypes.InsertNode(AT, InsertPos);
3286   return QualType(AT, 0);
3287 }
3288 
getDecayedType(QualType T) const3289 QualType ASTContext::getDecayedType(QualType T) const {
3290   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3291 
3292   QualType Decayed;
3293 
3294   // C99 6.7.5.3p7:
3295   //   A declaration of a parameter as "array of type" shall be
3296   //   adjusted to "qualified pointer to type", where the type
3297   //   qualifiers (if any) are those specified within the [ and ] of
3298   //   the array type derivation.
3299   if (T->isArrayType())
3300     Decayed = getArrayDecayedType(T);
3301 
3302   // C99 6.7.5.3p8:
3303   //   A declaration of a parameter as "function returning type"
3304   //   shall be adjusted to "pointer to function returning type", as
3305   //   in 6.3.2.1.
3306   if (T->isFunctionType())
3307     Decayed = getPointerType(T);
3308 
3309   llvm::FoldingSetNodeID ID;
3310   AdjustedType::Profile(ID, T, Decayed);
3311   void *InsertPos = nullptr;
3312   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3313   if (AT)
3314     return QualType(AT, 0);
3315 
3316   QualType Canonical = getCanonicalType(Decayed);
3317 
3318   // Get the new insert position for the node we care about.
3319   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3320   assert(!AT && "Shouldn't be in the map!");
3321 
3322   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
3323   Types.push_back(AT);
3324   AdjustedTypes.InsertNode(AT, InsertPos);
3325   return QualType(AT, 0);
3326 }
3327 
3328 /// getBlockPointerType - Return the uniqued reference to the type for
3329 /// a pointer to the specified block.
getBlockPointerType(QualType T) const3330 QualType ASTContext::getBlockPointerType(QualType T) const {
3331   assert(T->isFunctionType() && "block of function types only");
3332   // Unique pointers, to guarantee there is only one block of a particular
3333   // structure.
3334   llvm::FoldingSetNodeID ID;
3335   BlockPointerType::Profile(ID, T);
3336 
3337   void *InsertPos = nullptr;
3338   if (BlockPointerType *PT =
3339         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3340     return QualType(PT, 0);
3341 
3342   // If the block pointee type isn't canonical, this won't be a canonical
3343   // type either so fill in the canonical type field.
3344   QualType Canonical;
3345   if (!T.isCanonical()) {
3346     Canonical = getBlockPointerType(getCanonicalType(T));
3347 
3348     // Get the new insert position for the node we care about.
3349     BlockPointerType *NewIP =
3350       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3351     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3352   }
3353   auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3354   Types.push_back(New);
3355   BlockPointerTypes.InsertNode(New, InsertPos);
3356   return QualType(New, 0);
3357 }
3358 
3359 /// getLValueReferenceType - Return the uniqued reference to the type for an
3360 /// lvalue reference to the specified type.
3361 QualType
getLValueReferenceType(QualType T,bool SpelledAsLValue) const3362 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3363   assert(getCanonicalType(T) != OverloadTy &&
3364          "Unresolved overloaded function type");
3365 
3366   // Unique pointers, to guarantee there is only one pointer of a particular
3367   // structure.
3368   llvm::FoldingSetNodeID ID;
3369   ReferenceType::Profile(ID, T, SpelledAsLValue);
3370 
3371   void *InsertPos = nullptr;
3372   if (LValueReferenceType *RT =
3373         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3374     return QualType(RT, 0);
3375 
3376   const auto *InnerRef = T->getAs<ReferenceType>();
3377 
3378   // If the referencee type isn't canonical, this won't be a canonical type
3379   // either, so fill in the canonical type field.
3380   QualType Canonical;
3381   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3382     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3383     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3384 
3385     // Get the new insert position for the node we care about.
3386     LValueReferenceType *NewIP =
3387       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3388     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3389   }
3390 
3391   auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3392                                                              SpelledAsLValue);
3393   Types.push_back(New);
3394   LValueReferenceTypes.InsertNode(New, InsertPos);
3395 
3396   return QualType(New, 0);
3397 }
3398 
3399 /// getRValueReferenceType - Return the uniqued reference to the type for an
3400 /// rvalue reference to the specified type.
getRValueReferenceType(QualType T) const3401 QualType ASTContext::getRValueReferenceType(QualType T) const {
3402   // Unique pointers, to guarantee there is only one pointer of a particular
3403   // structure.
3404   llvm::FoldingSetNodeID ID;
3405   ReferenceType::Profile(ID, T, false);
3406 
3407   void *InsertPos = nullptr;
3408   if (RValueReferenceType *RT =
3409         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3410     return QualType(RT, 0);
3411 
3412   const auto *InnerRef = T->getAs<ReferenceType>();
3413 
3414   // If the referencee type isn't canonical, this won't be a canonical type
3415   // either, so fill in the canonical type field.
3416   QualType Canonical;
3417   if (InnerRef || !T.isCanonical()) {
3418     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3419     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3420 
3421     // Get the new insert position for the node we care about.
3422     RValueReferenceType *NewIP =
3423       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3424     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3425   }
3426 
3427   auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3428   Types.push_back(New);
3429   RValueReferenceTypes.InsertNode(New, InsertPos);
3430   return QualType(New, 0);
3431 }
3432 
3433 /// getMemberPointerType - Return the uniqued reference to the type for a
3434 /// member pointer to the specified type, in the specified class.
getMemberPointerType(QualType T,const Type * Cls) const3435 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3436   // Unique pointers, to guarantee there is only one pointer of a particular
3437   // structure.
3438   llvm::FoldingSetNodeID ID;
3439   MemberPointerType::Profile(ID, T, Cls);
3440 
3441   void *InsertPos = nullptr;
3442   if (MemberPointerType *PT =
3443       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3444     return QualType(PT, 0);
3445 
3446   // If the pointee or class type isn't canonical, this won't be a canonical
3447   // type either, so fill in the canonical type field.
3448   QualType Canonical;
3449   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3450     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3451 
3452     // Get the new insert position for the node we care about.
3453     MemberPointerType *NewIP =
3454       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3455     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3456   }
3457   auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3458   Types.push_back(New);
3459   MemberPointerTypes.InsertNode(New, InsertPos);
3460   return QualType(New, 0);
3461 }
3462 
3463 /// getConstantArrayType - Return the unique reference to the type for an
3464 /// array of the specified element type.
getConstantArrayType(QualType EltTy,const llvm::APInt & ArySizeIn,const Expr * SizeExpr,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals) const3465 QualType ASTContext::getConstantArrayType(QualType EltTy,
3466                                           const llvm::APInt &ArySizeIn,
3467                                           const Expr *SizeExpr,
3468                                           ArrayType::ArraySizeModifier ASM,
3469                                           unsigned IndexTypeQuals) const {
3470   assert((EltTy->isDependentType() ||
3471           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3472          "Constant array of VLAs is illegal!");
3473 
3474   // We only need the size as part of the type if it's instantiation-dependent.
3475   if (SizeExpr && !SizeExpr->isInstantiationDependent())
3476     SizeExpr = nullptr;
3477 
3478   // Convert the array size into a canonical width matching the pointer size for
3479   // the target.
3480   llvm::APInt ArySize(ArySizeIn);
3481   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3482 
3483   llvm::FoldingSetNodeID ID;
3484   ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3485                              IndexTypeQuals);
3486 
3487   void *InsertPos = nullptr;
3488   if (ConstantArrayType *ATP =
3489       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3490     return QualType(ATP, 0);
3491 
3492   // If the element type isn't canonical or has qualifiers, or the array bound
3493   // is instantiation-dependent, this won't be a canonical type either, so fill
3494   // in the canonical type field.
3495   QualType Canon;
3496   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3497     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3498     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3499                                  ASM, IndexTypeQuals);
3500     Canon = getQualifiedType(Canon, canonSplit.Quals);
3501 
3502     // Get the new insert position for the node we care about.
3503     ConstantArrayType *NewIP =
3504       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3505     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3506   }
3507 
3508   void *Mem = Allocate(
3509       ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3510       TypeAlignment);
3511   auto *New = new (Mem)
3512     ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3513   ConstantArrayTypes.InsertNode(New, InsertPos);
3514   Types.push_back(New);
3515   return QualType(New, 0);
3516 }
3517 
3518 /// getVariableArrayDecayedType - Turns the given type, which may be
3519 /// variably-modified, into the corresponding type with all the known
3520 /// sizes replaced with [*].
getVariableArrayDecayedType(QualType type) const3521 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3522   // Vastly most common case.
3523   if (!type->isVariablyModifiedType()) return type;
3524 
3525   QualType result;
3526 
3527   SplitQualType split = type.getSplitDesugaredType();
3528   const Type *ty = split.Ty;
3529   switch (ty->getTypeClass()) {
3530 #define TYPE(Class, Base)
3531 #define ABSTRACT_TYPE(Class, Base)
3532 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3533 #include "clang/AST/TypeNodes.inc"
3534     llvm_unreachable("didn't desugar past all non-canonical types?");
3535 
3536   // These types should never be variably-modified.
3537   case Type::Builtin:
3538   case Type::Complex:
3539   case Type::Vector:
3540   case Type::DependentVector:
3541   case Type::ExtVector:
3542   case Type::DependentSizedExtVector:
3543   case Type::ConstantMatrix:
3544   case Type::DependentSizedMatrix:
3545   case Type::DependentAddressSpace:
3546   case Type::ObjCObject:
3547   case Type::ObjCInterface:
3548   case Type::ObjCObjectPointer:
3549   case Type::Record:
3550   case Type::Enum:
3551   case Type::UnresolvedUsing:
3552   case Type::TypeOfExpr:
3553   case Type::TypeOf:
3554   case Type::Decltype:
3555   case Type::UnaryTransform:
3556   case Type::DependentName:
3557   case Type::InjectedClassName:
3558   case Type::TemplateSpecialization:
3559   case Type::DependentTemplateSpecialization:
3560   case Type::TemplateTypeParm:
3561   case Type::SubstTemplateTypeParmPack:
3562   case Type::Auto:
3563   case Type::DeducedTemplateSpecialization:
3564   case Type::PackExpansion:
3565   case Type::ExtInt:
3566   case Type::DependentExtInt:
3567     llvm_unreachable("type should never be variably-modified");
3568 
3569   // These types can be variably-modified but should never need to
3570   // further decay.
3571   case Type::FunctionNoProto:
3572   case Type::FunctionProto:
3573   case Type::BlockPointer:
3574   case Type::MemberPointer:
3575   case Type::Pipe:
3576     return type;
3577 
3578   // These types can be variably-modified.  All these modifications
3579   // preserve structure except as noted by comments.
3580   // TODO: if we ever care about optimizing VLAs, there are no-op
3581   // optimizations available here.
3582   case Type::Pointer:
3583     result = getPointerType(getVariableArrayDecayedType(
3584                               cast<PointerType>(ty)->getPointeeType()));
3585     break;
3586 
3587   case Type::LValueReference: {
3588     const auto *lv = cast<LValueReferenceType>(ty);
3589     result = getLValueReferenceType(
3590                  getVariableArrayDecayedType(lv->getPointeeType()),
3591                                     lv->isSpelledAsLValue());
3592     break;
3593   }
3594 
3595   case Type::RValueReference: {
3596     const auto *lv = cast<RValueReferenceType>(ty);
3597     result = getRValueReferenceType(
3598                  getVariableArrayDecayedType(lv->getPointeeType()));
3599     break;
3600   }
3601 
3602   case Type::Atomic: {
3603     const auto *at = cast<AtomicType>(ty);
3604     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3605     break;
3606   }
3607 
3608   case Type::ConstantArray: {
3609     const auto *cat = cast<ConstantArrayType>(ty);
3610     result = getConstantArrayType(
3611                  getVariableArrayDecayedType(cat->getElementType()),
3612                                   cat->getSize(),
3613                                   cat->getSizeExpr(),
3614                                   cat->getSizeModifier(),
3615                                   cat->getIndexTypeCVRQualifiers());
3616     break;
3617   }
3618 
3619   case Type::DependentSizedArray: {
3620     const auto *dat = cast<DependentSizedArrayType>(ty);
3621     result = getDependentSizedArrayType(
3622                  getVariableArrayDecayedType(dat->getElementType()),
3623                                         dat->getSizeExpr(),
3624                                         dat->getSizeModifier(),
3625                                         dat->getIndexTypeCVRQualifiers(),
3626                                         dat->getBracketsRange());
3627     break;
3628   }
3629 
3630   // Turn incomplete types into [*] types.
3631   case Type::IncompleteArray: {
3632     const auto *iat = cast<IncompleteArrayType>(ty);
3633     result = getVariableArrayType(
3634                  getVariableArrayDecayedType(iat->getElementType()),
3635                                   /*size*/ nullptr,
3636                                   ArrayType::Normal,
3637                                   iat->getIndexTypeCVRQualifiers(),
3638                                   SourceRange());
3639     break;
3640   }
3641 
3642   // Turn VLA types into [*] types.
3643   case Type::VariableArray: {
3644     const auto *vat = cast<VariableArrayType>(ty);
3645     result = getVariableArrayType(
3646                  getVariableArrayDecayedType(vat->getElementType()),
3647                                   /*size*/ nullptr,
3648                                   ArrayType::Star,
3649                                   vat->getIndexTypeCVRQualifiers(),
3650                                   vat->getBracketsRange());
3651     break;
3652   }
3653   }
3654 
3655   // Apply the top-level qualifiers from the original.
3656   return getQualifiedType(result, split.Quals);
3657 }
3658 
3659 /// getVariableArrayType - Returns a non-unique reference to the type for a
3660 /// variable array of the specified element type.
getVariableArrayType(QualType EltTy,Expr * NumElts,ArrayType::ArraySizeModifier ASM,unsigned IndexTypeQuals,SourceRange Brackets) const3661 QualType ASTContext::getVariableArrayType(QualType EltTy,
3662                                           Expr *NumElts,
3663                                           ArrayType::ArraySizeModifier ASM,
3664                                           unsigned IndexTypeQuals,
3665                                           SourceRange Brackets) const {
3666   // Since we don't unique expressions, it isn't possible to unique VLA's
3667   // that have an expression provided for their size.
3668   QualType Canon;
3669 
3670   // Be sure to pull qualifiers off the element type.
3671   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3672     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3673     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3674                                  IndexTypeQuals, Brackets);
3675     Canon = getQualifiedType(Canon, canonSplit.Quals);
3676   }
3677 
3678   auto *New = new (*this, TypeAlignment)
3679     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3680 
3681   VariableArrayTypes.push_back(New);
3682   Types.push_back(New);
3683   return QualType(New, 0);
3684 }
3685 
3686 /// getDependentSizedArrayType - Returns a non-unique reference to
3687 /// the type for a dependently-sized array of the specified element
3688 /// type.
getDependentSizedArrayType(QualType elementType,Expr * numElements,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals,SourceRange brackets) const3689 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3690                                                 Expr *numElements,
3691                                                 ArrayType::ArraySizeModifier ASM,
3692                                                 unsigned elementTypeQuals,
3693                                                 SourceRange brackets) const {
3694   assert((!numElements || numElements->isTypeDependent() ||
3695           numElements->isValueDependent()) &&
3696          "Size must be type- or value-dependent!");
3697 
3698   // Dependently-sized array types that do not have a specified number
3699   // of elements will have their sizes deduced from a dependent
3700   // initializer.  We do no canonicalization here at all, which is okay
3701   // because they can't be used in most locations.
3702   if (!numElements) {
3703     auto *newType
3704       = new (*this, TypeAlignment)
3705           DependentSizedArrayType(*this, elementType, QualType(),
3706                                   numElements, ASM, elementTypeQuals,
3707                                   brackets);
3708     Types.push_back(newType);
3709     return QualType(newType, 0);
3710   }
3711 
3712   // Otherwise, we actually build a new type every time, but we
3713   // also build a canonical type.
3714 
3715   SplitQualType canonElementType = getCanonicalType(elementType).split();
3716 
3717   void *insertPos = nullptr;
3718   llvm::FoldingSetNodeID ID;
3719   DependentSizedArrayType::Profile(ID, *this,
3720                                    QualType(canonElementType.Ty, 0),
3721                                    ASM, elementTypeQuals, numElements);
3722 
3723   // Look for an existing type with these properties.
3724   DependentSizedArrayType *canonTy =
3725     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3726 
3727   // If we don't have one, build one.
3728   if (!canonTy) {
3729     canonTy = new (*this, TypeAlignment)
3730       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3731                               QualType(), numElements, ASM, elementTypeQuals,
3732                               brackets);
3733     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3734     Types.push_back(canonTy);
3735   }
3736 
3737   // Apply qualifiers from the element type to the array.
3738   QualType canon = getQualifiedType(QualType(canonTy,0),
3739                                     canonElementType.Quals);
3740 
3741   // If we didn't need extra canonicalization for the element type or the size
3742   // expression, then just use that as our result.
3743   if (QualType(canonElementType.Ty, 0) == elementType &&
3744       canonTy->getSizeExpr() == numElements)
3745     return canon;
3746 
3747   // Otherwise, we need to build a type which follows the spelling
3748   // of the element type.
3749   auto *sugaredType
3750     = new (*this, TypeAlignment)
3751         DependentSizedArrayType(*this, elementType, canon, numElements,
3752                                 ASM, elementTypeQuals, brackets);
3753   Types.push_back(sugaredType);
3754   return QualType(sugaredType, 0);
3755 }
3756 
getIncompleteArrayType(QualType elementType,ArrayType::ArraySizeModifier ASM,unsigned elementTypeQuals) const3757 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3758                                             ArrayType::ArraySizeModifier ASM,
3759                                             unsigned elementTypeQuals) const {
3760   llvm::FoldingSetNodeID ID;
3761   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3762 
3763   void *insertPos = nullptr;
3764   if (IncompleteArrayType *iat =
3765        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3766     return QualType(iat, 0);
3767 
3768   // If the element type isn't canonical, this won't be a canonical type
3769   // either, so fill in the canonical type field.  We also have to pull
3770   // qualifiers off the element type.
3771   QualType canon;
3772 
3773   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3774     SplitQualType canonSplit = getCanonicalType(elementType).split();
3775     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3776                                    ASM, elementTypeQuals);
3777     canon = getQualifiedType(canon, canonSplit.Quals);
3778 
3779     // Get the new insert position for the node we care about.
3780     IncompleteArrayType *existing =
3781       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3782     assert(!existing && "Shouldn't be in the map!"); (void) existing;
3783   }
3784 
3785   auto *newType = new (*this, TypeAlignment)
3786     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3787 
3788   IncompleteArrayTypes.InsertNode(newType, insertPos);
3789   Types.push_back(newType);
3790   return QualType(newType, 0);
3791 }
3792 
3793 ASTContext::BuiltinVectorTypeInfo
getBuiltinVectorTypeInfo(const BuiltinType * Ty) const3794 ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
3795 #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \
3796   {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
3797    NUMVECTORS};
3798 
3799 #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \
3800   {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};
3801 
3802   switch (Ty->getKind()) {
3803   default:
3804     llvm_unreachable("Unsupported builtin vector type");
3805   case BuiltinType::SveInt8:
3806     return SVE_INT_ELTTY(8, 16, true, 1);
3807   case BuiltinType::SveUint8:
3808     return SVE_INT_ELTTY(8, 16, false, 1);
3809   case BuiltinType::SveInt8x2:
3810     return SVE_INT_ELTTY(8, 16, true, 2);
3811   case BuiltinType::SveUint8x2:
3812     return SVE_INT_ELTTY(8, 16, false, 2);
3813   case BuiltinType::SveInt8x3:
3814     return SVE_INT_ELTTY(8, 16, true, 3);
3815   case BuiltinType::SveUint8x3:
3816     return SVE_INT_ELTTY(8, 16, false, 3);
3817   case BuiltinType::SveInt8x4:
3818     return SVE_INT_ELTTY(8, 16, true, 4);
3819   case BuiltinType::SveUint8x4:
3820     return SVE_INT_ELTTY(8, 16, false, 4);
3821   case BuiltinType::SveInt16:
3822     return SVE_INT_ELTTY(16, 8, true, 1);
3823   case BuiltinType::SveUint16:
3824     return SVE_INT_ELTTY(16, 8, false, 1);
3825   case BuiltinType::SveInt16x2:
3826     return SVE_INT_ELTTY(16, 8, true, 2);
3827   case BuiltinType::SveUint16x2:
3828     return SVE_INT_ELTTY(16, 8, false, 2);
3829   case BuiltinType::SveInt16x3:
3830     return SVE_INT_ELTTY(16, 8, true, 3);
3831   case BuiltinType::SveUint16x3:
3832     return SVE_INT_ELTTY(16, 8, false, 3);
3833   case BuiltinType::SveInt16x4:
3834     return SVE_INT_ELTTY(16, 8, true, 4);
3835   case BuiltinType::SveUint16x4:
3836     return SVE_INT_ELTTY(16, 8, false, 4);
3837   case BuiltinType::SveInt32:
3838     return SVE_INT_ELTTY(32, 4, true, 1);
3839   case BuiltinType::SveUint32:
3840     return SVE_INT_ELTTY(32, 4, false, 1);
3841   case BuiltinType::SveInt32x2:
3842     return SVE_INT_ELTTY(32, 4, true, 2);
3843   case BuiltinType::SveUint32x2:
3844     return SVE_INT_ELTTY(32, 4, false, 2);
3845   case BuiltinType::SveInt32x3:
3846     return SVE_INT_ELTTY(32, 4, true, 3);
3847   case BuiltinType::SveUint32x3:
3848     return SVE_INT_ELTTY(32, 4, false, 3);
3849   case BuiltinType::SveInt32x4:
3850     return SVE_INT_ELTTY(32, 4, true, 4);
3851   case BuiltinType::SveUint32x4:
3852     return SVE_INT_ELTTY(32, 4, false, 4);
3853   case BuiltinType::SveInt64:
3854     return SVE_INT_ELTTY(64, 2, true, 1);
3855   case BuiltinType::SveUint64:
3856     return SVE_INT_ELTTY(64, 2, false, 1);
3857   case BuiltinType::SveInt64x2:
3858     return SVE_INT_ELTTY(64, 2, true, 2);
3859   case BuiltinType::SveUint64x2:
3860     return SVE_INT_ELTTY(64, 2, false, 2);
3861   case BuiltinType::SveInt64x3:
3862     return SVE_INT_ELTTY(64, 2, true, 3);
3863   case BuiltinType::SveUint64x3:
3864     return SVE_INT_ELTTY(64, 2, false, 3);
3865   case BuiltinType::SveInt64x4:
3866     return SVE_INT_ELTTY(64, 2, true, 4);
3867   case BuiltinType::SveUint64x4:
3868     return SVE_INT_ELTTY(64, 2, false, 4);
3869   case BuiltinType::SveBool:
3870     return SVE_ELTTY(BoolTy, 16, 1);
3871   case BuiltinType::SveFloat16:
3872     return SVE_ELTTY(HalfTy, 8, 1);
3873   case BuiltinType::SveFloat16x2:
3874     return SVE_ELTTY(HalfTy, 8, 2);
3875   case BuiltinType::SveFloat16x3:
3876     return SVE_ELTTY(HalfTy, 8, 3);
3877   case BuiltinType::SveFloat16x4:
3878     return SVE_ELTTY(HalfTy, 8, 4);
3879   case BuiltinType::SveFloat32:
3880     return SVE_ELTTY(FloatTy, 4, 1);
3881   case BuiltinType::SveFloat32x2:
3882     return SVE_ELTTY(FloatTy, 4, 2);
3883   case BuiltinType::SveFloat32x3:
3884     return SVE_ELTTY(FloatTy, 4, 3);
3885   case BuiltinType::SveFloat32x4:
3886     return SVE_ELTTY(FloatTy, 4, 4);
3887   case BuiltinType::SveFloat64:
3888     return SVE_ELTTY(DoubleTy, 2, 1);
3889   case BuiltinType::SveFloat64x2:
3890     return SVE_ELTTY(DoubleTy, 2, 2);
3891   case BuiltinType::SveFloat64x3:
3892     return SVE_ELTTY(DoubleTy, 2, 3);
3893   case BuiltinType::SveFloat64x4:
3894     return SVE_ELTTY(DoubleTy, 2, 4);
3895   case BuiltinType::SveBFloat16:
3896     return SVE_ELTTY(BFloat16Ty, 8, 1);
3897   case BuiltinType::SveBFloat16x2:
3898     return SVE_ELTTY(BFloat16Ty, 8, 2);
3899   case BuiltinType::SveBFloat16x3:
3900     return SVE_ELTTY(BFloat16Ty, 8, 3);
3901   case BuiltinType::SveBFloat16x4:
3902     return SVE_ELTTY(BFloat16Ty, 8, 4);
3903 #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF,         \
3904                             IsSigned)                                          \
3905   case BuiltinType::Id:                                                        \
3906     return {getIntTypeForBitwidth(ElBits, IsSigned),                           \
3907             llvm::ElementCount::getScalable(NumEls), NF};
3908 #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)       \
3909   case BuiltinType::Id:                                                        \
3910     return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy),    \
3911             llvm::ElementCount::getScalable(NumEls), NF};
3912 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3913   case BuiltinType::Id:                                                        \
3914     return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1};
3915 #include "clang/Basic/RISCVVTypes.def"
3916   }
3917 }
3918 
3919 /// getScalableVectorType - Return the unique reference to a scalable vector
3920 /// type of the specified element type and size. VectorType must be a built-in
3921 /// type.
getScalableVectorType(QualType EltTy,unsigned NumElts) const3922 QualType ASTContext::getScalableVectorType(QualType EltTy,
3923                                            unsigned NumElts) const {
3924   if (Target->hasAArch64SVETypes()) {
3925     uint64_t EltTySize = getTypeSize(EltTy);
3926 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
3927                         IsSigned, IsFP, IsBF)                                  \
3928   if (!EltTy->isBooleanType() &&                                               \
3929       ((EltTy->hasIntegerRepresentation() &&                                   \
3930         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
3931        (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
3932         IsFP && !IsBF) ||                                                      \
3933        (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
3934         IsBF && !IsFP)) &&                                                     \
3935       EltTySize == ElBits && NumElts == NumEls) {                              \
3936     return SingletonId;                                                        \
3937   }
3938 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
3939   if (EltTy->isBooleanType() && NumElts == NumEls)                             \
3940     return SingletonId;
3941 #include "clang/Basic/AArch64SVEACLETypes.def"
3942   } else if (Target->hasRISCVVTypes()) {
3943     uint64_t EltTySize = getTypeSize(EltTy);
3944 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned,   \
3945                         IsFP)                                                  \
3946     if (!EltTy->isBooleanType() &&                                             \
3947         ((EltTy->hasIntegerRepresentation() &&                                 \
3948           EltTy->hasSignedIntegerRepresentation() == IsSigned) ||              \
3949          (EltTy->hasFloatingRepresentation() && IsFP)) &&                      \
3950         EltTySize == ElBits && NumElts == NumEls)                              \
3951       return SingletonId;
3952 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3953     if (EltTy->isBooleanType() && NumElts == NumEls)                           \
3954       return SingletonId;
3955 #include "clang/Basic/RISCVVTypes.def"
3956   }
3957   return QualType();
3958 }
3959 
3960 /// getVectorType - Return the unique reference to a vector type of
3961 /// the specified element type and size. VectorType must be a built-in type.
getVectorType(QualType vecType,unsigned NumElts,VectorType::VectorKind VecKind) const3962 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
3963                                    VectorType::VectorKind VecKind) const {
3964   assert(vecType->isBuiltinType());
3965 
3966   // Check if we've already instantiated a vector of this type.
3967   llvm::FoldingSetNodeID ID;
3968   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
3969 
3970   void *InsertPos = nullptr;
3971   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3972     return QualType(VTP, 0);
3973 
3974   // If the element type isn't canonical, this won't be a canonical type either,
3975   // so fill in the canonical type field.
3976   QualType Canonical;
3977   if (!vecType.isCanonical()) {
3978     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
3979 
3980     // Get the new insert position for the node we care about.
3981     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3982     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3983   }
3984   auto *New = new (*this, TypeAlignment)
3985     VectorType(vecType, NumElts, Canonical, VecKind);
3986   VectorTypes.InsertNode(New, InsertPos);
3987   Types.push_back(New);
3988   return QualType(New, 0);
3989 }
3990 
3991 QualType
getDependentVectorType(QualType VecType,Expr * SizeExpr,SourceLocation AttrLoc,VectorType::VectorKind VecKind) const3992 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
3993                                    SourceLocation AttrLoc,
3994                                    VectorType::VectorKind VecKind) const {
3995   llvm::FoldingSetNodeID ID;
3996   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
3997                                VecKind);
3998   void *InsertPos = nullptr;
3999   DependentVectorType *Canon =
4000       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4001   DependentVectorType *New;
4002 
4003   if (Canon) {
4004     New = new (*this, TypeAlignment) DependentVectorType(
4005         *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
4006   } else {
4007     QualType CanonVecTy = getCanonicalType(VecType);
4008     if (CanonVecTy == VecType) {
4009       New = new (*this, TypeAlignment) DependentVectorType(
4010           *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
4011 
4012       DependentVectorType *CanonCheck =
4013           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4014       assert(!CanonCheck &&
4015              "Dependent-sized vector_size canonical type broken");
4016       (void)CanonCheck;
4017       DependentVectorTypes.InsertNode(New, InsertPos);
4018     } else {
4019       QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
4020                                                 SourceLocation(), VecKind);
4021       New = new (*this, TypeAlignment) DependentVectorType(
4022           *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
4023     }
4024   }
4025 
4026   Types.push_back(New);
4027   return QualType(New, 0);
4028 }
4029 
4030 /// getExtVectorType - Return the unique reference to an extended vector type of
4031 /// the specified element type and size. VectorType must be a built-in type.
4032 QualType
getExtVectorType(QualType vecType,unsigned NumElts) const4033 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
4034   assert(vecType->isBuiltinType() || vecType->isDependentType());
4035 
4036   // Check if we've already instantiated a vector of this type.
4037   llvm::FoldingSetNodeID ID;
4038   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
4039                       VectorType::GenericVector);
4040   void *InsertPos = nullptr;
4041   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4042     return QualType(VTP, 0);
4043 
4044   // If the element type isn't canonical, this won't be a canonical type either,
4045   // so fill in the canonical type field.
4046   QualType Canonical;
4047   if (!vecType.isCanonical()) {
4048     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
4049 
4050     // Get the new insert position for the node we care about.
4051     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4052     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4053   }
4054   auto *New = new (*this, TypeAlignment)
4055     ExtVectorType(vecType, NumElts, Canonical);
4056   VectorTypes.InsertNode(New, InsertPos);
4057   Types.push_back(New);
4058   return QualType(New, 0);
4059 }
4060 
4061 QualType
getDependentSizedExtVectorType(QualType vecType,Expr * SizeExpr,SourceLocation AttrLoc) const4062 ASTContext::getDependentSizedExtVectorType(QualType vecType,
4063                                            Expr *SizeExpr,
4064                                            SourceLocation AttrLoc) const {
4065   llvm::FoldingSetNodeID ID;
4066   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
4067                                        SizeExpr);
4068 
4069   void *InsertPos = nullptr;
4070   DependentSizedExtVectorType *Canon
4071     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4072   DependentSizedExtVectorType *New;
4073   if (Canon) {
4074     // We already have a canonical version of this array type; use it as
4075     // the canonical type for a newly-built type.
4076     New = new (*this, TypeAlignment)
4077       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
4078                                   SizeExpr, AttrLoc);
4079   } else {
4080     QualType CanonVecTy = getCanonicalType(vecType);
4081     if (CanonVecTy == vecType) {
4082       New = new (*this, TypeAlignment)
4083         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
4084                                     AttrLoc);
4085 
4086       DependentSizedExtVectorType *CanonCheck
4087         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4088       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
4089       (void)CanonCheck;
4090       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
4091     } else {
4092       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
4093                                                            SourceLocation());
4094       New = new (*this, TypeAlignment) DependentSizedExtVectorType(
4095           *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
4096     }
4097   }
4098 
4099   Types.push_back(New);
4100   return QualType(New, 0);
4101 }
4102 
getConstantMatrixType(QualType ElementTy,unsigned NumRows,unsigned NumColumns) const4103 QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
4104                                            unsigned NumColumns) const {
4105   llvm::FoldingSetNodeID ID;
4106   ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
4107                               Type::ConstantMatrix);
4108 
4109   assert(MatrixType::isValidElementType(ElementTy) &&
4110          "need a valid element type");
4111   assert(ConstantMatrixType::isDimensionValid(NumRows) &&
4112          ConstantMatrixType::isDimensionValid(NumColumns) &&
4113          "need valid matrix dimensions");
4114   void *InsertPos = nullptr;
4115   if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
4116     return QualType(MTP, 0);
4117 
4118   QualType Canonical;
4119   if (!ElementTy.isCanonical()) {
4120     Canonical =
4121         getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
4122 
4123     ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4124     assert(!NewIP && "Matrix type shouldn't already exist in the map");
4125     (void)NewIP;
4126   }
4127 
4128   auto *New = new (*this, TypeAlignment)
4129       ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
4130   MatrixTypes.InsertNode(New, InsertPos);
4131   Types.push_back(New);
4132   return QualType(New, 0);
4133 }
4134 
getDependentSizedMatrixType(QualType ElementTy,Expr * RowExpr,Expr * ColumnExpr,SourceLocation AttrLoc) const4135 QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
4136                                                  Expr *RowExpr,
4137                                                  Expr *ColumnExpr,
4138                                                  SourceLocation AttrLoc) const {
4139   QualType CanonElementTy = getCanonicalType(ElementTy);
4140   llvm::FoldingSetNodeID ID;
4141   DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
4142                                     ColumnExpr);
4143 
4144   void *InsertPos = nullptr;
4145   DependentSizedMatrixType *Canon =
4146       DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4147 
4148   if (!Canon) {
4149     Canon = new (*this, TypeAlignment) DependentSizedMatrixType(
4150         *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc);
4151 #ifndef NDEBUG
4152     DependentSizedMatrixType *CanonCheck =
4153         DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4154     assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
4155 #endif
4156     DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
4157     Types.push_back(Canon);
4158   }
4159 
4160   // Already have a canonical version of the matrix type
4161   //
4162   // If it exactly matches the requested type, use it directly.
4163   if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
4164       Canon->getRowExpr() == ColumnExpr)
4165     return QualType(Canon, 0);
4166 
4167   // Use Canon as the canonical type for newly-built type.
4168   DependentSizedMatrixType *New = new (*this, TypeAlignment)
4169       DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr,
4170                                ColumnExpr, AttrLoc);
4171   Types.push_back(New);
4172   return QualType(New, 0);
4173 }
4174 
getDependentAddressSpaceType(QualType PointeeType,Expr * AddrSpaceExpr,SourceLocation AttrLoc) const4175 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
4176                                                   Expr *AddrSpaceExpr,
4177                                                   SourceLocation AttrLoc) const {
4178   assert(AddrSpaceExpr->isInstantiationDependent());
4179 
4180   QualType canonPointeeType = getCanonicalType(PointeeType);
4181 
4182   void *insertPos = nullptr;
4183   llvm::FoldingSetNodeID ID;
4184   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
4185                                      AddrSpaceExpr);
4186 
4187   DependentAddressSpaceType *canonTy =
4188     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
4189 
4190   if (!canonTy) {
4191     canonTy = new (*this, TypeAlignment)
4192       DependentAddressSpaceType(*this, canonPointeeType,
4193                                 QualType(), AddrSpaceExpr, AttrLoc);
4194     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
4195     Types.push_back(canonTy);
4196   }
4197 
4198   if (canonPointeeType == PointeeType &&
4199       canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
4200     return QualType(canonTy, 0);
4201 
4202   auto *sugaredType
4203     = new (*this, TypeAlignment)
4204         DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
4205                                   AddrSpaceExpr, AttrLoc);
4206   Types.push_back(sugaredType);
4207   return QualType(sugaredType, 0);
4208 }
4209 
4210 /// Determine whether \p T is canonical as the result type of a function.
isCanonicalResultType(QualType T)4211 static bool isCanonicalResultType(QualType T) {
4212   return T.isCanonical() &&
4213          (T.getObjCLifetime() == Qualifiers::OCL_None ||
4214           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
4215 }
4216 
4217 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
4218 QualType
getFunctionNoProtoType(QualType ResultTy,const FunctionType::ExtInfo & Info) const4219 ASTContext::getFunctionNoProtoType(QualType ResultTy,
4220                                    const FunctionType::ExtInfo &Info) const {
4221   // Unique functions, to guarantee there is only one function of a particular
4222   // structure.
4223   llvm::FoldingSetNodeID ID;
4224   FunctionNoProtoType::Profile(ID, ResultTy, Info);
4225 
4226   void *InsertPos = nullptr;
4227   if (FunctionNoProtoType *FT =
4228         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
4229     return QualType(FT, 0);
4230 
4231   QualType Canonical;
4232   if (!isCanonicalResultType(ResultTy)) {
4233     Canonical =
4234       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
4235 
4236     // Get the new insert position for the node we care about.
4237     FunctionNoProtoType *NewIP =
4238       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4239     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4240   }
4241 
4242   auto *New = new (*this, TypeAlignment)
4243     FunctionNoProtoType(ResultTy, Canonical, Info);
4244   Types.push_back(New);
4245   FunctionNoProtoTypes.InsertNode(New, InsertPos);
4246   return QualType(New, 0);
4247 }
4248 
4249 CanQualType
getCanonicalFunctionResultType(QualType ResultType) const4250 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
4251   CanQualType CanResultType = getCanonicalType(ResultType);
4252 
4253   // Canonical result types do not have ARC lifetime qualifiers.
4254   if (CanResultType.getQualifiers().hasObjCLifetime()) {
4255     Qualifiers Qs = CanResultType.getQualifiers();
4256     Qs.removeObjCLifetime();
4257     return CanQualType::CreateUnsafe(
4258              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
4259   }
4260 
4261   return CanResultType;
4262 }
4263 
isCanonicalExceptionSpecification(const FunctionProtoType::ExceptionSpecInfo & ESI,bool NoexceptInType)4264 static bool isCanonicalExceptionSpecification(
4265     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
4266   if (ESI.Type == EST_None)
4267     return true;
4268   if (!NoexceptInType)
4269     return false;
4270 
4271   // C++17 onwards: exception specification is part of the type, as a simple
4272   // boolean "can this function type throw".
4273   if (ESI.Type == EST_BasicNoexcept)
4274     return true;
4275 
4276   // A noexcept(expr) specification is (possibly) canonical if expr is
4277   // value-dependent.
4278   if (ESI.Type == EST_DependentNoexcept)
4279     return true;
4280 
4281   // A dynamic exception specification is canonical if it only contains pack
4282   // expansions (so we can't tell whether it's non-throwing) and all its
4283   // contained types are canonical.
4284   if (ESI.Type == EST_Dynamic) {
4285     bool AnyPackExpansions = false;
4286     for (QualType ET : ESI.Exceptions) {
4287       if (!ET.isCanonical())
4288         return false;
4289       if (ET->getAs<PackExpansionType>())
4290         AnyPackExpansions = true;
4291     }
4292     return AnyPackExpansions;
4293   }
4294 
4295   return false;
4296 }
4297 
getFunctionTypeInternal(QualType ResultTy,ArrayRef<QualType> ArgArray,const FunctionProtoType::ExtProtoInfo & EPI,bool OnlyWantCanonical) const4298 QualType ASTContext::getFunctionTypeInternal(
4299     QualType ResultTy, ArrayRef<QualType> ArgArray,
4300     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
4301   size_t NumArgs = ArgArray.size();
4302 
4303   // Unique functions, to guarantee there is only one function of a particular
4304   // structure.
4305   llvm::FoldingSetNodeID ID;
4306   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
4307                              *this, true);
4308 
4309   QualType Canonical;
4310   bool Unique = false;
4311 
4312   void *InsertPos = nullptr;
4313   if (FunctionProtoType *FPT =
4314         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4315     QualType Existing = QualType(FPT, 0);
4316 
4317     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
4318     // it so long as our exception specification doesn't contain a dependent
4319     // noexcept expression, or we're just looking for a canonical type.
4320     // Otherwise, we're going to need to create a type
4321     // sugar node to hold the concrete expression.
4322     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
4323         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
4324       return Existing;
4325 
4326     // We need a new type sugar node for this one, to hold the new noexcept
4327     // expression. We do no canonicalization here, but that's OK since we don't
4328     // expect to see the same noexcept expression much more than once.
4329     Canonical = getCanonicalType(Existing);
4330     Unique = true;
4331   }
4332 
4333   bool NoexceptInType = getLangOpts().CPlusPlus17;
4334   bool IsCanonicalExceptionSpec =
4335       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
4336 
4337   // Determine whether the type being created is already canonical or not.
4338   bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
4339                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
4340   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
4341     if (!ArgArray[i].isCanonicalAsParam())
4342       isCanonical = false;
4343 
4344   if (OnlyWantCanonical)
4345     assert(isCanonical &&
4346            "given non-canonical parameters constructing canonical type");
4347 
4348   // If this type isn't canonical, get the canonical version of it if we don't
4349   // already have it. The exception spec is only partially part of the
4350   // canonical type, and only in C++17 onwards.
4351   if (!isCanonical && Canonical.isNull()) {
4352     SmallVector<QualType, 16> CanonicalArgs;
4353     CanonicalArgs.reserve(NumArgs);
4354     for (unsigned i = 0; i != NumArgs; ++i)
4355       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
4356 
4357     llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
4358     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
4359     CanonicalEPI.HasTrailingReturn = false;
4360 
4361     if (IsCanonicalExceptionSpec) {
4362       // Exception spec is already OK.
4363     } else if (NoexceptInType) {
4364       switch (EPI.ExceptionSpec.Type) {
4365       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
4366         // We don't know yet. It shouldn't matter what we pick here; no-one
4367         // should ever look at this.
4368         LLVM_FALLTHROUGH;
4369       case EST_None: case EST_MSAny: case EST_NoexceptFalse:
4370         CanonicalEPI.ExceptionSpec.Type = EST_None;
4371         break;
4372 
4373         // A dynamic exception specification is almost always "not noexcept",
4374         // with the exception that a pack expansion might expand to no types.
4375       case EST_Dynamic: {
4376         bool AnyPacks = false;
4377         for (QualType ET : EPI.ExceptionSpec.Exceptions) {
4378           if (ET->getAs<PackExpansionType>())
4379             AnyPacks = true;
4380           ExceptionTypeStorage.push_back(getCanonicalType(ET));
4381         }
4382         if (!AnyPacks)
4383           CanonicalEPI.ExceptionSpec.Type = EST_None;
4384         else {
4385           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
4386           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4387         }
4388         break;
4389       }
4390 
4391       case EST_DynamicNone:
4392       case EST_BasicNoexcept:
4393       case EST_NoexceptTrue:
4394       case EST_NoThrow:
4395         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4396         break;
4397 
4398       case EST_DependentNoexcept:
4399         llvm_unreachable("dependent noexcept is already canonical");
4400       }
4401     } else {
4402       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4403     }
4404 
4405     // Adjust the canonical function result type.
4406     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4407     Canonical =
4408         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4409 
4410     // Get the new insert position for the node we care about.
4411     FunctionProtoType *NewIP =
4412       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4413     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4414   }
4415 
4416   // Compute the needed size to hold this FunctionProtoType and the
4417   // various trailing objects.
4418   auto ESH = FunctionProtoType::getExceptionSpecSize(
4419       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4420   size_t Size = FunctionProtoType::totalSizeToAlloc<
4421       QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4422       FunctionType::ExceptionType, Expr *, FunctionDecl *,
4423       FunctionProtoType::ExtParameterInfo, Qualifiers>(
4424       NumArgs, EPI.Variadic,
4425       FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
4426       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4427       EPI.ExtParameterInfos ? NumArgs : 0,
4428       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4429 
4430   auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4431   FunctionProtoType::ExtProtoInfo newEPI = EPI;
4432   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4433   Types.push_back(FTP);
4434   if (!Unique)
4435     FunctionProtoTypes.InsertNode(FTP, InsertPos);
4436   return QualType(FTP, 0);
4437 }
4438 
getPipeType(QualType T,bool ReadOnly) const4439 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4440   llvm::FoldingSetNodeID ID;
4441   PipeType::Profile(ID, T, ReadOnly);
4442 
4443   void *InsertPos = nullptr;
4444   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4445     return QualType(PT, 0);
4446 
4447   // If the pipe element type isn't canonical, this won't be a canonical type
4448   // either, so fill in the canonical type field.
4449   QualType Canonical;
4450   if (!T.isCanonical()) {
4451     Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4452 
4453     // Get the new insert position for the node we care about.
4454     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4455     assert(!NewIP && "Shouldn't be in the map!");
4456     (void)NewIP;
4457   }
4458   auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4459   Types.push_back(New);
4460   PipeTypes.InsertNode(New, InsertPos);
4461   return QualType(New, 0);
4462 }
4463 
adjustStringLiteralBaseType(QualType Ty) const4464 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4465   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4466   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4467                          : Ty;
4468 }
4469 
getReadPipeType(QualType T) const4470 QualType ASTContext::getReadPipeType(QualType T) const {
4471   return getPipeType(T, true);
4472 }
4473 
getWritePipeType(QualType T) const4474 QualType ASTContext::getWritePipeType(QualType T) const {
4475   return getPipeType(T, false);
4476 }
4477 
getExtIntType(bool IsUnsigned,unsigned NumBits) const4478 QualType ASTContext::getExtIntType(bool IsUnsigned, unsigned NumBits) const {
4479   llvm::FoldingSetNodeID ID;
4480   ExtIntType::Profile(ID, IsUnsigned, NumBits);
4481 
4482   void *InsertPos = nullptr;
4483   if (ExtIntType *EIT = ExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4484     return QualType(EIT, 0);
4485 
4486   auto *New = new (*this, TypeAlignment) ExtIntType(IsUnsigned, NumBits);
4487   ExtIntTypes.InsertNode(New, InsertPos);
4488   Types.push_back(New);
4489   return QualType(New, 0);
4490 }
4491 
getDependentExtIntType(bool IsUnsigned,Expr * NumBitsExpr) const4492 QualType ASTContext::getDependentExtIntType(bool IsUnsigned,
4493                                             Expr *NumBitsExpr) const {
4494   assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
4495   llvm::FoldingSetNodeID ID;
4496   DependentExtIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
4497 
4498   void *InsertPos = nullptr;
4499   if (DependentExtIntType *Existing =
4500           DependentExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4501     return QualType(Existing, 0);
4502 
4503   auto *New = new (*this, TypeAlignment)
4504       DependentExtIntType(*this, IsUnsigned, NumBitsExpr);
4505   DependentExtIntTypes.InsertNode(New, InsertPos);
4506 
4507   Types.push_back(New);
4508   return QualType(New, 0);
4509 }
4510 
4511 #ifndef NDEBUG
NeedsInjectedClassNameType(const RecordDecl * D)4512 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4513   if (!isa<CXXRecordDecl>(D)) return false;
4514   const auto *RD = cast<CXXRecordDecl>(D);
4515   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4516     return true;
4517   if (RD->getDescribedClassTemplate() &&
4518       !isa<ClassTemplateSpecializationDecl>(RD))
4519     return true;
4520   return false;
4521 }
4522 #endif
4523 
4524 /// getInjectedClassNameType - Return the unique reference to the
4525 /// injected class name type for the specified templated declaration.
getInjectedClassNameType(CXXRecordDecl * Decl,QualType TST) const4526 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4527                                               QualType TST) const {
4528   assert(NeedsInjectedClassNameType(Decl));
4529   if (Decl->TypeForDecl) {
4530     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4531   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4532     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4533     Decl->TypeForDecl = PrevDecl->TypeForDecl;
4534     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4535   } else {
4536     Type *newType =
4537       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4538     Decl->TypeForDecl = newType;
4539     Types.push_back(newType);
4540   }
4541   return QualType(Decl->TypeForDecl, 0);
4542 }
4543 
4544 /// getTypeDeclType - Return the unique reference to the type for the
4545 /// specified type declaration.
getTypeDeclTypeSlow(const TypeDecl * Decl) const4546 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4547   assert(Decl && "Passed null for Decl param");
4548   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4549 
4550   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4551     return getTypedefType(Typedef);
4552 
4553   assert(!isa<TemplateTypeParmDecl>(Decl) &&
4554          "Template type parameter types are always available.");
4555 
4556   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4557     assert(Record->isFirstDecl() && "struct/union has previous declaration");
4558     assert(!NeedsInjectedClassNameType(Record));
4559     return getRecordType(Record);
4560   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4561     assert(Enum->isFirstDecl() && "enum has previous declaration");
4562     return getEnumType(Enum);
4563   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4564     Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
4565     Decl->TypeForDecl = newType;
4566     Types.push_back(newType);
4567   } else
4568     llvm_unreachable("TypeDecl without a type?");
4569 
4570   return QualType(Decl->TypeForDecl, 0);
4571 }
4572 
4573 /// getTypedefType - Return the unique reference to the type for the
4574 /// specified typedef name decl.
getTypedefType(const TypedefNameDecl * Decl,QualType Underlying) const4575 QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4576                                     QualType Underlying) const {
4577   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4578 
4579   if (Underlying.isNull())
4580     Underlying = Decl->getUnderlyingType();
4581   QualType Canonical = getCanonicalType(Underlying);
4582   auto *newType = new (*this, TypeAlignment)
4583       TypedefType(Type::Typedef, Decl, Underlying, Canonical);
4584   Decl->TypeForDecl = newType;
4585   Types.push_back(newType);
4586   return QualType(newType, 0);
4587 }
4588 
getRecordType(const RecordDecl * Decl) const4589 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4590   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4591 
4592   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4593     if (PrevDecl->TypeForDecl)
4594       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4595 
4596   auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4597   Decl->TypeForDecl = newType;
4598   Types.push_back(newType);
4599   return QualType(newType, 0);
4600 }
4601 
getEnumType(const EnumDecl * Decl) const4602 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4603   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4604 
4605   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4606     if (PrevDecl->TypeForDecl)
4607       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4608 
4609   auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4610   Decl->TypeForDecl = newType;
4611   Types.push_back(newType);
4612   return QualType(newType, 0);
4613 }
4614 
getAttributedType(attr::Kind attrKind,QualType modifiedType,QualType equivalentType)4615 QualType ASTContext::getAttributedType(attr::Kind attrKind,
4616                                        QualType modifiedType,
4617                                        QualType equivalentType) {
4618   llvm::FoldingSetNodeID id;
4619   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4620 
4621   void *insertPos = nullptr;
4622   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4623   if (type) return QualType(type, 0);
4624 
4625   QualType canon = getCanonicalType(equivalentType);
4626   type = new (*this, TypeAlignment)
4627       AttributedType(canon, attrKind, modifiedType, equivalentType);
4628 
4629   Types.push_back(type);
4630   AttributedTypes.InsertNode(type, insertPos);
4631 
4632   return QualType(type, 0);
4633 }
4634 
4635 /// Retrieve a substitution-result type.
4636 QualType
getSubstTemplateTypeParmType(const TemplateTypeParmType * Parm,QualType Replacement) const4637 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
4638                                          QualType Replacement) const {
4639   assert(Replacement.isCanonical()
4640          && "replacement types must always be canonical");
4641 
4642   llvm::FoldingSetNodeID ID;
4643   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
4644   void *InsertPos = nullptr;
4645   SubstTemplateTypeParmType *SubstParm
4646     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4647 
4648   if (!SubstParm) {
4649     SubstParm = new (*this, TypeAlignment)
4650       SubstTemplateTypeParmType(Parm, Replacement);
4651     Types.push_back(SubstParm);
4652     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4653   }
4654 
4655   return QualType(SubstParm, 0);
4656 }
4657 
4658 /// Retrieve a
getSubstTemplateTypeParmPackType(const TemplateTypeParmType * Parm,const TemplateArgument & ArgPack)4659 QualType ASTContext::getSubstTemplateTypeParmPackType(
4660                                           const TemplateTypeParmType *Parm,
4661                                               const TemplateArgument &ArgPack) {
4662 #ifndef NDEBUG
4663   for (const auto &P : ArgPack.pack_elements()) {
4664     assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
4665     assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
4666   }
4667 #endif
4668 
4669   llvm::FoldingSetNodeID ID;
4670   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
4671   void *InsertPos = nullptr;
4672   if (SubstTemplateTypeParmPackType *SubstParm
4673         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4674     return QualType(SubstParm, 0);
4675 
4676   QualType Canon;
4677   if (!Parm->isCanonicalUnqualified()) {
4678     Canon = getCanonicalType(QualType(Parm, 0));
4679     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
4680                                              ArgPack);
4681     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4682   }
4683 
4684   auto *SubstParm
4685     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
4686                                                                ArgPack);
4687   Types.push_back(SubstParm);
4688   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4689   return QualType(SubstParm, 0);
4690 }
4691 
4692 /// Retrieve the template type parameter type for a template
4693 /// parameter or parameter pack with the given depth, index, and (optionally)
4694 /// name.
getTemplateTypeParmType(unsigned Depth,unsigned Index,bool ParameterPack,TemplateTypeParmDecl * TTPDecl) const4695 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4696                                              bool ParameterPack,
4697                                              TemplateTypeParmDecl *TTPDecl) const {
4698   llvm::FoldingSetNodeID ID;
4699   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4700   void *InsertPos = nullptr;
4701   TemplateTypeParmType *TypeParm
4702     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4703 
4704   if (TypeParm)
4705     return QualType(TypeParm, 0);
4706 
4707   if (TTPDecl) {
4708     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4709     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4710 
4711     TemplateTypeParmType *TypeCheck
4712       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4713     assert(!TypeCheck && "Template type parameter canonical type broken");
4714     (void)TypeCheck;
4715   } else
4716     TypeParm = new (*this, TypeAlignment)
4717       TemplateTypeParmType(Depth, Index, ParameterPack);
4718 
4719   Types.push_back(TypeParm);
4720   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4721 
4722   return QualType(TypeParm, 0);
4723 }
4724 
4725 TypeSourceInfo *
getTemplateSpecializationTypeInfo(TemplateName Name,SourceLocation NameLoc,const TemplateArgumentListInfo & Args,QualType Underlying) const4726 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4727                                               SourceLocation NameLoc,
4728                                         const TemplateArgumentListInfo &Args,
4729                                               QualType Underlying) const {
4730   assert(!Name.getAsDependentTemplateName() &&
4731          "No dependent template names here!");
4732   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
4733 
4734   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4735   TemplateSpecializationTypeLoc TL =
4736       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4737   TL.setTemplateKeywordLoc(SourceLocation());
4738   TL.setTemplateNameLoc(NameLoc);
4739   TL.setLAngleLoc(Args.getLAngleLoc());
4740   TL.setRAngleLoc(Args.getRAngleLoc());
4741   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4742     TL.setArgLocInfo(i, Args[i].getLocInfo());
4743   return DI;
4744 }
4745 
4746 QualType
getTemplateSpecializationType(TemplateName Template,const TemplateArgumentListInfo & Args,QualType Underlying) const4747 ASTContext::getTemplateSpecializationType(TemplateName Template,
4748                                           const TemplateArgumentListInfo &Args,
4749                                           QualType Underlying) const {
4750   assert(!Template.getAsDependentTemplateName() &&
4751          "No dependent template names here!");
4752 
4753   SmallVector<TemplateArgument, 4> ArgVec;
4754   ArgVec.reserve(Args.size());
4755   for (const TemplateArgumentLoc &Arg : Args.arguments())
4756     ArgVec.push_back(Arg.getArgument());
4757 
4758   return getTemplateSpecializationType(Template, ArgVec, Underlying);
4759 }
4760 
4761 #ifndef NDEBUG
hasAnyPackExpansions(ArrayRef<TemplateArgument> Args)4762 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4763   for (const TemplateArgument &Arg : Args)
4764     if (Arg.isPackExpansion())
4765       return true;
4766 
4767   return true;
4768 }
4769 #endif
4770 
4771 QualType
getTemplateSpecializationType(TemplateName Template,ArrayRef<TemplateArgument> Args,QualType Underlying) const4772 ASTContext::getTemplateSpecializationType(TemplateName Template,
4773                                           ArrayRef<TemplateArgument> Args,
4774                                           QualType Underlying) const {
4775   assert(!Template.getAsDependentTemplateName() &&
4776          "No dependent template names here!");
4777   // Look through qualified template names.
4778   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4779     Template = TemplateName(QTN->getTemplateDecl());
4780 
4781   bool IsTypeAlias =
4782     Template.getAsTemplateDecl() &&
4783     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4784   QualType CanonType;
4785   if (!Underlying.isNull())
4786     CanonType = getCanonicalType(Underlying);
4787   else {
4788     // We can get here with an alias template when the specialization contains
4789     // a pack expansion that does not match up with a parameter pack.
4790     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4791            "Caller must compute aliased type");
4792     IsTypeAlias = false;
4793     CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4794   }
4795 
4796   // Allocate the (non-canonical) template specialization type, but don't
4797   // try to unique it: these types typically have location information that
4798   // we don't unique and don't want to lose.
4799   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4800                        sizeof(TemplateArgument) * Args.size() +
4801                        (IsTypeAlias? sizeof(QualType) : 0),
4802                        TypeAlignment);
4803   auto *Spec
4804     = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4805                                          IsTypeAlias ? Underlying : QualType());
4806 
4807   Types.push_back(Spec);
4808   return QualType(Spec, 0);
4809 }
4810 
getCanonicalTemplateSpecializationType(TemplateName Template,ArrayRef<TemplateArgument> Args) const4811 QualType ASTContext::getCanonicalTemplateSpecializationType(
4812     TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4813   assert(!Template.getAsDependentTemplateName() &&
4814          "No dependent template names here!");
4815 
4816   // Look through qualified template names.
4817   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4818     Template = TemplateName(QTN->getTemplateDecl());
4819 
4820   // Build the canonical template specialization type.
4821   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4822   SmallVector<TemplateArgument, 4> CanonArgs;
4823   unsigned NumArgs = Args.size();
4824   CanonArgs.reserve(NumArgs);
4825   for (const TemplateArgument &Arg : Args)
4826     CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
4827 
4828   // Determine whether this canonical template specialization type already
4829   // exists.
4830   llvm::FoldingSetNodeID ID;
4831   TemplateSpecializationType::Profile(ID, CanonTemplate,
4832                                       CanonArgs, *this);
4833 
4834   void *InsertPos = nullptr;
4835   TemplateSpecializationType *Spec
4836     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4837 
4838   if (!Spec) {
4839     // Allocate a new canonical template specialization type.
4840     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4841                           sizeof(TemplateArgument) * NumArgs),
4842                          TypeAlignment);
4843     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4844                                                 CanonArgs,
4845                                                 QualType(), QualType());
4846     Types.push_back(Spec);
4847     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4848   }
4849 
4850   assert(Spec->isDependentType() &&
4851          "Non-dependent template-id type must have a canonical type");
4852   return QualType(Spec, 0);
4853 }
4854 
getElaboratedType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,QualType NamedType,TagDecl * OwnedTagDecl) const4855 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
4856                                        NestedNameSpecifier *NNS,
4857                                        QualType NamedType,
4858                                        TagDecl *OwnedTagDecl) const {
4859   llvm::FoldingSetNodeID ID;
4860   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4861 
4862   void *InsertPos = nullptr;
4863   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4864   if (T)
4865     return QualType(T, 0);
4866 
4867   QualType Canon = NamedType;
4868   if (!Canon.isCanonical()) {
4869     Canon = getCanonicalType(NamedType);
4870     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4871     assert(!CheckT && "Elaborated canonical type broken");
4872     (void)CheckT;
4873   }
4874 
4875   void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4876                        TypeAlignment);
4877   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
4878 
4879   Types.push_back(T);
4880   ElaboratedTypes.InsertNode(T, InsertPos);
4881   return QualType(T, 0);
4882 }
4883 
4884 QualType
getParenType(QualType InnerType) const4885 ASTContext::getParenType(QualType InnerType) const {
4886   llvm::FoldingSetNodeID ID;
4887   ParenType::Profile(ID, InnerType);
4888 
4889   void *InsertPos = nullptr;
4890   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4891   if (T)
4892     return QualType(T, 0);
4893 
4894   QualType Canon = InnerType;
4895   if (!Canon.isCanonical()) {
4896     Canon = getCanonicalType(InnerType);
4897     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4898     assert(!CheckT && "Paren canonical type broken");
4899     (void)CheckT;
4900   }
4901 
4902   T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
4903   Types.push_back(T);
4904   ParenTypes.InsertNode(T, InsertPos);
4905   return QualType(T, 0);
4906 }
4907 
4908 QualType
getMacroQualifiedType(QualType UnderlyingTy,const IdentifierInfo * MacroII) const4909 ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
4910                                   const IdentifierInfo *MacroII) const {
4911   QualType Canon = UnderlyingTy;
4912   if (!Canon.isCanonical())
4913     Canon = getCanonicalType(UnderlyingTy);
4914 
4915   auto *newType = new (*this, TypeAlignment)
4916       MacroQualifiedType(UnderlyingTy, Canon, MacroII);
4917   Types.push_back(newType);
4918   return QualType(newType, 0);
4919 }
4920 
getDependentNameType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,QualType Canon) const4921 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
4922                                           NestedNameSpecifier *NNS,
4923                                           const IdentifierInfo *Name,
4924                                           QualType Canon) const {
4925   if (Canon.isNull()) {
4926     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4927     if (CanonNNS != NNS)
4928       Canon = getDependentNameType(Keyword, CanonNNS, Name);
4929   }
4930 
4931   llvm::FoldingSetNodeID ID;
4932   DependentNameType::Profile(ID, Keyword, NNS, Name);
4933 
4934   void *InsertPos = nullptr;
4935   DependentNameType *T
4936     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
4937   if (T)
4938     return QualType(T, 0);
4939 
4940   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
4941   Types.push_back(T);
4942   DependentNameTypes.InsertNode(T, InsertPos);
4943   return QualType(T, 0);
4944 }
4945 
4946 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,const TemplateArgumentListInfo & Args) const4947 ASTContext::getDependentTemplateSpecializationType(
4948                                  ElaboratedTypeKeyword Keyword,
4949                                  NestedNameSpecifier *NNS,
4950                                  const IdentifierInfo *Name,
4951                                  const TemplateArgumentListInfo &Args) const {
4952   // TODO: avoid this copy
4953   SmallVector<TemplateArgument, 16> ArgCopy;
4954   for (unsigned I = 0, E = Args.size(); I != E; ++I)
4955     ArgCopy.push_back(Args[I].getArgument());
4956   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
4957 }
4958 
4959 QualType
getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,ArrayRef<TemplateArgument> Args) const4960 ASTContext::getDependentTemplateSpecializationType(
4961                                  ElaboratedTypeKeyword Keyword,
4962                                  NestedNameSpecifier *NNS,
4963                                  const IdentifierInfo *Name,
4964                                  ArrayRef<TemplateArgument> Args) const {
4965   assert((!NNS || NNS->isDependent()) &&
4966          "nested-name-specifier must be dependent");
4967 
4968   llvm::FoldingSetNodeID ID;
4969   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
4970                                                Name, Args);
4971 
4972   void *InsertPos = nullptr;
4973   DependentTemplateSpecializationType *T
4974     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4975   if (T)
4976     return QualType(T, 0);
4977 
4978   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4979 
4980   ElaboratedTypeKeyword CanonKeyword = Keyword;
4981   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
4982 
4983   bool AnyNonCanonArgs = false;
4984   unsigned NumArgs = Args.size();
4985   SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
4986   for (unsigned I = 0; I != NumArgs; ++I) {
4987     CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
4988     if (!CanonArgs[I].structurallyEquals(Args[I]))
4989       AnyNonCanonArgs = true;
4990   }
4991 
4992   QualType Canon;
4993   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
4994     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
4995                                                    Name,
4996                                                    CanonArgs);
4997 
4998     // Find the insert position again.
4999     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5000   }
5001 
5002   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
5003                         sizeof(TemplateArgument) * NumArgs),
5004                        TypeAlignment);
5005   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
5006                                                     Name, Args, Canon);
5007   Types.push_back(T);
5008   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
5009   return QualType(T, 0);
5010 }
5011 
getInjectedTemplateArg(NamedDecl * Param)5012 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
5013   TemplateArgument Arg;
5014   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5015     QualType ArgType = getTypeDeclType(TTP);
5016     if (TTP->isParameterPack())
5017       ArgType = getPackExpansionType(ArgType, None);
5018 
5019     Arg = TemplateArgument(ArgType);
5020   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5021     QualType T =
5022         NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this);
5023     // For class NTTPs, ensure we include the 'const' so the type matches that
5024     // of a real template argument.
5025     // FIXME: It would be more faithful to model this as something like an
5026     // lvalue-to-rvalue conversion applied to a const-qualified lvalue.
5027     if (T->isRecordType())
5028       T.addConst();
5029     Expr *E = new (*this) DeclRefExpr(
5030         *this, NTTP, /*enclosing*/ false, T,
5031         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
5032 
5033     if (NTTP->isParameterPack())
5034       E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
5035                                         None);
5036     Arg = TemplateArgument(E);
5037   } else {
5038     auto *TTP = cast<TemplateTemplateParmDecl>(Param);
5039     if (TTP->isParameterPack())
5040       Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
5041     else
5042       Arg = TemplateArgument(TemplateName(TTP));
5043   }
5044 
5045   if (Param->isTemplateParameterPack())
5046     Arg = TemplateArgument::CreatePackCopy(*this, Arg);
5047 
5048   return Arg;
5049 }
5050 
5051 void
getInjectedTemplateArgs(const TemplateParameterList * Params,SmallVectorImpl<TemplateArgument> & Args)5052 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
5053                                     SmallVectorImpl<TemplateArgument> &Args) {
5054   Args.reserve(Args.size() + Params->size());
5055 
5056   for (NamedDecl *Param : *Params)
5057     Args.push_back(getInjectedTemplateArg(Param));
5058 }
5059 
getPackExpansionType(QualType Pattern,Optional<unsigned> NumExpansions,bool ExpectPackInType)5060 QualType ASTContext::getPackExpansionType(QualType Pattern,
5061                                           Optional<unsigned> NumExpansions,
5062                                           bool ExpectPackInType) {
5063   assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&
5064          "Pack expansions must expand one or more parameter packs");
5065 
5066   llvm::FoldingSetNodeID ID;
5067   PackExpansionType::Profile(ID, Pattern, NumExpansions);
5068 
5069   void *InsertPos = nullptr;
5070   PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5071   if (T)
5072     return QualType(T, 0);
5073 
5074   QualType Canon;
5075   if (!Pattern.isCanonical()) {
5076     Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
5077                                  /*ExpectPackInType=*/false);
5078 
5079     // Find the insert position again, in case we inserted an element into
5080     // PackExpansionTypes and invalidated our insert position.
5081     PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5082   }
5083 
5084   T = new (*this, TypeAlignment)
5085       PackExpansionType(Pattern, Canon, NumExpansions);
5086   Types.push_back(T);
5087   PackExpansionTypes.InsertNode(T, InsertPos);
5088   return QualType(T, 0);
5089 }
5090 
5091 /// CmpProtocolNames - Comparison predicate for sorting protocols
5092 /// alphabetically.
CmpProtocolNames(ObjCProtocolDecl * const * LHS,ObjCProtocolDecl * const * RHS)5093 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
5094                             ObjCProtocolDecl *const *RHS) {
5095   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
5096 }
5097 
areSortedAndUniqued(ArrayRef<ObjCProtocolDecl * > Protocols)5098 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
5099   if (Protocols.empty()) return true;
5100 
5101   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
5102     return false;
5103 
5104   for (unsigned i = 1; i != Protocols.size(); ++i)
5105     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
5106         Protocols[i]->getCanonicalDecl() != Protocols[i])
5107       return false;
5108   return true;
5109 }
5110 
5111 static void
SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl * > & Protocols)5112 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
5113   // Sort protocols, keyed by name.
5114   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
5115 
5116   // Canonicalize.
5117   for (ObjCProtocolDecl *&P : Protocols)
5118     P = P->getCanonicalDecl();
5119 
5120   // Remove duplicates.
5121   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
5122   Protocols.erase(ProtocolsEnd, Protocols.end());
5123 }
5124 
getObjCObjectType(QualType BaseType,ObjCProtocolDecl * const * Protocols,unsigned NumProtocols) const5125 QualType ASTContext::getObjCObjectType(QualType BaseType,
5126                                        ObjCProtocolDecl * const *Protocols,
5127                                        unsigned NumProtocols) const {
5128   return getObjCObjectType(BaseType, {},
5129                            llvm::makeArrayRef(Protocols, NumProtocols),
5130                            /*isKindOf=*/false);
5131 }
5132 
getObjCObjectType(QualType baseType,ArrayRef<QualType> typeArgs,ArrayRef<ObjCProtocolDecl * > protocols,bool isKindOf) const5133 QualType ASTContext::getObjCObjectType(
5134            QualType baseType,
5135            ArrayRef<QualType> typeArgs,
5136            ArrayRef<ObjCProtocolDecl *> protocols,
5137            bool isKindOf) const {
5138   // If the base type is an interface and there aren't any protocols or
5139   // type arguments to add, then the interface type will do just fine.
5140   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
5141       isa<ObjCInterfaceType>(baseType))
5142     return baseType;
5143 
5144   // Look in the folding set for an existing type.
5145   llvm::FoldingSetNodeID ID;
5146   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
5147   void *InsertPos = nullptr;
5148   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
5149     return QualType(QT, 0);
5150 
5151   // Determine the type arguments to be used for canonicalization,
5152   // which may be explicitly specified here or written on the base
5153   // type.
5154   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
5155   if (effectiveTypeArgs.empty()) {
5156     if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
5157       effectiveTypeArgs = baseObject->getTypeArgs();
5158   }
5159 
5160   // Build the canonical type, which has the canonical base type and a
5161   // sorted-and-uniqued list of protocols and the type arguments
5162   // canonicalized.
5163   QualType canonical;
5164   bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
5165                                           effectiveTypeArgs.end(),
5166                                           [&](QualType type) {
5167                                             return type.isCanonical();
5168                                           });
5169   bool protocolsSorted = areSortedAndUniqued(protocols);
5170   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
5171     // Determine the canonical type arguments.
5172     ArrayRef<QualType> canonTypeArgs;
5173     SmallVector<QualType, 4> canonTypeArgsVec;
5174     if (!typeArgsAreCanonical) {
5175       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
5176       for (auto typeArg : effectiveTypeArgs)
5177         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
5178       canonTypeArgs = canonTypeArgsVec;
5179     } else {
5180       canonTypeArgs = effectiveTypeArgs;
5181     }
5182 
5183     ArrayRef<ObjCProtocolDecl *> canonProtocols;
5184     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
5185     if (!protocolsSorted) {
5186       canonProtocolsVec.append(protocols.begin(), protocols.end());
5187       SortAndUniqueProtocols(canonProtocolsVec);
5188       canonProtocols = canonProtocolsVec;
5189     } else {
5190       canonProtocols = protocols;
5191     }
5192 
5193     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
5194                                   canonProtocols, isKindOf);
5195 
5196     // Regenerate InsertPos.
5197     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
5198   }
5199 
5200   unsigned size = sizeof(ObjCObjectTypeImpl);
5201   size += typeArgs.size() * sizeof(QualType);
5202   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5203   void *mem = Allocate(size, TypeAlignment);
5204   auto *T =
5205     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
5206                                  isKindOf);
5207 
5208   Types.push_back(T);
5209   ObjCObjectTypes.InsertNode(T, InsertPos);
5210   return QualType(T, 0);
5211 }
5212 
5213 /// Apply Objective-C protocol qualifiers to the given type.
5214 /// If this is for the canonical type of a type parameter, we can apply
5215 /// protocol qualifiers on the ObjCObjectPointerType.
5216 QualType
applyObjCProtocolQualifiers(QualType type,ArrayRef<ObjCProtocolDecl * > protocols,bool & hasError,bool allowOnPointerType) const5217 ASTContext::applyObjCProtocolQualifiers(QualType type,
5218                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
5219                   bool allowOnPointerType) const {
5220   hasError = false;
5221 
5222   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
5223     return getObjCTypeParamType(objT->getDecl(), protocols);
5224   }
5225 
5226   // Apply protocol qualifiers to ObjCObjectPointerType.
5227   if (allowOnPointerType) {
5228     if (const auto *objPtr =
5229             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
5230       const ObjCObjectType *objT = objPtr->getObjectType();
5231       // Merge protocol lists and construct ObjCObjectType.
5232       SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
5233       protocolsVec.append(objT->qual_begin(),
5234                           objT->qual_end());
5235       protocolsVec.append(protocols.begin(), protocols.end());
5236       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
5237       type = getObjCObjectType(
5238              objT->getBaseType(),
5239              objT->getTypeArgsAsWritten(),
5240              protocols,
5241              objT->isKindOfTypeAsWritten());
5242       return getObjCObjectPointerType(type);
5243     }
5244   }
5245 
5246   // Apply protocol qualifiers to ObjCObjectType.
5247   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
5248     // FIXME: Check for protocols to which the class type is already
5249     // known to conform.
5250 
5251     return getObjCObjectType(objT->getBaseType(),
5252                              objT->getTypeArgsAsWritten(),
5253                              protocols,
5254                              objT->isKindOfTypeAsWritten());
5255   }
5256 
5257   // If the canonical type is ObjCObjectType, ...
5258   if (type->isObjCObjectType()) {
5259     // Silently overwrite any existing protocol qualifiers.
5260     // TODO: determine whether that's the right thing to do.
5261 
5262     // FIXME: Check for protocols to which the class type is already
5263     // known to conform.
5264     return getObjCObjectType(type, {}, protocols, false);
5265   }
5266 
5267   // id<protocol-list>
5268   if (type->isObjCIdType()) {
5269     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5270     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
5271                                  objPtr->isKindOfType());
5272     return getObjCObjectPointerType(type);
5273   }
5274 
5275   // Class<protocol-list>
5276   if (type->isObjCClassType()) {
5277     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5278     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
5279                                  objPtr->isKindOfType());
5280     return getObjCObjectPointerType(type);
5281   }
5282 
5283   hasError = true;
5284   return type;
5285 }
5286 
5287 QualType
getObjCTypeParamType(const ObjCTypeParamDecl * Decl,ArrayRef<ObjCProtocolDecl * > protocols) const5288 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
5289                                  ArrayRef<ObjCProtocolDecl *> protocols) const {
5290   // Look in the folding set for an existing type.
5291   llvm::FoldingSetNodeID ID;
5292   ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
5293   void *InsertPos = nullptr;
5294   if (ObjCTypeParamType *TypeParam =
5295       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
5296     return QualType(TypeParam, 0);
5297 
5298   // We canonicalize to the underlying type.
5299   QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
5300   if (!protocols.empty()) {
5301     // Apply the protocol qualifers.
5302     bool hasError;
5303     Canonical = getCanonicalType(applyObjCProtocolQualifiers(
5304         Canonical, protocols, hasError, true /*allowOnPointerType*/));
5305     assert(!hasError && "Error when apply protocol qualifier to bound type");
5306   }
5307 
5308   unsigned size = sizeof(ObjCTypeParamType);
5309   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5310   void *mem = Allocate(size, TypeAlignment);
5311   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
5312 
5313   Types.push_back(newType);
5314   ObjCTypeParamTypes.InsertNode(newType, InsertPos);
5315   return QualType(newType, 0);
5316 }
5317 
adjustObjCTypeParamBoundType(const ObjCTypeParamDecl * Orig,ObjCTypeParamDecl * New) const5318 void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
5319                                               ObjCTypeParamDecl *New) const {
5320   New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
5321   // Update TypeForDecl after updating TypeSourceInfo.
5322   auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
5323   SmallVector<ObjCProtocolDecl *, 8> protocols;
5324   protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
5325   QualType UpdatedTy = getObjCTypeParamType(New, protocols);
5326   New->setTypeForDecl(UpdatedTy.getTypePtr());
5327 }
5328 
5329 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
5330 /// protocol list adopt all protocols in QT's qualified-id protocol
5331 /// list.
ObjCObjectAdoptsQTypeProtocols(QualType QT,ObjCInterfaceDecl * IC)5332 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
5333                                                 ObjCInterfaceDecl *IC) {
5334   if (!QT->isObjCQualifiedIdType())
5335     return false;
5336 
5337   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
5338     // If both the right and left sides have qualifiers.
5339     for (auto *Proto : OPT->quals()) {
5340       if (!IC->ClassImplementsProtocol(Proto, false))
5341         return false;
5342     }
5343     return true;
5344   }
5345   return false;
5346 }
5347 
5348 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
5349 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
5350 /// of protocols.
QIdProtocolsAdoptObjCObjectProtocols(QualType QT,ObjCInterfaceDecl * IDecl)5351 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
5352                                                 ObjCInterfaceDecl *IDecl) {
5353   if (!QT->isObjCQualifiedIdType())
5354     return false;
5355   const auto *OPT = QT->getAs<ObjCObjectPointerType>();
5356   if (!OPT)
5357     return false;
5358   if (!IDecl->hasDefinition())
5359     return false;
5360   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
5361   CollectInheritedProtocols(IDecl, InheritedProtocols);
5362   if (InheritedProtocols.empty())
5363     return false;
5364   // Check that if every protocol in list of id<plist> conforms to a protocol
5365   // of IDecl's, then bridge casting is ok.
5366   bool Conforms = false;
5367   for (auto *Proto : OPT->quals()) {
5368     Conforms = false;
5369     for (auto *PI : InheritedProtocols) {
5370       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
5371         Conforms = true;
5372         break;
5373       }
5374     }
5375     if (!Conforms)
5376       break;
5377   }
5378   if (Conforms)
5379     return true;
5380 
5381   for (auto *PI : InheritedProtocols) {
5382     // If both the right and left sides have qualifiers.
5383     bool Adopts = false;
5384     for (auto *Proto : OPT->quals()) {
5385       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
5386       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
5387         break;
5388     }
5389     if (!Adopts)
5390       return false;
5391   }
5392   return true;
5393 }
5394 
5395 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
5396 /// the given object type.
getObjCObjectPointerType(QualType ObjectT) const5397 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
5398   llvm::FoldingSetNodeID ID;
5399   ObjCObjectPointerType::Profile(ID, ObjectT);
5400 
5401   void *InsertPos = nullptr;
5402   if (ObjCObjectPointerType *QT =
5403               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
5404     return QualType(QT, 0);
5405 
5406   // Find the canonical object type.
5407   QualType Canonical;
5408   if (!ObjectT.isCanonical()) {
5409     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
5410 
5411     // Regenerate InsertPos.
5412     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
5413   }
5414 
5415   // No match.
5416   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
5417   auto *QType =
5418     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
5419 
5420   Types.push_back(QType);
5421   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
5422   return QualType(QType, 0);
5423 }
5424 
5425 /// getObjCInterfaceType - Return the unique reference to the type for the
5426 /// specified ObjC interface decl. The list of protocols is optional.
getObjCInterfaceType(const ObjCInterfaceDecl * Decl,ObjCInterfaceDecl * PrevDecl) const5427 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5428                                           ObjCInterfaceDecl *PrevDecl) const {
5429   if (Decl->TypeForDecl)
5430     return QualType(Decl->TypeForDecl, 0);
5431 
5432   if (PrevDecl) {
5433     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5434     Decl->TypeForDecl = PrevDecl->TypeForDecl;
5435     return QualType(PrevDecl->TypeForDecl, 0);
5436   }
5437 
5438   // Prefer the definition, if there is one.
5439   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5440     Decl = Def;
5441 
5442   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5443   auto *T = new (Mem) ObjCInterfaceType(Decl);
5444   Decl->TypeForDecl = T;
5445   Types.push_back(T);
5446   return QualType(T, 0);
5447 }
5448 
5449 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5450 /// TypeOfExprType AST's (since expression's are never shared). For example,
5451 /// multiple declarations that refer to "typeof(x)" all contain different
5452 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
5453 /// on canonical type's (which are always unique).
getTypeOfExprType(Expr * tofExpr) const5454 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
5455   TypeOfExprType *toe;
5456   if (tofExpr->isTypeDependent()) {
5457     llvm::FoldingSetNodeID ID;
5458     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
5459 
5460     void *InsertPos = nullptr;
5461     DependentTypeOfExprType *Canon
5462       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5463     if (Canon) {
5464       // We already have a "canonical" version of an identical, dependent
5465       // typeof(expr) type. Use that as our canonical type.
5466       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
5467                                           QualType((TypeOfExprType*)Canon, 0));
5468     } else {
5469       // Build a new, canonical typeof(expr) type.
5470       Canon
5471         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
5472       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5473       toe = Canon;
5474     }
5475   } else {
5476     QualType Canonical = getCanonicalType(tofExpr->getType());
5477     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
5478   }
5479   Types.push_back(toe);
5480   return QualType(toe, 0);
5481 }
5482 
5483 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
5484 /// TypeOfType nodes. The only motivation to unique these nodes would be
5485 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5486 /// an issue. This doesn't affect the type checker, since it operates
5487 /// on canonical types (which are always unique).
getTypeOfType(QualType tofType) const5488 QualType ASTContext::getTypeOfType(QualType tofType) const {
5489   QualType Canonical = getCanonicalType(tofType);
5490   auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
5491   Types.push_back(tot);
5492   return QualType(tot, 0);
5493 }
5494 
5495 /// getReferenceQualifiedType - Given an expr, will return the type for
5496 /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions
5497 /// and class member access into account.
getReferenceQualifiedType(const Expr * E) const5498 QualType ASTContext::getReferenceQualifiedType(const Expr *E) const {
5499   // C++11 [dcl.type.simple]p4:
5500   //   [...]
5501   QualType T = E->getType();
5502   switch (E->getValueKind()) {
5503   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5504   //       type of e;
5505   case VK_XValue:
5506     return getRValueReferenceType(T);
5507   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5508   //       type of e;
5509   case VK_LValue:
5510     return getLValueReferenceType(T);
5511   //  - otherwise, decltype(e) is the type of e.
5512   case VK_PRValue:
5513     return T;
5514   }
5515   llvm_unreachable("Unknown value kind");
5516 }
5517 
5518 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
5519 /// nodes. This would never be helpful, since each such type has its own
5520 /// expression, and would not give a significant memory saving, since there
5521 /// is an Expr tree under each such type.
getDecltypeType(Expr * e,QualType UnderlyingType) const5522 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5523   DecltypeType *dt;
5524 
5525   // C++11 [temp.type]p2:
5526   //   If an expression e involves a template parameter, decltype(e) denotes a
5527   //   unique dependent type. Two such decltype-specifiers refer to the same
5528   //   type only if their expressions are equivalent (14.5.6.1).
5529   if (e->isInstantiationDependent()) {
5530     llvm::FoldingSetNodeID ID;
5531     DependentDecltypeType::Profile(ID, *this, e);
5532 
5533     void *InsertPos = nullptr;
5534     DependentDecltypeType *Canon
5535       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5536     if (!Canon) {
5537       // Build a new, canonical decltype(expr) type.
5538       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5539       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5540     }
5541     dt = new (*this, TypeAlignment)
5542         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5543   } else {
5544     dt = new (*this, TypeAlignment)
5545         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5546   }
5547   Types.push_back(dt);
5548   return QualType(dt, 0);
5549 }
5550 
5551 /// getUnaryTransformationType - We don't unique these, since the memory
5552 /// savings are minimal and these are rare.
getUnaryTransformType(QualType BaseType,QualType UnderlyingType,UnaryTransformType::UTTKind Kind) const5553 QualType ASTContext::getUnaryTransformType(QualType BaseType,
5554                                            QualType UnderlyingType,
5555                                            UnaryTransformType::UTTKind Kind)
5556     const {
5557   UnaryTransformType *ut = nullptr;
5558 
5559   if (BaseType->isDependentType()) {
5560     // Look in the folding set for an existing type.
5561     llvm::FoldingSetNodeID ID;
5562     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5563 
5564     void *InsertPos = nullptr;
5565     DependentUnaryTransformType *Canon
5566       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5567 
5568     if (!Canon) {
5569       // Build a new, canonical __underlying_type(type) type.
5570       Canon = new (*this, TypeAlignment)
5571              DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5572                                          Kind);
5573       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5574     }
5575     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5576                                                         QualType(), Kind,
5577                                                         QualType(Canon, 0));
5578   } else {
5579     QualType CanonType = getCanonicalType(UnderlyingType);
5580     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5581                                                         UnderlyingType, Kind,
5582                                                         CanonType);
5583   }
5584   Types.push_back(ut);
5585   return QualType(ut, 0);
5586 }
5587 
5588 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
5589 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5590 /// canonical deduced-but-dependent 'auto' type.
5591 QualType
getAutoType(QualType DeducedType,AutoTypeKeyword Keyword,bool IsDependent,bool IsPack,ConceptDecl * TypeConstraintConcept,ArrayRef<TemplateArgument> TypeConstraintArgs) const5592 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5593                         bool IsDependent, bool IsPack,
5594                         ConceptDecl *TypeConstraintConcept,
5595                         ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5596   assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5597   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5598       !TypeConstraintConcept && !IsDependent)
5599     return getAutoDeductType();
5600 
5601   // Look in the folding set for an existing type.
5602   void *InsertPos = nullptr;
5603   llvm::FoldingSetNodeID ID;
5604   AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5605                     TypeConstraintConcept, TypeConstraintArgs);
5606   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5607     return QualType(AT, 0);
5608 
5609   void *Mem = Allocate(sizeof(AutoType) +
5610                        sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5611                        TypeAlignment);
5612   auto *AT = new (Mem) AutoType(
5613       DeducedType, Keyword,
5614       (IsDependent ? TypeDependence::DependentInstantiation
5615                    : TypeDependence::None) |
5616           (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
5617       TypeConstraintConcept, TypeConstraintArgs);
5618   Types.push_back(AT);
5619   if (InsertPos)
5620     AutoTypes.InsertNode(AT, InsertPos);
5621   return QualType(AT, 0);
5622 }
5623 
5624 /// Return the uniqued reference to the deduced template specialization type
5625 /// which has been deduced to the given type, or to the canonical undeduced
5626 /// such type, or the canonical deduced-but-dependent such type.
getDeducedTemplateSpecializationType(TemplateName Template,QualType DeducedType,bool IsDependent) const5627 QualType ASTContext::getDeducedTemplateSpecializationType(
5628     TemplateName Template, QualType DeducedType, bool IsDependent) const {
5629   // Look in the folding set for an existing type.
5630   void *InsertPos = nullptr;
5631   llvm::FoldingSetNodeID ID;
5632   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5633                                              IsDependent);
5634   if (DeducedTemplateSpecializationType *DTST =
5635           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5636     return QualType(DTST, 0);
5637 
5638   auto *DTST = new (*this, TypeAlignment)
5639       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5640   Types.push_back(DTST);
5641   if (InsertPos)
5642     DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5643   return QualType(DTST, 0);
5644 }
5645 
5646 /// getAtomicType - Return the uniqued reference to the atomic type for
5647 /// the given value type.
getAtomicType(QualType T) const5648 QualType ASTContext::getAtomicType(QualType T) const {
5649   // Unique pointers, to guarantee there is only one pointer of a particular
5650   // structure.
5651   llvm::FoldingSetNodeID ID;
5652   AtomicType::Profile(ID, T);
5653 
5654   void *InsertPos = nullptr;
5655   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5656     return QualType(AT, 0);
5657 
5658   // If the atomic value type isn't canonical, this won't be a canonical type
5659   // either, so fill in the canonical type field.
5660   QualType Canonical;
5661   if (!T.isCanonical()) {
5662     Canonical = getAtomicType(getCanonicalType(T));
5663 
5664     // Get the new insert position for the node we care about.
5665     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5666     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5667   }
5668   auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5669   Types.push_back(New);
5670   AtomicTypes.InsertNode(New, InsertPos);
5671   return QualType(New, 0);
5672 }
5673 
5674 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
getAutoDeductType() const5675 QualType ASTContext::getAutoDeductType() const {
5676   if (AutoDeductTy.isNull())
5677     AutoDeductTy = QualType(new (*this, TypeAlignment)
5678                                 AutoType(QualType(), AutoTypeKeyword::Auto,
5679                                          TypeDependence::None,
5680                                          /*concept*/ nullptr, /*args*/ {}),
5681                             0);
5682   return AutoDeductTy;
5683 }
5684 
5685 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
getAutoRRefDeductType() const5686 QualType ASTContext::getAutoRRefDeductType() const {
5687   if (AutoRRefDeductTy.isNull())
5688     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5689   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5690   return AutoRRefDeductTy;
5691 }
5692 
5693 /// getTagDeclType - Return the unique reference to the type for the
5694 /// specified TagDecl (struct/union/class/enum) decl.
getTagDeclType(const TagDecl * Decl) const5695 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5696   assert(Decl);
5697   // FIXME: What is the design on getTagDeclType when it requires casting
5698   // away const?  mutable?
5699   return getTypeDeclType(const_cast<TagDecl*>(Decl));
5700 }
5701 
5702 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5703 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5704 /// needs to agree with the definition in <stddef.h>.
getSizeType() const5705 CanQualType ASTContext::getSizeType() const {
5706   return getFromTargetType(Target->getSizeType());
5707 }
5708 
5709 /// Return the unique signed counterpart of the integer type
5710 /// corresponding to size_t.
getSignedSizeType() const5711 CanQualType ASTContext::getSignedSizeType() const {
5712   return getFromTargetType(Target->getSignedSizeType());
5713 }
5714 
5715 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
getIntMaxType() const5716 CanQualType ASTContext::getIntMaxType() const {
5717   return getFromTargetType(Target->getIntMaxType());
5718 }
5719 
5720 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
getUIntMaxType() const5721 CanQualType ASTContext::getUIntMaxType() const {
5722   return getFromTargetType(Target->getUIntMaxType());
5723 }
5724 
5725 /// getSignedWCharType - Return the type of "signed wchar_t".
5726 /// Used when in C++, as a GCC extension.
getSignedWCharType() const5727 QualType ASTContext::getSignedWCharType() const {
5728   // FIXME: derive from "Target" ?
5729   return WCharTy;
5730 }
5731 
5732 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5733 /// Used when in C++, as a GCC extension.
getUnsignedWCharType() const5734 QualType ASTContext::getUnsignedWCharType() const {
5735   // FIXME: derive from "Target" ?
5736   return UnsignedIntTy;
5737 }
5738 
getIntPtrType() const5739 QualType ASTContext::getIntPtrType() const {
5740   return getFromTargetType(Target->getIntPtrType());
5741 }
5742 
getUIntPtrType() const5743 QualType ASTContext::getUIntPtrType() const {
5744   return getCorrespondingUnsignedType(getIntPtrType());
5745 }
5746 
5747 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5748 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
getPointerDiffType() const5749 QualType ASTContext::getPointerDiffType() const {
5750   return getFromTargetType(Target->getPtrDiffType(0));
5751 }
5752 
5753 /// Return the unique unsigned counterpart of "ptrdiff_t"
5754 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5755 /// in the definition of %tu format specifier.
getUnsignedPointerDiffType() const5756 QualType ASTContext::getUnsignedPointerDiffType() const {
5757   return getFromTargetType(Target->getUnsignedPtrDiffType(0));
5758 }
5759 
5760 /// Return the unique type for "pid_t" defined in
5761 /// <sys/types.h>. We need this to compute the correct type for vfork().
getProcessIDType() const5762 QualType ASTContext::getProcessIDType() const {
5763   return getFromTargetType(Target->getProcessIDType());
5764 }
5765 
5766 //===----------------------------------------------------------------------===//
5767 //                              Type Operators
5768 //===----------------------------------------------------------------------===//
5769 
getCanonicalParamType(QualType T) const5770 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5771   // Push qualifiers into arrays, and then discard any remaining
5772   // qualifiers.
5773   T = getCanonicalType(T);
5774   T = getVariableArrayDecayedType(T);
5775   const Type *Ty = T.getTypePtr();
5776   QualType Result;
5777   if (isa<ArrayType>(Ty)) {
5778     Result = getArrayDecayedType(QualType(Ty,0));
5779   } else if (isa<FunctionType>(Ty)) {
5780     Result = getPointerType(QualType(Ty, 0));
5781   } else {
5782     Result = QualType(Ty, 0);
5783   }
5784 
5785   return CanQualType::CreateUnsafe(Result);
5786 }
5787 
getUnqualifiedArrayType(QualType type,Qualifiers & quals)5788 QualType ASTContext::getUnqualifiedArrayType(QualType type,
5789                                              Qualifiers &quals) {
5790   SplitQualType splitType = type.getSplitUnqualifiedType();
5791 
5792   // FIXME: getSplitUnqualifiedType() actually walks all the way to
5793   // the unqualified desugared type and then drops it on the floor.
5794   // We then have to strip that sugar back off with
5795   // getUnqualifiedDesugaredType(), which is silly.
5796   const auto *AT =
5797       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5798 
5799   // If we don't have an array, just use the results in splitType.
5800   if (!AT) {
5801     quals = splitType.Quals;
5802     return QualType(splitType.Ty, 0);
5803   }
5804 
5805   // Otherwise, recurse on the array's element type.
5806   QualType elementType = AT->getElementType();
5807   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
5808 
5809   // If that didn't change the element type, AT has no qualifiers, so we
5810   // can just use the results in splitType.
5811   if (elementType == unqualElementType) {
5812     assert(quals.empty()); // from the recursive call
5813     quals = splitType.Quals;
5814     return QualType(splitType.Ty, 0);
5815   }
5816 
5817   // Otherwise, add in the qualifiers from the outermost type, then
5818   // build the type back up.
5819   quals.addConsistentQualifiers(splitType.Quals);
5820 
5821   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5822     return getConstantArrayType(unqualElementType, CAT->getSize(),
5823                                 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
5824   }
5825 
5826   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5827     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5828   }
5829 
5830   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5831     return getVariableArrayType(unqualElementType,
5832                                 VAT->getSizeExpr(),
5833                                 VAT->getSizeModifier(),
5834                                 VAT->getIndexTypeCVRQualifiers(),
5835                                 VAT->getBracketsRange());
5836   }
5837 
5838   const auto *DSAT = cast<DependentSizedArrayType>(AT);
5839   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5840                                     DSAT->getSizeModifier(), 0,
5841                                     SourceRange());
5842 }
5843 
5844 /// Attempt to unwrap two types that may both be array types with the same bound
5845 /// (or both be array types of unknown bound) for the purpose of comparing the
5846 /// cv-decomposition of two types per C++ [conv.qual].
5847 ///
5848 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
5849 ///        C++20 [conv.qual], if permitted by the current language mode.
UnwrapSimilarArrayTypes(QualType & T1,QualType & T2,bool AllowPiMismatch)5850 void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
5851                                          bool AllowPiMismatch) {
5852   while (true) {
5853     auto *AT1 = getAsArrayType(T1);
5854     if (!AT1)
5855       return;
5856 
5857     auto *AT2 = getAsArrayType(T2);
5858     if (!AT2)
5859       return;
5860 
5861     // If we don't have two array types with the same constant bound nor two
5862     // incomplete array types, we've unwrapped everything we can.
5863     // C++20 also permits one type to be a constant array type and the other
5864     // to be an incomplete array type.
5865     // FIXME: Consider also unwrapping array of unknown bound and VLA.
5866     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
5867       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
5868       if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) ||
5869             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
5870              isa<IncompleteArrayType>(AT2))))
5871         return;
5872     } else if (isa<IncompleteArrayType>(AT1)) {
5873       if (!(isa<IncompleteArrayType>(AT2) ||
5874             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
5875              isa<ConstantArrayType>(AT2))))
5876         return;
5877     } else {
5878       return;
5879     }
5880 
5881     T1 = AT1->getElementType();
5882     T2 = AT2->getElementType();
5883   }
5884 }
5885 
5886 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
5887 ///
5888 /// If T1 and T2 are both pointer types of the same kind, or both array types
5889 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
5890 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
5891 ///
5892 /// This function will typically be called in a loop that successively
5893 /// "unwraps" pointer and pointer-to-member types to compare them at each
5894 /// level.
5895 ///
5896 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
5897 ///        C++20 [conv.qual], if permitted by the current language mode.
5898 ///
5899 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
5900 /// pair of types that can't be unwrapped further.
UnwrapSimilarTypes(QualType & T1,QualType & T2,bool AllowPiMismatch)5901 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2,
5902                                     bool AllowPiMismatch) {
5903   UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch);
5904 
5905   const auto *T1PtrType = T1->getAs<PointerType>();
5906   const auto *T2PtrType = T2->getAs<PointerType>();
5907   if (T1PtrType && T2PtrType) {
5908     T1 = T1PtrType->getPointeeType();
5909     T2 = T2PtrType->getPointeeType();
5910     return true;
5911   }
5912 
5913   const auto *T1MPType = T1->getAs<MemberPointerType>();
5914   const auto *T2MPType = T2->getAs<MemberPointerType>();
5915   if (T1MPType && T2MPType &&
5916       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
5917                              QualType(T2MPType->getClass(), 0))) {
5918     T1 = T1MPType->getPointeeType();
5919     T2 = T2MPType->getPointeeType();
5920     return true;
5921   }
5922 
5923   if (getLangOpts().ObjC) {
5924     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
5925     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
5926     if (T1OPType && T2OPType) {
5927       T1 = T1OPType->getPointeeType();
5928       T2 = T2OPType->getPointeeType();
5929       return true;
5930     }
5931   }
5932 
5933   // FIXME: Block pointers, too?
5934 
5935   return false;
5936 }
5937 
hasSimilarType(QualType T1,QualType T2)5938 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
5939   while (true) {
5940     Qualifiers Quals;
5941     T1 = getUnqualifiedArrayType(T1, Quals);
5942     T2 = getUnqualifiedArrayType(T2, Quals);
5943     if (hasSameType(T1, T2))
5944       return true;
5945     if (!UnwrapSimilarTypes(T1, T2))
5946       return false;
5947   }
5948 }
5949 
hasCvrSimilarType(QualType T1,QualType T2)5950 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
5951   while (true) {
5952     Qualifiers Quals1, Quals2;
5953     T1 = getUnqualifiedArrayType(T1, Quals1);
5954     T2 = getUnqualifiedArrayType(T2, Quals2);
5955 
5956     Quals1.removeCVRQualifiers();
5957     Quals2.removeCVRQualifiers();
5958     if (Quals1 != Quals2)
5959       return false;
5960 
5961     if (hasSameType(T1, T2))
5962       return true;
5963 
5964     if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false))
5965       return false;
5966   }
5967 }
5968 
5969 DeclarationNameInfo
getNameForTemplate(TemplateName Name,SourceLocation NameLoc) const5970 ASTContext::getNameForTemplate(TemplateName Name,
5971                                SourceLocation NameLoc) const {
5972   switch (Name.getKind()) {
5973   case TemplateName::QualifiedTemplate:
5974   case TemplateName::Template:
5975     // DNInfo work in progress: CHECKME: what about DNLoc?
5976     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
5977                                NameLoc);
5978 
5979   case TemplateName::OverloadedTemplate: {
5980     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
5981     // DNInfo work in progress: CHECKME: what about DNLoc?
5982     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
5983   }
5984 
5985   case TemplateName::AssumedTemplate: {
5986     AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
5987     return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
5988   }
5989 
5990   case TemplateName::DependentTemplate: {
5991     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5992     DeclarationName DName;
5993     if (DTN->isIdentifier()) {
5994       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
5995       return DeclarationNameInfo(DName, NameLoc);
5996     } else {
5997       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
5998       // DNInfo work in progress: FIXME: source locations?
5999       DeclarationNameLoc DNLoc =
6000           DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange());
6001       return DeclarationNameInfo(DName, NameLoc, DNLoc);
6002     }
6003   }
6004 
6005   case TemplateName::SubstTemplateTemplateParm: {
6006     SubstTemplateTemplateParmStorage *subst
6007       = Name.getAsSubstTemplateTemplateParm();
6008     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
6009                                NameLoc);
6010   }
6011 
6012   case TemplateName::SubstTemplateTemplateParmPack: {
6013     SubstTemplateTemplateParmPackStorage *subst
6014       = Name.getAsSubstTemplateTemplateParmPack();
6015     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
6016                                NameLoc);
6017   }
6018   }
6019 
6020   llvm_unreachable("bad template name kind!");
6021 }
6022 
getCanonicalTemplateName(TemplateName Name) const6023 TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
6024   switch (Name.getKind()) {
6025   case TemplateName::QualifiedTemplate:
6026   case TemplateName::Template: {
6027     TemplateDecl *Template = Name.getAsTemplateDecl();
6028     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
6029       Template = getCanonicalTemplateTemplateParmDecl(TTP);
6030 
6031     // The canonical template name is the canonical template declaration.
6032     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
6033   }
6034 
6035   case TemplateName::OverloadedTemplate:
6036   case TemplateName::AssumedTemplate:
6037     llvm_unreachable("cannot canonicalize unresolved template");
6038 
6039   case TemplateName::DependentTemplate: {
6040     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6041     assert(DTN && "Non-dependent template names must refer to template decls.");
6042     return DTN->CanonicalTemplateName;
6043   }
6044 
6045   case TemplateName::SubstTemplateTemplateParm: {
6046     SubstTemplateTemplateParmStorage *subst
6047       = Name.getAsSubstTemplateTemplateParm();
6048     return getCanonicalTemplateName(subst->getReplacement());
6049   }
6050 
6051   case TemplateName::SubstTemplateTemplateParmPack: {
6052     SubstTemplateTemplateParmPackStorage *subst
6053                                   = Name.getAsSubstTemplateTemplateParmPack();
6054     TemplateTemplateParmDecl *canonParameter
6055       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
6056     TemplateArgument canonArgPack
6057       = getCanonicalTemplateArgument(subst->getArgumentPack());
6058     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
6059   }
6060   }
6061 
6062   llvm_unreachable("bad template name!");
6063 }
6064 
hasSameTemplateName(TemplateName X,TemplateName Y)6065 bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
6066   X = getCanonicalTemplateName(X);
6067   Y = getCanonicalTemplateName(Y);
6068   return X.getAsVoidPointer() == Y.getAsVoidPointer();
6069 }
6070 
6071 TemplateArgument
getCanonicalTemplateArgument(const TemplateArgument & Arg) const6072 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
6073   switch (Arg.getKind()) {
6074     case TemplateArgument::Null:
6075       return Arg;
6076 
6077     case TemplateArgument::Expression:
6078       return Arg;
6079 
6080     case TemplateArgument::Declaration: {
6081       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
6082       return TemplateArgument(D, Arg.getParamTypeForDecl());
6083     }
6084 
6085     case TemplateArgument::NullPtr:
6086       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
6087                               /*isNullPtr*/true);
6088 
6089     case TemplateArgument::Template:
6090       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
6091 
6092     case TemplateArgument::TemplateExpansion:
6093       return TemplateArgument(getCanonicalTemplateName(
6094                                          Arg.getAsTemplateOrTemplatePattern()),
6095                               Arg.getNumTemplateExpansions());
6096 
6097     case TemplateArgument::Integral:
6098       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
6099 
6100     case TemplateArgument::Type:
6101       return TemplateArgument(getCanonicalType(Arg.getAsType()));
6102 
6103     case TemplateArgument::Pack: {
6104       if (Arg.pack_size() == 0)
6105         return Arg;
6106 
6107       auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
6108       unsigned Idx = 0;
6109       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
6110                                         AEnd = Arg.pack_end();
6111            A != AEnd; (void)++A, ++Idx)
6112         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
6113 
6114       return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
6115     }
6116   }
6117 
6118   // Silence GCC warning
6119   llvm_unreachable("Unhandled template argument kind");
6120 }
6121 
6122 NestedNameSpecifier *
getCanonicalNestedNameSpecifier(NestedNameSpecifier * NNS) const6123 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
6124   if (!NNS)
6125     return nullptr;
6126 
6127   switch (NNS->getKind()) {
6128   case NestedNameSpecifier::Identifier:
6129     // Canonicalize the prefix but keep the identifier the same.
6130     return NestedNameSpecifier::Create(*this,
6131                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
6132                                        NNS->getAsIdentifier());
6133 
6134   case NestedNameSpecifier::Namespace:
6135     // A namespace is canonical; build a nested-name-specifier with
6136     // this namespace and no prefix.
6137     return NestedNameSpecifier::Create(*this, nullptr,
6138                                  NNS->getAsNamespace()->getOriginalNamespace());
6139 
6140   case NestedNameSpecifier::NamespaceAlias:
6141     // A namespace is canonical; build a nested-name-specifier with
6142     // this namespace and no prefix.
6143     return NestedNameSpecifier::Create(*this, nullptr,
6144                                     NNS->getAsNamespaceAlias()->getNamespace()
6145                                                       ->getOriginalNamespace());
6146 
6147   // The difference between TypeSpec and TypeSpecWithTemplate is that the
6148   // latter will have the 'template' keyword when printed.
6149   case NestedNameSpecifier::TypeSpec:
6150   case NestedNameSpecifier::TypeSpecWithTemplate: {
6151     const Type *T = getCanonicalType(NNS->getAsType());
6152 
6153     // If we have some kind of dependent-named type (e.g., "typename T::type"),
6154     // break it apart into its prefix and identifier, then reconsititute those
6155     // as the canonical nested-name-specifier. This is required to canonicalize
6156     // a dependent nested-name-specifier involving typedefs of dependent-name
6157     // types, e.g.,
6158     //   typedef typename T::type T1;
6159     //   typedef typename T1::type T2;
6160     if (const auto *DNT = T->getAs<DependentNameType>())
6161       return NestedNameSpecifier::Create(
6162           *this, DNT->getQualifier(),
6163           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
6164     if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>())
6165       return NestedNameSpecifier::Create(*this, DTST->getQualifier(), true,
6166                                          const_cast<Type *>(T));
6167 
6168     // TODO: Set 'Template' parameter to true for other template types.
6169     return NestedNameSpecifier::Create(*this, nullptr, false,
6170                                        const_cast<Type *>(T));
6171   }
6172 
6173   case NestedNameSpecifier::Global:
6174   case NestedNameSpecifier::Super:
6175     // The global specifier and __super specifer are canonical and unique.
6176     return NNS;
6177   }
6178 
6179   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6180 }
6181 
getAsArrayType(QualType T) const6182 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
6183   // Handle the non-qualified case efficiently.
6184   if (!T.hasLocalQualifiers()) {
6185     // Handle the common positive case fast.
6186     if (const auto *AT = dyn_cast<ArrayType>(T))
6187       return AT;
6188   }
6189 
6190   // Handle the common negative case fast.
6191   if (!isa<ArrayType>(T.getCanonicalType()))
6192     return nullptr;
6193 
6194   // Apply any qualifiers from the array type to the element type.  This
6195   // implements C99 6.7.3p8: "If the specification of an array type includes
6196   // any type qualifiers, the element type is so qualified, not the array type."
6197 
6198   // If we get here, we either have type qualifiers on the type, or we have
6199   // sugar such as a typedef in the way.  If we have type qualifiers on the type
6200   // we must propagate them down into the element type.
6201 
6202   SplitQualType split = T.getSplitDesugaredType();
6203   Qualifiers qs = split.Quals;
6204 
6205   // If we have a simple case, just return now.
6206   const auto *ATy = dyn_cast<ArrayType>(split.Ty);
6207   if (!ATy || qs.empty())
6208     return ATy;
6209 
6210   // Otherwise, we have an array and we have qualifiers on it.  Push the
6211   // qualifiers into the array element type and return a new array type.
6212   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
6213 
6214   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
6215     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
6216                                                 CAT->getSizeExpr(),
6217                                                 CAT->getSizeModifier(),
6218                                            CAT->getIndexTypeCVRQualifiers()));
6219   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
6220     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
6221                                                   IAT->getSizeModifier(),
6222                                            IAT->getIndexTypeCVRQualifiers()));
6223 
6224   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
6225     return cast<ArrayType>(
6226                      getDependentSizedArrayType(NewEltTy,
6227                                                 DSAT->getSizeExpr(),
6228                                                 DSAT->getSizeModifier(),
6229                                               DSAT->getIndexTypeCVRQualifiers(),
6230                                                 DSAT->getBracketsRange()));
6231 
6232   const auto *VAT = cast<VariableArrayType>(ATy);
6233   return cast<ArrayType>(getVariableArrayType(NewEltTy,
6234                                               VAT->getSizeExpr(),
6235                                               VAT->getSizeModifier(),
6236                                               VAT->getIndexTypeCVRQualifiers(),
6237                                               VAT->getBracketsRange()));
6238 }
6239 
getAdjustedParameterType(QualType T) const6240 QualType ASTContext::getAdjustedParameterType(QualType T) const {
6241   if (T->isArrayType() || T->isFunctionType())
6242     return getDecayedType(T);
6243   return T;
6244 }
6245 
getSignatureParameterType(QualType T) const6246 QualType ASTContext::getSignatureParameterType(QualType T) const {
6247   T = getVariableArrayDecayedType(T);
6248   T = getAdjustedParameterType(T);
6249   return T.getUnqualifiedType();
6250 }
6251 
getExceptionObjectType(QualType T) const6252 QualType ASTContext::getExceptionObjectType(QualType T) const {
6253   // C++ [except.throw]p3:
6254   //   A throw-expression initializes a temporary object, called the exception
6255   //   object, the type of which is determined by removing any top-level
6256   //   cv-qualifiers from the static type of the operand of throw and adjusting
6257   //   the type from "array of T" or "function returning T" to "pointer to T"
6258   //   or "pointer to function returning T", [...]
6259   T = getVariableArrayDecayedType(T);
6260   if (T->isArrayType() || T->isFunctionType())
6261     T = getDecayedType(T);
6262   return T.getUnqualifiedType();
6263 }
6264 
6265 /// getArrayDecayedType - Return the properly qualified result of decaying the
6266 /// specified array type to a pointer.  This operation is non-trivial when
6267 /// handling typedefs etc.  The canonical type of "T" must be an array type,
6268 /// this returns a pointer to a properly qualified element of the array.
6269 ///
6270 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
getArrayDecayedType(QualType Ty) const6271 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
6272   // Get the element type with 'getAsArrayType' so that we don't lose any
6273   // typedefs in the element type of the array.  This also handles propagation
6274   // of type qualifiers from the array type into the element type if present
6275   // (C99 6.7.3p8).
6276   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
6277   assert(PrettyArrayType && "Not an array type!");
6278 
6279   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
6280 
6281   // int x[restrict 4] ->  int *restrict
6282   QualType Result = getQualifiedType(PtrTy,
6283                                      PrettyArrayType->getIndexTypeQualifiers());
6284 
6285   // int x[_Nullable] -> int * _Nullable
6286   if (auto Nullability = Ty->getNullability(*this)) {
6287     Result = const_cast<ASTContext *>(this)->getAttributedType(
6288         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
6289   }
6290   return Result;
6291 }
6292 
getBaseElementType(const ArrayType * array) const6293 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
6294   return getBaseElementType(array->getElementType());
6295 }
6296 
getBaseElementType(QualType type) const6297 QualType ASTContext::getBaseElementType(QualType type) const {
6298   Qualifiers qs;
6299   while (true) {
6300     SplitQualType split = type.getSplitDesugaredType();
6301     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
6302     if (!array) break;
6303 
6304     type = array->getElementType();
6305     qs.addConsistentQualifiers(split.Quals);
6306   }
6307 
6308   return getQualifiedType(type, qs);
6309 }
6310 
6311 /// getConstantArrayElementCount - Returns number of constant array elements.
6312 uint64_t
getConstantArrayElementCount(const ConstantArrayType * CA) const6313 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
6314   uint64_t ElementCount = 1;
6315   do {
6316     ElementCount *= CA->getSize().getZExtValue();
6317     CA = dyn_cast_or_null<ConstantArrayType>(
6318       CA->getElementType()->getAsArrayTypeUnsafe());
6319   } while (CA);
6320   return ElementCount;
6321 }
6322 
6323 /// getFloatingRank - Return a relative rank for floating point types.
6324 /// This routine will assert if passed a built-in type that isn't a float.
getFloatingRank(QualType T)6325 static FloatingRank getFloatingRank(QualType T) {
6326   if (const auto *CT = T->getAs<ComplexType>())
6327     return getFloatingRank(CT->getElementType());
6328 
6329   switch (T->castAs<BuiltinType>()->getKind()) {
6330   default: llvm_unreachable("getFloatingRank(): not a floating type");
6331   case BuiltinType::Float16:    return Float16Rank;
6332   case BuiltinType::Half:       return HalfRank;
6333   case BuiltinType::Float:      return FloatRank;
6334   case BuiltinType::Double:     return DoubleRank;
6335   case BuiltinType::LongDouble: return LongDoubleRank;
6336   case BuiltinType::Float128:   return Float128Rank;
6337   case BuiltinType::BFloat16:   return BFloat16Rank;
6338   case BuiltinType::Ibm128:     return Ibm128Rank;
6339   }
6340 }
6341 
6342 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
6343 /// point or a complex type (based on typeDomain/typeSize).
6344 /// 'typeDomain' is a real floating point or complex type.
6345 /// 'typeSize' is a real floating point or complex type.
getFloatingTypeOfSizeWithinDomain(QualType Size,QualType Domain) const6346 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
6347                                                        QualType Domain) const {
6348   FloatingRank EltRank = getFloatingRank(Size);
6349   if (Domain->isComplexType()) {
6350     switch (EltRank) {
6351     case BFloat16Rank: llvm_unreachable("Complex bfloat16 is not supported");
6352     case Float16Rank:
6353     case HalfRank: llvm_unreachable("Complex half is not supported");
6354     case Ibm128Rank:     return getComplexType(Ibm128Ty);
6355     case FloatRank:      return getComplexType(FloatTy);
6356     case DoubleRank:     return getComplexType(DoubleTy);
6357     case LongDoubleRank: return getComplexType(LongDoubleTy);
6358     case Float128Rank:   return getComplexType(Float128Ty);
6359     }
6360   }
6361 
6362   assert(Domain->isRealFloatingType() && "Unknown domain!");
6363   switch (EltRank) {
6364   case Float16Rank:    return HalfTy;
6365   case BFloat16Rank:   return BFloat16Ty;
6366   case HalfRank:       return HalfTy;
6367   case FloatRank:      return FloatTy;
6368   case DoubleRank:     return DoubleTy;
6369   case LongDoubleRank: return LongDoubleTy;
6370   case Float128Rank:   return Float128Ty;
6371   case Ibm128Rank:
6372     return Ibm128Ty;
6373   }
6374   llvm_unreachable("getFloatingRank(): illegal value for rank");
6375 }
6376 
6377 /// getFloatingTypeOrder - Compare the rank of the two specified floating
6378 /// point types, ignoring the domain of the type (i.e. 'double' ==
6379 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6380 /// LHS < RHS, return -1.
getFloatingTypeOrder(QualType LHS,QualType RHS) const6381 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
6382   FloatingRank LHSR = getFloatingRank(LHS);
6383   FloatingRank RHSR = getFloatingRank(RHS);
6384 
6385   if (LHSR == RHSR)
6386     return 0;
6387   if (LHSR > RHSR)
6388     return 1;
6389   return -1;
6390 }
6391 
getFloatingTypeSemanticOrder(QualType LHS,QualType RHS) const6392 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
6393   if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
6394     return 0;
6395   return getFloatingTypeOrder(LHS, RHS);
6396 }
6397 
6398 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
6399 /// routine will assert if passed a built-in type that isn't an integer or enum,
6400 /// or if it is not canonicalized.
getIntegerRank(const Type * T) const6401 unsigned ASTContext::getIntegerRank(const Type *T) const {
6402   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
6403 
6404   // Results in this 'losing' to any type of the same size, but winning if
6405   // larger.
6406   if (const auto *EIT = dyn_cast<ExtIntType>(T))
6407     return 0 + (EIT->getNumBits() << 3);
6408 
6409   switch (cast<BuiltinType>(T)->getKind()) {
6410   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
6411   case BuiltinType::Bool:
6412     return 1 + (getIntWidth(BoolTy) << 3);
6413   case BuiltinType::Char_S:
6414   case BuiltinType::Char_U:
6415   case BuiltinType::SChar:
6416   case BuiltinType::UChar:
6417     return 2 + (getIntWidth(CharTy) << 3);
6418   case BuiltinType::Short:
6419   case BuiltinType::UShort:
6420     return 3 + (getIntWidth(ShortTy) << 3);
6421   case BuiltinType::Int:
6422   case BuiltinType::UInt:
6423     return 4 + (getIntWidth(IntTy) << 3);
6424   case BuiltinType::Long:
6425   case BuiltinType::ULong:
6426     return 5 + (getIntWidth(LongTy) << 3);
6427   case BuiltinType::LongLong:
6428   case BuiltinType::ULongLong:
6429     return 6 + (getIntWidth(LongLongTy) << 3);
6430   case BuiltinType::Int128:
6431   case BuiltinType::UInt128:
6432     return 7 + (getIntWidth(Int128Ty) << 3);
6433   }
6434 }
6435 
6436 /// Whether this is a promotable bitfield reference according
6437 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
6438 ///
6439 /// \returns the type this bit-field will promote to, or NULL if no
6440 /// promotion occurs.
isPromotableBitField(Expr * E) const6441 QualType ASTContext::isPromotableBitField(Expr *E) const {
6442   if (E->isTypeDependent() || E->isValueDependent())
6443     return {};
6444 
6445   // C++ [conv.prom]p5:
6446   //    If the bit-field has an enumerated type, it is treated as any other
6447   //    value of that type for promotion purposes.
6448   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
6449     return {};
6450 
6451   // FIXME: We should not do this unless E->refersToBitField() is true. This
6452   // matters in C where getSourceBitField() will find bit-fields for various
6453   // cases where the source expression is not a bit-field designator.
6454 
6455   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
6456   if (!Field)
6457     return {};
6458 
6459   QualType FT = Field->getType();
6460 
6461   uint64_t BitWidth = Field->getBitWidthValue(*this);
6462   uint64_t IntSize = getTypeSize(IntTy);
6463   // C++ [conv.prom]p5:
6464   //   A prvalue for an integral bit-field can be converted to a prvalue of type
6465   //   int if int can represent all the values of the bit-field; otherwise, it
6466   //   can be converted to unsigned int if unsigned int can represent all the
6467   //   values of the bit-field. If the bit-field is larger yet, no integral
6468   //   promotion applies to it.
6469   // C11 6.3.1.1/2:
6470   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
6471   //   If an int can represent all values of the original type (as restricted by
6472   //   the width, for a bit-field), the value is converted to an int; otherwise,
6473   //   it is converted to an unsigned int.
6474   //
6475   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
6476   //        We perform that promotion here to match GCC and C++.
6477   // FIXME: C does not permit promotion of an enum bit-field whose rank is
6478   //        greater than that of 'int'. We perform that promotion to match GCC.
6479   if (BitWidth < IntSize)
6480     return IntTy;
6481 
6482   if (BitWidth == IntSize)
6483     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
6484 
6485   // Bit-fields wider than int are not subject to promotions, and therefore act
6486   // like the base type. GCC has some weird bugs in this area that we
6487   // deliberately do not follow (GCC follows a pre-standard resolution to
6488   // C's DR315 which treats bit-width as being part of the type, and this leaks
6489   // into their semantics in some cases).
6490   return {};
6491 }
6492 
6493 /// getPromotedIntegerType - Returns the type that Promotable will
6494 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
6495 /// integer type.
getPromotedIntegerType(QualType Promotable) const6496 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
6497   assert(!Promotable.isNull());
6498   assert(Promotable->isPromotableIntegerType());
6499   if (const auto *ET = Promotable->getAs<EnumType>())
6500     return ET->getDecl()->getPromotionType();
6501 
6502   if (const auto *BT = Promotable->getAs<BuiltinType>()) {
6503     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
6504     // (3.9.1) can be converted to a prvalue of the first of the following
6505     // types that can represent all the values of its underlying type:
6506     // int, unsigned int, long int, unsigned long int, long long int, or
6507     // unsigned long long int [...]
6508     // FIXME: Is there some better way to compute this?
6509     if (BT->getKind() == BuiltinType::WChar_S ||
6510         BT->getKind() == BuiltinType::WChar_U ||
6511         BT->getKind() == BuiltinType::Char8 ||
6512         BT->getKind() == BuiltinType::Char16 ||
6513         BT->getKind() == BuiltinType::Char32) {
6514       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
6515       uint64_t FromSize = getTypeSize(BT);
6516       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
6517                                   LongLongTy, UnsignedLongLongTy };
6518       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
6519         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
6520         if (FromSize < ToSize ||
6521             (FromSize == ToSize &&
6522              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
6523           return PromoteTypes[Idx];
6524       }
6525       llvm_unreachable("char type should fit into long long");
6526     }
6527   }
6528 
6529   // At this point, we should have a signed or unsigned integer type.
6530   if (Promotable->isSignedIntegerType())
6531     return IntTy;
6532   uint64_t PromotableSize = getIntWidth(Promotable);
6533   uint64_t IntSize = getIntWidth(IntTy);
6534   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
6535   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
6536 }
6537 
6538 /// Recurses in pointer/array types until it finds an objc retainable
6539 /// type and returns its ownership.
getInnerObjCOwnership(QualType T) const6540 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
6541   while (!T.isNull()) {
6542     if (T.getObjCLifetime() != Qualifiers::OCL_None)
6543       return T.getObjCLifetime();
6544     if (T->isArrayType())
6545       T = getBaseElementType(T);
6546     else if (const auto *PT = T->getAs<PointerType>())
6547       T = PT->getPointeeType();
6548     else if (const auto *RT = T->getAs<ReferenceType>())
6549       T = RT->getPointeeType();
6550     else
6551       break;
6552   }
6553 
6554   return Qualifiers::OCL_None;
6555 }
6556 
getIntegerTypeForEnum(const EnumType * ET)6557 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
6558   // Incomplete enum types are not treated as integer types.
6559   // FIXME: In C++, enum types are never integer types.
6560   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
6561     return ET->getDecl()->getIntegerType().getTypePtr();
6562   return nullptr;
6563 }
6564 
6565 /// getIntegerTypeOrder - Returns the highest ranked integer type:
6566 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6567 /// LHS < RHS, return -1.
getIntegerTypeOrder(QualType LHS,QualType RHS) const6568 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
6569   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
6570   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
6571 
6572   // Unwrap enums to their underlying type.
6573   if (const auto *ET = dyn_cast<EnumType>(LHSC))
6574     LHSC = getIntegerTypeForEnum(ET);
6575   if (const auto *ET = dyn_cast<EnumType>(RHSC))
6576     RHSC = getIntegerTypeForEnum(ET);
6577 
6578   if (LHSC == RHSC) return 0;
6579 
6580   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
6581   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
6582 
6583   unsigned LHSRank = getIntegerRank(LHSC);
6584   unsigned RHSRank = getIntegerRank(RHSC);
6585 
6586   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
6587     if (LHSRank == RHSRank) return 0;
6588     return LHSRank > RHSRank ? 1 : -1;
6589   }
6590 
6591   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
6592   if (LHSUnsigned) {
6593     // If the unsigned [LHS] type is larger, return it.
6594     if (LHSRank >= RHSRank)
6595       return 1;
6596 
6597     // If the signed type can represent all values of the unsigned type, it
6598     // wins.  Because we are dealing with 2's complement and types that are
6599     // powers of two larger than each other, this is always safe.
6600     return -1;
6601   }
6602 
6603   // If the unsigned [RHS] type is larger, return it.
6604   if (RHSRank >= LHSRank)
6605     return -1;
6606 
6607   // If the signed type can represent all values of the unsigned type, it
6608   // wins.  Because we are dealing with 2's complement and types that are
6609   // powers of two larger than each other, this is always safe.
6610   return 1;
6611 }
6612 
getCFConstantStringDecl() const6613 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
6614   if (CFConstantStringTypeDecl)
6615     return CFConstantStringTypeDecl;
6616 
6617   assert(!CFConstantStringTagDecl &&
6618          "tag and typedef should be initialized together");
6619   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
6620   CFConstantStringTagDecl->startDefinition();
6621 
6622   struct {
6623     QualType Type;
6624     const char *Name;
6625   } Fields[5];
6626   unsigned Count = 0;
6627 
6628   /// Objective-C ABI
6629   ///
6630   ///    typedef struct __NSConstantString_tag {
6631   ///      const int *isa;
6632   ///      int flags;
6633   ///      const char *str;
6634   ///      long length;
6635   ///    } __NSConstantString;
6636   ///
6637   /// Swift ABI (4.1, 4.2)
6638   ///
6639   ///    typedef struct __NSConstantString_tag {
6640   ///      uintptr_t _cfisa;
6641   ///      uintptr_t _swift_rc;
6642   ///      _Atomic(uint64_t) _cfinfoa;
6643   ///      const char *_ptr;
6644   ///      uint32_t _length;
6645   ///    } __NSConstantString;
6646   ///
6647   /// Swift ABI (5.0)
6648   ///
6649   ///    typedef struct __NSConstantString_tag {
6650   ///      uintptr_t _cfisa;
6651   ///      uintptr_t _swift_rc;
6652   ///      _Atomic(uint64_t) _cfinfoa;
6653   ///      const char *_ptr;
6654   ///      uintptr_t _length;
6655   ///    } __NSConstantString;
6656 
6657   const auto CFRuntime = getLangOpts().CFRuntime;
6658   if (static_cast<unsigned>(CFRuntime) <
6659       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
6660     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
6661     Fields[Count++] = { IntTy, "flags" };
6662     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
6663     Fields[Count++] = { LongTy, "length" };
6664   } else {
6665     Fields[Count++] = { getUIntPtrType(), "_cfisa" };
6666     Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
6667     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
6668     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
6669     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6670         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6671       Fields[Count++] = { IntTy, "_ptr" };
6672     else
6673       Fields[Count++] = { getUIntPtrType(), "_ptr" };
6674   }
6675 
6676   // Create fields
6677   for (unsigned i = 0; i < Count; ++i) {
6678     FieldDecl *Field =
6679         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
6680                           SourceLocation(), &Idents.get(Fields[i].Name),
6681                           Fields[i].Type, /*TInfo=*/nullptr,
6682                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6683     Field->setAccess(AS_public);
6684     CFConstantStringTagDecl->addDecl(Field);
6685   }
6686 
6687   CFConstantStringTagDecl->completeDefinition();
6688   // This type is designed to be compatible with NSConstantString, but cannot
6689   // use the same name, since NSConstantString is an interface.
6690   auto tagType = getTagDeclType(CFConstantStringTagDecl);
6691   CFConstantStringTypeDecl =
6692       buildImplicitTypedef(tagType, "__NSConstantString");
6693 
6694   return CFConstantStringTypeDecl;
6695 }
6696 
getCFConstantStringTagDecl() const6697 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
6698   if (!CFConstantStringTagDecl)
6699     getCFConstantStringDecl(); // Build the tag and the typedef.
6700   return CFConstantStringTagDecl;
6701 }
6702 
6703 // getCFConstantStringType - Return the type used for constant CFStrings.
getCFConstantStringType() const6704 QualType ASTContext::getCFConstantStringType() const {
6705   return getTypedefType(getCFConstantStringDecl());
6706 }
6707 
getObjCSuperType() const6708 QualType ASTContext::getObjCSuperType() const {
6709   if (ObjCSuperType.isNull()) {
6710     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
6711     getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl);
6712     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
6713   }
6714   return ObjCSuperType;
6715 }
6716 
setCFConstantStringType(QualType T)6717 void ASTContext::setCFConstantStringType(QualType T) {
6718   const auto *TD = T->castAs<TypedefType>();
6719   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
6720   const auto *TagType =
6721       CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
6722   CFConstantStringTagDecl = TagType->getDecl();
6723 }
6724 
getBlockDescriptorType() const6725 QualType ASTContext::getBlockDescriptorType() const {
6726   if (BlockDescriptorType)
6727     return getTagDeclType(BlockDescriptorType);
6728 
6729   RecordDecl *RD;
6730   // FIXME: Needs the FlagAppleBlock bit.
6731   RD = buildImplicitRecord("__block_descriptor");
6732   RD->startDefinition();
6733 
6734   QualType FieldTypes[] = {
6735     UnsignedLongTy,
6736     UnsignedLongTy,
6737   };
6738 
6739   static const char *const FieldNames[] = {
6740     "reserved",
6741     "Size"
6742   };
6743 
6744   for (size_t i = 0; i < 2; ++i) {
6745     FieldDecl *Field = FieldDecl::Create(
6746         *this, RD, SourceLocation(), SourceLocation(),
6747         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6748         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6749     Field->setAccess(AS_public);
6750     RD->addDecl(Field);
6751   }
6752 
6753   RD->completeDefinition();
6754 
6755   BlockDescriptorType = RD;
6756 
6757   return getTagDeclType(BlockDescriptorType);
6758 }
6759 
getBlockDescriptorExtendedType() const6760 QualType ASTContext::getBlockDescriptorExtendedType() const {
6761   if (BlockDescriptorExtendedType)
6762     return getTagDeclType(BlockDescriptorExtendedType);
6763 
6764   RecordDecl *RD;
6765   // FIXME: Needs the FlagAppleBlock bit.
6766   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
6767   RD->startDefinition();
6768 
6769   QualType FieldTypes[] = {
6770     UnsignedLongTy,
6771     UnsignedLongTy,
6772     getPointerType(VoidPtrTy),
6773     getPointerType(VoidPtrTy)
6774   };
6775 
6776   static const char *const FieldNames[] = {
6777     "reserved",
6778     "Size",
6779     "CopyFuncPtr",
6780     "DestroyFuncPtr"
6781   };
6782 
6783   for (size_t i = 0; i < 4; ++i) {
6784     FieldDecl *Field = FieldDecl::Create(
6785         *this, RD, SourceLocation(), SourceLocation(),
6786         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6787         /*BitWidth=*/nullptr,
6788         /*Mutable=*/false, ICIS_NoInit);
6789     Field->setAccess(AS_public);
6790     RD->addDecl(Field);
6791   }
6792 
6793   RD->completeDefinition();
6794 
6795   BlockDescriptorExtendedType = RD;
6796   return getTagDeclType(BlockDescriptorExtendedType);
6797 }
6798 
getOpenCLTypeKind(const Type * T) const6799 OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
6800   const auto *BT = dyn_cast<BuiltinType>(T);
6801 
6802   if (!BT) {
6803     if (isa<PipeType>(T))
6804       return OCLTK_Pipe;
6805 
6806     return OCLTK_Default;
6807   }
6808 
6809   switch (BT->getKind()) {
6810 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
6811   case BuiltinType::Id:                                                        \
6812     return OCLTK_Image;
6813 #include "clang/Basic/OpenCLImageTypes.def"
6814 
6815   case BuiltinType::OCLClkEvent:
6816     return OCLTK_ClkEvent;
6817 
6818   case BuiltinType::OCLEvent:
6819     return OCLTK_Event;
6820 
6821   case BuiltinType::OCLQueue:
6822     return OCLTK_Queue;
6823 
6824   case BuiltinType::OCLReserveID:
6825     return OCLTK_ReserveID;
6826 
6827   case BuiltinType::OCLSampler:
6828     return OCLTK_Sampler;
6829 
6830   default:
6831     return OCLTK_Default;
6832   }
6833 }
6834 
getOpenCLTypeAddrSpace(const Type * T) const6835 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
6836   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
6837 }
6838 
6839 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
6840 /// requires copy/dispose. Note that this must match the logic
6841 /// in buildByrefHelpers.
BlockRequiresCopying(QualType Ty,const VarDecl * D)6842 bool ASTContext::BlockRequiresCopying(QualType Ty,
6843                                       const VarDecl *D) {
6844   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
6845     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
6846     if (!copyExpr && record->hasTrivialDestructor()) return false;
6847 
6848     return true;
6849   }
6850 
6851   // The block needs copy/destroy helpers if Ty is non-trivial to destructively
6852   // move or destroy.
6853   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
6854     return true;
6855 
6856   if (!Ty->isObjCRetainableType()) return false;
6857 
6858   Qualifiers qs = Ty.getQualifiers();
6859 
6860   // If we have lifetime, that dominates.
6861   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
6862     switch (lifetime) {
6863       case Qualifiers::OCL_None: llvm_unreachable("impossible");
6864 
6865       // These are just bits as far as the runtime is concerned.
6866       case Qualifiers::OCL_ExplicitNone:
6867       case Qualifiers::OCL_Autoreleasing:
6868         return false;
6869 
6870       // These cases should have been taken care of when checking the type's
6871       // non-triviality.
6872       case Qualifiers::OCL_Weak:
6873       case Qualifiers::OCL_Strong:
6874         llvm_unreachable("impossible");
6875     }
6876     llvm_unreachable("fell out of lifetime switch!");
6877   }
6878   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
6879           Ty->isObjCObjectPointerType());
6880 }
6881 
getByrefLifetime(QualType Ty,Qualifiers::ObjCLifetime & LifeTime,bool & HasByrefExtendedLayout) const6882 bool ASTContext::getByrefLifetime(QualType Ty,
6883                               Qualifiers::ObjCLifetime &LifeTime,
6884                               bool &HasByrefExtendedLayout) const {
6885   if (!getLangOpts().ObjC ||
6886       getLangOpts().getGC() != LangOptions::NonGC)
6887     return false;
6888 
6889   HasByrefExtendedLayout = false;
6890   if (Ty->isRecordType()) {
6891     HasByrefExtendedLayout = true;
6892     LifeTime = Qualifiers::OCL_None;
6893   } else if ((LifeTime = Ty.getObjCLifetime())) {
6894     // Honor the ARC qualifiers.
6895   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
6896     // The MRR rule.
6897     LifeTime = Qualifiers::OCL_ExplicitNone;
6898   } else {
6899     LifeTime = Qualifiers::OCL_None;
6900   }
6901   return true;
6902 }
6903 
getNSUIntegerType() const6904 CanQualType ASTContext::getNSUIntegerType() const {
6905   assert(Target && "Expected target to be initialized");
6906   const llvm::Triple &T = Target->getTriple();
6907   // Windows is LLP64 rather than LP64
6908   if (T.isOSWindows() && T.isArch64Bit())
6909     return UnsignedLongLongTy;
6910   return UnsignedLongTy;
6911 }
6912 
getNSIntegerType() const6913 CanQualType ASTContext::getNSIntegerType() const {
6914   assert(Target && "Expected target to be initialized");
6915   const llvm::Triple &T = Target->getTriple();
6916   // Windows is LLP64 rather than LP64
6917   if (T.isOSWindows() && T.isArch64Bit())
6918     return LongLongTy;
6919   return LongTy;
6920 }
6921 
getObjCInstanceTypeDecl()6922 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
6923   if (!ObjCInstanceTypeDecl)
6924     ObjCInstanceTypeDecl =
6925         buildImplicitTypedef(getObjCIdType(), "instancetype");
6926   return ObjCInstanceTypeDecl;
6927 }
6928 
6929 // This returns true if a type has been typedefed to BOOL:
6930 // typedef <type> BOOL;
isTypeTypedefedAsBOOL(QualType T)6931 static bool isTypeTypedefedAsBOOL(QualType T) {
6932   if (const auto *TT = dyn_cast<TypedefType>(T))
6933     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
6934       return II->isStr("BOOL");
6935 
6936   return false;
6937 }
6938 
6939 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
6940 /// purpose.
getObjCEncodingTypeSize(QualType type) const6941 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
6942   if (!type->isIncompleteArrayType() && type->isIncompleteType())
6943     return CharUnits::Zero();
6944 
6945   CharUnits sz = getTypeSizeInChars(type);
6946 
6947   // Make all integer and enum types at least as large as an int
6948   if (sz.isPositive() && type->isIntegralOrEnumerationType())
6949     sz = std::max(sz, getTypeSizeInChars(IntTy));
6950   // Treat arrays as pointers, since that's how they're passed in.
6951   else if (type->isArrayType())
6952     sz = getTypeSizeInChars(VoidPtrTy);
6953   return sz;
6954 }
6955 
isMSStaticDataMemberInlineDefinition(const VarDecl * VD) const6956 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
6957   return getTargetInfo().getCXXABI().isMicrosoft() &&
6958          VD->isStaticDataMember() &&
6959          VD->getType()->isIntegralOrEnumerationType() &&
6960          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
6961 }
6962 
6963 ASTContext::InlineVariableDefinitionKind
getInlineVariableDefinitionKind(const VarDecl * VD) const6964 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
6965   if (!VD->isInline())
6966     return InlineVariableDefinitionKind::None;
6967 
6968   // In almost all cases, it's a weak definition.
6969   auto *First = VD->getFirstDecl();
6970   if (First->isInlineSpecified() || !First->isStaticDataMember())
6971     return InlineVariableDefinitionKind::Weak;
6972 
6973   // If there's a file-context declaration in this translation unit, it's a
6974   // non-discardable definition.
6975   for (auto *D : VD->redecls())
6976     if (D->getLexicalDeclContext()->isFileContext() &&
6977         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
6978       return InlineVariableDefinitionKind::Strong;
6979 
6980   // If we've not seen one yet, we don't know.
6981   return InlineVariableDefinitionKind::WeakUnknown;
6982 }
6983 
charUnitsToString(const CharUnits & CU)6984 static std::string charUnitsToString(const CharUnits &CU) {
6985   return llvm::itostr(CU.getQuantity());
6986 }
6987 
6988 /// getObjCEncodingForBlock - Return the encoded type for this block
6989 /// declaration.
getObjCEncodingForBlock(const BlockExpr * Expr) const6990 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
6991   std::string S;
6992 
6993   const BlockDecl *Decl = Expr->getBlockDecl();
6994   QualType BlockTy =
6995       Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
6996   QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
6997   // Encode result type.
6998   if (getLangOpts().EncodeExtendedBlockSig)
6999     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
7000                                       true /*Extended*/);
7001   else
7002     getObjCEncodingForType(BlockReturnTy, S);
7003   // Compute size of all parameters.
7004   // Start with computing size of a pointer in number of bytes.
7005   // FIXME: There might(should) be a better way of doing this computation!
7006   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7007   CharUnits ParmOffset = PtrSize;
7008   for (auto PI : Decl->parameters()) {
7009     QualType PType = PI->getType();
7010     CharUnits sz = getObjCEncodingTypeSize(PType);
7011     if (sz.isZero())
7012       continue;
7013     assert(sz.isPositive() && "BlockExpr - Incomplete param type");
7014     ParmOffset += sz;
7015   }
7016   // Size of the argument frame
7017   S += charUnitsToString(ParmOffset);
7018   // Block pointer and offset.
7019   S += "@?0";
7020 
7021   // Argument types.
7022   ParmOffset = PtrSize;
7023   for (auto PVDecl : Decl->parameters()) {
7024     QualType PType = PVDecl->getOriginalType();
7025     if (const auto *AT =
7026             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7027       // Use array's original type only if it has known number of
7028       // elements.
7029       if (!isa<ConstantArrayType>(AT))
7030         PType = PVDecl->getType();
7031     } else if (PType->isFunctionType())
7032       PType = PVDecl->getType();
7033     if (getLangOpts().EncodeExtendedBlockSig)
7034       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
7035                                       S, true /*Extended*/);
7036     else
7037       getObjCEncodingForType(PType, S);
7038     S += charUnitsToString(ParmOffset);
7039     ParmOffset += getObjCEncodingTypeSize(PType);
7040   }
7041 
7042   return S;
7043 }
7044 
7045 std::string
getObjCEncodingForFunctionDecl(const FunctionDecl * Decl) const7046 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
7047   std::string S;
7048   // Encode result type.
7049   getObjCEncodingForType(Decl->getReturnType(), S);
7050   CharUnits ParmOffset;
7051   // Compute size of all parameters.
7052   for (auto PI : Decl->parameters()) {
7053     QualType PType = PI->getType();
7054     CharUnits sz = getObjCEncodingTypeSize(PType);
7055     if (sz.isZero())
7056       continue;
7057 
7058     assert(sz.isPositive() &&
7059            "getObjCEncodingForFunctionDecl - Incomplete param type");
7060     ParmOffset += sz;
7061   }
7062   S += charUnitsToString(ParmOffset);
7063   ParmOffset = CharUnits::Zero();
7064 
7065   // Argument types.
7066   for (auto PVDecl : Decl->parameters()) {
7067     QualType PType = PVDecl->getOriginalType();
7068     if (const auto *AT =
7069             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7070       // Use array's original type only if it has known number of
7071       // elements.
7072       if (!isa<ConstantArrayType>(AT))
7073         PType = PVDecl->getType();
7074     } else if (PType->isFunctionType())
7075       PType = PVDecl->getType();
7076     getObjCEncodingForType(PType, S);
7077     S += charUnitsToString(ParmOffset);
7078     ParmOffset += getObjCEncodingTypeSize(PType);
7079   }
7080 
7081   return S;
7082 }
7083 
7084 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
7085 /// method parameter or return type. If Extended, include class names and
7086 /// block object types.
getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,QualType T,std::string & S,bool Extended) const7087 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
7088                                                    QualType T, std::string& S,
7089                                                    bool Extended) const {
7090   // Encode type qualifier, 'in', 'inout', etc. for the parameter.
7091   getObjCEncodingForTypeQualifier(QT, S);
7092   // Encode parameter type.
7093   ObjCEncOptions Options = ObjCEncOptions()
7094                                .setExpandPointedToStructures()
7095                                .setExpandStructures()
7096                                .setIsOutermostType();
7097   if (Extended)
7098     Options.setEncodeBlockParameters().setEncodeClassNames();
7099   getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
7100 }
7101 
7102 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
7103 /// declaration.
getObjCEncodingForMethodDecl(const ObjCMethodDecl * Decl,bool Extended) const7104 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
7105                                                      bool Extended) const {
7106   // FIXME: This is not very efficient.
7107   // Encode return type.
7108   std::string S;
7109   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
7110                                     Decl->getReturnType(), S, Extended);
7111   // Compute size of all parameters.
7112   // Start with computing size of a pointer in number of bytes.
7113   // FIXME: There might(should) be a better way of doing this computation!
7114   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7115   // The first two arguments (self and _cmd) are pointers; account for
7116   // their size.
7117   CharUnits ParmOffset = 2 * PtrSize;
7118   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7119        E = Decl->sel_param_end(); PI != E; ++PI) {
7120     QualType PType = (*PI)->getType();
7121     CharUnits sz = getObjCEncodingTypeSize(PType);
7122     if (sz.isZero())
7123       continue;
7124 
7125     assert(sz.isPositive() &&
7126            "getObjCEncodingForMethodDecl - Incomplete param type");
7127     ParmOffset += sz;
7128   }
7129   S += charUnitsToString(ParmOffset);
7130   S += "@0:";
7131   S += charUnitsToString(PtrSize);
7132 
7133   // Argument types.
7134   ParmOffset = 2 * PtrSize;
7135   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7136        E = Decl->sel_param_end(); PI != E; ++PI) {
7137     const ParmVarDecl *PVDecl = *PI;
7138     QualType PType = PVDecl->getOriginalType();
7139     if (const auto *AT =
7140             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7141       // Use array's original type only if it has known number of
7142       // elements.
7143       if (!isa<ConstantArrayType>(AT))
7144         PType = PVDecl->getType();
7145     } else if (PType->isFunctionType())
7146       PType = PVDecl->getType();
7147     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
7148                                       PType, S, Extended);
7149     S += charUnitsToString(ParmOffset);
7150     ParmOffset += getObjCEncodingTypeSize(PType);
7151   }
7152 
7153   return S;
7154 }
7155 
7156 ObjCPropertyImplDecl *
getObjCPropertyImplDeclForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const7157 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
7158                                       const ObjCPropertyDecl *PD,
7159                                       const Decl *Container) const {
7160   if (!Container)
7161     return nullptr;
7162   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
7163     for (auto *PID : CID->property_impls())
7164       if (PID->getPropertyDecl() == PD)
7165         return PID;
7166   } else {
7167     const auto *OID = cast<ObjCImplementationDecl>(Container);
7168     for (auto *PID : OID->property_impls())
7169       if (PID->getPropertyDecl() == PD)
7170         return PID;
7171   }
7172   return nullptr;
7173 }
7174 
7175 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
7176 /// property declaration. If non-NULL, Container must be either an
7177 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
7178 /// NULL when getting encodings for protocol properties.
7179 /// Property attributes are stored as a comma-delimited C string. The simple
7180 /// attributes readonly and bycopy are encoded as single characters. The
7181 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
7182 /// encoded as single characters, followed by an identifier. Property types
7183 /// are also encoded as a parametrized attribute. The characters used to encode
7184 /// these attributes are defined by the following enumeration:
7185 /// @code
7186 /// enum PropertyAttributes {
7187 /// kPropertyReadOnly = 'R',   // property is read-only.
7188 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
7189 /// kPropertyByref = '&',  // property is a reference to the value last assigned
7190 /// kPropertyDynamic = 'D',    // property is dynamic
7191 /// kPropertyGetter = 'G',     // followed by getter selector name
7192 /// kPropertySetter = 'S',     // followed by setter selector name
7193 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
7194 /// kPropertyType = 'T'              // followed by old-style type encoding.
7195 /// kPropertyWeak = 'W'              // 'weak' property
7196 /// kPropertyStrong = 'P'            // property GC'able
7197 /// kPropertyNonAtomic = 'N'         // property non-atomic
7198 /// };
7199 /// @endcode
7200 std::string
getObjCEncodingForPropertyDecl(const ObjCPropertyDecl * PD,const Decl * Container) const7201 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
7202                                            const Decl *Container) const {
7203   // Collect information from the property implementation decl(s).
7204   bool Dynamic = false;
7205   ObjCPropertyImplDecl *SynthesizePID = nullptr;
7206 
7207   if (ObjCPropertyImplDecl *PropertyImpDecl =
7208       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
7209     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
7210       Dynamic = true;
7211     else
7212       SynthesizePID = PropertyImpDecl;
7213   }
7214 
7215   // FIXME: This is not very efficient.
7216   std::string S = "T";
7217 
7218   // Encode result type.
7219   // GCC has some special rules regarding encoding of properties which
7220   // closely resembles encoding of ivars.
7221   getObjCEncodingForPropertyType(PD->getType(), S);
7222 
7223   if (PD->isReadOnly()) {
7224     S += ",R";
7225     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
7226       S += ",C";
7227     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
7228       S += ",&";
7229     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
7230       S += ",W";
7231   } else {
7232     switch (PD->getSetterKind()) {
7233     case ObjCPropertyDecl::Assign: break;
7234     case ObjCPropertyDecl::Copy:   S += ",C"; break;
7235     case ObjCPropertyDecl::Retain: S += ",&"; break;
7236     case ObjCPropertyDecl::Weak:   S += ",W"; break;
7237     }
7238   }
7239 
7240   // It really isn't clear at all what this means, since properties
7241   // are "dynamic by default".
7242   if (Dynamic)
7243     S += ",D";
7244 
7245   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
7246     S += ",N";
7247 
7248   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
7249     S += ",G";
7250     S += PD->getGetterName().getAsString();
7251   }
7252 
7253   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
7254     S += ",S";
7255     S += PD->getSetterName().getAsString();
7256   }
7257 
7258   if (SynthesizePID) {
7259     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
7260     S += ",V";
7261     S += OID->getNameAsString();
7262   }
7263 
7264   // FIXME: OBJCGC: weak & strong
7265   return S;
7266 }
7267 
7268 /// getLegacyIntegralTypeEncoding -
7269 /// Another legacy compatibility encoding: 32-bit longs are encoded as
7270 /// 'l' or 'L' , but not always.  For typedefs, we need to use
7271 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
getLegacyIntegralTypeEncoding(QualType & PointeeTy) const7272 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
7273   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
7274     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
7275       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
7276         PointeeTy = UnsignedIntTy;
7277       else
7278         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
7279           PointeeTy = IntTy;
7280     }
7281   }
7282 }
7283 
getObjCEncodingForType(QualType T,std::string & S,const FieldDecl * Field,QualType * NotEncodedT) const7284 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
7285                                         const FieldDecl *Field,
7286                                         QualType *NotEncodedT) const {
7287   // We follow the behavior of gcc, expanding structures which are
7288   // directly pointed to, and expanding embedded structures. Note that
7289   // these rules are sufficient to prevent recursive encoding of the
7290   // same type.
7291   getObjCEncodingForTypeImpl(T, S,
7292                              ObjCEncOptions()
7293                                  .setExpandPointedToStructures()
7294                                  .setExpandStructures()
7295                                  .setIsOutermostType(),
7296                              Field, NotEncodedT);
7297 }
7298 
getObjCEncodingForPropertyType(QualType T,std::string & S) const7299 void ASTContext::getObjCEncodingForPropertyType(QualType T,
7300                                                 std::string& S) const {
7301   // Encode result type.
7302   // GCC has some special rules regarding encoding of properties which
7303   // closely resembles encoding of ivars.
7304   getObjCEncodingForTypeImpl(T, S,
7305                              ObjCEncOptions()
7306                                  .setExpandPointedToStructures()
7307                                  .setExpandStructures()
7308                                  .setIsOutermostType()
7309                                  .setEncodingProperty(),
7310                              /*Field=*/nullptr);
7311 }
7312 
getObjCEncodingForPrimitiveType(const ASTContext * C,const BuiltinType * BT)7313 static char getObjCEncodingForPrimitiveType(const ASTContext *C,
7314                                             const BuiltinType *BT) {
7315     BuiltinType::Kind kind = BT->getKind();
7316     switch (kind) {
7317     case BuiltinType::Void:       return 'v';
7318     case BuiltinType::Bool:       return 'B';
7319     case BuiltinType::Char8:
7320     case BuiltinType::Char_U:
7321     case BuiltinType::UChar:      return 'C';
7322     case BuiltinType::Char16:
7323     case BuiltinType::UShort:     return 'S';
7324     case BuiltinType::Char32:
7325     case BuiltinType::UInt:       return 'I';
7326     case BuiltinType::ULong:
7327         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
7328     case BuiltinType::UInt128:    return 'T';
7329     case BuiltinType::ULongLong:  return 'Q';
7330     case BuiltinType::Char_S:
7331     case BuiltinType::SChar:      return 'c';
7332     case BuiltinType::Short:      return 's';
7333     case BuiltinType::WChar_S:
7334     case BuiltinType::WChar_U:
7335     case BuiltinType::Int:        return 'i';
7336     case BuiltinType::Long:
7337       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
7338     case BuiltinType::LongLong:   return 'q';
7339     case BuiltinType::Int128:     return 't';
7340     case BuiltinType::Float:      return 'f';
7341     case BuiltinType::Double:     return 'd';
7342     case BuiltinType::LongDouble: return 'D';
7343     case BuiltinType::NullPtr:    return '*'; // like char*
7344 
7345     case BuiltinType::BFloat16:
7346     case BuiltinType::Float16:
7347     case BuiltinType::Float128:
7348     case BuiltinType::Ibm128:
7349     case BuiltinType::Half:
7350     case BuiltinType::ShortAccum:
7351     case BuiltinType::Accum:
7352     case BuiltinType::LongAccum:
7353     case BuiltinType::UShortAccum:
7354     case BuiltinType::UAccum:
7355     case BuiltinType::ULongAccum:
7356     case BuiltinType::ShortFract:
7357     case BuiltinType::Fract:
7358     case BuiltinType::LongFract:
7359     case BuiltinType::UShortFract:
7360     case BuiltinType::UFract:
7361     case BuiltinType::ULongFract:
7362     case BuiltinType::SatShortAccum:
7363     case BuiltinType::SatAccum:
7364     case BuiltinType::SatLongAccum:
7365     case BuiltinType::SatUShortAccum:
7366     case BuiltinType::SatUAccum:
7367     case BuiltinType::SatULongAccum:
7368     case BuiltinType::SatShortFract:
7369     case BuiltinType::SatFract:
7370     case BuiltinType::SatLongFract:
7371     case BuiltinType::SatUShortFract:
7372     case BuiltinType::SatUFract:
7373     case BuiltinType::SatULongFract:
7374       // FIXME: potentially need @encodes for these!
7375       return ' ';
7376 
7377 #define SVE_TYPE(Name, Id, SingletonId) \
7378     case BuiltinType::Id:
7379 #include "clang/Basic/AArch64SVEACLETypes.def"
7380 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
7381 #include "clang/Basic/RISCVVTypes.def"
7382       {
7383         DiagnosticsEngine &Diags = C->getDiagnostics();
7384         unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
7385                                                 "cannot yet @encode type %0");
7386         Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
7387         return ' ';
7388       }
7389 
7390     case BuiltinType::ObjCId:
7391     case BuiltinType::ObjCClass:
7392     case BuiltinType::ObjCSel:
7393       llvm_unreachable("@encoding ObjC primitive type");
7394 
7395     // OpenCL and placeholder types don't need @encodings.
7396 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7397     case BuiltinType::Id:
7398 #include "clang/Basic/OpenCLImageTypes.def"
7399 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
7400     case BuiltinType::Id:
7401 #include "clang/Basic/OpenCLExtensionTypes.def"
7402     case BuiltinType::OCLEvent:
7403     case BuiltinType::OCLClkEvent:
7404     case BuiltinType::OCLQueue:
7405     case BuiltinType::OCLReserveID:
7406     case BuiltinType::OCLSampler:
7407     case BuiltinType::Dependent:
7408 #define PPC_VECTOR_TYPE(Name, Id, Size) \
7409     case BuiltinType::Id:
7410 #include "clang/Basic/PPCTypes.def"
7411 #define BUILTIN_TYPE(KIND, ID)
7412 #define PLACEHOLDER_TYPE(KIND, ID) \
7413     case BuiltinType::KIND:
7414 #include "clang/AST/BuiltinTypes.def"
7415       llvm_unreachable("invalid builtin type for @encode");
7416     }
7417     llvm_unreachable("invalid BuiltinType::Kind value");
7418 }
7419 
ObjCEncodingForEnumType(const ASTContext * C,const EnumType * ET)7420 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
7421   EnumDecl *Enum = ET->getDecl();
7422 
7423   // The encoding of an non-fixed enum type is always 'i', regardless of size.
7424   if (!Enum->isFixed())
7425     return 'i';
7426 
7427   // The encoding of a fixed enum type matches its fixed underlying type.
7428   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
7429   return getObjCEncodingForPrimitiveType(C, BT);
7430 }
7431 
EncodeBitField(const ASTContext * Ctx,std::string & S,QualType T,const FieldDecl * FD)7432 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
7433                            QualType T, const FieldDecl *FD) {
7434   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
7435   S += 'b';
7436   // The NeXT runtime encodes bit fields as b followed by the number of bits.
7437   // The GNU runtime requires more information; bitfields are encoded as b,
7438   // then the offset (in bits) of the first element, then the type of the
7439   // bitfield, then the size in bits.  For example, in this structure:
7440   //
7441   // struct
7442   // {
7443   //    int integer;
7444   //    int flags:2;
7445   // };
7446   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
7447   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
7448   // information is not especially sensible, but we're stuck with it for
7449   // compatibility with GCC, although providing it breaks anything that
7450   // actually uses runtime introspection and wants to work on both runtimes...
7451   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
7452     uint64_t Offset;
7453 
7454     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
7455       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
7456                                          IVD);
7457     } else {
7458       const RecordDecl *RD = FD->getParent();
7459       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
7460       Offset = RL.getFieldOffset(FD->getFieldIndex());
7461     }
7462 
7463     S += llvm::utostr(Offset);
7464 
7465     if (const auto *ET = T->getAs<EnumType>())
7466       S += ObjCEncodingForEnumType(Ctx, ET);
7467     else {
7468       const auto *BT = T->castAs<BuiltinType>();
7469       S += getObjCEncodingForPrimitiveType(Ctx, BT);
7470     }
7471   }
7472   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
7473 }
7474 
7475 // Helper function for determining whether the encoded type string would include
7476 // a template specialization type.
hasTemplateSpecializationInEncodedString(const Type * T,bool VisitBasesAndFields)7477 static bool hasTemplateSpecializationInEncodedString(const Type *T,
7478                                                      bool VisitBasesAndFields) {
7479   T = T->getBaseElementTypeUnsafe();
7480 
7481   if (auto *PT = T->getAs<PointerType>())
7482     return hasTemplateSpecializationInEncodedString(
7483         PT->getPointeeType().getTypePtr(), false);
7484 
7485   auto *CXXRD = T->getAsCXXRecordDecl();
7486 
7487   if (!CXXRD)
7488     return false;
7489 
7490   if (isa<ClassTemplateSpecializationDecl>(CXXRD))
7491     return true;
7492 
7493   if (!CXXRD->hasDefinition() || !VisitBasesAndFields)
7494     return false;
7495 
7496   for (auto B : CXXRD->bases())
7497     if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(),
7498                                                  true))
7499       return true;
7500 
7501   for (auto *FD : CXXRD->fields())
7502     if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(),
7503                                                  true))
7504       return true;
7505 
7506   return false;
7507 }
7508 
7509 // FIXME: Use SmallString for accumulating string.
getObjCEncodingForTypeImpl(QualType T,std::string & S,const ObjCEncOptions Options,const FieldDecl * FD,QualType * NotEncodedT) const7510 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
7511                                             const ObjCEncOptions Options,
7512                                             const FieldDecl *FD,
7513                                             QualType *NotEncodedT) const {
7514   CanQualType CT = getCanonicalType(T);
7515   switch (CT->getTypeClass()) {
7516   case Type::Builtin:
7517   case Type::Enum:
7518     if (FD && FD->isBitField())
7519       return EncodeBitField(this, S, T, FD);
7520     if (const auto *BT = dyn_cast<BuiltinType>(CT))
7521       S += getObjCEncodingForPrimitiveType(this, BT);
7522     else
7523       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
7524     return;
7525 
7526   case Type::Complex:
7527     S += 'j';
7528     getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
7529                                ObjCEncOptions(),
7530                                /*Field=*/nullptr);
7531     return;
7532 
7533   case Type::Atomic:
7534     S += 'A';
7535     getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
7536                                ObjCEncOptions(),
7537                                /*Field=*/nullptr);
7538     return;
7539 
7540   // encoding for pointer or reference types.
7541   case Type::Pointer:
7542   case Type::LValueReference:
7543   case Type::RValueReference: {
7544     QualType PointeeTy;
7545     if (isa<PointerType>(CT)) {
7546       const auto *PT = T->castAs<PointerType>();
7547       if (PT->isObjCSelType()) {
7548         S += ':';
7549         return;
7550       }
7551       PointeeTy = PT->getPointeeType();
7552     } else {
7553       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
7554     }
7555 
7556     bool isReadOnly = false;
7557     // For historical/compatibility reasons, the read-only qualifier of the
7558     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
7559     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
7560     // Also, do not emit the 'r' for anything but the outermost type!
7561     if (isa<TypedefType>(T.getTypePtr())) {
7562       if (Options.IsOutermostType() && T.isConstQualified()) {
7563         isReadOnly = true;
7564         S += 'r';
7565       }
7566     } else if (Options.IsOutermostType()) {
7567       QualType P = PointeeTy;
7568       while (auto PT = P->getAs<PointerType>())
7569         P = PT->getPointeeType();
7570       if (P.isConstQualified()) {
7571         isReadOnly = true;
7572         S += 'r';
7573       }
7574     }
7575     if (isReadOnly) {
7576       // Another legacy compatibility encoding. Some ObjC qualifier and type
7577       // combinations need to be rearranged.
7578       // Rewrite "in const" from "nr" to "rn"
7579       if (StringRef(S).endswith("nr"))
7580         S.replace(S.end()-2, S.end(), "rn");
7581     }
7582 
7583     if (PointeeTy->isCharType()) {
7584       // char pointer types should be encoded as '*' unless it is a
7585       // type that has been typedef'd to 'BOOL'.
7586       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
7587         S += '*';
7588         return;
7589       }
7590     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
7591       // GCC binary compat: Need to convert "struct objc_class *" to "#".
7592       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
7593         S += '#';
7594         return;
7595       }
7596       // GCC binary compat: Need to convert "struct objc_object *" to "@".
7597       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
7598         S += '@';
7599         return;
7600       }
7601       // If the encoded string for the class includes template names, just emit
7602       // "^v" for pointers to the class.
7603       if (getLangOpts().CPlusPlus &&
7604           (!getLangOpts().EncodeCXXClassTemplateSpec &&
7605            hasTemplateSpecializationInEncodedString(
7606                RTy, Options.ExpandPointedToStructures()))) {
7607         S += "^v";
7608         return;
7609       }
7610       // fall through...
7611     }
7612     S += '^';
7613     getLegacyIntegralTypeEncoding(PointeeTy);
7614 
7615     ObjCEncOptions NewOptions;
7616     if (Options.ExpandPointedToStructures())
7617       NewOptions.setExpandStructures();
7618     getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
7619                                /*Field=*/nullptr, NotEncodedT);
7620     return;
7621   }
7622 
7623   case Type::ConstantArray:
7624   case Type::IncompleteArray:
7625   case Type::VariableArray: {
7626     const auto *AT = cast<ArrayType>(CT);
7627 
7628     if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
7629       // Incomplete arrays are encoded as a pointer to the array element.
7630       S += '^';
7631 
7632       getObjCEncodingForTypeImpl(
7633           AT->getElementType(), S,
7634           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
7635     } else {
7636       S += '[';
7637 
7638       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
7639         S += llvm::utostr(CAT->getSize().getZExtValue());
7640       else {
7641         //Variable length arrays are encoded as a regular array with 0 elements.
7642         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
7643                "Unknown array type!");
7644         S += '0';
7645       }
7646 
7647       getObjCEncodingForTypeImpl(
7648           AT->getElementType(), S,
7649           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
7650           NotEncodedT);
7651       S += ']';
7652     }
7653     return;
7654   }
7655 
7656   case Type::FunctionNoProto:
7657   case Type::FunctionProto:
7658     S += '?';
7659     return;
7660 
7661   case Type::Record: {
7662     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
7663     S += RDecl->isUnion() ? '(' : '{';
7664     // Anonymous structures print as '?'
7665     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
7666       S += II->getName();
7667       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
7668         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
7669         llvm::raw_string_ostream OS(S);
7670         printTemplateArgumentList(OS, TemplateArgs.asArray(),
7671                                   getPrintingPolicy());
7672       }
7673     } else {
7674       S += '?';
7675     }
7676     if (Options.ExpandStructures()) {
7677       S += '=';
7678       if (!RDecl->isUnion()) {
7679         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
7680       } else {
7681         for (const auto *Field : RDecl->fields()) {
7682           if (FD) {
7683             S += '"';
7684             S += Field->getNameAsString();
7685             S += '"';
7686           }
7687 
7688           // Special case bit-fields.
7689           if (Field->isBitField()) {
7690             getObjCEncodingForTypeImpl(Field->getType(), S,
7691                                        ObjCEncOptions().setExpandStructures(),
7692                                        Field);
7693           } else {
7694             QualType qt = Field->getType();
7695             getLegacyIntegralTypeEncoding(qt);
7696             getObjCEncodingForTypeImpl(
7697                 qt, S,
7698                 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
7699                 NotEncodedT);
7700           }
7701         }
7702       }
7703     }
7704     S += RDecl->isUnion() ? ')' : '}';
7705     return;
7706   }
7707 
7708   case Type::BlockPointer: {
7709     const auto *BT = T->castAs<BlockPointerType>();
7710     S += "@?"; // Unlike a pointer-to-function, which is "^?".
7711     if (Options.EncodeBlockParameters()) {
7712       const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
7713 
7714       S += '<';
7715       // Block return type
7716       getObjCEncodingForTypeImpl(FT->getReturnType(), S,
7717                                  Options.forComponentType(), FD, NotEncodedT);
7718       // Block self
7719       S += "@?";
7720       // Block parameters
7721       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
7722         for (const auto &I : FPT->param_types())
7723           getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
7724                                      NotEncodedT);
7725       }
7726       S += '>';
7727     }
7728     return;
7729   }
7730 
7731   case Type::ObjCObject: {
7732     // hack to match legacy encoding of *id and *Class
7733     QualType Ty = getObjCObjectPointerType(CT);
7734     if (Ty->isObjCIdType()) {
7735       S += "{objc_object=}";
7736       return;
7737     }
7738     else if (Ty->isObjCClassType()) {
7739       S += "{objc_class=}";
7740       return;
7741     }
7742     // TODO: Double check to make sure this intentionally falls through.
7743     LLVM_FALLTHROUGH;
7744   }
7745 
7746   case Type::ObjCInterface: {
7747     // Ignore protocol qualifiers when mangling at this level.
7748     // @encode(class_name)
7749     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
7750     S += '{';
7751     S += OI->getObjCRuntimeNameAsString();
7752     if (Options.ExpandStructures()) {
7753       S += '=';
7754       SmallVector<const ObjCIvarDecl*, 32> Ivars;
7755       DeepCollectObjCIvars(OI, true, Ivars);
7756       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
7757         const FieldDecl *Field = Ivars[i];
7758         if (Field->isBitField())
7759           getObjCEncodingForTypeImpl(Field->getType(), S,
7760                                      ObjCEncOptions().setExpandStructures(),
7761                                      Field);
7762         else
7763           getObjCEncodingForTypeImpl(Field->getType(), S,
7764                                      ObjCEncOptions().setExpandStructures(), FD,
7765                                      NotEncodedT);
7766       }
7767     }
7768     S += '}';
7769     return;
7770   }
7771 
7772   case Type::ObjCObjectPointer: {
7773     const auto *OPT = T->castAs<ObjCObjectPointerType>();
7774     if (OPT->isObjCIdType()) {
7775       S += '@';
7776       return;
7777     }
7778 
7779     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
7780       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
7781       // Since this is a binary compatibility issue, need to consult with
7782       // runtime folks. Fortunately, this is a *very* obscure construct.
7783       S += '#';
7784       return;
7785     }
7786 
7787     if (OPT->isObjCQualifiedIdType()) {
7788       getObjCEncodingForTypeImpl(
7789           getObjCIdType(), S,
7790           Options.keepingOnly(ObjCEncOptions()
7791                                   .setExpandPointedToStructures()
7792                                   .setExpandStructures()),
7793           FD);
7794       if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
7795         // Note that we do extended encoding of protocol qualifier list
7796         // Only when doing ivar or property encoding.
7797         S += '"';
7798         for (const auto *I : OPT->quals()) {
7799           S += '<';
7800           S += I->getObjCRuntimeNameAsString();
7801           S += '>';
7802         }
7803         S += '"';
7804       }
7805       return;
7806     }
7807 
7808     S += '@';
7809     if (OPT->getInterfaceDecl() &&
7810         (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
7811       S += '"';
7812       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
7813       for (const auto *I : OPT->quals()) {
7814         S += '<';
7815         S += I->getObjCRuntimeNameAsString();
7816         S += '>';
7817       }
7818       S += '"';
7819     }
7820     return;
7821   }
7822 
7823   // gcc just blithely ignores member pointers.
7824   // FIXME: we should do better than that.  'M' is available.
7825   case Type::MemberPointer:
7826   // This matches gcc's encoding, even though technically it is insufficient.
7827   //FIXME. We should do a better job than gcc.
7828   case Type::Vector:
7829   case Type::ExtVector:
7830   // Until we have a coherent encoding of these three types, issue warning.
7831     if (NotEncodedT)
7832       *NotEncodedT = T;
7833     return;
7834 
7835   case Type::ConstantMatrix:
7836     if (NotEncodedT)
7837       *NotEncodedT = T;
7838     return;
7839 
7840   // We could see an undeduced auto type here during error recovery.
7841   // Just ignore it.
7842   case Type::Auto:
7843   case Type::DeducedTemplateSpecialization:
7844     return;
7845 
7846   case Type::Pipe:
7847   case Type::ExtInt:
7848 #define ABSTRACT_TYPE(KIND, BASE)
7849 #define TYPE(KIND, BASE)
7850 #define DEPENDENT_TYPE(KIND, BASE) \
7851   case Type::KIND:
7852 #define NON_CANONICAL_TYPE(KIND, BASE) \
7853   case Type::KIND:
7854 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
7855   case Type::KIND:
7856 #include "clang/AST/TypeNodes.inc"
7857     llvm_unreachable("@encode for dependent type!");
7858   }
7859   llvm_unreachable("bad type kind!");
7860 }
7861 
getObjCEncodingForStructureImpl(RecordDecl * RDecl,std::string & S,const FieldDecl * FD,bool includeVBases,QualType * NotEncodedT) const7862 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
7863                                                  std::string &S,
7864                                                  const FieldDecl *FD,
7865                                                  bool includeVBases,
7866                                                  QualType *NotEncodedT) const {
7867   assert(RDecl && "Expected non-null RecordDecl");
7868   assert(!RDecl->isUnion() && "Should not be called for unions");
7869   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
7870     return;
7871 
7872   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
7873   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
7874   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
7875 
7876   if (CXXRec) {
7877     for (const auto &BI : CXXRec->bases()) {
7878       if (!BI.isVirtual()) {
7879         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7880         if (base->isEmpty())
7881           continue;
7882         uint64_t offs = toBits(layout.getBaseClassOffset(base));
7883         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7884                                   std::make_pair(offs, base));
7885       }
7886     }
7887   }
7888 
7889   unsigned i = 0;
7890   for (FieldDecl *Field : RDecl->fields()) {
7891     if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this))
7892       continue;
7893     uint64_t offs = layout.getFieldOffset(i);
7894     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7895                               std::make_pair(offs, Field));
7896     ++i;
7897   }
7898 
7899   if (CXXRec && includeVBases) {
7900     for (const auto &BI : CXXRec->vbases()) {
7901       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7902       if (base->isEmpty())
7903         continue;
7904       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
7905       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
7906           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
7907         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
7908                                   std::make_pair(offs, base));
7909     }
7910   }
7911 
7912   CharUnits size;
7913   if (CXXRec) {
7914     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
7915   } else {
7916     size = layout.getSize();
7917   }
7918 
7919 #ifndef NDEBUG
7920   uint64_t CurOffs = 0;
7921 #endif
7922   std::multimap<uint64_t, NamedDecl *>::iterator
7923     CurLayObj = FieldOrBaseOffsets.begin();
7924 
7925   if (CXXRec && CXXRec->isDynamicClass() &&
7926       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
7927     if (FD) {
7928       S += "\"_vptr$";
7929       std::string recname = CXXRec->getNameAsString();
7930       if (recname.empty()) recname = "?";
7931       S += recname;
7932       S += '"';
7933     }
7934     S += "^^?";
7935 #ifndef NDEBUG
7936     CurOffs += getTypeSize(VoidPtrTy);
7937 #endif
7938   }
7939 
7940   if (!RDecl->hasFlexibleArrayMember()) {
7941     // Mark the end of the structure.
7942     uint64_t offs = toBits(size);
7943     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7944                               std::make_pair(offs, nullptr));
7945   }
7946 
7947   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
7948 #ifndef NDEBUG
7949     assert(CurOffs <= CurLayObj->first);
7950     if (CurOffs < CurLayObj->first) {
7951       uint64_t padding = CurLayObj->first - CurOffs;
7952       // FIXME: There doesn't seem to be a way to indicate in the encoding that
7953       // packing/alignment of members is different that normal, in which case
7954       // the encoding will be out-of-sync with the real layout.
7955       // If the runtime switches to just consider the size of types without
7956       // taking into account alignment, we could make padding explicit in the
7957       // encoding (e.g. using arrays of chars). The encoding strings would be
7958       // longer then though.
7959       CurOffs += padding;
7960     }
7961 #endif
7962 
7963     NamedDecl *dcl = CurLayObj->second;
7964     if (!dcl)
7965       break; // reached end of structure.
7966 
7967     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
7968       // We expand the bases without their virtual bases since those are going
7969       // in the initial structure. Note that this differs from gcc which
7970       // expands virtual bases each time one is encountered in the hierarchy,
7971       // making the encoding type bigger than it really is.
7972       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
7973                                       NotEncodedT);
7974       assert(!base->isEmpty());
7975 #ifndef NDEBUG
7976       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
7977 #endif
7978     } else {
7979       const auto *field = cast<FieldDecl>(dcl);
7980       if (FD) {
7981         S += '"';
7982         S += field->getNameAsString();
7983         S += '"';
7984       }
7985 
7986       if (field->isBitField()) {
7987         EncodeBitField(this, S, field->getType(), field);
7988 #ifndef NDEBUG
7989         CurOffs += field->getBitWidthValue(*this);
7990 #endif
7991       } else {
7992         QualType qt = field->getType();
7993         getLegacyIntegralTypeEncoding(qt);
7994         getObjCEncodingForTypeImpl(
7995             qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
7996             FD, NotEncodedT);
7997 #ifndef NDEBUG
7998         CurOffs += getTypeSize(field->getType());
7999 #endif
8000       }
8001     }
8002   }
8003 }
8004 
getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,std::string & S) const8005 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
8006                                                  std::string& S) const {
8007   if (QT & Decl::OBJC_TQ_In)
8008     S += 'n';
8009   if (QT & Decl::OBJC_TQ_Inout)
8010     S += 'N';
8011   if (QT & Decl::OBJC_TQ_Out)
8012     S += 'o';
8013   if (QT & Decl::OBJC_TQ_Bycopy)
8014     S += 'O';
8015   if (QT & Decl::OBJC_TQ_Byref)
8016     S += 'R';
8017   if (QT & Decl::OBJC_TQ_Oneway)
8018     S += 'V';
8019 }
8020 
getObjCIdDecl() const8021 TypedefDecl *ASTContext::getObjCIdDecl() const {
8022   if (!ObjCIdDecl) {
8023     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
8024     T = getObjCObjectPointerType(T);
8025     ObjCIdDecl = buildImplicitTypedef(T, "id");
8026   }
8027   return ObjCIdDecl;
8028 }
8029 
getObjCSelDecl() const8030 TypedefDecl *ASTContext::getObjCSelDecl() const {
8031   if (!ObjCSelDecl) {
8032     QualType T = getPointerType(ObjCBuiltinSelTy);
8033     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
8034   }
8035   return ObjCSelDecl;
8036 }
8037 
getObjCClassDecl() const8038 TypedefDecl *ASTContext::getObjCClassDecl() const {
8039   if (!ObjCClassDecl) {
8040     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
8041     T = getObjCObjectPointerType(T);
8042     ObjCClassDecl = buildImplicitTypedef(T, "Class");
8043   }
8044   return ObjCClassDecl;
8045 }
8046 
getObjCProtocolDecl() const8047 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
8048   if (!ObjCProtocolClassDecl) {
8049     ObjCProtocolClassDecl
8050       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
8051                                   SourceLocation(),
8052                                   &Idents.get("Protocol"),
8053                                   /*typeParamList=*/nullptr,
8054                                   /*PrevDecl=*/nullptr,
8055                                   SourceLocation(), true);
8056   }
8057 
8058   return ObjCProtocolClassDecl;
8059 }
8060 
8061 //===----------------------------------------------------------------------===//
8062 // __builtin_va_list Construction Functions
8063 //===----------------------------------------------------------------------===//
8064 
CreateCharPtrNamedVaListDecl(const ASTContext * Context,StringRef Name)8065 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
8066                                                  StringRef Name) {
8067   // typedef char* __builtin[_ms]_va_list;
8068   QualType T = Context->getPointerType(Context->CharTy);
8069   return Context->buildImplicitTypedef(T, Name);
8070 }
8071 
CreateMSVaListDecl(const ASTContext * Context)8072 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
8073   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
8074 }
8075 
CreateCharPtrBuiltinVaListDecl(const ASTContext * Context)8076 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
8077   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
8078 }
8079 
CreateVoidPtrBuiltinVaListDecl(const ASTContext * Context)8080 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
8081   // typedef void* __builtin_va_list;
8082   QualType T = Context->getPointerType(Context->VoidTy);
8083   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8084 }
8085 
8086 static TypedefDecl *
CreateAArch64ABIBuiltinVaListDecl(const ASTContext * Context)8087 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
8088   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
8089   // namespace std { struct __va_list {
8090   // Note that we create the namespace even in C. This is intentional so that
8091   // the type is consistent between C and C++, which is important in cases where
8092   // the types need to match between translation units (e.g. with
8093   // -fsanitize=cfi-icall). Ideally we wouldn't have created this namespace at
8094   // all, but it's now part of the ABI (e.g. in mangled names), so we can't
8095   // change it.
8096   auto *NS = NamespaceDecl::Create(
8097       const_cast<ASTContext &>(*Context), Context->getTranslationUnitDecl(),
8098       /*Inline*/ false, SourceLocation(), SourceLocation(),
8099       &Context->Idents.get("std"),
8100       /*PrevDecl*/ nullptr);
8101   NS->setImplicit();
8102   VaListTagDecl->setDeclContext(NS);
8103 
8104   VaListTagDecl->startDefinition();
8105 
8106   const size_t NumFields = 5;
8107   QualType FieldTypes[NumFields];
8108   const char *FieldNames[NumFields];
8109 
8110   // void *__stack;
8111   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8112   FieldNames[0] = "__stack";
8113 
8114   // void *__gr_top;
8115   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8116   FieldNames[1] = "__gr_top";
8117 
8118   // void *__vr_top;
8119   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8120   FieldNames[2] = "__vr_top";
8121 
8122   // int __gr_offs;
8123   FieldTypes[3] = Context->IntTy;
8124   FieldNames[3] = "__gr_offs";
8125 
8126   // int __vr_offs;
8127   FieldTypes[4] = Context->IntTy;
8128   FieldNames[4] = "__vr_offs";
8129 
8130   // Create fields
8131   for (unsigned i = 0; i < NumFields; ++i) {
8132     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8133                                          VaListTagDecl,
8134                                          SourceLocation(),
8135                                          SourceLocation(),
8136                                          &Context->Idents.get(FieldNames[i]),
8137                                          FieldTypes[i], /*TInfo=*/nullptr,
8138                                          /*BitWidth=*/nullptr,
8139                                          /*Mutable=*/false,
8140                                          ICIS_NoInit);
8141     Field->setAccess(AS_public);
8142     VaListTagDecl->addDecl(Field);
8143   }
8144   VaListTagDecl->completeDefinition();
8145   Context->VaListTagDecl = VaListTagDecl;
8146   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8147 
8148   // } __builtin_va_list;
8149   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
8150 }
8151 
CreatePowerABIBuiltinVaListDecl(const ASTContext * Context)8152 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
8153   // typedef struct __va_list_tag {
8154   RecordDecl *VaListTagDecl;
8155 
8156   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8157   VaListTagDecl->startDefinition();
8158 
8159   const size_t NumFields = 5;
8160   QualType FieldTypes[NumFields];
8161   const char *FieldNames[NumFields];
8162 
8163   //   unsigned char gpr;
8164   FieldTypes[0] = Context->UnsignedCharTy;
8165   FieldNames[0] = "gpr";
8166 
8167   //   unsigned char fpr;
8168   FieldTypes[1] = Context->UnsignedCharTy;
8169   FieldNames[1] = "fpr";
8170 
8171   //   unsigned short reserved;
8172   FieldTypes[2] = Context->UnsignedShortTy;
8173   FieldNames[2] = "reserved";
8174 
8175   //   void* overflow_arg_area;
8176   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8177   FieldNames[3] = "overflow_arg_area";
8178 
8179   //   void* reg_save_area;
8180   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
8181   FieldNames[4] = "reg_save_area";
8182 
8183   // Create fields
8184   for (unsigned i = 0; i < NumFields; ++i) {
8185     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
8186                                          SourceLocation(),
8187                                          SourceLocation(),
8188                                          &Context->Idents.get(FieldNames[i]),
8189                                          FieldTypes[i], /*TInfo=*/nullptr,
8190                                          /*BitWidth=*/nullptr,
8191                                          /*Mutable=*/false,
8192                                          ICIS_NoInit);
8193     Field->setAccess(AS_public);
8194     VaListTagDecl->addDecl(Field);
8195   }
8196   VaListTagDecl->completeDefinition();
8197   Context->VaListTagDecl = VaListTagDecl;
8198   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8199 
8200   // } __va_list_tag;
8201   TypedefDecl *VaListTagTypedefDecl =
8202       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8203 
8204   QualType VaListTagTypedefType =
8205     Context->getTypedefType(VaListTagTypedefDecl);
8206 
8207   // typedef __va_list_tag __builtin_va_list[1];
8208   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8209   QualType VaListTagArrayType
8210     = Context->getConstantArrayType(VaListTagTypedefType,
8211                                     Size, nullptr, ArrayType::Normal, 0);
8212   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8213 }
8214 
8215 static TypedefDecl *
CreateX86_64ABIBuiltinVaListDecl(const ASTContext * Context)8216 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
8217   // struct __va_list_tag {
8218   RecordDecl *VaListTagDecl;
8219   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8220   VaListTagDecl->startDefinition();
8221 
8222   const size_t NumFields = 4;
8223   QualType FieldTypes[NumFields];
8224   const char *FieldNames[NumFields];
8225 
8226   //   unsigned gp_offset;
8227   FieldTypes[0] = Context->UnsignedIntTy;
8228   FieldNames[0] = "gp_offset";
8229 
8230   //   unsigned fp_offset;
8231   FieldTypes[1] = Context->UnsignedIntTy;
8232   FieldNames[1] = "fp_offset";
8233 
8234   //   void* overflow_arg_area;
8235   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8236   FieldNames[2] = "overflow_arg_area";
8237 
8238   //   void* reg_save_area;
8239   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8240   FieldNames[3] = "reg_save_area";
8241 
8242   // Create fields
8243   for (unsigned i = 0; i < NumFields; ++i) {
8244     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8245                                          VaListTagDecl,
8246                                          SourceLocation(),
8247                                          SourceLocation(),
8248                                          &Context->Idents.get(FieldNames[i]),
8249                                          FieldTypes[i], /*TInfo=*/nullptr,
8250                                          /*BitWidth=*/nullptr,
8251                                          /*Mutable=*/false,
8252                                          ICIS_NoInit);
8253     Field->setAccess(AS_public);
8254     VaListTagDecl->addDecl(Field);
8255   }
8256   VaListTagDecl->completeDefinition();
8257   Context->VaListTagDecl = VaListTagDecl;
8258   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8259 
8260   // };
8261 
8262   // typedef struct __va_list_tag __builtin_va_list[1];
8263   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8264   QualType VaListTagArrayType = Context->getConstantArrayType(
8265       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8266   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8267 }
8268 
CreatePNaClABIBuiltinVaListDecl(const ASTContext * Context)8269 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
8270   // typedef int __builtin_va_list[4];
8271   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
8272   QualType IntArrayType = Context->getConstantArrayType(
8273       Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
8274   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
8275 }
8276 
8277 static TypedefDecl *
CreateAAPCSABIBuiltinVaListDecl(const ASTContext * Context)8278 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
8279   // struct __va_list
8280   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
8281   if (Context->getLangOpts().CPlusPlus) {
8282     // namespace std { struct __va_list {
8283     NamespaceDecl *NS;
8284     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
8285                                Context->getTranslationUnitDecl(),
8286                                /*Inline*/false, SourceLocation(),
8287                                SourceLocation(), &Context->Idents.get("std"),
8288                                /*PrevDecl*/ nullptr);
8289     NS->setImplicit();
8290     VaListDecl->setDeclContext(NS);
8291   }
8292 
8293   VaListDecl->startDefinition();
8294 
8295   // void * __ap;
8296   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8297                                        VaListDecl,
8298                                        SourceLocation(),
8299                                        SourceLocation(),
8300                                        &Context->Idents.get("__ap"),
8301                                        Context->getPointerType(Context->VoidTy),
8302                                        /*TInfo=*/nullptr,
8303                                        /*BitWidth=*/nullptr,
8304                                        /*Mutable=*/false,
8305                                        ICIS_NoInit);
8306   Field->setAccess(AS_public);
8307   VaListDecl->addDecl(Field);
8308 
8309   // };
8310   VaListDecl->completeDefinition();
8311   Context->VaListTagDecl = VaListDecl;
8312 
8313   // typedef struct __va_list __builtin_va_list;
8314   QualType T = Context->getRecordType(VaListDecl);
8315   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8316 }
8317 
8318 static TypedefDecl *
CreateSystemZBuiltinVaListDecl(const ASTContext * Context)8319 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
8320   // struct __va_list_tag {
8321   RecordDecl *VaListTagDecl;
8322   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8323   VaListTagDecl->startDefinition();
8324 
8325   const size_t NumFields = 4;
8326   QualType FieldTypes[NumFields];
8327   const char *FieldNames[NumFields];
8328 
8329   //   long __gpr;
8330   FieldTypes[0] = Context->LongTy;
8331   FieldNames[0] = "__gpr";
8332 
8333   //   long __fpr;
8334   FieldTypes[1] = Context->LongTy;
8335   FieldNames[1] = "__fpr";
8336 
8337   //   void *__overflow_arg_area;
8338   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8339   FieldNames[2] = "__overflow_arg_area";
8340 
8341   //   void *__reg_save_area;
8342   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8343   FieldNames[3] = "__reg_save_area";
8344 
8345   // Create fields
8346   for (unsigned i = 0; i < NumFields; ++i) {
8347     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8348                                          VaListTagDecl,
8349                                          SourceLocation(),
8350                                          SourceLocation(),
8351                                          &Context->Idents.get(FieldNames[i]),
8352                                          FieldTypes[i], /*TInfo=*/nullptr,
8353                                          /*BitWidth=*/nullptr,
8354                                          /*Mutable=*/false,
8355                                          ICIS_NoInit);
8356     Field->setAccess(AS_public);
8357     VaListTagDecl->addDecl(Field);
8358   }
8359   VaListTagDecl->completeDefinition();
8360   Context->VaListTagDecl = VaListTagDecl;
8361   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8362 
8363   // };
8364 
8365   // typedef __va_list_tag __builtin_va_list[1];
8366   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8367   QualType VaListTagArrayType = Context->getConstantArrayType(
8368       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8369 
8370   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8371 }
8372 
CreateHexagonBuiltinVaListDecl(const ASTContext * Context)8373 static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
8374   // typedef struct __va_list_tag {
8375   RecordDecl *VaListTagDecl;
8376   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8377   VaListTagDecl->startDefinition();
8378 
8379   const size_t NumFields = 3;
8380   QualType FieldTypes[NumFields];
8381   const char *FieldNames[NumFields];
8382 
8383   //   void *CurrentSavedRegisterArea;
8384   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8385   FieldNames[0] = "__current_saved_reg_area_pointer";
8386 
8387   //   void *SavedRegAreaEnd;
8388   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8389   FieldNames[1] = "__saved_reg_area_end_pointer";
8390 
8391   //   void *OverflowArea;
8392   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8393   FieldNames[2] = "__overflow_area_pointer";
8394 
8395   // Create fields
8396   for (unsigned i = 0; i < NumFields; ++i) {
8397     FieldDecl *Field = FieldDecl::Create(
8398         const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
8399         SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
8400         /*TInfo=*/0,
8401         /*BitWidth=*/0,
8402         /*Mutable=*/false, ICIS_NoInit);
8403     Field->setAccess(AS_public);
8404     VaListTagDecl->addDecl(Field);
8405   }
8406   VaListTagDecl->completeDefinition();
8407   Context->VaListTagDecl = VaListTagDecl;
8408   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8409 
8410   // } __va_list_tag;
8411   TypedefDecl *VaListTagTypedefDecl =
8412       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8413 
8414   QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
8415 
8416   // typedef __va_list_tag __builtin_va_list[1];
8417   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8418   QualType VaListTagArrayType = Context->getConstantArrayType(
8419       VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0);
8420 
8421   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8422 }
8423 
CreateVaListDecl(const ASTContext * Context,TargetInfo::BuiltinVaListKind Kind)8424 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
8425                                      TargetInfo::BuiltinVaListKind Kind) {
8426   switch (Kind) {
8427   case TargetInfo::CharPtrBuiltinVaList:
8428     return CreateCharPtrBuiltinVaListDecl(Context);
8429   case TargetInfo::VoidPtrBuiltinVaList:
8430     return CreateVoidPtrBuiltinVaListDecl(Context);
8431   case TargetInfo::AArch64ABIBuiltinVaList:
8432     return CreateAArch64ABIBuiltinVaListDecl(Context);
8433   case TargetInfo::PowerABIBuiltinVaList:
8434     return CreatePowerABIBuiltinVaListDecl(Context);
8435   case TargetInfo::X86_64ABIBuiltinVaList:
8436     return CreateX86_64ABIBuiltinVaListDecl(Context);
8437   case TargetInfo::PNaClABIBuiltinVaList:
8438     return CreatePNaClABIBuiltinVaListDecl(Context);
8439   case TargetInfo::AAPCSABIBuiltinVaList:
8440     return CreateAAPCSABIBuiltinVaListDecl(Context);
8441   case TargetInfo::SystemZBuiltinVaList:
8442     return CreateSystemZBuiltinVaListDecl(Context);
8443   case TargetInfo::HexagonBuiltinVaList:
8444     return CreateHexagonBuiltinVaListDecl(Context);
8445   }
8446 
8447   llvm_unreachable("Unhandled __builtin_va_list type kind");
8448 }
8449 
getBuiltinVaListDecl() const8450 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
8451   if (!BuiltinVaListDecl) {
8452     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
8453     assert(BuiltinVaListDecl->isImplicit());
8454   }
8455 
8456   return BuiltinVaListDecl;
8457 }
8458 
getVaListTagDecl() const8459 Decl *ASTContext::getVaListTagDecl() const {
8460   // Force the creation of VaListTagDecl by building the __builtin_va_list
8461   // declaration.
8462   if (!VaListTagDecl)
8463     (void)getBuiltinVaListDecl();
8464 
8465   return VaListTagDecl;
8466 }
8467 
getBuiltinMSVaListDecl() const8468 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
8469   if (!BuiltinMSVaListDecl)
8470     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
8471 
8472   return BuiltinMSVaListDecl;
8473 }
8474 
canBuiltinBeRedeclared(const FunctionDecl * FD) const8475 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
8476   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
8477 }
8478 
setObjCConstantStringInterface(ObjCInterfaceDecl * Decl)8479 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
8480   assert(ObjCConstantStringType.isNull() &&
8481          "'NSConstantString' type already set!");
8482 
8483   ObjCConstantStringType = getObjCInterfaceType(Decl);
8484 }
8485 
8486 /// Retrieve the template name that corresponds to a non-empty
8487 /// lookup.
8488 TemplateName
getOverloadedTemplateName(UnresolvedSetIterator Begin,UnresolvedSetIterator End) const8489 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
8490                                       UnresolvedSetIterator End) const {
8491   unsigned size = End - Begin;
8492   assert(size > 1 && "set is not overloaded!");
8493 
8494   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
8495                           size * sizeof(FunctionTemplateDecl*));
8496   auto *OT = new (memory) OverloadedTemplateStorage(size);
8497 
8498   NamedDecl **Storage = OT->getStorage();
8499   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
8500     NamedDecl *D = *I;
8501     assert(isa<FunctionTemplateDecl>(D) ||
8502            isa<UnresolvedUsingValueDecl>(D) ||
8503            (isa<UsingShadowDecl>(D) &&
8504             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
8505     *Storage++ = D;
8506   }
8507 
8508   return TemplateName(OT);
8509 }
8510 
8511 /// Retrieve a template name representing an unqualified-id that has been
8512 /// assumed to name a template for ADL purposes.
getAssumedTemplateName(DeclarationName Name) const8513 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
8514   auto *OT = new (*this) AssumedTemplateStorage(Name);
8515   return TemplateName(OT);
8516 }
8517 
8518 /// Retrieve the template name that represents a qualified
8519 /// template name such as \c std::vector.
8520 TemplateName
getQualifiedTemplateName(NestedNameSpecifier * NNS,bool TemplateKeyword,TemplateDecl * Template) const8521 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
8522                                      bool TemplateKeyword,
8523                                      TemplateDecl *Template) const {
8524   assert(NNS && "Missing nested-name-specifier in qualified template name");
8525 
8526   // FIXME: Canonicalization?
8527   llvm::FoldingSetNodeID ID;
8528   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
8529 
8530   void *InsertPos = nullptr;
8531   QualifiedTemplateName *QTN =
8532     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8533   if (!QTN) {
8534     QTN = new (*this, alignof(QualifiedTemplateName))
8535         QualifiedTemplateName(NNS, TemplateKeyword, Template);
8536     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
8537   }
8538 
8539   return TemplateName(QTN);
8540 }
8541 
8542 /// Retrieve the template name that represents a dependent
8543 /// template name such as \c MetaFun::template apply.
8544 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,const IdentifierInfo * Name) const8545 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
8546                                      const IdentifierInfo *Name) const {
8547   assert((!NNS || NNS->isDependent()) &&
8548          "Nested name specifier must be dependent");
8549 
8550   llvm::FoldingSetNodeID ID;
8551   DependentTemplateName::Profile(ID, NNS, Name);
8552 
8553   void *InsertPos = nullptr;
8554   DependentTemplateName *QTN =
8555     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8556 
8557   if (QTN)
8558     return TemplateName(QTN);
8559 
8560   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
8561   if (CanonNNS == NNS) {
8562     QTN = new (*this, alignof(DependentTemplateName))
8563         DependentTemplateName(NNS, Name);
8564   } else {
8565     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
8566     QTN = new (*this, alignof(DependentTemplateName))
8567         DependentTemplateName(NNS, Name, Canon);
8568     DependentTemplateName *CheckQTN =
8569       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8570     assert(!CheckQTN && "Dependent type name canonicalization broken");
8571     (void)CheckQTN;
8572   }
8573 
8574   DependentTemplateNames.InsertNode(QTN, InsertPos);
8575   return TemplateName(QTN);
8576 }
8577 
8578 /// Retrieve the template name that represents a dependent
8579 /// template name such as \c MetaFun::template operator+.
8580 TemplateName
getDependentTemplateName(NestedNameSpecifier * NNS,OverloadedOperatorKind Operator) const8581 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
8582                                      OverloadedOperatorKind Operator) const {
8583   assert((!NNS || NNS->isDependent()) &&
8584          "Nested name specifier must be dependent");
8585 
8586   llvm::FoldingSetNodeID ID;
8587   DependentTemplateName::Profile(ID, NNS, Operator);
8588 
8589   void *InsertPos = nullptr;
8590   DependentTemplateName *QTN
8591     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8592 
8593   if (QTN)
8594     return TemplateName(QTN);
8595 
8596   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
8597   if (CanonNNS == NNS) {
8598     QTN = new (*this, alignof(DependentTemplateName))
8599         DependentTemplateName(NNS, Operator);
8600   } else {
8601     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
8602     QTN = new (*this, alignof(DependentTemplateName))
8603         DependentTemplateName(NNS, Operator, Canon);
8604 
8605     DependentTemplateName *CheckQTN
8606       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8607     assert(!CheckQTN && "Dependent template name canonicalization broken");
8608     (void)CheckQTN;
8609   }
8610 
8611   DependentTemplateNames.InsertNode(QTN, InsertPos);
8612   return TemplateName(QTN);
8613 }
8614 
8615 TemplateName
getSubstTemplateTemplateParm(TemplateTemplateParmDecl * param,TemplateName replacement) const8616 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
8617                                          TemplateName replacement) const {
8618   llvm::FoldingSetNodeID ID;
8619   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
8620 
8621   void *insertPos = nullptr;
8622   SubstTemplateTemplateParmStorage *subst
8623     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
8624 
8625   if (!subst) {
8626     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
8627     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
8628   }
8629 
8630   return TemplateName(subst);
8631 }
8632 
8633 TemplateName
getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl * Param,const TemplateArgument & ArgPack) const8634 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
8635                                        const TemplateArgument &ArgPack) const {
8636   auto &Self = const_cast<ASTContext &>(*this);
8637   llvm::FoldingSetNodeID ID;
8638   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
8639 
8640   void *InsertPos = nullptr;
8641   SubstTemplateTemplateParmPackStorage *Subst
8642     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
8643 
8644   if (!Subst) {
8645     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
8646                                                            ArgPack.pack_size(),
8647                                                          ArgPack.pack_begin());
8648     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
8649   }
8650 
8651   return TemplateName(Subst);
8652 }
8653 
8654 /// getFromTargetType - Given one of the integer types provided by
8655 /// TargetInfo, produce the corresponding type. The unsigned @p Type
8656 /// is actually a value of type @c TargetInfo::IntType.
getFromTargetType(unsigned Type) const8657 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
8658   switch (Type) {
8659   case TargetInfo::NoInt: return {};
8660   case TargetInfo::SignedChar: return SignedCharTy;
8661   case TargetInfo::UnsignedChar: return UnsignedCharTy;
8662   case TargetInfo::SignedShort: return ShortTy;
8663   case TargetInfo::UnsignedShort: return UnsignedShortTy;
8664   case TargetInfo::SignedInt: return IntTy;
8665   case TargetInfo::UnsignedInt: return UnsignedIntTy;
8666   case TargetInfo::SignedLong: return LongTy;
8667   case TargetInfo::UnsignedLong: return UnsignedLongTy;
8668   case TargetInfo::SignedLongLong: return LongLongTy;
8669   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
8670   }
8671 
8672   llvm_unreachable("Unhandled TargetInfo::IntType value");
8673 }
8674 
8675 //===----------------------------------------------------------------------===//
8676 //                        Type Predicates.
8677 //===----------------------------------------------------------------------===//
8678 
8679 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
8680 /// garbage collection attribute.
8681 ///
getObjCGCAttrKind(QualType Ty) const8682 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
8683   if (getLangOpts().getGC() == LangOptions::NonGC)
8684     return Qualifiers::GCNone;
8685 
8686   assert(getLangOpts().ObjC);
8687   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
8688 
8689   // Default behaviour under objective-C's gc is for ObjC pointers
8690   // (or pointers to them) be treated as though they were declared
8691   // as __strong.
8692   if (GCAttrs == Qualifiers::GCNone) {
8693     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
8694       return Qualifiers::Strong;
8695     else if (Ty->isPointerType())
8696       return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
8697   } else {
8698     // It's not valid to set GC attributes on anything that isn't a
8699     // pointer.
8700 #ifndef NDEBUG
8701     QualType CT = Ty->getCanonicalTypeInternal();
8702     while (const auto *AT = dyn_cast<ArrayType>(CT))
8703       CT = AT->getElementType();
8704     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
8705 #endif
8706   }
8707   return GCAttrs;
8708 }
8709 
8710 //===----------------------------------------------------------------------===//
8711 //                        Type Compatibility Testing
8712 //===----------------------------------------------------------------------===//
8713 
8714 /// areCompatVectorTypes - Return true if the two specified vector types are
8715 /// compatible.
areCompatVectorTypes(const VectorType * LHS,const VectorType * RHS)8716 static bool areCompatVectorTypes(const VectorType *LHS,
8717                                  const VectorType *RHS) {
8718   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8719   return LHS->getElementType() == RHS->getElementType() &&
8720          LHS->getNumElements() == RHS->getNumElements();
8721 }
8722 
8723 /// areCompatMatrixTypes - Return true if the two specified matrix types are
8724 /// compatible.
areCompatMatrixTypes(const ConstantMatrixType * LHS,const ConstantMatrixType * RHS)8725 static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
8726                                  const ConstantMatrixType *RHS) {
8727   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8728   return LHS->getElementType() == RHS->getElementType() &&
8729          LHS->getNumRows() == RHS->getNumRows() &&
8730          LHS->getNumColumns() == RHS->getNumColumns();
8731 }
8732 
areCompatibleVectorTypes(QualType FirstVec,QualType SecondVec)8733 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
8734                                           QualType SecondVec) {
8735   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
8736   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
8737 
8738   if (hasSameUnqualifiedType(FirstVec, SecondVec))
8739     return true;
8740 
8741   // Treat Neon vector types and most AltiVec vector types as if they are the
8742   // equivalent GCC vector types.
8743   const auto *First = FirstVec->castAs<VectorType>();
8744   const auto *Second = SecondVec->castAs<VectorType>();
8745   if (First->getNumElements() == Second->getNumElements() &&
8746       hasSameType(First->getElementType(), Second->getElementType()) &&
8747       First->getVectorKind() != VectorType::AltiVecPixel &&
8748       First->getVectorKind() != VectorType::AltiVecBool &&
8749       Second->getVectorKind() != VectorType::AltiVecPixel &&
8750       Second->getVectorKind() != VectorType::AltiVecBool &&
8751       First->getVectorKind() != VectorType::SveFixedLengthDataVector &&
8752       First->getVectorKind() != VectorType::SveFixedLengthPredicateVector &&
8753       Second->getVectorKind() != VectorType::SveFixedLengthDataVector &&
8754       Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector)
8755     return true;
8756 
8757   return false;
8758 }
8759 
8760 /// getSVETypeSize - Return SVE vector or predicate register size.
getSVETypeSize(ASTContext & Context,const BuiltinType * Ty)8761 static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) {
8762   assert(Ty->isVLSTBuiltinType() && "Invalid SVE Type");
8763   return Ty->getKind() == BuiltinType::SveBool
8764              ? Context.getLangOpts().ArmSveVectorBits / Context.getCharWidth()
8765              : Context.getLangOpts().ArmSveVectorBits;
8766 }
8767 
areCompatibleSveTypes(QualType FirstType,QualType SecondType)8768 bool ASTContext::areCompatibleSveTypes(QualType FirstType,
8769                                        QualType SecondType) {
8770   assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
8771           (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
8772          "Expected SVE builtin type and vector type!");
8773 
8774   auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
8775     if (const auto *BT = FirstType->getAs<BuiltinType>()) {
8776       if (const auto *VT = SecondType->getAs<VectorType>()) {
8777         // Predicates have the same representation as uint8 so we also have to
8778         // check the kind to make these types incompatible.
8779         if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
8780           return BT->getKind() == BuiltinType::SveBool;
8781         else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
8782           return VT->getElementType().getCanonicalType() ==
8783                  FirstType->getSveEltType(*this);
8784         else if (VT->getVectorKind() == VectorType::GenericVector)
8785           return getTypeSize(SecondType) == getSVETypeSize(*this, BT) &&
8786                  hasSameType(VT->getElementType(),
8787                              getBuiltinVectorTypeInfo(BT).ElementType);
8788       }
8789     }
8790     return false;
8791   };
8792 
8793   return IsValidCast(FirstType, SecondType) ||
8794          IsValidCast(SecondType, FirstType);
8795 }
8796 
areLaxCompatibleSveTypes(QualType FirstType,QualType SecondType)8797 bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType,
8798                                           QualType SecondType) {
8799   assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
8800           (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
8801          "Expected SVE builtin type and vector type!");
8802 
8803   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
8804     const auto *BT = FirstType->getAs<BuiltinType>();
8805     if (!BT)
8806       return false;
8807 
8808     const auto *VecTy = SecondType->getAs<VectorType>();
8809     if (VecTy &&
8810         (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector ||
8811          VecTy->getVectorKind() == VectorType::GenericVector)) {
8812       const LangOptions::LaxVectorConversionKind LVCKind =
8813           getLangOpts().getLaxVectorConversions();
8814 
8815       // Can not convert between sve predicates and sve vectors because of
8816       // different size.
8817       if (BT->getKind() == BuiltinType::SveBool &&
8818           VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector)
8819         return false;
8820 
8821       // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion.
8822       // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly
8823       // converts to VLAT and VLAT implicitly converts to GNUT."
8824       // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and
8825       // predicates.
8826       if (VecTy->getVectorKind() == VectorType::GenericVector &&
8827           getTypeSize(SecondType) != getSVETypeSize(*this, BT))
8828         return false;
8829 
8830       // If -flax-vector-conversions=all is specified, the types are
8831       // certainly compatible.
8832       if (LVCKind == LangOptions::LaxVectorConversionKind::All)
8833         return true;
8834 
8835       // If -flax-vector-conversions=integer is specified, the types are
8836       // compatible if the elements are integer types.
8837       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
8838         return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
8839                FirstType->getSveEltType(*this)->isIntegerType();
8840     }
8841 
8842     return false;
8843   };
8844 
8845   return IsLaxCompatible(FirstType, SecondType) ||
8846          IsLaxCompatible(SecondType, FirstType);
8847 }
8848 
hasDirectOwnershipQualifier(QualType Ty) const8849 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
8850   while (true) {
8851     // __strong id
8852     if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
8853       if (Attr->getAttrKind() == attr::ObjCOwnership)
8854         return true;
8855 
8856       Ty = Attr->getModifiedType();
8857 
8858     // X *__strong (...)
8859     } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
8860       Ty = Paren->getInnerType();
8861 
8862     // We do not want to look through typedefs, typeof(expr),
8863     // typeof(type), or any other way that the type is somehow
8864     // abstracted.
8865     } else {
8866       return false;
8867     }
8868   }
8869 }
8870 
8871 //===----------------------------------------------------------------------===//
8872 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
8873 //===----------------------------------------------------------------------===//
8874 
8875 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
8876 /// inheritance hierarchy of 'rProto'.
8877 bool
ProtocolCompatibleWithProtocol(ObjCProtocolDecl * lProto,ObjCProtocolDecl * rProto) const8878 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
8879                                            ObjCProtocolDecl *rProto) const {
8880   if (declaresSameEntity(lProto, rProto))
8881     return true;
8882   for (auto *PI : rProto->protocols())
8883     if (ProtocolCompatibleWithProtocol(lProto, PI))
8884       return true;
8885   return false;
8886 }
8887 
8888 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
8889 /// Class<pr1, ...>.
ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType * lhs,const ObjCObjectPointerType * rhs)8890 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
8891     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
8892   for (auto *lhsProto : lhs->quals()) {
8893     bool match = false;
8894     for (auto *rhsProto : rhs->quals()) {
8895       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
8896         match = true;
8897         break;
8898       }
8899     }
8900     if (!match)
8901       return false;
8902   }
8903   return true;
8904 }
8905 
8906 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
8907 /// ObjCQualifiedIDType.
ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType * lhs,const ObjCObjectPointerType * rhs,bool compare)8908 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
8909     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
8910     bool compare) {
8911   // Allow id<P..> and an 'id' in all cases.
8912   if (lhs->isObjCIdType() || rhs->isObjCIdType())
8913     return true;
8914 
8915   // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
8916   if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
8917       rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
8918     return false;
8919 
8920   if (lhs->isObjCQualifiedIdType()) {
8921     if (rhs->qual_empty()) {
8922       // If the RHS is a unqualified interface pointer "NSString*",
8923       // make sure we check the class hierarchy.
8924       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8925         for (auto *I : lhs->quals()) {
8926           // when comparing an id<P> on lhs with a static type on rhs,
8927           // see if static class implements all of id's protocols, directly or
8928           // through its super class and categories.
8929           if (!rhsID->ClassImplementsProtocol(I, true))
8930             return false;
8931         }
8932       }
8933       // If there are no qualifiers and no interface, we have an 'id'.
8934       return true;
8935     }
8936     // Both the right and left sides have qualifiers.
8937     for (auto *lhsProto : lhs->quals()) {
8938       bool match = false;
8939 
8940       // when comparing an id<P> on lhs with a static type on rhs,
8941       // see if static class implements all of id's protocols, directly or
8942       // through its super class and categories.
8943       for (auto *rhsProto : rhs->quals()) {
8944         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8945             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8946           match = true;
8947           break;
8948         }
8949       }
8950       // If the RHS is a qualified interface pointer "NSString<P>*",
8951       // make sure we check the class hierarchy.
8952       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8953         for (auto *I : lhs->quals()) {
8954           // when comparing an id<P> on lhs with a static type on rhs,
8955           // see if static class implements all of id's protocols, directly or
8956           // through its super class and categories.
8957           if (rhsID->ClassImplementsProtocol(I, true)) {
8958             match = true;
8959             break;
8960           }
8961         }
8962       }
8963       if (!match)
8964         return false;
8965     }
8966 
8967     return true;
8968   }
8969 
8970   assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
8971 
8972   if (lhs->getInterfaceType()) {
8973     // If both the right and left sides have qualifiers.
8974     for (auto *lhsProto : lhs->quals()) {
8975       bool match = false;
8976 
8977       // when comparing an id<P> on rhs with a static type on lhs,
8978       // see if static class implements all of id's protocols, directly or
8979       // through its super class and categories.
8980       // First, lhs protocols in the qualifier list must be found, direct
8981       // or indirect in rhs's qualifier list or it is a mismatch.
8982       for (auto *rhsProto : rhs->quals()) {
8983         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8984             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8985           match = true;
8986           break;
8987         }
8988       }
8989       if (!match)
8990         return false;
8991     }
8992 
8993     // Static class's protocols, or its super class or category protocols
8994     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
8995     if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
8996       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
8997       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
8998       // This is rather dubious but matches gcc's behavior. If lhs has
8999       // no type qualifier and its class has no static protocol(s)
9000       // assume that it is mismatch.
9001       if (LHSInheritedProtocols.empty() && lhs->qual_empty())
9002         return false;
9003       for (auto *lhsProto : LHSInheritedProtocols) {
9004         bool match = false;
9005         for (auto *rhsProto : rhs->quals()) {
9006           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9007               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9008             match = true;
9009             break;
9010           }
9011         }
9012         if (!match)
9013           return false;
9014       }
9015     }
9016     return true;
9017   }
9018   return false;
9019 }
9020 
9021 /// canAssignObjCInterfaces - Return true if the two interface types are
9022 /// compatible for assignment from RHS to LHS.  This handles validation of any
9023 /// protocol qualifiers on the LHS or RHS.
canAssignObjCInterfaces(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT)9024 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
9025                                          const ObjCObjectPointerType *RHSOPT) {
9026   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9027   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9028 
9029   // If either type represents the built-in 'id' type, return true.
9030   if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
9031     return true;
9032 
9033   // Function object that propagates a successful result or handles
9034   // __kindof types.
9035   auto finish = [&](bool succeeded) -> bool {
9036     if (succeeded)
9037       return true;
9038 
9039     if (!RHS->isKindOfType())
9040       return false;
9041 
9042     // Strip off __kindof and protocol qualifiers, then check whether
9043     // we can assign the other way.
9044     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9045                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
9046   };
9047 
9048   // Casts from or to id<P> are allowed when the other side has compatible
9049   // protocols.
9050   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
9051     return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
9052   }
9053 
9054   // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
9055   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
9056     return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
9057   }
9058 
9059   // Casts from Class to Class<Foo>, or vice-versa, are allowed.
9060   if (LHS->isObjCClass() && RHS->isObjCClass()) {
9061     return true;
9062   }
9063 
9064   // If we have 2 user-defined types, fall into that path.
9065   if (LHS->getInterface() && RHS->getInterface()) {
9066     return finish(canAssignObjCInterfaces(LHS, RHS));
9067   }
9068 
9069   return false;
9070 }
9071 
9072 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
9073 /// for providing type-safety for objective-c pointers used to pass/return
9074 /// arguments in block literals. When passed as arguments, passing 'A*' where
9075 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
9076 /// not OK. For the return type, the opposite is not OK.
canAssignObjCInterfacesInBlockPointer(const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,bool BlockReturnType)9077 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
9078                                          const ObjCObjectPointerType *LHSOPT,
9079                                          const ObjCObjectPointerType *RHSOPT,
9080                                          bool BlockReturnType) {
9081 
9082   // Function object that propagates a successful result or handles
9083   // __kindof types.
9084   auto finish = [&](bool succeeded) -> bool {
9085     if (succeeded)
9086       return true;
9087 
9088     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
9089     if (!Expected->isKindOfType())
9090       return false;
9091 
9092     // Strip off __kindof and protocol qualifiers, then check whether
9093     // we can assign the other way.
9094     return canAssignObjCInterfacesInBlockPointer(
9095              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9096              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
9097              BlockReturnType);
9098   };
9099 
9100   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
9101     return true;
9102 
9103   if (LHSOPT->isObjCBuiltinType()) {
9104     return finish(RHSOPT->isObjCBuiltinType() ||
9105                   RHSOPT->isObjCQualifiedIdType());
9106   }
9107 
9108   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
9109     if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
9110       // Use for block parameters previous type checking for compatibility.
9111       return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
9112                     // Or corrected type checking as in non-compat mode.
9113                     (!BlockReturnType &&
9114                      ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
9115     else
9116       return finish(ObjCQualifiedIdTypesAreCompatible(
9117           (BlockReturnType ? LHSOPT : RHSOPT),
9118           (BlockReturnType ? RHSOPT : LHSOPT), false));
9119   }
9120 
9121   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
9122   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
9123   if (LHS && RHS)  { // We have 2 user-defined types.
9124     if (LHS != RHS) {
9125       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
9126         return finish(BlockReturnType);
9127       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
9128         return finish(!BlockReturnType);
9129     }
9130     else
9131       return true;
9132   }
9133   return false;
9134 }
9135 
9136 /// Comparison routine for Objective-C protocols to be used with
9137 /// llvm::array_pod_sort.
compareObjCProtocolsByName(ObjCProtocolDecl * const * lhs,ObjCProtocolDecl * const * rhs)9138 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
9139                                       ObjCProtocolDecl * const *rhs) {
9140   return (*lhs)->getName().compare((*rhs)->getName());
9141 }
9142 
9143 /// getIntersectionOfProtocols - This routine finds the intersection of set
9144 /// of protocols inherited from two distinct objective-c pointer objects with
9145 /// the given common base.
9146 /// It is used to build composite qualifier list of the composite type of
9147 /// the conditional expression involving two objective-c pointer objects.
9148 static
getIntersectionOfProtocols(ASTContext & Context,const ObjCInterfaceDecl * CommonBase,const ObjCObjectPointerType * LHSOPT,const ObjCObjectPointerType * RHSOPT,SmallVectorImpl<ObjCProtocolDecl * > & IntersectionSet)9149 void getIntersectionOfProtocols(ASTContext &Context,
9150                                 const ObjCInterfaceDecl *CommonBase,
9151                                 const ObjCObjectPointerType *LHSOPT,
9152                                 const ObjCObjectPointerType *RHSOPT,
9153       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
9154 
9155   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9156   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9157   assert(LHS->getInterface() && "LHS must have an interface base");
9158   assert(RHS->getInterface() && "RHS must have an interface base");
9159 
9160   // Add all of the protocols for the LHS.
9161   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
9162 
9163   // Start with the protocol qualifiers.
9164   for (auto proto : LHS->quals()) {
9165     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
9166   }
9167 
9168   // Also add the protocols associated with the LHS interface.
9169   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
9170 
9171   // Add all of the protocols for the RHS.
9172   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
9173 
9174   // Start with the protocol qualifiers.
9175   for (auto proto : RHS->quals()) {
9176     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
9177   }
9178 
9179   // Also add the protocols associated with the RHS interface.
9180   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
9181 
9182   // Compute the intersection of the collected protocol sets.
9183   for (auto proto : LHSProtocolSet) {
9184     if (RHSProtocolSet.count(proto))
9185       IntersectionSet.push_back(proto);
9186   }
9187 
9188   // Compute the set of protocols that is implied by either the common type or
9189   // the protocols within the intersection.
9190   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
9191   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
9192 
9193   // Remove any implied protocols from the list of inherited protocols.
9194   if (!ImpliedProtocols.empty()) {
9195     IntersectionSet.erase(
9196       std::remove_if(IntersectionSet.begin(),
9197                      IntersectionSet.end(),
9198                      [&](ObjCProtocolDecl *proto) -> bool {
9199                        return ImpliedProtocols.count(proto) > 0;
9200                      }),
9201       IntersectionSet.end());
9202   }
9203 
9204   // Sort the remaining protocols by name.
9205   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
9206                        compareObjCProtocolsByName);
9207 }
9208 
9209 /// Determine whether the first type is a subtype of the second.
canAssignObjCObjectTypes(ASTContext & ctx,QualType lhs,QualType rhs)9210 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
9211                                      QualType rhs) {
9212   // Common case: two object pointers.
9213   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
9214   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
9215   if (lhsOPT && rhsOPT)
9216     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
9217 
9218   // Two block pointers.
9219   const auto *lhsBlock = lhs->getAs<BlockPointerType>();
9220   const auto *rhsBlock = rhs->getAs<BlockPointerType>();
9221   if (lhsBlock && rhsBlock)
9222     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
9223 
9224   // If either is an unqualified 'id' and the other is a block, it's
9225   // acceptable.
9226   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
9227       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
9228     return true;
9229 
9230   return false;
9231 }
9232 
9233 // Check that the given Objective-C type argument lists are equivalent.
sameObjCTypeArgs(ASTContext & ctx,const ObjCInterfaceDecl * iface,ArrayRef<QualType> lhsArgs,ArrayRef<QualType> rhsArgs,bool stripKindOf)9234 static bool sameObjCTypeArgs(ASTContext &ctx,
9235                              const ObjCInterfaceDecl *iface,
9236                              ArrayRef<QualType> lhsArgs,
9237                              ArrayRef<QualType> rhsArgs,
9238                              bool stripKindOf) {
9239   if (lhsArgs.size() != rhsArgs.size())
9240     return false;
9241 
9242   ObjCTypeParamList *typeParams = iface->getTypeParamList();
9243   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
9244     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
9245       continue;
9246 
9247     switch (typeParams->begin()[i]->getVariance()) {
9248     case ObjCTypeParamVariance::Invariant:
9249       if (!stripKindOf ||
9250           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
9251                            rhsArgs[i].stripObjCKindOfType(ctx))) {
9252         return false;
9253       }
9254       break;
9255 
9256     case ObjCTypeParamVariance::Covariant:
9257       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
9258         return false;
9259       break;
9260 
9261     case ObjCTypeParamVariance::Contravariant:
9262       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
9263         return false;
9264       break;
9265     }
9266   }
9267 
9268   return true;
9269 }
9270 
areCommonBaseCompatible(const ObjCObjectPointerType * Lptr,const ObjCObjectPointerType * Rptr)9271 QualType ASTContext::areCommonBaseCompatible(
9272            const ObjCObjectPointerType *Lptr,
9273            const ObjCObjectPointerType *Rptr) {
9274   const ObjCObjectType *LHS = Lptr->getObjectType();
9275   const ObjCObjectType *RHS = Rptr->getObjectType();
9276   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
9277   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
9278 
9279   if (!LDecl || !RDecl)
9280     return {};
9281 
9282   // When either LHS or RHS is a kindof type, we should return a kindof type.
9283   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
9284   // kindof(A).
9285   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
9286 
9287   // Follow the left-hand side up the class hierarchy until we either hit a
9288   // root or find the RHS. Record the ancestors in case we don't find it.
9289   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
9290     LHSAncestors;
9291   while (true) {
9292     // Record this ancestor. We'll need this if the common type isn't in the
9293     // path from the LHS to the root.
9294     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
9295 
9296     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
9297       // Get the type arguments.
9298       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
9299       bool anyChanges = false;
9300       if (LHS->isSpecialized() && RHS->isSpecialized()) {
9301         // Both have type arguments, compare them.
9302         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9303                               LHS->getTypeArgs(), RHS->getTypeArgs(),
9304                               /*stripKindOf=*/true))
9305           return {};
9306       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9307         // If only one has type arguments, the result will not have type
9308         // arguments.
9309         LHSTypeArgs = {};
9310         anyChanges = true;
9311       }
9312 
9313       // Compute the intersection of protocols.
9314       SmallVector<ObjCProtocolDecl *, 8> Protocols;
9315       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
9316                                  Protocols);
9317       if (!Protocols.empty())
9318         anyChanges = true;
9319 
9320       // If anything in the LHS will have changed, build a new result type.
9321       // If we need to return a kindof type but LHS is not a kindof type, we
9322       // build a new result type.
9323       if (anyChanges || LHS->isKindOfType() != anyKindOf) {
9324         QualType Result = getObjCInterfaceType(LHS->getInterface());
9325         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
9326                                    anyKindOf || LHS->isKindOfType());
9327         return getObjCObjectPointerType(Result);
9328       }
9329 
9330       return getObjCObjectPointerType(QualType(LHS, 0));
9331     }
9332 
9333     // Find the superclass.
9334     QualType LHSSuperType = LHS->getSuperClassType();
9335     if (LHSSuperType.isNull())
9336       break;
9337 
9338     LHS = LHSSuperType->castAs<ObjCObjectType>();
9339   }
9340 
9341   // We didn't find anything by following the LHS to its root; now check
9342   // the RHS against the cached set of ancestors.
9343   while (true) {
9344     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
9345     if (KnownLHS != LHSAncestors.end()) {
9346       LHS = KnownLHS->second;
9347 
9348       // Get the type arguments.
9349       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
9350       bool anyChanges = false;
9351       if (LHS->isSpecialized() && RHS->isSpecialized()) {
9352         // Both have type arguments, compare them.
9353         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9354                               LHS->getTypeArgs(), RHS->getTypeArgs(),
9355                               /*stripKindOf=*/true))
9356           return {};
9357       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9358         // If only one has type arguments, the result will not have type
9359         // arguments.
9360         RHSTypeArgs = {};
9361         anyChanges = true;
9362       }
9363 
9364       // Compute the intersection of protocols.
9365       SmallVector<ObjCProtocolDecl *, 8> Protocols;
9366       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
9367                                  Protocols);
9368       if (!Protocols.empty())
9369         anyChanges = true;
9370 
9371       // If we need to return a kindof type but RHS is not a kindof type, we
9372       // build a new result type.
9373       if (anyChanges || RHS->isKindOfType() != anyKindOf) {
9374         QualType Result = getObjCInterfaceType(RHS->getInterface());
9375         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
9376                                    anyKindOf || RHS->isKindOfType());
9377         return getObjCObjectPointerType(Result);
9378       }
9379 
9380       return getObjCObjectPointerType(QualType(RHS, 0));
9381     }
9382 
9383     // Find the superclass of the RHS.
9384     QualType RHSSuperType = RHS->getSuperClassType();
9385     if (RHSSuperType.isNull())
9386       break;
9387 
9388     RHS = RHSSuperType->castAs<ObjCObjectType>();
9389   }
9390 
9391   return {};
9392 }
9393 
canAssignObjCInterfaces(const ObjCObjectType * LHS,const ObjCObjectType * RHS)9394 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
9395                                          const ObjCObjectType *RHS) {
9396   assert(LHS->getInterface() && "LHS is not an interface type");
9397   assert(RHS->getInterface() && "RHS is not an interface type");
9398 
9399   // Verify that the base decls are compatible: the RHS must be a subclass of
9400   // the LHS.
9401   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
9402   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
9403   if (!IsSuperClass)
9404     return false;
9405 
9406   // If the LHS has protocol qualifiers, determine whether all of them are
9407   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
9408   // LHS).
9409   if (LHS->getNumProtocols() > 0) {
9410     // OK if conversion of LHS to SuperClass results in narrowing of types
9411     // ; i.e., SuperClass may implement at least one of the protocols
9412     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
9413     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
9414     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
9415     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
9416     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
9417     // qualifiers.
9418     for (auto *RHSPI : RHS->quals())
9419       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
9420     // If there is no protocols associated with RHS, it is not a match.
9421     if (SuperClassInheritedProtocols.empty())
9422       return false;
9423 
9424     for (const auto *LHSProto : LHS->quals()) {
9425       bool SuperImplementsProtocol = false;
9426       for (auto *SuperClassProto : SuperClassInheritedProtocols)
9427         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
9428           SuperImplementsProtocol = true;
9429           break;
9430         }
9431       if (!SuperImplementsProtocol)
9432         return false;
9433     }
9434   }
9435 
9436   // If the LHS is specialized, we may need to check type arguments.
9437   if (LHS->isSpecialized()) {
9438     // Follow the superclass chain until we've matched the LHS class in the
9439     // hierarchy. This substitutes type arguments through.
9440     const ObjCObjectType *RHSSuper = RHS;
9441     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
9442       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
9443 
9444     // If the RHS is specializd, compare type arguments.
9445     if (RHSSuper->isSpecialized() &&
9446         !sameObjCTypeArgs(*this, LHS->getInterface(),
9447                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
9448                           /*stripKindOf=*/true)) {
9449       return false;
9450     }
9451   }
9452 
9453   return true;
9454 }
9455 
areComparableObjCPointerTypes(QualType LHS,QualType RHS)9456 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
9457   // get the "pointed to" types
9458   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
9459   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
9460 
9461   if (!LHSOPT || !RHSOPT)
9462     return false;
9463 
9464   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
9465          canAssignObjCInterfaces(RHSOPT, LHSOPT);
9466 }
9467 
canBindObjCObjectType(QualType To,QualType From)9468 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
9469   return canAssignObjCInterfaces(
9470       getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
9471       getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
9472 }
9473 
9474 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
9475 /// both shall have the identically qualified version of a compatible type.
9476 /// C99 6.2.7p1: Two types have compatible types if their types are the
9477 /// same. See 6.7.[2,3,5] for additional rules.
typesAreCompatible(QualType LHS,QualType RHS,bool CompareUnqualified)9478 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
9479                                     bool CompareUnqualified) {
9480   if (getLangOpts().CPlusPlus)
9481     return hasSameType(LHS, RHS);
9482 
9483   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
9484 }
9485 
propertyTypesAreCompatible(QualType LHS,QualType RHS)9486 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
9487   return typesAreCompatible(LHS, RHS);
9488 }
9489 
typesAreBlockPointerCompatible(QualType LHS,QualType RHS)9490 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
9491   return !mergeTypes(LHS, RHS, true).isNull();
9492 }
9493 
9494 /// mergeTransparentUnionType - if T is a transparent union type and a member
9495 /// of T is compatible with SubType, return the merged type, else return
9496 /// QualType()
mergeTransparentUnionType(QualType T,QualType SubType,bool OfBlockPointer,bool Unqualified)9497 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
9498                                                bool OfBlockPointer,
9499                                                bool Unqualified) {
9500   if (const RecordType *UT = T->getAsUnionType()) {
9501     RecordDecl *UD = UT->getDecl();
9502     if (UD->hasAttr<TransparentUnionAttr>()) {
9503       for (const auto *I : UD->fields()) {
9504         QualType ET = I->getType().getUnqualifiedType();
9505         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
9506         if (!MT.isNull())
9507           return MT;
9508       }
9509     }
9510   }
9511 
9512   return {};
9513 }
9514 
9515 /// mergeFunctionParameterTypes - merge two types which appear as function
9516 /// parameter types
mergeFunctionParameterTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified)9517 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
9518                                                  bool OfBlockPointer,
9519                                                  bool Unqualified) {
9520   // GNU extension: two types are compatible if they appear as a function
9521   // argument, one of the types is a transparent union type and the other
9522   // type is compatible with a union member
9523   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
9524                                               Unqualified);
9525   if (!lmerge.isNull())
9526     return lmerge;
9527 
9528   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
9529                                               Unqualified);
9530   if (!rmerge.isNull())
9531     return rmerge;
9532 
9533   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
9534 }
9535 
mergeFunctionTypes(QualType lhs,QualType rhs,bool OfBlockPointer,bool Unqualified,bool AllowCXX)9536 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
9537                                         bool OfBlockPointer, bool Unqualified,
9538                                         bool AllowCXX) {
9539   const auto *lbase = lhs->castAs<FunctionType>();
9540   const auto *rbase = rhs->castAs<FunctionType>();
9541   const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
9542   const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
9543   bool allLTypes = true;
9544   bool allRTypes = true;
9545 
9546   // Check return type
9547   QualType retType;
9548   if (OfBlockPointer) {
9549     QualType RHS = rbase->getReturnType();
9550     QualType LHS = lbase->getReturnType();
9551     bool UnqualifiedResult = Unqualified;
9552     if (!UnqualifiedResult)
9553       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
9554     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
9555   }
9556   else
9557     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
9558                          Unqualified);
9559   if (retType.isNull())
9560     return {};
9561 
9562   if (Unqualified)
9563     retType = retType.getUnqualifiedType();
9564 
9565   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
9566   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
9567   if (Unqualified) {
9568     LRetType = LRetType.getUnqualifiedType();
9569     RRetType = RRetType.getUnqualifiedType();
9570   }
9571 
9572   if (getCanonicalType(retType) != LRetType)
9573     allLTypes = false;
9574   if (getCanonicalType(retType) != RRetType)
9575     allRTypes = false;
9576 
9577   // FIXME: double check this
9578   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
9579   //                           rbase->getRegParmAttr() != 0 &&
9580   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
9581   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
9582   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
9583 
9584   // Compatible functions must have compatible calling conventions
9585   if (lbaseInfo.getCC() != rbaseInfo.getCC())
9586     return {};
9587 
9588   // Regparm is part of the calling convention.
9589   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
9590     return {};
9591   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
9592     return {};
9593 
9594   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
9595     return {};
9596   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
9597     return {};
9598   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
9599     return {};
9600 
9601   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
9602   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
9603 
9604   if (lbaseInfo.getNoReturn() != NoReturn)
9605     allLTypes = false;
9606   if (rbaseInfo.getNoReturn() != NoReturn)
9607     allRTypes = false;
9608 
9609   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
9610 
9611   if (lproto && rproto) { // two C99 style function prototypes
9612     assert((AllowCXX ||
9613             (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
9614            "C++ shouldn't be here");
9615     // Compatible functions must have the same number of parameters
9616     if (lproto->getNumParams() != rproto->getNumParams())
9617       return {};
9618 
9619     // Variadic and non-variadic functions aren't compatible
9620     if (lproto->isVariadic() != rproto->isVariadic())
9621       return {};
9622 
9623     if (lproto->getMethodQuals() != rproto->getMethodQuals())
9624       return {};
9625 
9626     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
9627     bool canUseLeft, canUseRight;
9628     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
9629                                newParamInfos))
9630       return {};
9631 
9632     if (!canUseLeft)
9633       allLTypes = false;
9634     if (!canUseRight)
9635       allRTypes = false;
9636 
9637     // Check parameter type compatibility
9638     SmallVector<QualType, 10> types;
9639     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
9640       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
9641       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
9642       QualType paramType = mergeFunctionParameterTypes(
9643           lParamType, rParamType, OfBlockPointer, Unqualified);
9644       if (paramType.isNull())
9645         return {};
9646 
9647       if (Unqualified)
9648         paramType = paramType.getUnqualifiedType();
9649 
9650       types.push_back(paramType);
9651       if (Unqualified) {
9652         lParamType = lParamType.getUnqualifiedType();
9653         rParamType = rParamType.getUnqualifiedType();
9654       }
9655 
9656       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
9657         allLTypes = false;
9658       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
9659         allRTypes = false;
9660     }
9661 
9662     if (allLTypes) return lhs;
9663     if (allRTypes) return rhs;
9664 
9665     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
9666     EPI.ExtInfo = einfo;
9667     EPI.ExtParameterInfos =
9668         newParamInfos.empty() ? nullptr : newParamInfos.data();
9669     return getFunctionType(retType, types, EPI);
9670   }
9671 
9672   if (lproto) allRTypes = false;
9673   if (rproto) allLTypes = false;
9674 
9675   const FunctionProtoType *proto = lproto ? lproto : rproto;
9676   if (proto) {
9677     assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
9678     if (proto->isVariadic())
9679       return {};
9680     // Check that the types are compatible with the types that
9681     // would result from default argument promotions (C99 6.7.5.3p15).
9682     // The only types actually affected are promotable integer
9683     // types and floats, which would be passed as a different
9684     // type depending on whether the prototype is visible.
9685     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
9686       QualType paramTy = proto->getParamType(i);
9687 
9688       // Look at the converted type of enum types, since that is the type used
9689       // to pass enum values.
9690       if (const auto *Enum = paramTy->getAs<EnumType>()) {
9691         paramTy = Enum->getDecl()->getIntegerType();
9692         if (paramTy.isNull())
9693           return {};
9694       }
9695 
9696       if (paramTy->isPromotableIntegerType() ||
9697           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
9698         return {};
9699     }
9700 
9701     if (allLTypes) return lhs;
9702     if (allRTypes) return rhs;
9703 
9704     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
9705     EPI.ExtInfo = einfo;
9706     return getFunctionType(retType, proto->getParamTypes(), EPI);
9707   }
9708 
9709   if (allLTypes) return lhs;
9710   if (allRTypes) return rhs;
9711   return getFunctionNoProtoType(retType, einfo);
9712 }
9713 
9714 /// Given that we have an enum type and a non-enum type, try to merge them.
mergeEnumWithInteger(ASTContext & Context,const EnumType * ET,QualType other,bool isBlockReturnType)9715 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
9716                                      QualType other, bool isBlockReturnType) {
9717   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
9718   // a signed integer type, or an unsigned integer type.
9719   // Compatibility is based on the underlying type, not the promotion
9720   // type.
9721   QualType underlyingType = ET->getDecl()->getIntegerType();
9722   if (underlyingType.isNull())
9723     return {};
9724   if (Context.hasSameType(underlyingType, other))
9725     return other;
9726 
9727   // In block return types, we're more permissive and accept any
9728   // integral type of the same size.
9729   if (isBlockReturnType && other->isIntegerType() &&
9730       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
9731     return other;
9732 
9733   return {};
9734 }
9735 
mergeTypes(QualType LHS,QualType RHS,bool OfBlockPointer,bool Unqualified,bool BlockReturnType)9736 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
9737                                 bool OfBlockPointer,
9738                                 bool Unqualified, bool BlockReturnType) {
9739   // For C++ we will not reach this code with reference types (see below),
9740   // for OpenMP variant call overloading we might.
9741   //
9742   // C++ [expr]: If an expression initially has the type "reference to T", the
9743   // type is adjusted to "T" prior to any further analysis, the expression
9744   // designates the object or function denoted by the reference, and the
9745   // expression is an lvalue unless the reference is an rvalue reference and
9746   // the expression is a function call (possibly inside parentheses).
9747   if (LangOpts.OpenMP && LHS->getAs<ReferenceType>() &&
9748       RHS->getAs<ReferenceType>() && LHS->getTypeClass() == RHS->getTypeClass())
9749     return mergeTypes(LHS->getAs<ReferenceType>()->getPointeeType(),
9750                       RHS->getAs<ReferenceType>()->getPointeeType(),
9751                       OfBlockPointer, Unqualified, BlockReturnType);
9752   if (LHS->getAs<ReferenceType>() || RHS->getAs<ReferenceType>())
9753     return {};
9754 
9755   if (Unqualified) {
9756     LHS = LHS.getUnqualifiedType();
9757     RHS = RHS.getUnqualifiedType();
9758   }
9759 
9760   QualType LHSCan = getCanonicalType(LHS),
9761            RHSCan = getCanonicalType(RHS);
9762 
9763   // If two types are identical, they are compatible.
9764   if (LHSCan == RHSCan)
9765     return LHS;
9766 
9767   // If the qualifiers are different, the types aren't compatible... mostly.
9768   Qualifiers LQuals = LHSCan.getLocalQualifiers();
9769   Qualifiers RQuals = RHSCan.getLocalQualifiers();
9770   if (LQuals != RQuals) {
9771     // If any of these qualifiers are different, we have a type
9772     // mismatch.
9773     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9774         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
9775         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
9776         LQuals.hasUnaligned() != RQuals.hasUnaligned())
9777       return {};
9778 
9779     // Exactly one GC qualifier difference is allowed: __strong is
9780     // okay if the other type has no GC qualifier but is an Objective
9781     // C object pointer (i.e. implicitly strong by default).  We fix
9782     // this by pretending that the unqualified type was actually
9783     // qualified __strong.
9784     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9785     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9786     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9787 
9788     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9789       return {};
9790 
9791     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
9792       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
9793     }
9794     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
9795       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
9796     }
9797     return {};
9798   }
9799 
9800   // Okay, qualifiers are equal.
9801 
9802   Type::TypeClass LHSClass = LHSCan->getTypeClass();
9803   Type::TypeClass RHSClass = RHSCan->getTypeClass();
9804 
9805   // We want to consider the two function types to be the same for these
9806   // comparisons, just force one to the other.
9807   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
9808   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
9809 
9810   // Same as above for arrays
9811   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
9812     LHSClass = Type::ConstantArray;
9813   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
9814     RHSClass = Type::ConstantArray;
9815 
9816   // ObjCInterfaces are just specialized ObjCObjects.
9817   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
9818   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
9819 
9820   // Canonicalize ExtVector -> Vector.
9821   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
9822   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
9823 
9824   // If the canonical type classes don't match.
9825   if (LHSClass != RHSClass) {
9826     // Note that we only have special rules for turning block enum
9827     // returns into block int returns, not vice-versa.
9828     if (const auto *ETy = LHS->getAs<EnumType>()) {
9829       return mergeEnumWithInteger(*this, ETy, RHS, false);
9830     }
9831     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
9832       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
9833     }
9834     // allow block pointer type to match an 'id' type.
9835     if (OfBlockPointer && !BlockReturnType) {
9836        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
9837          return LHS;
9838       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
9839         return RHS;
9840     }
9841 
9842     return {};
9843   }
9844 
9845   // The canonical type classes match.
9846   switch (LHSClass) {
9847 #define TYPE(Class, Base)
9848 #define ABSTRACT_TYPE(Class, Base)
9849 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
9850 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
9851 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
9852 #include "clang/AST/TypeNodes.inc"
9853     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
9854 
9855   case Type::Auto:
9856   case Type::DeducedTemplateSpecialization:
9857   case Type::LValueReference:
9858   case Type::RValueReference:
9859   case Type::MemberPointer:
9860     llvm_unreachable("C++ should never be in mergeTypes");
9861 
9862   case Type::ObjCInterface:
9863   case Type::IncompleteArray:
9864   case Type::VariableArray:
9865   case Type::FunctionProto:
9866   case Type::ExtVector:
9867     llvm_unreachable("Types are eliminated above");
9868 
9869   case Type::Pointer:
9870   {
9871     // Merge two pointer types, while trying to preserve typedef info
9872     QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
9873     QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
9874     if (Unqualified) {
9875       LHSPointee = LHSPointee.getUnqualifiedType();
9876       RHSPointee = RHSPointee.getUnqualifiedType();
9877     }
9878     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
9879                                      Unqualified);
9880     if (ResultType.isNull())
9881       return {};
9882     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9883       return LHS;
9884     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9885       return RHS;
9886     return getPointerType(ResultType);
9887   }
9888   case Type::BlockPointer:
9889   {
9890     // Merge two block pointer types, while trying to preserve typedef info
9891     QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
9892     QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
9893     if (Unqualified) {
9894       LHSPointee = LHSPointee.getUnqualifiedType();
9895       RHSPointee = RHSPointee.getUnqualifiedType();
9896     }
9897     if (getLangOpts().OpenCL) {
9898       Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
9899       Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
9900       // Blocks can't be an expression in a ternary operator (OpenCL v2.0
9901       // 6.12.5) thus the following check is asymmetric.
9902       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
9903         return {};
9904       LHSPteeQual.removeAddressSpace();
9905       RHSPteeQual.removeAddressSpace();
9906       LHSPointee =
9907           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
9908       RHSPointee =
9909           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
9910     }
9911     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
9912                                      Unqualified);
9913     if (ResultType.isNull())
9914       return {};
9915     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9916       return LHS;
9917     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9918       return RHS;
9919     return getBlockPointerType(ResultType);
9920   }
9921   case Type::Atomic:
9922   {
9923     // Merge two pointer types, while trying to preserve typedef info
9924     QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
9925     QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
9926     if (Unqualified) {
9927       LHSValue = LHSValue.getUnqualifiedType();
9928       RHSValue = RHSValue.getUnqualifiedType();
9929     }
9930     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
9931                                      Unqualified);
9932     if (ResultType.isNull())
9933       return {};
9934     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
9935       return LHS;
9936     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
9937       return RHS;
9938     return getAtomicType(ResultType);
9939   }
9940   case Type::ConstantArray:
9941   {
9942     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
9943     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
9944     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
9945       return {};
9946 
9947     QualType LHSElem = getAsArrayType(LHS)->getElementType();
9948     QualType RHSElem = getAsArrayType(RHS)->getElementType();
9949     if (Unqualified) {
9950       LHSElem = LHSElem.getUnqualifiedType();
9951       RHSElem = RHSElem.getUnqualifiedType();
9952     }
9953 
9954     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
9955     if (ResultType.isNull())
9956       return {};
9957 
9958     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
9959     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
9960 
9961     // If either side is a variable array, and both are complete, check whether
9962     // the current dimension is definite.
9963     if (LVAT || RVAT) {
9964       auto SizeFetch = [this](const VariableArrayType* VAT,
9965           const ConstantArrayType* CAT)
9966           -> std::pair<bool,llvm::APInt> {
9967         if (VAT) {
9968           Optional<llvm::APSInt> TheInt;
9969           Expr *E = VAT->getSizeExpr();
9970           if (E && (TheInt = E->getIntegerConstantExpr(*this)))
9971             return std::make_pair(true, *TheInt);
9972           return std::make_pair(false, llvm::APSInt());
9973         }
9974         if (CAT)
9975           return std::make_pair(true, CAT->getSize());
9976         return std::make_pair(false, llvm::APInt());
9977       };
9978 
9979       bool HaveLSize, HaveRSize;
9980       llvm::APInt LSize, RSize;
9981       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
9982       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
9983       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
9984         return {}; // Definite, but unequal, array dimension
9985     }
9986 
9987     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9988       return LHS;
9989     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9990       return RHS;
9991     if (LCAT)
9992       return getConstantArrayType(ResultType, LCAT->getSize(),
9993                                   LCAT->getSizeExpr(),
9994                                   ArrayType::ArraySizeModifier(), 0);
9995     if (RCAT)
9996       return getConstantArrayType(ResultType, RCAT->getSize(),
9997                                   RCAT->getSizeExpr(),
9998                                   ArrayType::ArraySizeModifier(), 0);
9999     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10000       return LHS;
10001     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10002       return RHS;
10003     if (LVAT) {
10004       // FIXME: This isn't correct! But tricky to implement because
10005       // the array's size has to be the size of LHS, but the type
10006       // has to be different.
10007       return LHS;
10008     }
10009     if (RVAT) {
10010       // FIXME: This isn't correct! But tricky to implement because
10011       // the array's size has to be the size of RHS, but the type
10012       // has to be different.
10013       return RHS;
10014     }
10015     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
10016     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
10017     return getIncompleteArrayType(ResultType,
10018                                   ArrayType::ArraySizeModifier(), 0);
10019   }
10020   case Type::FunctionNoProto:
10021     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
10022   case Type::Record:
10023   case Type::Enum:
10024     return {};
10025   case Type::Builtin:
10026     // Only exactly equal builtin types are compatible, which is tested above.
10027     return {};
10028   case Type::Complex:
10029     // Distinct complex types are incompatible.
10030     return {};
10031   case Type::Vector:
10032     // FIXME: The merged type should be an ExtVector!
10033     if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
10034                              RHSCan->castAs<VectorType>()))
10035       return LHS;
10036     return {};
10037   case Type::ConstantMatrix:
10038     if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
10039                              RHSCan->castAs<ConstantMatrixType>()))
10040       return LHS;
10041     return {};
10042   case Type::ObjCObject: {
10043     // Check if the types are assignment compatible.
10044     // FIXME: This should be type compatibility, e.g. whether
10045     // "LHS x; RHS x;" at global scope is legal.
10046     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
10047                                 RHS->castAs<ObjCObjectType>()))
10048       return LHS;
10049     return {};
10050   }
10051   case Type::ObjCObjectPointer:
10052     if (OfBlockPointer) {
10053       if (canAssignObjCInterfacesInBlockPointer(
10054               LHS->castAs<ObjCObjectPointerType>(),
10055               RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
10056         return LHS;
10057       return {};
10058     }
10059     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
10060                                 RHS->castAs<ObjCObjectPointerType>()))
10061       return LHS;
10062     return {};
10063   case Type::Pipe:
10064     assert(LHS != RHS &&
10065            "Equivalent pipe types should have already been handled!");
10066     return {};
10067   case Type::ExtInt: {
10068     // Merge two ext-int types, while trying to preserve typedef info.
10069     bool LHSUnsigned  = LHS->castAs<ExtIntType>()->isUnsigned();
10070     bool RHSUnsigned = RHS->castAs<ExtIntType>()->isUnsigned();
10071     unsigned LHSBits = LHS->castAs<ExtIntType>()->getNumBits();
10072     unsigned RHSBits = RHS->castAs<ExtIntType>()->getNumBits();
10073 
10074     // Like unsigned/int, shouldn't have a type if they don't match.
10075     if (LHSUnsigned != RHSUnsigned)
10076       return {};
10077 
10078     if (LHSBits != RHSBits)
10079       return {};
10080     return LHS;
10081   }
10082   }
10083 
10084   llvm_unreachable("Invalid Type::Class!");
10085 }
10086 
mergeExtParameterInfo(const FunctionProtoType * FirstFnType,const FunctionProtoType * SecondFnType,bool & CanUseFirst,bool & CanUseSecond,SmallVectorImpl<FunctionProtoType::ExtParameterInfo> & NewParamInfos)10087 bool ASTContext::mergeExtParameterInfo(
10088     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
10089     bool &CanUseFirst, bool &CanUseSecond,
10090     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
10091   assert(NewParamInfos.empty() && "param info list not empty");
10092   CanUseFirst = CanUseSecond = true;
10093   bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
10094   bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
10095 
10096   // Fast path: if the first type doesn't have ext parameter infos,
10097   // we match if and only if the second type also doesn't have them.
10098   if (!FirstHasInfo && !SecondHasInfo)
10099     return true;
10100 
10101   bool NeedParamInfo = false;
10102   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
10103                           : SecondFnType->getExtParameterInfos().size();
10104 
10105   for (size_t I = 0; I < E; ++I) {
10106     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
10107     if (FirstHasInfo)
10108       FirstParam = FirstFnType->getExtParameterInfo(I);
10109     if (SecondHasInfo)
10110       SecondParam = SecondFnType->getExtParameterInfo(I);
10111 
10112     // Cannot merge unless everything except the noescape flag matches.
10113     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
10114       return false;
10115 
10116     bool FirstNoEscape = FirstParam.isNoEscape();
10117     bool SecondNoEscape = SecondParam.isNoEscape();
10118     bool IsNoEscape = FirstNoEscape && SecondNoEscape;
10119     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
10120     if (NewParamInfos.back().getOpaqueValue())
10121       NeedParamInfo = true;
10122     if (FirstNoEscape != IsNoEscape)
10123       CanUseFirst = false;
10124     if (SecondNoEscape != IsNoEscape)
10125       CanUseSecond = false;
10126   }
10127 
10128   if (!NeedParamInfo)
10129     NewParamInfos.clear();
10130 
10131   return true;
10132 }
10133 
ResetObjCLayout(const ObjCContainerDecl * CD)10134 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
10135   ObjCLayouts[CD] = nullptr;
10136 }
10137 
10138 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
10139 /// 'RHS' attributes and returns the merged version; including for function
10140 /// return types.
mergeObjCGCQualifiers(QualType LHS,QualType RHS)10141 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
10142   QualType LHSCan = getCanonicalType(LHS),
10143   RHSCan = getCanonicalType(RHS);
10144   // If two types are identical, they are compatible.
10145   if (LHSCan == RHSCan)
10146     return LHS;
10147   if (RHSCan->isFunctionType()) {
10148     if (!LHSCan->isFunctionType())
10149       return {};
10150     QualType OldReturnType =
10151         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
10152     QualType NewReturnType =
10153         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
10154     QualType ResReturnType =
10155       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
10156     if (ResReturnType.isNull())
10157       return {};
10158     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
10159       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
10160       // In either case, use OldReturnType to build the new function type.
10161       const auto *F = LHS->castAs<FunctionType>();
10162       if (const auto *FPT = cast<FunctionProtoType>(F)) {
10163         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10164         EPI.ExtInfo = getFunctionExtInfo(LHS);
10165         QualType ResultType =
10166             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
10167         return ResultType;
10168       }
10169     }
10170     return {};
10171   }
10172 
10173   // If the qualifiers are different, the types can still be merged.
10174   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10175   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10176   if (LQuals != RQuals) {
10177     // If any of these qualifiers are different, we have a type mismatch.
10178     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10179         LQuals.getAddressSpace() != RQuals.getAddressSpace())
10180       return {};
10181 
10182     // Exactly one GC qualifier difference is allowed: __strong is
10183     // okay if the other type has no GC qualifier but is an Objective
10184     // C object pointer (i.e. implicitly strong by default).  We fix
10185     // this by pretending that the unqualified type was actually
10186     // qualified __strong.
10187     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10188     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10189     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10190 
10191     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10192       return {};
10193 
10194     if (GC_L == Qualifiers::Strong)
10195       return LHS;
10196     if (GC_R == Qualifiers::Strong)
10197       return RHS;
10198     return {};
10199   }
10200 
10201   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
10202     QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10203     QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10204     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
10205     if (ResQT == LHSBaseQT)
10206       return LHS;
10207     if (ResQT == RHSBaseQT)
10208       return RHS;
10209   }
10210   return {};
10211 }
10212 
10213 //===----------------------------------------------------------------------===//
10214 //                         Integer Predicates
10215 //===----------------------------------------------------------------------===//
10216 
getIntWidth(QualType T) const10217 unsigned ASTContext::getIntWidth(QualType T) const {
10218   if (const auto *ET = T->getAs<EnumType>())
10219     T = ET->getDecl()->getIntegerType();
10220   if (T->isBooleanType())
10221     return 1;
10222   if(const auto *EIT = T->getAs<ExtIntType>())
10223     return EIT->getNumBits();
10224   // For builtin types, just use the standard type sizing method
10225   return (unsigned)getTypeSize(T);
10226 }
10227 
getCorrespondingUnsignedType(QualType T) const10228 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
10229   assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
10230          "Unexpected type");
10231 
10232   // Turn <4 x signed int> -> <4 x unsigned int>
10233   if (const auto *VTy = T->getAs<VectorType>())
10234     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
10235                          VTy->getNumElements(), VTy->getVectorKind());
10236 
10237   // For _ExtInt, return an unsigned _ExtInt with same width.
10238   if (const auto *EITy = T->getAs<ExtIntType>())
10239     return getExtIntType(/*IsUnsigned=*/true, EITy->getNumBits());
10240 
10241   // For enums, get the underlying integer type of the enum, and let the general
10242   // integer type signchanging code handle it.
10243   if (const auto *ETy = T->getAs<EnumType>())
10244     T = ETy->getDecl()->getIntegerType();
10245 
10246   switch (T->castAs<BuiltinType>()->getKind()) {
10247   case BuiltinType::Char_S:
10248   case BuiltinType::SChar:
10249     return UnsignedCharTy;
10250   case BuiltinType::Short:
10251     return UnsignedShortTy;
10252   case BuiltinType::Int:
10253     return UnsignedIntTy;
10254   case BuiltinType::Long:
10255     return UnsignedLongTy;
10256   case BuiltinType::LongLong:
10257     return UnsignedLongLongTy;
10258   case BuiltinType::Int128:
10259     return UnsignedInt128Ty;
10260   // wchar_t is special. It is either signed or not, but when it's signed,
10261   // there's no matching "unsigned wchar_t". Therefore we return the unsigned
10262   // version of it's underlying type instead.
10263   case BuiltinType::WChar_S:
10264     return getUnsignedWCharType();
10265 
10266   case BuiltinType::ShortAccum:
10267     return UnsignedShortAccumTy;
10268   case BuiltinType::Accum:
10269     return UnsignedAccumTy;
10270   case BuiltinType::LongAccum:
10271     return UnsignedLongAccumTy;
10272   case BuiltinType::SatShortAccum:
10273     return SatUnsignedShortAccumTy;
10274   case BuiltinType::SatAccum:
10275     return SatUnsignedAccumTy;
10276   case BuiltinType::SatLongAccum:
10277     return SatUnsignedLongAccumTy;
10278   case BuiltinType::ShortFract:
10279     return UnsignedShortFractTy;
10280   case BuiltinType::Fract:
10281     return UnsignedFractTy;
10282   case BuiltinType::LongFract:
10283     return UnsignedLongFractTy;
10284   case BuiltinType::SatShortFract:
10285     return SatUnsignedShortFractTy;
10286   case BuiltinType::SatFract:
10287     return SatUnsignedFractTy;
10288   case BuiltinType::SatLongFract:
10289     return SatUnsignedLongFractTy;
10290   default:
10291     llvm_unreachable("Unexpected signed integer or fixed point type");
10292   }
10293 }
10294 
getCorrespondingSignedType(QualType T) const10295 QualType ASTContext::getCorrespondingSignedType(QualType T) const {
10296   assert((T->hasUnsignedIntegerRepresentation() ||
10297           T->isUnsignedFixedPointType()) &&
10298          "Unexpected type");
10299 
10300   // Turn <4 x unsigned int> -> <4 x signed int>
10301   if (const auto *VTy = T->getAs<VectorType>())
10302     return getVectorType(getCorrespondingSignedType(VTy->getElementType()),
10303                          VTy->getNumElements(), VTy->getVectorKind());
10304 
10305   // For _ExtInt, return a signed _ExtInt with same width.
10306   if (const auto *EITy = T->getAs<ExtIntType>())
10307     return getExtIntType(/*IsUnsigned=*/false, EITy->getNumBits());
10308 
10309   // For enums, get the underlying integer type of the enum, and let the general
10310   // integer type signchanging code handle it.
10311   if (const auto *ETy = T->getAs<EnumType>())
10312     T = ETy->getDecl()->getIntegerType();
10313 
10314   switch (T->castAs<BuiltinType>()->getKind()) {
10315   case BuiltinType::Char_U:
10316   case BuiltinType::UChar:
10317     return SignedCharTy;
10318   case BuiltinType::UShort:
10319     return ShortTy;
10320   case BuiltinType::UInt:
10321     return IntTy;
10322   case BuiltinType::ULong:
10323     return LongTy;
10324   case BuiltinType::ULongLong:
10325     return LongLongTy;
10326   case BuiltinType::UInt128:
10327     return Int128Ty;
10328   // wchar_t is special. It is either unsigned or not, but when it's unsigned,
10329   // there's no matching "signed wchar_t". Therefore we return the signed
10330   // version of it's underlying type instead.
10331   case BuiltinType::WChar_U:
10332     return getSignedWCharType();
10333 
10334   case BuiltinType::UShortAccum:
10335     return ShortAccumTy;
10336   case BuiltinType::UAccum:
10337     return AccumTy;
10338   case BuiltinType::ULongAccum:
10339     return LongAccumTy;
10340   case BuiltinType::SatUShortAccum:
10341     return SatShortAccumTy;
10342   case BuiltinType::SatUAccum:
10343     return SatAccumTy;
10344   case BuiltinType::SatULongAccum:
10345     return SatLongAccumTy;
10346   case BuiltinType::UShortFract:
10347     return ShortFractTy;
10348   case BuiltinType::UFract:
10349     return FractTy;
10350   case BuiltinType::ULongFract:
10351     return LongFractTy;
10352   case BuiltinType::SatUShortFract:
10353     return SatShortFractTy;
10354   case BuiltinType::SatUFract:
10355     return SatFractTy;
10356   case BuiltinType::SatULongFract:
10357     return SatLongFractTy;
10358   default:
10359     llvm_unreachable("Unexpected unsigned integer or fixed point type");
10360   }
10361 }
10362 
10363 ASTMutationListener::~ASTMutationListener() = default;
10364 
DeducedReturnType(const FunctionDecl * FD,QualType ReturnType)10365 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
10366                                             QualType ReturnType) {}
10367 
10368 //===----------------------------------------------------------------------===//
10369 //                          Builtin Type Computation
10370 //===----------------------------------------------------------------------===//
10371 
10372 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
10373 /// pointer over the consumed characters.  This returns the resultant type.  If
10374 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
10375 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
10376 /// a vector of "i*".
10377 ///
10378 /// RequiresICE is filled in on return to indicate whether the value is required
10379 /// to be an Integer Constant Expression.
DecodeTypeFromStr(const char * & Str,const ASTContext & Context,ASTContext::GetBuiltinTypeError & Error,bool & RequiresICE,bool AllowTypeModifiers)10380 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
10381                                   ASTContext::GetBuiltinTypeError &Error,
10382                                   bool &RequiresICE,
10383                                   bool AllowTypeModifiers) {
10384   // Modifiers.
10385   int HowLong = 0;
10386   bool Signed = false, Unsigned = false;
10387   RequiresICE = false;
10388 
10389   // Read the prefixed modifiers first.
10390   bool Done = false;
10391   #ifndef NDEBUG
10392   bool IsSpecial = false;
10393   #endif
10394   while (!Done) {
10395     switch (*Str++) {
10396     default: Done = true; --Str; break;
10397     case 'I':
10398       RequiresICE = true;
10399       break;
10400     case 'S':
10401       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
10402       assert(!Signed && "Can't use 'S' modifier multiple times!");
10403       Signed = true;
10404       break;
10405     case 'U':
10406       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
10407       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
10408       Unsigned = true;
10409       break;
10410     case 'L':
10411       assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
10412       assert(HowLong <= 2 && "Can't have LLLL modifier");
10413       ++HowLong;
10414       break;
10415     case 'N':
10416       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
10417       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10418       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
10419       #ifndef NDEBUG
10420       IsSpecial = true;
10421       #endif
10422       if (Context.getTargetInfo().getLongWidth() == 32)
10423         ++HowLong;
10424       break;
10425     case 'W':
10426       // This modifier represents int64 type.
10427       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10428       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
10429       #ifndef NDEBUG
10430       IsSpecial = true;
10431       #endif
10432       switch (Context.getTargetInfo().getInt64Type()) {
10433       default:
10434         llvm_unreachable("Unexpected integer type");
10435       case TargetInfo::SignedLong:
10436         HowLong = 1;
10437         break;
10438       case TargetInfo::SignedLongLong:
10439         HowLong = 2;
10440         break;
10441       }
10442       break;
10443     case 'Z':
10444       // This modifier represents int32 type.
10445       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10446       assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
10447       #ifndef NDEBUG
10448       IsSpecial = true;
10449       #endif
10450       switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
10451       default:
10452         llvm_unreachable("Unexpected integer type");
10453       case TargetInfo::SignedInt:
10454         HowLong = 0;
10455         break;
10456       case TargetInfo::SignedLong:
10457         HowLong = 1;
10458         break;
10459       case TargetInfo::SignedLongLong:
10460         HowLong = 2;
10461         break;
10462       }
10463       break;
10464     case 'O':
10465       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10466       assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
10467       #ifndef NDEBUG
10468       IsSpecial = true;
10469       #endif
10470       if (Context.getLangOpts().OpenCL)
10471         HowLong = 1;
10472       else
10473         HowLong = 2;
10474       break;
10475     }
10476   }
10477 
10478   QualType Type;
10479 
10480   // Read the base type.
10481   switch (*Str++) {
10482   default: llvm_unreachable("Unknown builtin type letter!");
10483   case 'x':
10484     assert(HowLong == 0 && !Signed && !Unsigned &&
10485            "Bad modifiers used with 'x'!");
10486     Type = Context.Float16Ty;
10487     break;
10488   case 'y':
10489     assert(HowLong == 0 && !Signed && !Unsigned &&
10490            "Bad modifiers used with 'y'!");
10491     Type = Context.BFloat16Ty;
10492     break;
10493   case 'v':
10494     assert(HowLong == 0 && !Signed && !Unsigned &&
10495            "Bad modifiers used with 'v'!");
10496     Type = Context.VoidTy;
10497     break;
10498   case 'h':
10499     assert(HowLong == 0 && !Signed && !Unsigned &&
10500            "Bad modifiers used with 'h'!");
10501     Type = Context.HalfTy;
10502     break;
10503   case 'f':
10504     assert(HowLong == 0 && !Signed && !Unsigned &&
10505            "Bad modifiers used with 'f'!");
10506     Type = Context.FloatTy;
10507     break;
10508   case 'd':
10509     assert(HowLong < 3 && !Signed && !Unsigned &&
10510            "Bad modifiers used with 'd'!");
10511     if (HowLong == 1)
10512       Type = Context.LongDoubleTy;
10513     else if (HowLong == 2)
10514       Type = Context.Float128Ty;
10515     else
10516       Type = Context.DoubleTy;
10517     break;
10518   case 's':
10519     assert(HowLong == 0 && "Bad modifiers used with 's'!");
10520     if (Unsigned)
10521       Type = Context.UnsignedShortTy;
10522     else
10523       Type = Context.ShortTy;
10524     break;
10525   case 'i':
10526     if (HowLong == 3)
10527       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
10528     else if (HowLong == 2)
10529       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
10530     else if (HowLong == 1)
10531       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
10532     else
10533       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
10534     break;
10535   case 'c':
10536     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
10537     if (Signed)
10538       Type = Context.SignedCharTy;
10539     else if (Unsigned)
10540       Type = Context.UnsignedCharTy;
10541     else
10542       Type = Context.CharTy;
10543     break;
10544   case 'b': // boolean
10545     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
10546     Type = Context.BoolTy;
10547     break;
10548   case 'z':  // size_t.
10549     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
10550     Type = Context.getSizeType();
10551     break;
10552   case 'w':  // wchar_t.
10553     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
10554     Type = Context.getWideCharType();
10555     break;
10556   case 'F':
10557     Type = Context.getCFConstantStringType();
10558     break;
10559   case 'G':
10560     Type = Context.getObjCIdType();
10561     break;
10562   case 'H':
10563     Type = Context.getObjCSelType();
10564     break;
10565   case 'M':
10566     Type = Context.getObjCSuperType();
10567     break;
10568   case 'a':
10569     Type = Context.getBuiltinVaListType();
10570     assert(!Type.isNull() && "builtin va list type not initialized!");
10571     break;
10572   case 'A':
10573     // This is a "reference" to a va_list; however, what exactly
10574     // this means depends on how va_list is defined. There are two
10575     // different kinds of va_list: ones passed by value, and ones
10576     // passed by reference.  An example of a by-value va_list is
10577     // x86, where va_list is a char*. An example of by-ref va_list
10578     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
10579     // we want this argument to be a char*&; for x86-64, we want
10580     // it to be a __va_list_tag*.
10581     Type = Context.getBuiltinVaListType();
10582     assert(!Type.isNull() && "builtin va list type not initialized!");
10583     if (Type->isArrayType())
10584       Type = Context.getArrayDecayedType(Type);
10585     else
10586       Type = Context.getLValueReferenceType(Type);
10587     break;
10588   case 'q': {
10589     char *End;
10590     unsigned NumElements = strtoul(Str, &End, 10);
10591     assert(End != Str && "Missing vector size");
10592     Str = End;
10593 
10594     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
10595                                              RequiresICE, false);
10596     assert(!RequiresICE && "Can't require vector ICE");
10597 
10598     Type = Context.getScalableVectorType(ElementType, NumElements);
10599     break;
10600   }
10601   case 'V': {
10602     char *End;
10603     unsigned NumElements = strtoul(Str, &End, 10);
10604     assert(End != Str && "Missing vector size");
10605     Str = End;
10606 
10607     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
10608                                              RequiresICE, false);
10609     assert(!RequiresICE && "Can't require vector ICE");
10610 
10611     // TODO: No way to make AltiVec vectors in builtins yet.
10612     Type = Context.getVectorType(ElementType, NumElements,
10613                                  VectorType::GenericVector);
10614     break;
10615   }
10616   case 'E': {
10617     char *End;
10618 
10619     unsigned NumElements = strtoul(Str, &End, 10);
10620     assert(End != Str && "Missing vector size");
10621 
10622     Str = End;
10623 
10624     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
10625                                              false);
10626     Type = Context.getExtVectorType(ElementType, NumElements);
10627     break;
10628   }
10629   case 'X': {
10630     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
10631                                              false);
10632     assert(!RequiresICE && "Can't require complex ICE");
10633     Type = Context.getComplexType(ElementType);
10634     break;
10635   }
10636   case 'Y':
10637     Type = Context.getPointerDiffType();
10638     break;
10639   case 'P':
10640     Type = Context.getFILEType();
10641     if (Type.isNull()) {
10642       Error = ASTContext::GE_Missing_stdio;
10643       return {};
10644     }
10645     break;
10646   case 'J':
10647     if (Signed)
10648       Type = Context.getsigjmp_bufType();
10649     else
10650       Type = Context.getjmp_bufType();
10651 
10652     if (Type.isNull()) {
10653       Error = ASTContext::GE_Missing_setjmp;
10654       return {};
10655     }
10656     break;
10657   case 'K':
10658     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
10659     Type = Context.getucontext_tType();
10660 
10661     if (Type.isNull()) {
10662       Error = ASTContext::GE_Missing_ucontext;
10663       return {};
10664     }
10665     break;
10666   case 'p':
10667     Type = Context.getProcessIDType();
10668     break;
10669   }
10670 
10671   // If there are modifiers and if we're allowed to parse them, go for it.
10672   Done = !AllowTypeModifiers;
10673   while (!Done) {
10674     switch (char c = *Str++) {
10675     default: Done = true; --Str; break;
10676     case '*':
10677     case '&': {
10678       // Both pointers and references can have their pointee types
10679       // qualified with an address space.
10680       char *End;
10681       unsigned AddrSpace = strtoul(Str, &End, 10);
10682       if (End != Str) {
10683         // Note AddrSpace == 0 is not the same as an unspecified address space.
10684         Type = Context.getAddrSpaceQualType(
10685           Type,
10686           Context.getLangASForBuiltinAddressSpace(AddrSpace));
10687         Str = End;
10688       }
10689       if (c == '*')
10690         Type = Context.getPointerType(Type);
10691       else
10692         Type = Context.getLValueReferenceType(Type);
10693       break;
10694     }
10695     // FIXME: There's no way to have a built-in with an rvalue ref arg.
10696     case 'C':
10697       Type = Type.withConst();
10698       break;
10699     case 'D':
10700       Type = Context.getVolatileType(Type);
10701       break;
10702     case 'R':
10703       Type = Type.withRestrict();
10704       break;
10705     }
10706   }
10707 
10708   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
10709          "Integer constant 'I' type must be an integer");
10710 
10711   return Type;
10712 }
10713 
10714 // On some targets such as PowerPC, some of the builtins are defined with custom
10715 // type descriptors for target-dependent types. These descriptors are decoded in
10716 // other functions, but it may be useful to be able to fall back to default
10717 // descriptor decoding to define builtins mixing target-dependent and target-
10718 // independent types. This function allows decoding one type descriptor with
10719 // default decoding.
DecodeTypeStr(const char * & Str,const ASTContext & Context,GetBuiltinTypeError & Error,bool & RequireICE,bool AllowTypeModifiers) const10720 QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context,
10721                                    GetBuiltinTypeError &Error, bool &RequireICE,
10722                                    bool AllowTypeModifiers) const {
10723   return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers);
10724 }
10725 
10726 /// GetBuiltinType - Return the type for the specified builtin.
GetBuiltinType(unsigned Id,GetBuiltinTypeError & Error,unsigned * IntegerConstantArgs) const10727 QualType ASTContext::GetBuiltinType(unsigned Id,
10728                                     GetBuiltinTypeError &Error,
10729                                     unsigned *IntegerConstantArgs) const {
10730   const char *TypeStr = BuiltinInfo.getTypeString(Id);
10731   if (TypeStr[0] == '\0') {
10732     Error = GE_Missing_type;
10733     return {};
10734   }
10735 
10736   SmallVector<QualType, 8> ArgTypes;
10737 
10738   bool RequiresICE = false;
10739   Error = GE_None;
10740   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
10741                                        RequiresICE, true);
10742   if (Error != GE_None)
10743     return {};
10744 
10745   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
10746 
10747   while (TypeStr[0] && TypeStr[0] != '.') {
10748     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
10749     if (Error != GE_None)
10750       return {};
10751 
10752     // If this argument is required to be an IntegerConstantExpression and the
10753     // caller cares, fill in the bitmask we return.
10754     if (RequiresICE && IntegerConstantArgs)
10755       *IntegerConstantArgs |= 1 << ArgTypes.size();
10756 
10757     // Do array -> pointer decay.  The builtin should use the decayed type.
10758     if (Ty->isArrayType())
10759       Ty = getArrayDecayedType(Ty);
10760 
10761     ArgTypes.push_back(Ty);
10762   }
10763 
10764   if (Id == Builtin::BI__GetExceptionInfo)
10765     return {};
10766 
10767   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
10768          "'.' should only occur at end of builtin type list!");
10769 
10770   bool Variadic = (TypeStr[0] == '.');
10771 
10772   FunctionType::ExtInfo EI(getDefaultCallingConvention(
10773       Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
10774   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
10775 
10776 
10777   // We really shouldn't be making a no-proto type here.
10778   if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
10779     return getFunctionNoProtoType(ResType, EI);
10780 
10781   FunctionProtoType::ExtProtoInfo EPI;
10782   EPI.ExtInfo = EI;
10783   EPI.Variadic = Variadic;
10784   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
10785     EPI.ExceptionSpec.Type =
10786         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
10787 
10788   return getFunctionType(ResType, ArgTypes, EPI);
10789 }
10790 
basicGVALinkageForFunction(const ASTContext & Context,const FunctionDecl * FD)10791 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
10792                                              const FunctionDecl *FD) {
10793   if (!FD->isExternallyVisible())
10794     return GVA_Internal;
10795 
10796   // Non-user-provided functions get emitted as weak definitions with every
10797   // use, no matter whether they've been explicitly instantiated etc.
10798   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
10799     if (!MD->isUserProvided())
10800       return GVA_DiscardableODR;
10801 
10802   GVALinkage External;
10803   switch (FD->getTemplateSpecializationKind()) {
10804   case TSK_Undeclared:
10805   case TSK_ExplicitSpecialization:
10806     External = GVA_StrongExternal;
10807     break;
10808 
10809   case TSK_ExplicitInstantiationDefinition:
10810     return GVA_StrongODR;
10811 
10812   // C++11 [temp.explicit]p10:
10813   //   [ Note: The intent is that an inline function that is the subject of
10814   //   an explicit instantiation declaration will still be implicitly
10815   //   instantiated when used so that the body can be considered for
10816   //   inlining, but that no out-of-line copy of the inline function would be
10817   //   generated in the translation unit. -- end note ]
10818   case TSK_ExplicitInstantiationDeclaration:
10819     return GVA_AvailableExternally;
10820 
10821   case TSK_ImplicitInstantiation:
10822     External = GVA_DiscardableODR;
10823     break;
10824   }
10825 
10826   if (!FD->isInlined())
10827     return External;
10828 
10829   if ((!Context.getLangOpts().CPlusPlus &&
10830        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10831        !FD->hasAttr<DLLExportAttr>()) ||
10832       FD->hasAttr<GNUInlineAttr>()) {
10833     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
10834 
10835     // GNU or C99 inline semantics. Determine whether this symbol should be
10836     // externally visible.
10837     if (FD->isInlineDefinitionExternallyVisible())
10838       return External;
10839 
10840     // C99 inline semantics, where the symbol is not externally visible.
10841     return GVA_AvailableExternally;
10842   }
10843 
10844   // Functions specified with extern and inline in -fms-compatibility mode
10845   // forcibly get emitted.  While the body of the function cannot be later
10846   // replaced, the function definition cannot be discarded.
10847   if (FD->isMSExternInline())
10848     return GVA_StrongODR;
10849 
10850   return GVA_DiscardableODR;
10851 }
10852 
adjustGVALinkageForAttributes(const ASTContext & Context,const Decl * D,GVALinkage L)10853 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
10854                                                 const Decl *D, GVALinkage L) {
10855   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
10856   // dllexport/dllimport on inline functions.
10857   if (D->hasAttr<DLLImportAttr>()) {
10858     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
10859       return GVA_AvailableExternally;
10860   } else if (D->hasAttr<DLLExportAttr>()) {
10861     if (L == GVA_DiscardableODR)
10862       return GVA_StrongODR;
10863   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
10864     // Device-side functions with __global__ attribute must always be
10865     // visible externally so they can be launched from host.
10866     if (D->hasAttr<CUDAGlobalAttr>() &&
10867         (L == GVA_DiscardableODR || L == GVA_Internal))
10868       return GVA_StrongODR;
10869     // Single source offloading languages like CUDA/HIP need to be able to
10870     // access static device variables from host code of the same compilation
10871     // unit. This is done by externalizing the static variable with a shared
10872     // name between the host and device compilation which is the same for the
10873     // same compilation unit whereas different among different compilation
10874     // units.
10875     if (Context.shouldExternalizeStaticVar(D))
10876       return GVA_StrongExternal;
10877   }
10878   return L;
10879 }
10880 
10881 /// Adjust the GVALinkage for a declaration based on what an external AST source
10882 /// knows about whether there can be other definitions of this declaration.
10883 static GVALinkage
adjustGVALinkageForExternalDefinitionKind(const ASTContext & Ctx,const Decl * D,GVALinkage L)10884 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
10885                                           GVALinkage L) {
10886   ExternalASTSource *Source = Ctx.getExternalSource();
10887   if (!Source)
10888     return L;
10889 
10890   switch (Source->hasExternalDefinitions(D)) {
10891   case ExternalASTSource::EK_Never:
10892     // Other translation units rely on us to provide the definition.
10893     if (L == GVA_DiscardableODR)
10894       return GVA_StrongODR;
10895     break;
10896 
10897   case ExternalASTSource::EK_Always:
10898     return GVA_AvailableExternally;
10899 
10900   case ExternalASTSource::EK_ReplyHazy:
10901     break;
10902   }
10903   return L;
10904 }
10905 
GetGVALinkageForFunction(const FunctionDecl * FD) const10906 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
10907   return adjustGVALinkageForExternalDefinitionKind(*this, FD,
10908            adjustGVALinkageForAttributes(*this, FD,
10909              basicGVALinkageForFunction(*this, FD)));
10910 }
10911 
basicGVALinkageForVariable(const ASTContext & Context,const VarDecl * VD)10912 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
10913                                              const VarDecl *VD) {
10914   if (!VD->isExternallyVisible())
10915     return GVA_Internal;
10916 
10917   if (VD->isStaticLocal()) {
10918     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
10919     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
10920       LexicalContext = LexicalContext->getLexicalParent();
10921 
10922     // ObjC Blocks can create local variables that don't have a FunctionDecl
10923     // LexicalContext.
10924     if (!LexicalContext)
10925       return GVA_DiscardableODR;
10926 
10927     // Otherwise, let the static local variable inherit its linkage from the
10928     // nearest enclosing function.
10929     auto StaticLocalLinkage =
10930         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
10931 
10932     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
10933     // be emitted in any object with references to the symbol for the object it
10934     // contains, whether inline or out-of-line."
10935     // Similar behavior is observed with MSVC. An alternative ABI could use
10936     // StrongODR/AvailableExternally to match the function, but none are
10937     // known/supported currently.
10938     if (StaticLocalLinkage == GVA_StrongODR ||
10939         StaticLocalLinkage == GVA_AvailableExternally)
10940       return GVA_DiscardableODR;
10941     return StaticLocalLinkage;
10942   }
10943 
10944   // MSVC treats in-class initialized static data members as definitions.
10945   // By giving them non-strong linkage, out-of-line definitions won't
10946   // cause link errors.
10947   if (Context.isMSStaticDataMemberInlineDefinition(VD))
10948     return GVA_DiscardableODR;
10949 
10950   // Most non-template variables have strong linkage; inline variables are
10951   // linkonce_odr or (occasionally, for compatibility) weak_odr.
10952   GVALinkage StrongLinkage;
10953   switch (Context.getInlineVariableDefinitionKind(VD)) {
10954   case ASTContext::InlineVariableDefinitionKind::None:
10955     StrongLinkage = GVA_StrongExternal;
10956     break;
10957   case ASTContext::InlineVariableDefinitionKind::Weak:
10958   case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
10959     StrongLinkage = GVA_DiscardableODR;
10960     break;
10961   case ASTContext::InlineVariableDefinitionKind::Strong:
10962     StrongLinkage = GVA_StrongODR;
10963     break;
10964   }
10965 
10966   switch (VD->getTemplateSpecializationKind()) {
10967   case TSK_Undeclared:
10968     return StrongLinkage;
10969 
10970   case TSK_ExplicitSpecialization:
10971     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10972                    VD->isStaticDataMember()
10973                ? GVA_StrongODR
10974                : StrongLinkage;
10975 
10976   case TSK_ExplicitInstantiationDefinition:
10977     return GVA_StrongODR;
10978 
10979   case TSK_ExplicitInstantiationDeclaration:
10980     return GVA_AvailableExternally;
10981 
10982   case TSK_ImplicitInstantiation:
10983     return GVA_DiscardableODR;
10984   }
10985 
10986   llvm_unreachable("Invalid Linkage!");
10987 }
10988 
GetGVALinkageForVariable(const VarDecl * VD)10989 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
10990   return adjustGVALinkageForExternalDefinitionKind(*this, VD,
10991            adjustGVALinkageForAttributes(*this, VD,
10992              basicGVALinkageForVariable(*this, VD)));
10993 }
10994 
DeclMustBeEmitted(const Decl * D)10995 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
10996   if (const auto *VD = dyn_cast<VarDecl>(D)) {
10997     if (!VD->isFileVarDecl())
10998       return false;
10999     // Global named register variables (GNU extension) are never emitted.
11000     if (VD->getStorageClass() == SC_Register)
11001       return false;
11002     if (VD->getDescribedVarTemplate() ||
11003         isa<VarTemplatePartialSpecializationDecl>(VD))
11004       return false;
11005   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11006     // We never need to emit an uninstantiated function template.
11007     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11008       return false;
11009   } else if (isa<PragmaCommentDecl>(D))
11010     return true;
11011   else if (isa<PragmaDetectMismatchDecl>(D))
11012     return true;
11013   else if (isa<OMPRequiresDecl>(D))
11014     return true;
11015   else if (isa<OMPThreadPrivateDecl>(D))
11016     return !D->getDeclContext()->isDependentContext();
11017   else if (isa<OMPAllocateDecl>(D))
11018     return !D->getDeclContext()->isDependentContext();
11019   else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
11020     return !D->getDeclContext()->isDependentContext();
11021   else if (isa<ImportDecl>(D))
11022     return true;
11023   else
11024     return false;
11025 
11026   // If this is a member of a class template, we do not need to emit it.
11027   if (D->getDeclContext()->isDependentContext())
11028     return false;
11029 
11030   // Weak references don't produce any output by themselves.
11031   if (D->hasAttr<WeakRefAttr>())
11032     return false;
11033 
11034   // Aliases and used decls are required.
11035   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
11036     return true;
11037 
11038   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11039     // Forward declarations aren't required.
11040     if (!FD->doesThisDeclarationHaveABody())
11041       return FD->doesDeclarationForceExternallyVisibleDefinition();
11042 
11043     // Constructors and destructors are required.
11044     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
11045       return true;
11046 
11047     // The key function for a class is required.  This rule only comes
11048     // into play when inline functions can be key functions, though.
11049     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
11050       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11051         const CXXRecordDecl *RD = MD->getParent();
11052         if (MD->isOutOfLine() && RD->isDynamicClass()) {
11053           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
11054           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
11055             return true;
11056         }
11057       }
11058     }
11059 
11060     GVALinkage Linkage = GetGVALinkageForFunction(FD);
11061 
11062     // static, static inline, always_inline, and extern inline functions can
11063     // always be deferred.  Normal inline functions can be deferred in C99/C++.
11064     // Implicit template instantiations can also be deferred in C++.
11065     return !isDiscardableGVALinkage(Linkage);
11066   }
11067 
11068   const auto *VD = cast<VarDecl>(D);
11069   assert(VD->isFileVarDecl() && "Expected file scoped var");
11070 
11071   // If the decl is marked as `declare target to`, it should be emitted for the
11072   // host and for the device.
11073   if (LangOpts.OpenMP &&
11074       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
11075     return true;
11076 
11077   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
11078       !isMSStaticDataMemberInlineDefinition(VD))
11079     return false;
11080 
11081   // Variables that can be needed in other TUs are required.
11082   auto Linkage = GetGVALinkageForVariable(VD);
11083   if (!isDiscardableGVALinkage(Linkage))
11084     return true;
11085 
11086   // We never need to emit a variable that is available in another TU.
11087   if (Linkage == GVA_AvailableExternally)
11088     return false;
11089 
11090   // Variables that have destruction with side-effects are required.
11091   if (VD->needsDestruction(*this))
11092     return true;
11093 
11094   // Variables that have initialization with side-effects are required.
11095   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
11096       // We can get a value-dependent initializer during error recovery.
11097       (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
11098     return true;
11099 
11100   // Likewise, variables with tuple-like bindings are required if their
11101   // bindings have side-effects.
11102   if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
11103     for (const auto *BD : DD->bindings())
11104       if (const auto *BindingVD = BD->getHoldingVar())
11105         if (DeclMustBeEmitted(BindingVD))
11106           return true;
11107 
11108   return false;
11109 }
11110 
forEachMultiversionedFunctionVersion(const FunctionDecl * FD,llvm::function_ref<void (FunctionDecl *)> Pred) const11111 void ASTContext::forEachMultiversionedFunctionVersion(
11112     const FunctionDecl *FD,
11113     llvm::function_ref<void(FunctionDecl *)> Pred) const {
11114   assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
11115   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
11116   FD = FD->getMostRecentDecl();
11117   // FIXME: The order of traversal here matters and depends on the order of
11118   // lookup results, which happens to be (mostly) oldest-to-newest, but we
11119   // shouldn't rely on that.
11120   for (auto *CurDecl :
11121        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
11122     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
11123     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
11124         std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
11125       SeenDecls.insert(CurFD);
11126       Pred(CurFD);
11127     }
11128   }
11129 }
11130 
getDefaultCallingConvention(bool IsVariadic,bool IsCXXMethod,bool IsBuiltin) const11131 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
11132                                                     bool IsCXXMethod,
11133                                                     bool IsBuiltin) const {
11134   // Pass through to the C++ ABI object
11135   if (IsCXXMethod)
11136     return ABI->getDefaultMethodCallConv(IsVariadic);
11137 
11138   // Builtins ignore user-specified default calling convention and remain the
11139   // Target's default calling convention.
11140   if (!IsBuiltin) {
11141     switch (LangOpts.getDefaultCallingConv()) {
11142     case LangOptions::DCC_None:
11143       break;
11144     case LangOptions::DCC_CDecl:
11145       return CC_C;
11146     case LangOptions::DCC_FastCall:
11147       if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
11148         return CC_X86FastCall;
11149       break;
11150     case LangOptions::DCC_StdCall:
11151       if (!IsVariadic)
11152         return CC_X86StdCall;
11153       break;
11154     case LangOptions::DCC_VectorCall:
11155       // __vectorcall cannot be applied to variadic functions.
11156       if (!IsVariadic)
11157         return CC_X86VectorCall;
11158       break;
11159     case LangOptions::DCC_RegCall:
11160       // __regcall cannot be applied to variadic functions.
11161       if (!IsVariadic)
11162         return CC_X86RegCall;
11163       break;
11164     }
11165   }
11166   return Target->getDefaultCallingConv();
11167 }
11168 
isNearlyEmpty(const CXXRecordDecl * RD) const11169 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
11170   // Pass through to the C++ ABI object
11171   return ABI->isNearlyEmpty(RD);
11172 }
11173 
getVTableContext()11174 VTableContextBase *ASTContext::getVTableContext() {
11175   if (!VTContext.get()) {
11176     auto ABI = Target->getCXXABI();
11177     if (ABI.isMicrosoft())
11178       VTContext.reset(new MicrosoftVTableContext(*this));
11179     else {
11180       auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
11181                                  ? ItaniumVTableContext::Relative
11182                                  : ItaniumVTableContext::Pointer;
11183       VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
11184     }
11185   }
11186   return VTContext.get();
11187 }
11188 
createMangleContext(const TargetInfo * T)11189 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
11190   if (!T)
11191     T = Target;
11192   switch (T->getCXXABI().getKind()) {
11193   case TargetCXXABI::AppleARM64:
11194   case TargetCXXABI::Fuchsia:
11195   case TargetCXXABI::GenericAArch64:
11196   case TargetCXXABI::GenericItanium:
11197   case TargetCXXABI::GenericARM:
11198   case TargetCXXABI::GenericMIPS:
11199   case TargetCXXABI::iOS:
11200   case TargetCXXABI::WebAssembly:
11201   case TargetCXXABI::WatchOS:
11202   case TargetCXXABI::XL:
11203     return ItaniumMangleContext::create(*this, getDiagnostics());
11204   case TargetCXXABI::Microsoft:
11205     return MicrosoftMangleContext::create(*this, getDiagnostics());
11206   }
11207   llvm_unreachable("Unsupported ABI");
11208 }
11209 
createDeviceMangleContext(const TargetInfo & T)11210 MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) {
11211   assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft &&
11212          "Device mangle context does not support Microsoft mangling.");
11213   switch (T.getCXXABI().getKind()) {
11214   case TargetCXXABI::AppleARM64:
11215   case TargetCXXABI::Fuchsia:
11216   case TargetCXXABI::GenericAArch64:
11217   case TargetCXXABI::GenericItanium:
11218   case TargetCXXABI::GenericARM:
11219   case TargetCXXABI::GenericMIPS:
11220   case TargetCXXABI::iOS:
11221   case TargetCXXABI::WebAssembly:
11222   case TargetCXXABI::WatchOS:
11223   case TargetCXXABI::XL:
11224     return ItaniumMangleContext::create(
11225         *this, getDiagnostics(),
11226         [](ASTContext &, const NamedDecl *ND) -> llvm::Optional<unsigned> {
11227           if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
11228             return RD->getDeviceLambdaManglingNumber();
11229           return llvm::None;
11230         });
11231   case TargetCXXABI::Microsoft:
11232     return MicrosoftMangleContext::create(*this, getDiagnostics());
11233   }
11234   llvm_unreachable("Unsupported ABI");
11235 }
11236 
11237 CXXABI::~CXXABI() = default;
11238 
getSideTableAllocatedMemory() const11239 size_t ASTContext::getSideTableAllocatedMemory() const {
11240   return ASTRecordLayouts.getMemorySize() +
11241          llvm::capacity_in_bytes(ObjCLayouts) +
11242          llvm::capacity_in_bytes(KeyFunctions) +
11243          llvm::capacity_in_bytes(ObjCImpls) +
11244          llvm::capacity_in_bytes(BlockVarCopyInits) +
11245          llvm::capacity_in_bytes(DeclAttrs) +
11246          llvm::capacity_in_bytes(TemplateOrInstantiation) +
11247          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
11248          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
11249          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
11250          llvm::capacity_in_bytes(OverriddenMethods) +
11251          llvm::capacity_in_bytes(Types) +
11252          llvm::capacity_in_bytes(VariableArrayTypes);
11253 }
11254 
11255 /// getIntTypeForBitwidth -
11256 /// sets integer QualTy according to specified details:
11257 /// bitwidth, signed/unsigned.
11258 /// Returns empty type if there is no appropriate target types.
getIntTypeForBitwidth(unsigned DestWidth,unsigned Signed) const11259 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
11260                                            unsigned Signed) const {
11261   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
11262   CanQualType QualTy = getFromTargetType(Ty);
11263   if (!QualTy && DestWidth == 128)
11264     return Signed ? Int128Ty : UnsignedInt128Ty;
11265   return QualTy;
11266 }
11267 
11268 /// getRealTypeForBitwidth -
11269 /// sets floating point QualTy according to specified bitwidth.
11270 /// Returns empty type if there is no appropriate target types.
getRealTypeForBitwidth(unsigned DestWidth,FloatModeKind ExplicitType) const11271 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
11272                                             FloatModeKind ExplicitType) const {
11273   FloatModeKind Ty =
11274       getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitType);
11275   switch (Ty) {
11276   case FloatModeKind::Float:
11277     return FloatTy;
11278   case FloatModeKind::Double:
11279     return DoubleTy;
11280   case FloatModeKind::LongDouble:
11281     return LongDoubleTy;
11282   case FloatModeKind::Float128:
11283     return Float128Ty;
11284   case FloatModeKind::Ibm128:
11285     return Ibm128Ty;
11286   case FloatModeKind::NoFloat:
11287     return {};
11288   }
11289 
11290   llvm_unreachable("Unhandled TargetInfo::RealType value");
11291 }
11292 
setManglingNumber(const NamedDecl * ND,unsigned Number)11293 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
11294   if (Number > 1)
11295     MangleNumbers[ND] = Number;
11296 }
11297 
getManglingNumber(const NamedDecl * ND) const11298 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
11299   auto I = MangleNumbers.find(ND);
11300   return I != MangleNumbers.end() ? I->second : 1;
11301 }
11302 
setStaticLocalNumber(const VarDecl * VD,unsigned Number)11303 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
11304   if (Number > 1)
11305     StaticLocalNumbers[VD] = Number;
11306 }
11307 
getStaticLocalNumber(const VarDecl * VD) const11308 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
11309   auto I = StaticLocalNumbers.find(VD);
11310   return I != StaticLocalNumbers.end() ? I->second : 1;
11311 }
11312 
11313 MangleNumberingContext &
getManglingNumberContext(const DeclContext * DC)11314 ASTContext::getManglingNumberContext(const DeclContext *DC) {
11315   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
11316   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
11317   if (!MCtx)
11318     MCtx = createMangleNumberingContext();
11319   return *MCtx;
11320 }
11321 
11322 MangleNumberingContext &
getManglingNumberContext(NeedExtraManglingDecl_t,const Decl * D)11323 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
11324   assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
11325   std::unique_ptr<MangleNumberingContext> &MCtx =
11326       ExtraMangleNumberingContexts[D];
11327   if (!MCtx)
11328     MCtx = createMangleNumberingContext();
11329   return *MCtx;
11330 }
11331 
11332 std::unique_ptr<MangleNumberingContext>
createMangleNumberingContext() const11333 ASTContext::createMangleNumberingContext() const {
11334   return ABI->createMangleNumberingContext();
11335 }
11336 
11337 const CXXConstructorDecl *
getCopyConstructorForExceptionObject(CXXRecordDecl * RD)11338 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
11339   return ABI->getCopyConstructorForExceptionObject(
11340       cast<CXXRecordDecl>(RD->getFirstDecl()));
11341 }
11342 
addCopyConstructorForExceptionObject(CXXRecordDecl * RD,CXXConstructorDecl * CD)11343 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
11344                                                       CXXConstructorDecl *CD) {
11345   return ABI->addCopyConstructorForExceptionObject(
11346       cast<CXXRecordDecl>(RD->getFirstDecl()),
11347       cast<CXXConstructorDecl>(CD->getFirstDecl()));
11348 }
11349 
addTypedefNameForUnnamedTagDecl(TagDecl * TD,TypedefNameDecl * DD)11350 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
11351                                                  TypedefNameDecl *DD) {
11352   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
11353 }
11354 
11355 TypedefNameDecl *
getTypedefNameForUnnamedTagDecl(const TagDecl * TD)11356 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
11357   return ABI->getTypedefNameForUnnamedTagDecl(TD);
11358 }
11359 
addDeclaratorForUnnamedTagDecl(TagDecl * TD,DeclaratorDecl * DD)11360 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
11361                                                 DeclaratorDecl *DD) {
11362   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
11363 }
11364 
getDeclaratorForUnnamedTagDecl(const TagDecl * TD)11365 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
11366   return ABI->getDeclaratorForUnnamedTagDecl(TD);
11367 }
11368 
setParameterIndex(const ParmVarDecl * D,unsigned int index)11369 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
11370   ParamIndices[D] = index;
11371 }
11372 
getParameterIndex(const ParmVarDecl * D) const11373 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
11374   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
11375   assert(I != ParamIndices.end() &&
11376          "ParmIndices lacks entry set by ParmVarDecl");
11377   return I->second;
11378 }
11379 
getStringLiteralArrayType(QualType EltTy,unsigned Length) const11380 QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
11381                                                unsigned Length) const {
11382   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
11383   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
11384     EltTy = EltTy.withConst();
11385 
11386   EltTy = adjustStringLiteralBaseType(EltTy);
11387 
11388   // Get an array type for the string, according to C99 6.4.5. This includes
11389   // the null terminator character.
11390   return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
11391                               ArrayType::Normal, /*IndexTypeQuals*/ 0);
11392 }
11393 
11394 StringLiteral *
getPredefinedStringLiteralFromCache(StringRef Key) const11395 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
11396   StringLiteral *&Result = StringLiteralCache[Key];
11397   if (!Result)
11398     Result = StringLiteral::Create(
11399         *this, Key, StringLiteral::Ascii,
11400         /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
11401         SourceLocation());
11402   return Result;
11403 }
11404 
11405 MSGuidDecl *
getMSGuidDecl(MSGuidDecl::Parts Parts) const11406 ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
11407   assert(MSGuidTagDecl && "building MS GUID without MS extensions?");
11408 
11409   llvm::FoldingSetNodeID ID;
11410   MSGuidDecl::Profile(ID, Parts);
11411 
11412   void *InsertPos;
11413   if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
11414     return Existing;
11415 
11416   QualType GUIDType = getMSGuidType().withConst();
11417   MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
11418   MSGuidDecls.InsertNode(New, InsertPos);
11419   return New;
11420 }
11421 
11422 TemplateParamObjectDecl *
getTemplateParamObjectDecl(QualType T,const APValue & V) const11423 ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const {
11424   assert(T->isRecordType() && "template param object of unexpected type");
11425 
11426   // C++ [temp.param]p8:
11427   //   [...] a static storage duration object of type 'const T' [...]
11428   T.addConst();
11429 
11430   llvm::FoldingSetNodeID ID;
11431   TemplateParamObjectDecl::Profile(ID, T, V);
11432 
11433   void *InsertPos;
11434   if (TemplateParamObjectDecl *Existing =
11435           TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos))
11436     return Existing;
11437 
11438   TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V);
11439   TemplateParamObjectDecls.InsertNode(New, InsertPos);
11440   return New;
11441 }
11442 
AtomicUsesUnsupportedLibcall(const AtomicExpr * E) const11443 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
11444   const llvm::Triple &T = getTargetInfo().getTriple();
11445   if (!T.isOSDarwin())
11446     return false;
11447 
11448   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
11449       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
11450     return false;
11451 
11452   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
11453   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
11454   uint64_t Size = sizeChars.getQuantity();
11455   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
11456   unsigned Align = alignChars.getQuantity();
11457   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
11458   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
11459 }
11460 
11461 bool
ObjCMethodsAreEqual(const ObjCMethodDecl * MethodDecl,const ObjCMethodDecl * MethodImpl)11462 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
11463                                 const ObjCMethodDecl *MethodImpl) {
11464   // No point trying to match an unavailable/deprecated mothod.
11465   if (MethodDecl->hasAttr<UnavailableAttr>()
11466       || MethodDecl->hasAttr<DeprecatedAttr>())
11467     return false;
11468   if (MethodDecl->getObjCDeclQualifier() !=
11469       MethodImpl->getObjCDeclQualifier())
11470     return false;
11471   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
11472     return false;
11473 
11474   if (MethodDecl->param_size() != MethodImpl->param_size())
11475     return false;
11476 
11477   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
11478        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
11479        EF = MethodDecl->param_end();
11480        IM != EM && IF != EF; ++IM, ++IF) {
11481     const ParmVarDecl *DeclVar = (*IF);
11482     const ParmVarDecl *ImplVar = (*IM);
11483     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
11484       return false;
11485     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
11486       return false;
11487   }
11488 
11489   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
11490 }
11491 
getTargetNullPointerValue(QualType QT) const11492 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
11493   LangAS AS;
11494   if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
11495     AS = LangAS::Default;
11496   else
11497     AS = QT->getPointeeType().getAddressSpace();
11498 
11499   return getTargetInfo().getNullPointerValue(AS);
11500 }
11501 
getTargetAddressSpace(LangAS AS) const11502 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
11503   if (isTargetAddressSpace(AS))
11504     return toTargetAddressSpace(AS);
11505   else
11506     return (*AddrSpaceMap)[(unsigned)AS];
11507 }
11508 
getCorrespondingSaturatedType(QualType Ty) const11509 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
11510   assert(Ty->isFixedPointType());
11511 
11512   if (Ty->isSaturatedFixedPointType()) return Ty;
11513 
11514   switch (Ty->castAs<BuiltinType>()->getKind()) {
11515     default:
11516       llvm_unreachable("Not a fixed point type!");
11517     case BuiltinType::ShortAccum:
11518       return SatShortAccumTy;
11519     case BuiltinType::Accum:
11520       return SatAccumTy;
11521     case BuiltinType::LongAccum:
11522       return SatLongAccumTy;
11523     case BuiltinType::UShortAccum:
11524       return SatUnsignedShortAccumTy;
11525     case BuiltinType::UAccum:
11526       return SatUnsignedAccumTy;
11527     case BuiltinType::ULongAccum:
11528       return SatUnsignedLongAccumTy;
11529     case BuiltinType::ShortFract:
11530       return SatShortFractTy;
11531     case BuiltinType::Fract:
11532       return SatFractTy;
11533     case BuiltinType::LongFract:
11534       return SatLongFractTy;
11535     case BuiltinType::UShortFract:
11536       return SatUnsignedShortFractTy;
11537     case BuiltinType::UFract:
11538       return SatUnsignedFractTy;
11539     case BuiltinType::ULongFract:
11540       return SatUnsignedLongFractTy;
11541   }
11542 }
11543 
getLangASForBuiltinAddressSpace(unsigned AS) const11544 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
11545   if (LangOpts.OpenCL)
11546     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
11547 
11548   if (LangOpts.CUDA)
11549     return getTargetInfo().getCUDABuiltinAddressSpace(AS);
11550 
11551   return getLangASFromTargetAS(AS);
11552 }
11553 
11554 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
11555 // doesn't include ASTContext.h
11556 template
11557 clang::LazyGenerationalUpdatePtr<
11558     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
11559 clang::LazyGenerationalUpdatePtr<
11560     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
11561         const clang::ASTContext &Ctx, Decl *Value);
11562 
getFixedPointScale(QualType Ty) const11563 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
11564   assert(Ty->isFixedPointType());
11565 
11566   const TargetInfo &Target = getTargetInfo();
11567   switch (Ty->castAs<BuiltinType>()->getKind()) {
11568     default:
11569       llvm_unreachable("Not a fixed point type!");
11570     case BuiltinType::ShortAccum:
11571     case BuiltinType::SatShortAccum:
11572       return Target.getShortAccumScale();
11573     case BuiltinType::Accum:
11574     case BuiltinType::SatAccum:
11575       return Target.getAccumScale();
11576     case BuiltinType::LongAccum:
11577     case BuiltinType::SatLongAccum:
11578       return Target.getLongAccumScale();
11579     case BuiltinType::UShortAccum:
11580     case BuiltinType::SatUShortAccum:
11581       return Target.getUnsignedShortAccumScale();
11582     case BuiltinType::UAccum:
11583     case BuiltinType::SatUAccum:
11584       return Target.getUnsignedAccumScale();
11585     case BuiltinType::ULongAccum:
11586     case BuiltinType::SatULongAccum:
11587       return Target.getUnsignedLongAccumScale();
11588     case BuiltinType::ShortFract:
11589     case BuiltinType::SatShortFract:
11590       return Target.getShortFractScale();
11591     case BuiltinType::Fract:
11592     case BuiltinType::SatFract:
11593       return Target.getFractScale();
11594     case BuiltinType::LongFract:
11595     case BuiltinType::SatLongFract:
11596       return Target.getLongFractScale();
11597     case BuiltinType::UShortFract:
11598     case BuiltinType::SatUShortFract:
11599       return Target.getUnsignedShortFractScale();
11600     case BuiltinType::UFract:
11601     case BuiltinType::SatUFract:
11602       return Target.getUnsignedFractScale();
11603     case BuiltinType::ULongFract:
11604     case BuiltinType::SatULongFract:
11605       return Target.getUnsignedLongFractScale();
11606   }
11607 }
11608 
getFixedPointIBits(QualType Ty) const11609 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
11610   assert(Ty->isFixedPointType());
11611 
11612   const TargetInfo &Target = getTargetInfo();
11613   switch (Ty->castAs<BuiltinType>()->getKind()) {
11614     default:
11615       llvm_unreachable("Not a fixed point type!");
11616     case BuiltinType::ShortAccum:
11617     case BuiltinType::SatShortAccum:
11618       return Target.getShortAccumIBits();
11619     case BuiltinType::Accum:
11620     case BuiltinType::SatAccum:
11621       return Target.getAccumIBits();
11622     case BuiltinType::LongAccum:
11623     case BuiltinType::SatLongAccum:
11624       return Target.getLongAccumIBits();
11625     case BuiltinType::UShortAccum:
11626     case BuiltinType::SatUShortAccum:
11627       return Target.getUnsignedShortAccumIBits();
11628     case BuiltinType::UAccum:
11629     case BuiltinType::SatUAccum:
11630       return Target.getUnsignedAccumIBits();
11631     case BuiltinType::ULongAccum:
11632     case BuiltinType::SatULongAccum:
11633       return Target.getUnsignedLongAccumIBits();
11634     case BuiltinType::ShortFract:
11635     case BuiltinType::SatShortFract:
11636     case BuiltinType::Fract:
11637     case BuiltinType::SatFract:
11638     case BuiltinType::LongFract:
11639     case BuiltinType::SatLongFract:
11640     case BuiltinType::UShortFract:
11641     case BuiltinType::SatUShortFract:
11642     case BuiltinType::UFract:
11643     case BuiltinType::SatUFract:
11644     case BuiltinType::ULongFract:
11645     case BuiltinType::SatULongFract:
11646       return 0;
11647   }
11648 }
11649 
11650 llvm::FixedPointSemantics
getFixedPointSemantics(QualType Ty) const11651 ASTContext::getFixedPointSemantics(QualType Ty) const {
11652   assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
11653          "Can only get the fixed point semantics for a "
11654          "fixed point or integer type.");
11655   if (Ty->isIntegerType())
11656     return llvm::FixedPointSemantics::GetIntegerSemantics(
11657         getIntWidth(Ty), Ty->isSignedIntegerType());
11658 
11659   bool isSigned = Ty->isSignedFixedPointType();
11660   return llvm::FixedPointSemantics(
11661       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
11662       Ty->isSaturatedFixedPointType(),
11663       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
11664 }
11665 
getFixedPointMax(QualType Ty) const11666 llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
11667   assert(Ty->isFixedPointType());
11668   return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
11669 }
11670 
getFixedPointMin(QualType Ty) const11671 llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
11672   assert(Ty->isFixedPointType());
11673   return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
11674 }
11675 
getCorrespondingSignedFixedPointType(QualType Ty) const11676 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
11677   assert(Ty->isUnsignedFixedPointType() &&
11678          "Expected unsigned fixed point type");
11679 
11680   switch (Ty->castAs<BuiltinType>()->getKind()) {
11681   case BuiltinType::UShortAccum:
11682     return ShortAccumTy;
11683   case BuiltinType::UAccum:
11684     return AccumTy;
11685   case BuiltinType::ULongAccum:
11686     return LongAccumTy;
11687   case BuiltinType::SatUShortAccum:
11688     return SatShortAccumTy;
11689   case BuiltinType::SatUAccum:
11690     return SatAccumTy;
11691   case BuiltinType::SatULongAccum:
11692     return SatLongAccumTy;
11693   case BuiltinType::UShortFract:
11694     return ShortFractTy;
11695   case BuiltinType::UFract:
11696     return FractTy;
11697   case BuiltinType::ULongFract:
11698     return LongFractTy;
11699   case BuiltinType::SatUShortFract:
11700     return SatShortFractTy;
11701   case BuiltinType::SatUFract:
11702     return SatFractTy;
11703   case BuiltinType::SatULongFract:
11704     return SatLongFractTy;
11705   default:
11706     llvm_unreachable("Unexpected unsigned fixed point type");
11707   }
11708 }
11709 
11710 ParsedTargetAttr
filterFunctionTargetAttrs(const TargetAttr * TD) const11711 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
11712   assert(TD != nullptr);
11713   ParsedTargetAttr ParsedAttr = TD->parse();
11714 
11715   ParsedAttr.Features.erase(
11716       llvm::remove_if(ParsedAttr.Features,
11717                       [&](const std::string &Feat) {
11718                         return !Target->isValidFeatureName(
11719                             StringRef{Feat}.substr(1));
11720                       }),
11721       ParsedAttr.Features.end());
11722   return ParsedAttr;
11723 }
11724 
getFunctionFeatureMap(llvm::StringMap<bool> & FeatureMap,const FunctionDecl * FD) const11725 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
11726                                        const FunctionDecl *FD) const {
11727   if (FD)
11728     getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
11729   else
11730     Target->initFeatureMap(FeatureMap, getDiagnostics(),
11731                            Target->getTargetOpts().CPU,
11732                            Target->getTargetOpts().Features);
11733 }
11734 
11735 // Fills in the supplied string map with the set of target features for the
11736 // passed in function.
getFunctionFeatureMap(llvm::StringMap<bool> & FeatureMap,GlobalDecl GD) const11737 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
11738                                        GlobalDecl GD) const {
11739   StringRef TargetCPU = Target->getTargetOpts().CPU;
11740   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
11741   if (const auto *TD = FD->getAttr<TargetAttr>()) {
11742     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
11743 
11744     // Make a copy of the features as passed on the command line into the
11745     // beginning of the additional features from the function to override.
11746     ParsedAttr.Features.insert(
11747         ParsedAttr.Features.begin(),
11748         Target->getTargetOpts().FeaturesAsWritten.begin(),
11749         Target->getTargetOpts().FeaturesAsWritten.end());
11750 
11751     if (ParsedAttr.Architecture != "" &&
11752         Target->isValidCPUName(ParsedAttr.Architecture))
11753       TargetCPU = ParsedAttr.Architecture;
11754 
11755     // Now populate the feature map, first with the TargetCPU which is either
11756     // the default or a new one from the target attribute string. Then we'll use
11757     // the passed in features (FeaturesAsWritten) along with the new ones from
11758     // the attribute.
11759     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
11760                            ParsedAttr.Features);
11761   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
11762     llvm::SmallVector<StringRef, 32> FeaturesTmp;
11763     Target->getCPUSpecificCPUDispatchFeatures(
11764         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
11765     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
11766     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
11767   } else {
11768     FeatureMap = Target->getTargetOpts().FeatureMap;
11769   }
11770 }
11771 
getNewOMPTraitInfo()11772 OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
11773   OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
11774   return *OMPTraitInfoVector.back();
11775 }
11776 
11777 const StreamingDiagnostic &clang::
operator <<(const StreamingDiagnostic & DB,const ASTContext::SectionInfo & Section)11778 operator<<(const StreamingDiagnostic &DB,
11779            const ASTContext::SectionInfo &Section) {
11780   if (Section.Decl)
11781     return DB << Section.Decl;
11782   return DB << "a prior #pragma section";
11783 }
11784 
mayExternalizeStaticVar(const Decl * D) const11785 bool ASTContext::mayExternalizeStaticVar(const Decl *D) const {
11786   bool IsStaticVar =
11787       isa<VarDecl>(D) && cast<VarDecl>(D)->getStorageClass() == SC_Static;
11788   bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() &&
11789                               !D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
11790                              (D->hasAttr<CUDAConstantAttr>() &&
11791                               !D->getAttr<CUDAConstantAttr>()->isImplicit());
11792   // CUDA/HIP: static managed variables need to be externalized since it is
11793   // a declaration in IR, therefore cannot have internal linkage.
11794   return IsStaticVar &&
11795          (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar);
11796 }
11797 
shouldExternalizeStaticVar(const Decl * D) const11798 bool ASTContext::shouldExternalizeStaticVar(const Decl *D) const {
11799   return mayExternalizeStaticVar(D) &&
11800          (D->hasAttr<HIPManagedAttr>() ||
11801           CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D)));
11802 }
11803 
getCUIDHash() const11804 StringRef ASTContext::getCUIDHash() const {
11805   if (!CUIDHash.empty())
11806     return CUIDHash;
11807   if (LangOpts.CUID.empty())
11808     return StringRef();
11809   CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true);
11810   return CUIDHash;
11811 }
11812