1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis member access expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/Overload.h"
13 #include "clang/AST/ASTLambda.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaInternal.h"
24 
25 using namespace clang;
26 using namespace sema;
27 
28 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
29 
30 /// Determines if the given class is provably not derived from all of
31 /// the prospective base classes.
isProvablyNotDerivedFrom(Sema & SemaRef,CXXRecordDecl * Record,const BaseSet & Bases)32 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
33                                      const BaseSet &Bases) {
34   auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
35     return !Bases.count(Base->getCanonicalDecl());
36   };
37   return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
38 }
39 
40 enum IMAKind {
41   /// The reference is definitely not an instance member access.
42   IMA_Static,
43 
44   /// The reference may be an implicit instance member access.
45   IMA_Mixed,
46 
47   /// The reference may be to an instance member, but it might be invalid if
48   /// so, because the context is not an instance method.
49   IMA_Mixed_StaticContext,
50 
51   /// The reference may be to an instance member, but it is invalid if
52   /// so, because the context is from an unrelated class.
53   IMA_Mixed_Unrelated,
54 
55   /// The reference is definitely an implicit instance member access.
56   IMA_Instance,
57 
58   /// The reference may be to an unresolved using declaration.
59   IMA_Unresolved,
60 
61   /// The reference is a contextually-permitted abstract member reference.
62   IMA_Abstract,
63 
64   /// The reference may be to an unresolved using declaration and the
65   /// context is not an instance method.
66   IMA_Unresolved_StaticContext,
67 
68   // The reference refers to a field which is not a member of the containing
69   // class, which is allowed because we're in C++11 mode and the context is
70   // unevaluated.
71   IMA_Field_Uneval_Context,
72 
73   /// All possible referrents are instance members and the current
74   /// context is not an instance method.
75   IMA_Error_StaticContext,
76 
77   /// All possible referrents are instance members of an unrelated
78   /// class.
79   IMA_Error_Unrelated
80 };
81 
82 /// The given lookup names class member(s) and is not being used for
83 /// an address-of-member expression.  Classify the type of access
84 /// according to whether it's possible that this reference names an
85 /// instance member.  This is best-effort in dependent contexts; it is okay to
86 /// conservatively answer "yes", in which case some errors will simply
87 /// not be caught until template-instantiation.
ClassifyImplicitMemberAccess(Sema & SemaRef,const LookupResult & R)88 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
89                                             const LookupResult &R) {
90   assert(!R.empty() && (*R.begin())->isCXXClassMember());
91 
92   DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
93 
94   bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
95     (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
96 
97   if (R.isUnresolvableResult())
98     return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
99 
100   // Collect all the declaring classes of instance members we find.
101   bool hasNonInstance = false;
102   bool isField = false;
103   BaseSet Classes;
104   for (NamedDecl *D : R) {
105     // Look through any using decls.
106     D = D->getUnderlyingDecl();
107 
108     if (D->isCXXInstanceMember()) {
109       isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
110                  isa<IndirectFieldDecl>(D);
111 
112       CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
113       Classes.insert(R->getCanonicalDecl());
114     } else
115       hasNonInstance = true;
116   }
117 
118   // If we didn't find any instance members, it can't be an implicit
119   // member reference.
120   if (Classes.empty())
121     return IMA_Static;
122 
123   // C++11 [expr.prim.general]p12:
124   //   An id-expression that denotes a non-static data member or non-static
125   //   member function of a class can only be used:
126   //   (...)
127   //   - if that id-expression denotes a non-static data member and it
128   //     appears in an unevaluated operand.
129   //
130   // This rule is specific to C++11.  However, we also permit this form
131   // in unevaluated inline assembly operands, like the operand to a SIZE.
132   IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
133   assert(!AbstractInstanceResult);
134   switch (SemaRef.ExprEvalContexts.back().Context) {
135   case Sema::ExpressionEvaluationContext::Unevaluated:
136   case Sema::ExpressionEvaluationContext::UnevaluatedList:
137     if (isField && SemaRef.getLangOpts().CPlusPlus11)
138       AbstractInstanceResult = IMA_Field_Uneval_Context;
139     break;
140 
141   case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
142     AbstractInstanceResult = IMA_Abstract;
143     break;
144 
145   case Sema::ExpressionEvaluationContext::DiscardedStatement:
146   case Sema::ExpressionEvaluationContext::ConstantEvaluated:
147   case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
148   case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
149   case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
150     break;
151   }
152 
153   // If the current context is not an instance method, it can't be
154   // an implicit member reference.
155   if (isStaticContext) {
156     if (hasNonInstance)
157       return IMA_Mixed_StaticContext;
158 
159     return AbstractInstanceResult ? AbstractInstanceResult
160                                   : IMA_Error_StaticContext;
161   }
162 
163   CXXRecordDecl *contextClass;
164   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
165     contextClass = MD->getParent()->getCanonicalDecl();
166   else
167     contextClass = cast<CXXRecordDecl>(DC);
168 
169   // [class.mfct.non-static]p3:
170   // ...is used in the body of a non-static member function of class X,
171   // if name lookup (3.4.1) resolves the name in the id-expression to a
172   // non-static non-type member of some class C [...]
173   // ...if C is not X or a base class of X, the class member access expression
174   // is ill-formed.
175   if (R.getNamingClass() &&
176       contextClass->getCanonicalDecl() !=
177         R.getNamingClass()->getCanonicalDecl()) {
178     // If the naming class is not the current context, this was a qualified
179     // member name lookup, and it's sufficient to check that we have the naming
180     // class as a base class.
181     Classes.clear();
182     Classes.insert(R.getNamingClass()->getCanonicalDecl());
183   }
184 
185   // If we can prove that the current context is unrelated to all the
186   // declaring classes, it can't be an implicit member reference (in
187   // which case it's an error if any of those members are selected).
188   if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
189     return hasNonInstance ? IMA_Mixed_Unrelated :
190            AbstractInstanceResult ? AbstractInstanceResult :
191                                     IMA_Error_Unrelated;
192 
193   return (hasNonInstance ? IMA_Mixed : IMA_Instance);
194 }
195 
196 /// Diagnose a reference to a field with no object available.
diagnoseInstanceReference(Sema & SemaRef,const CXXScopeSpec & SS,NamedDecl * Rep,const DeclarationNameInfo & nameInfo)197 static void diagnoseInstanceReference(Sema &SemaRef,
198                                       const CXXScopeSpec &SS,
199                                       NamedDecl *Rep,
200                                       const DeclarationNameInfo &nameInfo) {
201   SourceLocation Loc = nameInfo.getLoc();
202   SourceRange Range(Loc);
203   if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
204 
205   // Look through using shadow decls and aliases.
206   Rep = Rep->getUnderlyingDecl();
207 
208   DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
209   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
210   CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
211   CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
212 
213   bool InStaticMethod = Method && Method->isStatic();
214   bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
215 
216   if (IsField && InStaticMethod)
217     // "invalid use of member 'x' in static member function"
218     SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
219         << Range << nameInfo.getName();
220   else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
221            !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
222     // Unqualified lookup in a non-static member function found a member of an
223     // enclosing class.
224     SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
225       << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
226   else if (IsField)
227     SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
228       << nameInfo.getName() << Range;
229   else
230     SemaRef.Diag(Loc, diag::err_member_call_without_object)
231       << Range;
232 }
233 
234 /// Builds an expression which might be an implicit member expression.
BuildPossibleImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,const Scope * S,UnresolvedLookupExpr * AsULE)235 ExprResult Sema::BuildPossibleImplicitMemberExpr(
236     const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
237     const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
238     UnresolvedLookupExpr *AsULE) {
239   switch (ClassifyImplicitMemberAccess(*this, R)) {
240   case IMA_Instance:
241     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);
242 
243   case IMA_Mixed:
244   case IMA_Mixed_Unrelated:
245   case IMA_Unresolved:
246     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
247                                    S);
248 
249   case IMA_Field_Uneval_Context:
250     Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
251       << R.getLookupNameInfo().getName();
252     LLVM_FALLTHROUGH;
253   case IMA_Static:
254   case IMA_Abstract:
255   case IMA_Mixed_StaticContext:
256   case IMA_Unresolved_StaticContext:
257     if (TemplateArgs || TemplateKWLoc.isValid())
258       return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
259     return AsULE ? AsULE : BuildDeclarationNameExpr(SS, R, false);
260 
261   case IMA_Error_StaticContext:
262   case IMA_Error_Unrelated:
263     diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
264                               R.getLookupNameInfo());
265     return ExprError();
266   }
267 
268   llvm_unreachable("unexpected instance member access kind");
269 }
270 
271 /// Determine whether input char is from rgba component set.
272 static bool
IsRGBA(char c)273 IsRGBA(char c) {
274   switch (c) {
275   case 'r':
276   case 'g':
277   case 'b':
278   case 'a':
279     return true;
280   default:
281     return false;
282   }
283 }
284 
285 // OpenCL v1.1, s6.1.7
286 // The component swizzle length must be in accordance with the acceptable
287 // vector sizes.
IsValidOpenCLComponentSwizzleLength(unsigned len)288 static bool IsValidOpenCLComponentSwizzleLength(unsigned len)
289 {
290   return (len >= 1 && len <= 4) || len == 8 || len == 16;
291 }
292 
293 /// Check an ext-vector component access expression.
294 ///
295 /// VK should be set in advance to the value kind of the base
296 /// expression.
297 static QualType
CheckExtVectorComponent(Sema & S,QualType baseType,ExprValueKind & VK,SourceLocation OpLoc,const IdentifierInfo * CompName,SourceLocation CompLoc)298 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
299                         SourceLocation OpLoc, const IdentifierInfo *CompName,
300                         SourceLocation CompLoc) {
301   // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
302   // see FIXME there.
303   //
304   // FIXME: This logic can be greatly simplified by splitting it along
305   // halving/not halving and reworking the component checking.
306   const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
307 
308   // The vector accessor can't exceed the number of elements.
309   const char *compStr = CompName->getNameStart();
310 
311   // This flag determines whether or not the component is one of the four
312   // special names that indicate a subset of exactly half the elements are
313   // to be selected.
314   bool HalvingSwizzle = false;
315 
316   // This flag determines whether or not CompName has an 's' char prefix,
317   // indicating that it is a string of hex values to be used as vector indices.
318   bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
319 
320   bool HasRepeated = false;
321   bool HasIndex[16] = {};
322 
323   int Idx;
324 
325   // Check that we've found one of the special components, or that the component
326   // names must come from the same set.
327   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
328       !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
329     HalvingSwizzle = true;
330   } else if (!HexSwizzle &&
331              (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
332     bool HasRGBA = IsRGBA(*compStr);
333     do {
334       // Ensure that xyzw and rgba components don't intermingle.
335       if (HasRGBA != IsRGBA(*compStr))
336         break;
337       if (HasIndex[Idx]) HasRepeated = true;
338       HasIndex[Idx] = true;
339       compStr++;
340     } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
341 
342     // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0.
343     if (HasRGBA || (*compStr && IsRGBA(*compStr))) {
344       if (S.getLangOpts().OpenCL &&
345           S.getLangOpts().getOpenCLCompatibleVersion() < 300) {
346         const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
347         S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
348             << StringRef(DiagBegin, 1) << SourceRange(CompLoc);
349       }
350     }
351   } else {
352     if (HexSwizzle) compStr++;
353     while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
354       if (HasIndex[Idx]) HasRepeated = true;
355       HasIndex[Idx] = true;
356       compStr++;
357     }
358   }
359 
360   if (!HalvingSwizzle && *compStr) {
361     // We didn't get to the end of the string. This means the component names
362     // didn't come from the same set *or* we encountered an illegal name.
363     S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
364       << StringRef(compStr, 1) << SourceRange(CompLoc);
365     return QualType();
366   }
367 
368   // Ensure no component accessor exceeds the width of the vector type it
369   // operates on.
370   if (!HalvingSwizzle) {
371     compStr = CompName->getNameStart();
372 
373     if (HexSwizzle)
374       compStr++;
375 
376     while (*compStr) {
377       if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) {
378         S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
379           << baseType << SourceRange(CompLoc);
380         return QualType();
381       }
382     }
383   }
384 
385   // OpenCL mode requires swizzle length to be in accordance with accepted
386   // sizes. Clang however supports arbitrary lengths for other languages.
387   if (S.getLangOpts().OpenCL && !HalvingSwizzle) {
388     unsigned SwizzleLength = CompName->getLength();
389 
390     if (HexSwizzle)
391       SwizzleLength--;
392 
393     if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) {
394       S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length)
395         << SwizzleLength << SourceRange(CompLoc);
396       return QualType();
397     }
398   }
399 
400   // The component accessor looks fine - now we need to compute the actual type.
401   // The vector type is implied by the component accessor. For example,
402   // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
403   // vec4.s0 is a float, vec4.s23 is a vec3, etc.
404   // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
405   unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
406                                      : CompName->getLength();
407   if (HexSwizzle)
408     CompSize--;
409 
410   if (CompSize == 1)
411     return vecType->getElementType();
412 
413   if (HasRepeated)
414     VK = VK_PRValue;
415 
416   QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
417   // Now look up the TypeDefDecl from the vector type. Without this,
418   // diagostics look bad. We want extended vector types to appear built-in.
419   for (Sema::ExtVectorDeclsType::iterator
420          I = S.ExtVectorDecls.begin(S.getExternalSource()),
421          E = S.ExtVectorDecls.end();
422        I != E; ++I) {
423     if ((*I)->getUnderlyingType() == VT)
424       return S.Context.getTypedefType(*I);
425   }
426 
427   return VT; // should never get here (a typedef type should always be found).
428 }
429 
FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl * PDecl,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)430 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
431                                                 IdentifierInfo *Member,
432                                                 const Selector &Sel,
433                                                 ASTContext &Context) {
434   if (Member)
435     if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
436             Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
437       return PD;
438   if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
439     return OMD;
440 
441   for (const auto *I : PDecl->protocols()) {
442     if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
443                                                            Context))
444       return D;
445   }
446   return nullptr;
447 }
448 
FindGetterSetterNameDecl(const ObjCObjectPointerType * QIdTy,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)449 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
450                                       IdentifierInfo *Member,
451                                       const Selector &Sel,
452                                       ASTContext &Context) {
453   // Check protocols on qualified interfaces.
454   Decl *GDecl = nullptr;
455   for (const auto *I : QIdTy->quals()) {
456     if (Member)
457       if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
458               Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
459         GDecl = PD;
460         break;
461       }
462     // Also must look for a getter or setter name which uses property syntax.
463     if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
464       GDecl = OMD;
465       break;
466     }
467   }
468   if (!GDecl) {
469     for (const auto *I : QIdTy->quals()) {
470       // Search in the protocol-qualifier list of current protocol.
471       GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
472       if (GDecl)
473         return GDecl;
474     }
475   }
476   return GDecl;
477 }
478 
479 ExprResult
ActOnDependentMemberExpr(Expr * BaseExpr,QualType BaseType,bool IsArrow,SourceLocation OpLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)480 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
481                                bool IsArrow, SourceLocation OpLoc,
482                                const CXXScopeSpec &SS,
483                                SourceLocation TemplateKWLoc,
484                                NamedDecl *FirstQualifierInScope,
485                                const DeclarationNameInfo &NameInfo,
486                                const TemplateArgumentListInfo *TemplateArgs) {
487   // Even in dependent contexts, try to diagnose base expressions with
488   // obviously wrong types, e.g.:
489   //
490   // T* t;
491   // t.f;
492   //
493   // In Obj-C++, however, the above expression is valid, since it could be
494   // accessing the 'f' property if T is an Obj-C interface. The extra check
495   // allows this, while still reporting an error if T is a struct pointer.
496   if (!IsArrow) {
497     const PointerType *PT = BaseType->getAs<PointerType>();
498     if (PT && (!getLangOpts().ObjC ||
499                PT->getPointeeType()->isRecordType())) {
500       assert(BaseExpr && "cannot happen with implicit member accesses");
501       Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
502         << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
503       return ExprError();
504     }
505   }
506 
507   assert(BaseType->isDependentType() ||
508          NameInfo.getName().isDependentName() ||
509          isDependentScopeSpecifier(SS));
510 
511   // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
512   // must have pointer type, and the accessed type is the pointee.
513   return CXXDependentScopeMemberExpr::Create(
514       Context, BaseExpr, BaseType, IsArrow, OpLoc,
515       SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
516       NameInfo, TemplateArgs);
517 }
518 
519 /// We know that the given qualified member reference points only to
520 /// declarations which do not belong to the static type of the base
521 /// expression.  Diagnose the problem.
DiagnoseQualifiedMemberReference(Sema & SemaRef,Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,NamedDecl * rep,const DeclarationNameInfo & nameInfo)522 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
523                                              Expr *BaseExpr,
524                                              QualType BaseType,
525                                              const CXXScopeSpec &SS,
526                                              NamedDecl *rep,
527                                        const DeclarationNameInfo &nameInfo) {
528   // If this is an implicit member access, use a different set of
529   // diagnostics.
530   if (!BaseExpr)
531     return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
532 
533   SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
534     << SS.getRange() << rep << BaseType;
535 }
536 
537 // Check whether the declarations we found through a nested-name
538 // specifier in a member expression are actually members of the base
539 // type.  The restriction here is:
540 //
541 //   C++ [expr.ref]p2:
542 //     ... In these cases, the id-expression shall name a
543 //     member of the class or of one of its base classes.
544 //
545 // So it's perfectly legitimate for the nested-name specifier to name
546 // an unrelated class, and for us to find an overload set including
547 // decls from classes which are not superclasses, as long as the decl
548 // we actually pick through overload resolution is from a superclass.
CheckQualifiedMemberReference(Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,const LookupResult & R)549 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
550                                          QualType BaseType,
551                                          const CXXScopeSpec &SS,
552                                          const LookupResult &R) {
553   CXXRecordDecl *BaseRecord =
554     cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
555   if (!BaseRecord) {
556     // We can't check this yet because the base type is still
557     // dependent.
558     assert(BaseType->isDependentType());
559     return false;
560   }
561 
562   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
563     // If this is an implicit member reference and we find a
564     // non-instance member, it's not an error.
565     if (!BaseExpr && !(*I)->isCXXInstanceMember())
566       return false;
567 
568     // Note that we use the DC of the decl, not the underlying decl.
569     DeclContext *DC = (*I)->getDeclContext()->getNonTransparentContext();
570     if (!DC->isRecord())
571       continue;
572 
573     CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
574     if (BaseRecord->getCanonicalDecl() == MemberRecord ||
575         !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
576       return false;
577   }
578 
579   DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
580                                    R.getRepresentativeDecl(),
581                                    R.getLookupNameInfo());
582   return true;
583 }
584 
585 namespace {
586 
587 // Callback to only accept typo corrections that are either a ValueDecl or a
588 // FunctionTemplateDecl and are declared in the current record or, for a C++
589 // classes, one of its base classes.
590 class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback {
591 public:
RecordMemberExprValidatorCCC(const RecordType * RTy)592   explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
593       : Record(RTy->getDecl()) {
594     // Don't add bare keywords to the consumer since they will always fail
595     // validation by virtue of not being associated with any decls.
596     WantTypeSpecifiers = false;
597     WantExpressionKeywords = false;
598     WantCXXNamedCasts = false;
599     WantFunctionLikeCasts = false;
600     WantRemainingKeywords = false;
601   }
602 
ValidateCandidate(const TypoCorrection & candidate)603   bool ValidateCandidate(const TypoCorrection &candidate) override {
604     NamedDecl *ND = candidate.getCorrectionDecl();
605     // Don't accept candidates that cannot be member functions, constants,
606     // variables, or templates.
607     if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
608       return false;
609 
610     // Accept candidates that occur in the current record.
611     if (Record->containsDecl(ND))
612       return true;
613 
614     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
615       // Accept candidates that occur in any of the current class' base classes.
616       for (const auto &BS : RD->bases()) {
617         if (const RecordType *BSTy =
618                 dyn_cast_or_null<RecordType>(BS.getType().getTypePtrOrNull())) {
619           if (BSTy->getDecl()->containsDecl(ND))
620             return true;
621         }
622       }
623     }
624 
625     return false;
626   }
627 
clone()628   std::unique_ptr<CorrectionCandidateCallback> clone() override {
629     return std::make_unique<RecordMemberExprValidatorCCC>(*this);
630   }
631 
632 private:
633   const RecordDecl *const Record;
634 };
635 
636 }
637 
LookupMemberExprInRecord(Sema & SemaRef,LookupResult & R,Expr * BaseExpr,const RecordType * RTy,SourceLocation OpLoc,bool IsArrow,CXXScopeSpec & SS,bool HasTemplateArgs,SourceLocation TemplateKWLoc,TypoExpr * & TE)638 static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
639                                      Expr *BaseExpr,
640                                      const RecordType *RTy,
641                                      SourceLocation OpLoc, bool IsArrow,
642                                      CXXScopeSpec &SS, bool HasTemplateArgs,
643                                      SourceLocation TemplateKWLoc,
644                                      TypoExpr *&TE) {
645   SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
646   RecordDecl *RDecl = RTy->getDecl();
647   if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
648       SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
649                                   diag::err_typecheck_incomplete_tag,
650                                   BaseRange))
651     return true;
652 
653   if (HasTemplateArgs || TemplateKWLoc.isValid()) {
654     // LookupTemplateName doesn't expect these both to exist simultaneously.
655     QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
656 
657     bool MOUS;
658     return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS,
659                                       TemplateKWLoc);
660   }
661 
662   DeclContext *DC = RDecl;
663   if (SS.isSet()) {
664     // If the member name was a qualified-id, look into the
665     // nested-name-specifier.
666     DC = SemaRef.computeDeclContext(SS, false);
667 
668     if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
669       SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
670           << SS.getRange() << DC;
671       return true;
672     }
673 
674     assert(DC && "Cannot handle non-computable dependent contexts in lookup");
675 
676     if (!isa<TypeDecl>(DC)) {
677       SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
678           << DC << SS.getRange();
679       return true;
680     }
681   }
682 
683   // The record definition is complete, now look up the member.
684   SemaRef.LookupQualifiedName(R, DC, SS);
685 
686   if (!R.empty())
687     return false;
688 
689   DeclarationName Typo = R.getLookupName();
690   SourceLocation TypoLoc = R.getNameLoc();
691 
692   struct QueryState {
693     Sema &SemaRef;
694     DeclarationNameInfo NameInfo;
695     Sema::LookupNameKind LookupKind;
696     Sema::RedeclarationKind Redecl;
697   };
698   QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
699                   R.redeclarationKind()};
700   RecordMemberExprValidatorCCC CCC(RTy);
701   TE = SemaRef.CorrectTypoDelayed(
702       R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC,
703       [=, &SemaRef](const TypoCorrection &TC) {
704         if (TC) {
705           assert(!TC.isKeyword() &&
706                  "Got a keyword as a correction for a member!");
707           bool DroppedSpecifier =
708               TC.WillReplaceSpecifier() &&
709               Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
710           SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
711                                        << Typo << DC << DroppedSpecifier
712                                        << SS.getRange());
713         } else {
714           SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
715         }
716       },
717       [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
718         LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
719         R.clear(); // Ensure there's no decls lingering in the shared state.
720         R.suppressDiagnostics();
721         R.setLookupName(TC.getCorrection());
722         for (NamedDecl *ND : TC)
723           R.addDecl(ND);
724         R.resolveKind();
725         return SemaRef.BuildMemberReferenceExpr(
726             BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
727             nullptr, R, nullptr, nullptr);
728       },
729       Sema::CTK_ErrorRecovery, DC);
730 
731   return false;
732 }
733 
734 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
735                                    ExprResult &BaseExpr, bool &IsArrow,
736                                    SourceLocation OpLoc, CXXScopeSpec &SS,
737                                    Decl *ObjCImpDecl, bool HasTemplateArgs,
738                                    SourceLocation TemplateKWLoc);
739 
740 ExprResult
BuildMemberReferenceExpr(Expr * Base,QualType BaseType,SourceLocation OpLoc,bool IsArrow,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs,const Scope * S,ActOnMemberAccessExtraArgs * ExtraArgs)741 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
742                                SourceLocation OpLoc, bool IsArrow,
743                                CXXScopeSpec &SS,
744                                SourceLocation TemplateKWLoc,
745                                NamedDecl *FirstQualifierInScope,
746                                const DeclarationNameInfo &NameInfo,
747                                const TemplateArgumentListInfo *TemplateArgs,
748                                const Scope *S,
749                                ActOnMemberAccessExtraArgs *ExtraArgs) {
750   if (BaseType->isDependentType() ||
751       (SS.isSet() && isDependentScopeSpecifier(SS)))
752     return ActOnDependentMemberExpr(Base, BaseType,
753                                     IsArrow, OpLoc,
754                                     SS, TemplateKWLoc, FirstQualifierInScope,
755                                     NameInfo, TemplateArgs);
756 
757   LookupResult R(*this, NameInfo, LookupMemberName);
758 
759   // Implicit member accesses.
760   if (!Base) {
761     TypoExpr *TE = nullptr;
762     QualType RecordTy = BaseType;
763     if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType();
764     if (LookupMemberExprInRecord(
765             *this, R, nullptr, RecordTy->getAs<RecordType>(), OpLoc, IsArrow,
766             SS, TemplateArgs != nullptr, TemplateKWLoc, TE))
767       return ExprError();
768     if (TE)
769       return TE;
770 
771   // Explicit member accesses.
772   } else {
773     ExprResult BaseResult = Base;
774     ExprResult Result =
775         LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS,
776                          ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
777                          TemplateArgs != nullptr, TemplateKWLoc);
778 
779     if (BaseResult.isInvalid())
780       return ExprError();
781     Base = BaseResult.get();
782 
783     if (Result.isInvalid())
784       return ExprError();
785 
786     if (Result.get())
787       return Result;
788 
789     // LookupMemberExpr can modify Base, and thus change BaseType
790     BaseType = Base->getType();
791   }
792 
793   return BuildMemberReferenceExpr(Base, BaseType,
794                                   OpLoc, IsArrow, SS, TemplateKWLoc,
795                                   FirstQualifierInScope, R, TemplateArgs, S,
796                                   false, ExtraArgs);
797 }
798 
799 ExprResult
BuildAnonymousStructUnionMemberReference(const CXXScopeSpec & SS,SourceLocation loc,IndirectFieldDecl * indirectField,DeclAccessPair foundDecl,Expr * baseObjectExpr,SourceLocation opLoc)800 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
801                                                SourceLocation loc,
802                                                IndirectFieldDecl *indirectField,
803                                                DeclAccessPair foundDecl,
804                                                Expr *baseObjectExpr,
805                                                SourceLocation opLoc) {
806   // First, build the expression that refers to the base object.
807 
808   // Case 1:  the base of the indirect field is not a field.
809   VarDecl *baseVariable = indirectField->getVarDecl();
810   CXXScopeSpec EmptySS;
811   if (baseVariable) {
812     assert(baseVariable->getType()->isRecordType());
813 
814     // In principle we could have a member access expression that
815     // accesses an anonymous struct/union that's a static member of
816     // the base object's class.  However, under the current standard,
817     // static data members cannot be anonymous structs or unions.
818     // Supporting this is as easy as building a MemberExpr here.
819     assert(!baseObjectExpr && "anonymous struct/union is static data member?");
820 
821     DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
822 
823     ExprResult result
824       = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
825     if (result.isInvalid()) return ExprError();
826 
827     baseObjectExpr = result.get();
828   }
829 
830   assert((baseVariable || baseObjectExpr) &&
831          "referencing anonymous struct/union without a base variable or "
832          "expression");
833 
834   // Build the implicit member references to the field of the
835   // anonymous struct/union.
836   Expr *result = baseObjectExpr;
837   IndirectFieldDecl::chain_iterator
838   FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
839 
840   // Case 2: the base of the indirect field is a field and the user
841   // wrote a member expression.
842   if (!baseVariable) {
843     FieldDecl *field = cast<FieldDecl>(*FI);
844 
845     bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType();
846 
847     // Make a nameInfo that properly uses the anonymous name.
848     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
849 
850     // Build the first member access in the chain with full information.
851     result =
852         BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(),
853                                 SS, field, foundDecl, memberNameInfo)
854             .get();
855     if (!result)
856       return ExprError();
857   }
858 
859   // In all cases, we should now skip the first declaration in the chain.
860   ++FI;
861 
862   while (FI != FEnd) {
863     FieldDecl *field = cast<FieldDecl>(*FI++);
864 
865     // FIXME: these are somewhat meaningless
866     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
867     DeclAccessPair fakeFoundDecl =
868         DeclAccessPair::make(field, field->getAccess());
869 
870     result =
871         BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(),
872                                 (FI == FEnd ? SS : EmptySS), field,
873                                 fakeFoundDecl, memberNameInfo)
874             .get();
875   }
876 
877   return result;
878 }
879 
880 static ExprResult
BuildMSPropertyRefExpr(Sema & S,Expr * BaseExpr,bool IsArrow,const CXXScopeSpec & SS,MSPropertyDecl * PD,const DeclarationNameInfo & NameInfo)881 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
882                        const CXXScopeSpec &SS,
883                        MSPropertyDecl *PD,
884                        const DeclarationNameInfo &NameInfo) {
885   // Property names are always simple identifiers and therefore never
886   // require any interesting additional storage.
887   return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
888                                            S.Context.PseudoObjectTy, VK_LValue,
889                                            SS.getWithLocInContext(S.Context),
890                                            NameInfo.getLoc());
891 }
892 
BuildMemberExpr(Expr * Base,bool IsArrow,SourceLocation OpLoc,const CXXScopeSpec * SS,SourceLocation TemplateKWLoc,ValueDecl * Member,DeclAccessPair FoundDecl,bool HadMultipleCandidates,const DeclarationNameInfo & MemberNameInfo,QualType Ty,ExprValueKind VK,ExprObjectKind OK,const TemplateArgumentListInfo * TemplateArgs)893 MemberExpr *Sema::BuildMemberExpr(
894     Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS,
895     SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
896     bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
897     QualType Ty, ExprValueKind VK, ExprObjectKind OK,
898     const TemplateArgumentListInfo *TemplateArgs) {
899   NestedNameSpecifierLoc NNS =
900       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
901   return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member,
902                          FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty,
903                          VK, OK, TemplateArgs);
904 }
905 
BuildMemberExpr(Expr * Base,bool IsArrow,SourceLocation OpLoc,NestedNameSpecifierLoc NNS,SourceLocation TemplateKWLoc,ValueDecl * Member,DeclAccessPair FoundDecl,bool HadMultipleCandidates,const DeclarationNameInfo & MemberNameInfo,QualType Ty,ExprValueKind VK,ExprObjectKind OK,const TemplateArgumentListInfo * TemplateArgs)906 MemberExpr *Sema::BuildMemberExpr(
907     Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS,
908     SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
909     bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
910     QualType Ty, ExprValueKind VK, ExprObjectKind OK,
911     const TemplateArgumentListInfo *TemplateArgs) {
912   assert((!IsArrow || Base->isPRValue()) &&
913          "-> base must be a pointer prvalue");
914   MemberExpr *E =
915       MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc,
916                          Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty,
917                          VK, OK, getNonOdrUseReasonInCurrentContext(Member));
918   E->setHadMultipleCandidates(HadMultipleCandidates);
919   MarkMemberReferenced(E);
920 
921   // C++ [except.spec]p17:
922   //   An exception-specification is considered to be needed when:
923   //   - in an expression the function is the unique lookup result or the
924   //     selected member of a set of overloaded functions
925   if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
926     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
927       if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT))
928         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
929     }
930   }
931 
932   return E;
933 }
934 
935 /// Determine if the given scope is within a function-try-block handler.
IsInFnTryBlockHandler(const Scope * S)936 static bool IsInFnTryBlockHandler(const Scope *S) {
937   // Walk the scope stack until finding a FnTryCatchScope, or leave the
938   // function scope. If a FnTryCatchScope is found, check whether the TryScope
939   // flag is set. If it is not, it's a function-try-block handler.
940   for (; S != S->getFnParent(); S = S->getParent()) {
941     if (S->getFlags() & Scope::FnTryCatchScope)
942       return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
943   }
944   return false;
945 }
946 
947 ExprResult
BuildMemberReferenceExpr(Expr * BaseExpr,QualType BaseExprType,SourceLocation OpLoc,bool IsArrow,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,const Scope * S,bool SuppressQualifierCheck,ActOnMemberAccessExtraArgs * ExtraArgs)948 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
949                                SourceLocation OpLoc, bool IsArrow,
950                                const CXXScopeSpec &SS,
951                                SourceLocation TemplateKWLoc,
952                                NamedDecl *FirstQualifierInScope,
953                                LookupResult &R,
954                                const TemplateArgumentListInfo *TemplateArgs,
955                                const Scope *S,
956                                bool SuppressQualifierCheck,
957                                ActOnMemberAccessExtraArgs *ExtraArgs) {
958   QualType BaseType = BaseExprType;
959   if (IsArrow) {
960     assert(BaseType->isPointerType());
961     BaseType = BaseType->castAs<PointerType>()->getPointeeType();
962   }
963   R.setBaseObjectType(BaseType);
964 
965   // C++1z [expr.ref]p2:
966   //   For the first option (dot) the first expression shall be a glvalue [...]
967   if (!IsArrow && BaseExpr && BaseExpr->isPRValue()) {
968     ExprResult Converted = TemporaryMaterializationConversion(BaseExpr);
969     if (Converted.isInvalid())
970       return ExprError();
971     BaseExpr = Converted.get();
972   }
973 
974   const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
975   DeclarationName MemberName = MemberNameInfo.getName();
976   SourceLocation MemberLoc = MemberNameInfo.getLoc();
977 
978   if (R.isAmbiguous())
979     return ExprError();
980 
981   // [except.handle]p10: Referring to any non-static member or base class of an
982   // object in the handler for a function-try-block of a constructor or
983   // destructor for that object results in undefined behavior.
984   const auto *FD = getCurFunctionDecl();
985   if (S && BaseExpr && FD &&
986       (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
987       isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
988       IsInFnTryBlockHandler(S))
989     Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
990         << isa<CXXDestructorDecl>(FD);
991 
992   if (R.empty()) {
993     // Rederive where we looked up.
994     DeclContext *DC = (SS.isSet()
995                        ? computeDeclContext(SS, false)
996                        : BaseType->castAs<RecordType>()->getDecl());
997 
998     if (ExtraArgs) {
999       ExprResult RetryExpr;
1000       if (!IsArrow && BaseExpr) {
1001         SFINAETrap Trap(*this, true);
1002         ParsedType ObjectType;
1003         bool MayBePseudoDestructor = false;
1004         RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
1005                                                  OpLoc, tok::arrow, ObjectType,
1006                                                  MayBePseudoDestructor);
1007         if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
1008           CXXScopeSpec TempSS(SS);
1009           RetryExpr = ActOnMemberAccessExpr(
1010               ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
1011               TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
1012         }
1013         if (Trap.hasErrorOccurred())
1014           RetryExpr = ExprError();
1015       }
1016       if (RetryExpr.isUsable()) {
1017         Diag(OpLoc, diag::err_no_member_overloaded_arrow)
1018           << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
1019         return RetryExpr;
1020       }
1021     }
1022 
1023     Diag(R.getNameLoc(), diag::err_no_member)
1024       << MemberName << DC
1025       << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
1026     return ExprError();
1027   }
1028 
1029   // Diagnose lookups that find only declarations from a non-base
1030   // type.  This is possible for either qualified lookups (which may
1031   // have been qualified with an unrelated type) or implicit member
1032   // expressions (which were found with unqualified lookup and thus
1033   // may have come from an enclosing scope).  Note that it's okay for
1034   // lookup to find declarations from a non-base type as long as those
1035   // aren't the ones picked by overload resolution.
1036   if ((SS.isSet() || !BaseExpr ||
1037        (isa<CXXThisExpr>(BaseExpr) &&
1038         cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1039       !SuppressQualifierCheck &&
1040       CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1041     return ExprError();
1042 
1043   // Construct an unresolved result if we in fact got an unresolved
1044   // result.
1045   if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1046     // Suppress any lookup-related diagnostics; we'll do these when we
1047     // pick a member.
1048     R.suppressDiagnostics();
1049 
1050     UnresolvedMemberExpr *MemExpr
1051       = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1052                                      BaseExpr, BaseExprType,
1053                                      IsArrow, OpLoc,
1054                                      SS.getWithLocInContext(Context),
1055                                      TemplateKWLoc, MemberNameInfo,
1056                                      TemplateArgs, R.begin(), R.end());
1057 
1058     return MemExpr;
1059   }
1060 
1061   assert(R.isSingleResult());
1062   DeclAccessPair FoundDecl = R.begin().getPair();
1063   NamedDecl *MemberDecl = R.getFoundDecl();
1064 
1065   // FIXME: diagnose the presence of template arguments now.
1066 
1067   // If the decl being referenced had an error, return an error for this
1068   // sub-expr without emitting another error, in order to avoid cascading
1069   // error cases.
1070   if (MemberDecl->isInvalidDecl())
1071     return ExprError();
1072 
1073   // Handle the implicit-member-access case.
1074   if (!BaseExpr) {
1075     // If this is not an instance member, convert to a non-member access.
1076     if (!MemberDecl->isCXXInstanceMember()) {
1077       // We might have a variable template specialization (or maybe one day a
1078       // member concept-id).
1079       if (TemplateArgs || TemplateKWLoc.isValid())
1080         return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/false, TemplateArgs);
1081 
1082       return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl,
1083                                       FoundDecl, TemplateArgs);
1084     }
1085     SourceLocation Loc = R.getNameLoc();
1086     if (SS.getRange().isValid())
1087       Loc = SS.getRange().getBegin();
1088     BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true);
1089   }
1090 
1091   // Check the use of this member.
1092   if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1093     return ExprError();
1094 
1095   if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1096     return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl,
1097                                    MemberNameInfo);
1098 
1099   if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1100     return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1101                                   MemberNameInfo);
1102 
1103   if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1104     // We may have found a field within an anonymous union or struct
1105     // (C++ [class.union]).
1106     return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1107                                                     FoundDecl, BaseExpr,
1108                                                     OpLoc);
1109 
1110   if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1111     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
1112                            FoundDecl, /*HadMultipleCandidates=*/false,
1113                            MemberNameInfo, Var->getType().getNonReferenceType(),
1114                            VK_LValue, OK_Ordinary);
1115   }
1116 
1117   if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1118     ExprValueKind valueKind;
1119     QualType type;
1120     if (MemberFn->isInstance()) {
1121       valueKind = VK_PRValue;
1122       type = Context.BoundMemberTy;
1123     } else {
1124       valueKind = VK_LValue;
1125       type = MemberFn->getType();
1126     }
1127 
1128     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc,
1129                            MemberFn, FoundDecl, /*HadMultipleCandidates=*/false,
1130                            MemberNameInfo, type, valueKind, OK_Ordinary);
1131   }
1132   assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1133 
1134   if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1135     return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum,
1136                            FoundDecl, /*HadMultipleCandidates=*/false,
1137                            MemberNameInfo, Enum->getType(), VK_PRValue,
1138                            OK_Ordinary);
1139   }
1140 
1141   if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) {
1142     if (!TemplateArgs) {
1143       diagnoseMissingTemplateArguments(TemplateName(VarTempl), MemberLoc);
1144       return ExprError();
1145     }
1146 
1147     DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc,
1148                                           MemberNameInfo.getLoc(), *TemplateArgs);
1149     if (VDecl.isInvalid())
1150       return ExprError();
1151 
1152     // Non-dependent member, but dependent template arguments.
1153     if (!VDecl.get())
1154       return ActOnDependentMemberExpr(
1155           BaseExpr, BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc,
1156           FirstQualifierInScope, MemberNameInfo, TemplateArgs);
1157 
1158     VarDecl *Var = cast<VarDecl>(VDecl.get());
1159     if (!Var->getTemplateSpecializationKind())
1160       Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, MemberLoc);
1161 
1162     return BuildMemberExpr(
1163         BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var, FoundDecl,
1164         /*HadMultipleCandidates=*/false, MemberNameInfo,
1165         Var->getType().getNonReferenceType(), VK_LValue, OK_Ordinary);
1166   }
1167 
1168   // We found something that we didn't expect. Complain.
1169   if (isa<TypeDecl>(MemberDecl))
1170     Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1171       << MemberName << BaseType << int(IsArrow);
1172   else
1173     Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1174       << MemberName << BaseType << int(IsArrow);
1175 
1176   Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1177     << MemberName;
1178   R.suppressDiagnostics();
1179   return ExprError();
1180 }
1181 
1182 /// Given that normal member access failed on the given expression,
1183 /// and given that the expression's type involves builtin-id or
1184 /// builtin-Class, decide whether substituting in the redefinition
1185 /// types would be profitable.  The redefinition type is whatever
1186 /// this translation unit tried to typedef to id/Class;  we store
1187 /// it to the side and then re-use it in places like this.
ShouldTryAgainWithRedefinitionType(Sema & S,ExprResult & base)1188 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1189   const ObjCObjectPointerType *opty
1190     = base.get()->getType()->getAs<ObjCObjectPointerType>();
1191   if (!opty) return false;
1192 
1193   const ObjCObjectType *ty = opty->getObjectType();
1194 
1195   QualType redef;
1196   if (ty->isObjCId()) {
1197     redef = S.Context.getObjCIdRedefinitionType();
1198   } else if (ty->isObjCClass()) {
1199     redef = S.Context.getObjCClassRedefinitionType();
1200   } else {
1201     return false;
1202   }
1203 
1204   // Do the substitution as long as the redefinition type isn't just a
1205   // possibly-qualified pointer to builtin-id or builtin-Class again.
1206   opty = redef->getAs<ObjCObjectPointerType>();
1207   if (opty && !opty->getObjectType()->getInterface())
1208     return false;
1209 
1210   base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1211   return true;
1212 }
1213 
isRecordType(QualType T)1214 static bool isRecordType(QualType T) {
1215   return T->isRecordType();
1216 }
isPointerToRecordType(QualType T)1217 static bool isPointerToRecordType(QualType T) {
1218   if (const PointerType *PT = T->getAs<PointerType>())
1219     return PT->getPointeeType()->isRecordType();
1220   return false;
1221 }
1222 
1223 /// Perform conversions on the LHS of a member access expression.
1224 ExprResult
PerformMemberExprBaseConversion(Expr * Base,bool IsArrow)1225 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1226   if (IsArrow && !Base->getType()->isFunctionType())
1227     return DefaultFunctionArrayLvalueConversion(Base);
1228 
1229   return CheckPlaceholderExpr(Base);
1230 }
1231 
1232 /// Look up the given member of the given non-type-dependent
1233 /// expression.  This can return in one of two ways:
1234 ///  * If it returns a sentinel null-but-valid result, the caller will
1235 ///    assume that lookup was performed and the results written into
1236 ///    the provided structure.  It will take over from there.
1237 ///  * Otherwise, the returned expression will be produced in place of
1238 ///    an ordinary member expression.
1239 ///
1240 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1241 /// fixed for ObjC++.
LookupMemberExpr(Sema & S,LookupResult & R,ExprResult & BaseExpr,bool & IsArrow,SourceLocation OpLoc,CXXScopeSpec & SS,Decl * ObjCImpDecl,bool HasTemplateArgs,SourceLocation TemplateKWLoc)1242 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1243                                    ExprResult &BaseExpr, bool &IsArrow,
1244                                    SourceLocation OpLoc, CXXScopeSpec &SS,
1245                                    Decl *ObjCImpDecl, bool HasTemplateArgs,
1246                                    SourceLocation TemplateKWLoc) {
1247   assert(BaseExpr.get() && "no base expression");
1248 
1249   // Perform default conversions.
1250   BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1251   if (BaseExpr.isInvalid())
1252     return ExprError();
1253 
1254   QualType BaseType = BaseExpr.get()->getType();
1255   assert(!BaseType->isDependentType());
1256 
1257   DeclarationName MemberName = R.getLookupName();
1258   SourceLocation MemberLoc = R.getNameLoc();
1259 
1260   // For later type-checking purposes, turn arrow accesses into dot
1261   // accesses.  The only access type we support that doesn't follow
1262   // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1263   // and those never use arrows, so this is unaffected.
1264   if (IsArrow) {
1265     if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1266       BaseType = Ptr->getPointeeType();
1267     else if (const ObjCObjectPointerType *Ptr
1268                = BaseType->getAs<ObjCObjectPointerType>())
1269       BaseType = Ptr->getPointeeType();
1270     else if (BaseType->isRecordType()) {
1271       // Recover from arrow accesses to records, e.g.:
1272       //   struct MyRecord foo;
1273       //   foo->bar
1274       // This is actually well-formed in C++ if MyRecord has an
1275       // overloaded operator->, but that should have been dealt with
1276       // by now--or a diagnostic message already issued if a problem
1277       // was encountered while looking for the overloaded operator->.
1278       if (!S.getLangOpts().CPlusPlus) {
1279         S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1280           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1281           << FixItHint::CreateReplacement(OpLoc, ".");
1282       }
1283       IsArrow = false;
1284     } else if (BaseType->isFunctionType()) {
1285       goto fail;
1286     } else {
1287       S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1288         << BaseType << BaseExpr.get()->getSourceRange();
1289       return ExprError();
1290     }
1291   }
1292 
1293   // Handle field access to simple records.
1294   if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1295     TypoExpr *TE = nullptr;
1296     if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS,
1297                                  HasTemplateArgs, TemplateKWLoc, TE))
1298       return ExprError();
1299 
1300     // Returning valid-but-null is how we indicate to the caller that
1301     // the lookup result was filled in. If typo correction was attempted and
1302     // failed, the lookup result will have been cleared--that combined with the
1303     // valid-but-null ExprResult will trigger the appropriate diagnostics.
1304     return ExprResult(TE);
1305   }
1306 
1307   // Handle ivar access to Objective-C objects.
1308   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1309     if (!SS.isEmpty() && !SS.isInvalid()) {
1310       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1311         << 1 << SS.getScopeRep()
1312         << FixItHint::CreateRemoval(SS.getRange());
1313       SS.clear();
1314     }
1315 
1316     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1317 
1318     // There are three cases for the base type:
1319     //   - builtin id (qualified or unqualified)
1320     //   - builtin Class (qualified or unqualified)
1321     //   - an interface
1322     ObjCInterfaceDecl *IDecl = OTy->getInterface();
1323     if (!IDecl) {
1324       if (S.getLangOpts().ObjCAutoRefCount &&
1325           (OTy->isObjCId() || OTy->isObjCClass()))
1326         goto fail;
1327       // There's an implicit 'isa' ivar on all objects.
1328       // But we only actually find it this way on objects of type 'id',
1329       // apparently.
1330       if (OTy->isObjCId() && Member->isStr("isa"))
1331         return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1332                                            OpLoc, S.Context.getObjCClassType());
1333       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1334         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1335                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1336       goto fail;
1337     }
1338 
1339     if (S.RequireCompleteType(OpLoc, BaseType,
1340                               diag::err_typecheck_incomplete_tag,
1341                               BaseExpr.get()))
1342       return ExprError();
1343 
1344     ObjCInterfaceDecl *ClassDeclared = nullptr;
1345     ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1346 
1347     if (!IV) {
1348       // Attempt to correct for typos in ivar names.
1349       DeclFilterCCC<ObjCIvarDecl> Validator{};
1350       Validator.IsObjCIvarLookup = IsArrow;
1351       if (TypoCorrection Corrected = S.CorrectTypo(
1352               R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1353               Validator, Sema::CTK_ErrorRecovery, IDecl)) {
1354         IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1355         S.diagnoseTypo(
1356             Corrected,
1357             S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1358                 << IDecl->getDeclName() << MemberName);
1359 
1360         // Figure out the class that declares the ivar.
1361         assert(!ClassDeclared);
1362 
1363         Decl *D = cast<Decl>(IV->getDeclContext());
1364         if (auto *Category = dyn_cast<ObjCCategoryDecl>(D))
1365           D = Category->getClassInterface();
1366 
1367         if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D))
1368           ClassDeclared = Implementation->getClassInterface();
1369         else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D))
1370           ClassDeclared = Interface;
1371 
1372         assert(ClassDeclared && "cannot query interface");
1373       } else {
1374         if (IsArrow &&
1375             IDecl->FindPropertyDeclaration(
1376                 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1377           S.Diag(MemberLoc, diag::err_property_found_suggest)
1378               << Member << BaseExpr.get()->getType()
1379               << FixItHint::CreateReplacement(OpLoc, ".");
1380           return ExprError();
1381         }
1382 
1383         S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1384             << IDecl->getDeclName() << MemberName
1385             << BaseExpr.get()->getSourceRange();
1386         return ExprError();
1387       }
1388     }
1389 
1390     assert(ClassDeclared);
1391 
1392     // If the decl being referenced had an error, return an error for this
1393     // sub-expr without emitting another error, in order to avoid cascading
1394     // error cases.
1395     if (IV->isInvalidDecl())
1396       return ExprError();
1397 
1398     // Check whether we can reference this field.
1399     if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1400       return ExprError();
1401     if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1402         IV->getAccessControl() != ObjCIvarDecl::Package) {
1403       ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1404       if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1405         ClassOfMethodDecl =  MD->getClassInterface();
1406       else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1407         // Case of a c-function declared inside an objc implementation.
1408         // FIXME: For a c-style function nested inside an objc implementation
1409         // class, there is no implementation context available, so we pass
1410         // down the context as argument to this routine. Ideally, this context
1411         // need be passed down in the AST node and somehow calculated from the
1412         // AST for a function decl.
1413         if (ObjCImplementationDecl *IMPD =
1414               dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1415           ClassOfMethodDecl = IMPD->getClassInterface();
1416         else if (ObjCCategoryImplDecl* CatImplClass =
1417                    dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1418           ClassOfMethodDecl = CatImplClass->getClassInterface();
1419       }
1420       if (!S.getLangOpts().DebuggerSupport) {
1421         if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1422           if (!declaresSameEntity(ClassDeclared, IDecl) ||
1423               !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1424             S.Diag(MemberLoc, diag::err_private_ivar_access)
1425               << IV->getDeclName();
1426         } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1427           // @protected
1428           S.Diag(MemberLoc, diag::err_protected_ivar_access)
1429               << IV->getDeclName();
1430       }
1431     }
1432     bool warn = true;
1433     if (S.getLangOpts().ObjCWeak) {
1434       Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1435       if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1436         if (UO->getOpcode() == UO_Deref)
1437           BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1438 
1439       if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1440         if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1441           S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access);
1442           warn = false;
1443         }
1444     }
1445     if (warn) {
1446       if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1447         ObjCMethodFamily MF = MD->getMethodFamily();
1448         warn = (MF != OMF_init && MF != OMF_dealloc &&
1449                 MF != OMF_finalize &&
1450                 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1451       }
1452       if (warn)
1453         S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1454     }
1455 
1456     ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1457         IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
1458         IsArrow);
1459 
1460     if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1461       if (!S.isUnevaluatedContext() &&
1462           !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1463         S.getCurFunction()->recordUseOfWeak(Result);
1464     }
1465 
1466     return Result;
1467   }
1468 
1469   // Objective-C property access.
1470   const ObjCObjectPointerType *OPT;
1471   if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1472     if (!SS.isEmpty() && !SS.isInvalid()) {
1473       S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1474           << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1475       SS.clear();
1476     }
1477 
1478     // This actually uses the base as an r-value.
1479     BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1480     if (BaseExpr.isInvalid())
1481       return ExprError();
1482 
1483     assert(S.Context.hasSameUnqualifiedType(BaseType,
1484                                             BaseExpr.get()->getType()));
1485 
1486     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1487 
1488     const ObjCObjectType *OT = OPT->getObjectType();
1489 
1490     // id, with and without qualifiers.
1491     if (OT->isObjCId()) {
1492       // Check protocols on qualified interfaces.
1493       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1494       if (Decl *PMDecl =
1495               FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1496         if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1497           // Check the use of this declaration
1498           if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1499             return ExprError();
1500 
1501           return new (S.Context)
1502               ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1503                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
1504         }
1505 
1506         if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1507           Selector SetterSel =
1508             SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1509                                                    S.PP.getSelectorTable(),
1510                                                    Member);
1511           ObjCMethodDecl *SMD = nullptr;
1512           if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1513                                                      /*Property id*/ nullptr,
1514                                                      SetterSel, S.Context))
1515             SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1516 
1517           return new (S.Context)
1518               ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1519                                   OK_ObjCProperty, MemberLoc, BaseExpr.get());
1520         }
1521       }
1522       // Use of id.member can only be for a property reference. Do not
1523       // use the 'id' redefinition in this case.
1524       if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1525         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1526                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1527 
1528       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1529                          << MemberName << BaseType);
1530     }
1531 
1532     // 'Class', unqualified only.
1533     if (OT->isObjCClass()) {
1534       // Only works in a method declaration (??!).
1535       ObjCMethodDecl *MD = S.getCurMethodDecl();
1536       if (!MD) {
1537         if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1538           return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1539                                   ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1540 
1541         goto fail;
1542       }
1543 
1544       // Also must look for a getter name which uses property syntax.
1545       Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1546       ObjCInterfaceDecl *IFace = MD->getClassInterface();
1547       if (!IFace)
1548         goto fail;
1549 
1550       ObjCMethodDecl *Getter;
1551       if ((Getter = IFace->lookupClassMethod(Sel))) {
1552         // Check the use of this method.
1553         if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1554           return ExprError();
1555       } else
1556         Getter = IFace->lookupPrivateMethod(Sel, false);
1557       // If we found a getter then this may be a valid dot-reference, we
1558       // will look for the matching setter, in case it is needed.
1559       Selector SetterSel =
1560         SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1561                                                S.PP.getSelectorTable(),
1562                                                Member);
1563       ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1564       if (!Setter) {
1565         // If this reference is in an @implementation, also check for 'private'
1566         // methods.
1567         Setter = IFace->lookupPrivateMethod(SetterSel, false);
1568       }
1569 
1570       if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1571         return ExprError();
1572 
1573       if (Getter || Setter) {
1574         return new (S.Context) ObjCPropertyRefExpr(
1575             Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1576             OK_ObjCProperty, MemberLoc, BaseExpr.get());
1577       }
1578 
1579       if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1580         return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1581                                 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1582 
1583       return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1584                          << MemberName << BaseType);
1585     }
1586 
1587     // Normal property access.
1588     return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1589                                        MemberLoc, SourceLocation(), QualType(),
1590                                        false);
1591   }
1592 
1593   // Handle 'field access' to vectors, such as 'V.xx'.
1594   if (BaseType->isExtVectorType()) {
1595     // FIXME: this expr should store IsArrow.
1596     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1597     ExprValueKind VK;
1598     if (IsArrow)
1599       VK = VK_LValue;
1600     else {
1601       if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(BaseExpr.get()))
1602         VK = POE->getSyntacticForm()->getValueKind();
1603       else
1604         VK = BaseExpr.get()->getValueKind();
1605     }
1606 
1607     QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1608                                            Member, MemberLoc);
1609     if (ret.isNull())
1610       return ExprError();
1611     Qualifiers BaseQ =
1612         S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers();
1613     ret = S.Context.getQualifiedType(ret, BaseQ);
1614 
1615     return new (S.Context)
1616         ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1617   }
1618 
1619   // Adjust builtin-sel to the appropriate redefinition type if that's
1620   // not just a pointer to builtin-sel again.
1621   if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1622       !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1623     BaseExpr = S.ImpCastExprToType(
1624         BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1625     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1626                             ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1627   }
1628 
1629   // Failure cases.
1630  fail:
1631 
1632   // Recover from dot accesses to pointers, e.g.:
1633   //   type *foo;
1634   //   foo.bar
1635   // This is actually well-formed in two cases:
1636   //   - 'type' is an Objective C type
1637   //   - 'bar' is a pseudo-destructor name which happens to refer to
1638   //     the appropriate pointer type
1639   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1640     if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1641         MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1642       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1643           << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1644           << FixItHint::CreateReplacement(OpLoc, "->");
1645 
1646       // Recurse as an -> access.
1647       IsArrow = true;
1648       return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1649                               ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1650     }
1651   }
1652 
1653   // If the user is trying to apply -> or . to a function name, it's probably
1654   // because they forgot parentheses to call that function.
1655   if (S.tryToRecoverWithCall(
1656           BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1657           /*complain*/ false,
1658           IsArrow ? &isPointerToRecordType : &isRecordType)) {
1659     if (BaseExpr.isInvalid())
1660       return ExprError();
1661     BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1662     return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1663                             ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1664   }
1665 
1666   S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1667     << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1668 
1669   return ExprError();
1670 }
1671 
1672 /// The main callback when the parser finds something like
1673 ///   expression . [nested-name-specifier] identifier
1674 ///   expression -> [nested-name-specifier] identifier
1675 /// where 'identifier' encompasses a fairly broad spectrum of
1676 /// possibilities, including destructor and operator references.
1677 ///
1678 /// \param OpKind either tok::arrow or tok::period
1679 /// \param ObjCImpDecl the current Objective-C \@implementation
1680 ///   decl; this is an ugly hack around the fact that Objective-C
1681 ///   \@implementations aren't properly put in the context chain
ActOnMemberAccessExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,Decl * ObjCImpDecl)1682 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1683                                        SourceLocation OpLoc,
1684                                        tok::TokenKind OpKind,
1685                                        CXXScopeSpec &SS,
1686                                        SourceLocation TemplateKWLoc,
1687                                        UnqualifiedId &Id,
1688                                        Decl *ObjCImpDecl) {
1689   if (SS.isSet() && SS.isInvalid())
1690     return ExprError();
1691 
1692   // Warn about the explicit constructor calls Microsoft extension.
1693   if (getLangOpts().MicrosoftExt &&
1694       Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
1695     Diag(Id.getSourceRange().getBegin(),
1696          diag::ext_ms_explicit_constructor_call);
1697 
1698   TemplateArgumentListInfo TemplateArgsBuffer;
1699 
1700   // Decompose the name into its component parts.
1701   DeclarationNameInfo NameInfo;
1702   const TemplateArgumentListInfo *TemplateArgs;
1703   DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1704                          NameInfo, TemplateArgs);
1705 
1706   DeclarationName Name = NameInfo.getName();
1707   bool IsArrow = (OpKind == tok::arrow);
1708 
1709   NamedDecl *FirstQualifierInScope
1710     = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1711 
1712   // This is a postfix expression, so get rid of ParenListExprs.
1713   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1714   if (Result.isInvalid()) return ExprError();
1715   Base = Result.get();
1716 
1717   if (Base->getType()->isDependentType() || Name.isDependentName() ||
1718       isDependentScopeSpecifier(SS)) {
1719     return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1720                                     TemplateKWLoc, FirstQualifierInScope,
1721                                     NameInfo, TemplateArgs);
1722   }
1723 
1724   ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
1725   ExprResult Res = BuildMemberReferenceExpr(
1726       Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc,
1727       FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs);
1728 
1729   if (!Res.isInvalid() && isa<MemberExpr>(Res.get()))
1730     CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get()));
1731 
1732   return Res;
1733 }
1734 
CheckMemberAccessOfNoDeref(const MemberExpr * E)1735 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) {
1736   if (isUnevaluatedContext())
1737     return;
1738 
1739   QualType ResultTy = E->getType();
1740 
1741   // Member accesses have four cases:
1742   // 1: non-array member via "->": dereferences
1743   // 2: non-array member via ".": nothing interesting happens
1744   // 3: array member access via "->": nothing interesting happens
1745   //    (this returns an array lvalue and does not actually dereference memory)
1746   // 4: array member access via ".": *adds* a layer of indirection
1747   if (ResultTy->isArrayType()) {
1748     if (!E->isArrow()) {
1749       // This might be something like:
1750       //     (*structPtr).arrayMember
1751       // which behaves roughly like:
1752       //     &(*structPtr).pointerMember
1753       // in that the apparent dereference in the base expression does not
1754       // actually happen.
1755       CheckAddressOfNoDeref(E->getBase());
1756     }
1757   } else if (E->isArrow()) {
1758     if (const auto *Ptr = dyn_cast<PointerType>(
1759             E->getBase()->getType().getDesugaredType(Context))) {
1760       if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
1761         ExprEvalContexts.back().PossibleDerefs.insert(E);
1762     }
1763   }
1764 }
1765 
1766 ExprResult
BuildFieldReferenceExpr(Expr * BaseExpr,bool IsArrow,SourceLocation OpLoc,const CXXScopeSpec & SS,FieldDecl * Field,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo)1767 Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
1768                               SourceLocation OpLoc, const CXXScopeSpec &SS,
1769                               FieldDecl *Field, DeclAccessPair FoundDecl,
1770                               const DeclarationNameInfo &MemberNameInfo) {
1771   // x.a is an l-value if 'a' has a reference type. Otherwise:
1772   // x.a is an l-value/x-value/pr-value if the base is (and note
1773   //   that *x is always an l-value), except that if the base isn't
1774   //   an ordinary object then we must have an rvalue.
1775   ExprValueKind VK = VK_LValue;
1776   ExprObjectKind OK = OK_Ordinary;
1777   if (!IsArrow) {
1778     if (BaseExpr->getObjectKind() == OK_Ordinary)
1779       VK = BaseExpr->getValueKind();
1780     else
1781       VK = VK_PRValue;
1782   }
1783   if (VK != VK_PRValue && Field->isBitField())
1784     OK = OK_BitField;
1785 
1786   // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1787   QualType MemberType = Field->getType();
1788   if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1789     MemberType = Ref->getPointeeType();
1790     VK = VK_LValue;
1791   } else {
1792     QualType BaseType = BaseExpr->getType();
1793     if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType();
1794 
1795     Qualifiers BaseQuals = BaseType.getQualifiers();
1796 
1797     // GC attributes are never picked up by members.
1798     BaseQuals.removeObjCGCAttr();
1799 
1800     // CVR attributes from the base are picked up by members,
1801     // except that 'mutable' members don't pick up 'const'.
1802     if (Field->isMutable()) BaseQuals.removeConst();
1803 
1804     Qualifiers MemberQuals =
1805         Context.getCanonicalType(MemberType).getQualifiers();
1806 
1807     assert(!MemberQuals.hasAddressSpace());
1808 
1809     Qualifiers Combined = BaseQuals + MemberQuals;
1810     if (Combined != MemberQuals)
1811       MemberType = Context.getQualifiedType(MemberType, Combined);
1812 
1813     // Pick up NoDeref from the base in case we end up using AddrOf on the
1814     // result. E.g. the expression
1815     //     &someNoDerefPtr->pointerMember
1816     // should be a noderef pointer again.
1817     if (BaseType->hasAttr(attr::NoDeref))
1818       MemberType =
1819           Context.getAttributedType(attr::NoDeref, MemberType, MemberType);
1820   }
1821 
1822   auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1823   if (!(CurMethod && CurMethod->isDefaulted()))
1824     UnusedPrivateFields.remove(Field);
1825 
1826   ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1827                                                   FoundDecl, Field);
1828   if (Base.isInvalid())
1829     return ExprError();
1830 
1831   // Build a reference to a private copy for non-static data members in
1832   // non-static member functions, privatized by OpenMP constructs.
1833   if (getLangOpts().OpenMP && IsArrow &&
1834       !CurContext->isDependentContext() &&
1835       isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) {
1836     if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) {
1837       return getOpenMPCapturedExpr(PrivateCopy, VK, OK,
1838                                    MemberNameInfo.getLoc());
1839     }
1840   }
1841 
1842   return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS,
1843                          /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1844                          /*HadMultipleCandidates=*/false, MemberNameInfo,
1845                          MemberType, VK, OK);
1846 }
1847 
1848 /// Builds an implicit member access expression.  The current context
1849 /// is known to be an instance method, and the given unqualified lookup
1850 /// set is known to contain only instance members, at least one of which
1851 /// is from an appropriate type.
1852 ExprResult
BuildImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,bool IsKnownInstance,const Scope * S)1853 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1854                               SourceLocation TemplateKWLoc,
1855                               LookupResult &R,
1856                               const TemplateArgumentListInfo *TemplateArgs,
1857                               bool IsKnownInstance, const Scope *S) {
1858   assert(!R.empty() && !R.isAmbiguous());
1859 
1860   SourceLocation loc = R.getNameLoc();
1861 
1862   // If this is known to be an instance access, go ahead and build an
1863   // implicit 'this' expression now.
1864   QualType ThisTy = getCurrentThisType();
1865   assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1866 
1867   Expr *baseExpr = nullptr; // null signifies implicit access
1868   if (IsKnownInstance) {
1869     SourceLocation Loc = R.getNameLoc();
1870     if (SS.getRange().isValid())
1871       Loc = SS.getRange().getBegin();
1872     baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true);
1873   }
1874 
1875   return BuildMemberReferenceExpr(baseExpr, ThisTy,
1876                                   /*OpLoc*/ SourceLocation(),
1877                                   /*IsArrow*/ true,
1878                                   SS, TemplateKWLoc,
1879                                   /*FirstQualifierInScope*/ nullptr,
1880                                   R, TemplateArgs, S);
1881 }
1882