1 //===-- dfsan.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of DataFlowSanitizer.
10 //
11 // DataFlowSanitizer runtime. This file defines the public interface to
12 // DataFlowSanitizer as well as the definition of certain runtime functions
13 // called automatically by the compiler (specifically the instrumentation pass
14 // in llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp).
15 //
16 // The public interface is defined in include/sanitizer/dfsan_interface.h whose
17 // functions are prefixed dfsan_ while the compiler interface functions are
18 // prefixed __dfsan_.
19 //===----------------------------------------------------------------------===//
20
21 #include "dfsan/dfsan.h"
22
23 #include "dfsan/dfsan_chained_origin_depot.h"
24 #include "dfsan/dfsan_flags.h"
25 #include "dfsan/dfsan_origin.h"
26 #include "dfsan/dfsan_thread.h"
27 #include "sanitizer_common/sanitizer_atomic.h"
28 #include "sanitizer_common/sanitizer_common.h"
29 #include "sanitizer_common/sanitizer_file.h"
30 #include "sanitizer_common/sanitizer_flag_parser.h"
31 #include "sanitizer_common/sanitizer_flags.h"
32 #include "sanitizer_common/sanitizer_internal_defs.h"
33 #include "sanitizer_common/sanitizer_libc.h"
34 #include "sanitizer_common/sanitizer_report_decorator.h"
35 #include "sanitizer_common/sanitizer_stacktrace.h"
36
37 using namespace __dfsan;
38
39 Flags __dfsan::flags_data;
40
41 // The size of TLS variables. These constants must be kept in sync with the ones
42 // in DataFlowSanitizer.cpp.
43 static const int kDFsanArgTlsSize = 800;
44 static const int kDFsanRetvalTlsSize = 800;
45 static const int kDFsanArgOriginTlsSize = 800;
46
47 SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL u64
48 __dfsan_retval_tls[kDFsanRetvalTlsSize / sizeof(u64)];
49 SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL u32 __dfsan_retval_origin_tls;
50 SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL u64
51 __dfsan_arg_tls[kDFsanArgTlsSize / sizeof(u64)];
52 SANITIZER_INTERFACE_ATTRIBUTE THREADLOCAL u32
53 __dfsan_arg_origin_tls[kDFsanArgOriginTlsSize / sizeof(u32)];
54
55 // Instrumented code may set this value in terms of -dfsan-track-origins.
56 // * undefined or 0: do not track origins.
57 // * 1: track origins at memory store operations.
58 // * 2: track origins at memory load and store operations.
59 // TODO: track callsites.
60 extern "C" SANITIZER_WEAK_ATTRIBUTE const int __dfsan_track_origins;
61
dfsan_get_track_origins()62 extern "C" SANITIZER_INTERFACE_ATTRIBUTE int dfsan_get_track_origins() {
63 return &__dfsan_track_origins ? __dfsan_track_origins : 0;
64 }
65
66 // On Linux/x86_64, memory is laid out as follows:
67 //
68 // +--------------------+ 0x800000000000 (top of memory)
69 // | application 3 |
70 // +--------------------+ 0x700000000000
71 // | invalid |
72 // +--------------------+ 0x610000000000
73 // | origin 1 |
74 // +--------------------+ 0x600000000000
75 // | application 2 |
76 // +--------------------+ 0x510000000000
77 // | shadow 1 |
78 // +--------------------+ 0x500000000000
79 // | invalid |
80 // +--------------------+ 0x400000000000
81 // | origin 3 |
82 // +--------------------+ 0x300000000000
83 // | shadow 3 |
84 // +--------------------+ 0x200000000000
85 // | origin 2 |
86 // +--------------------+ 0x110000000000
87 // | invalid |
88 // +--------------------+ 0x100000000000
89 // | shadow 2 |
90 // +--------------------+ 0x010000000000
91 // | application 1 |
92 // +--------------------+ 0x000000000000
93 //
94 // MEM_TO_SHADOW(mem) = mem ^ 0x500000000000
95 // SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000
96
97 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__dfsan_union_load(const dfsan_label * ls,uptr n)98 dfsan_label __dfsan_union_load(const dfsan_label *ls, uptr n) {
99 dfsan_label label = ls[0];
100 for (uptr i = 1; i != n; ++i)
101 label |= ls[i];
102 return label;
103 }
104
105 // Return the union of all the n labels from addr at the high 32 bit, and the
106 // origin of the first taint byte at the low 32 bit.
107 extern "C" SANITIZER_INTERFACE_ATTRIBUTE u64
__dfsan_load_label_and_origin(const void * addr,uptr n)108 __dfsan_load_label_and_origin(const void *addr, uptr n) {
109 dfsan_label label = 0;
110 u64 ret = 0;
111 uptr p = (uptr)addr;
112 dfsan_label *s = shadow_for((void *)p);
113 for (uptr i = 0; i < n; ++i) {
114 dfsan_label l = s[i];
115 if (!l)
116 continue;
117 label |= l;
118 if (!ret)
119 ret = *(dfsan_origin *)origin_for((void *)(p + i));
120 }
121 return ret | (u64)label << 32;
122 }
123
124 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__dfsan_unimplemented(char * fname)125 void __dfsan_unimplemented(char *fname) {
126 if (flags().warn_unimplemented)
127 Report("WARNING: DataFlowSanitizer: call to uninstrumented function %s\n",
128 fname);
129 }
130
131 // Use '-mllvm -dfsan-debug-nonzero-labels' and break on this function
132 // to try to figure out where labels are being introduced in a nominally
133 // label-free program.
__dfsan_nonzero_label()134 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_nonzero_label() {
135 if (flags().warn_nonzero_labels)
136 Report("WARNING: DataFlowSanitizer: saw nonzero label\n");
137 }
138
139 // Indirect call to an uninstrumented vararg function. We don't have a way of
140 // handling these at the moment.
141 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
__dfsan_vararg_wrapper(const char * fname)142 __dfsan_vararg_wrapper(const char *fname) {
143 Report("FATAL: DataFlowSanitizer: unsupported indirect call to vararg "
144 "function %s\n", fname);
145 Die();
146 }
147
148 // Resolves the union of two labels.
149 SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
dfsan_union(dfsan_label l1,dfsan_label l2)150 dfsan_union(dfsan_label l1, dfsan_label l2) {
151 return l1 | l2;
152 }
153
154 static const uptr kOriginAlign = sizeof(dfsan_origin);
155 static const uptr kOriginAlignMask = ~(kOriginAlign - 1UL);
156
OriginAlignUp(uptr u)157 static uptr OriginAlignUp(uptr u) {
158 return (u + kOriginAlign - 1) & kOriginAlignMask;
159 }
160
OriginAlignDown(uptr u)161 static uptr OriginAlignDown(uptr u) { return u & kOriginAlignMask; }
162
163 // Return the origin of the first taint byte in the size bytes from the address
164 // addr.
GetOriginIfTainted(uptr addr,uptr size)165 static dfsan_origin GetOriginIfTainted(uptr addr, uptr size) {
166 for (uptr i = 0; i < size; ++i, ++addr) {
167 dfsan_label *s = shadow_for((void *)addr);
168
169 if (*s) {
170 // Validate address region.
171 CHECK(MEM_IS_SHADOW(s));
172 return *(dfsan_origin *)origin_for((void *)addr);
173 }
174 }
175 return 0;
176 }
177
178 // For platforms which support slow unwinder only, we need to restrict the store
179 // context size to 1, basically only storing the current pc, because the slow
180 // unwinder which is based on libunwind is not async signal safe and causes
181 // random freezes in forking applications as well as in signal handlers.
182 // DFSan supports only Linux. So we do not restrict the store context size.
183 #define GET_STORE_STACK_TRACE_PC_BP(pc, bp) \
184 BufferedStackTrace stack; \
185 stack.Unwind(pc, bp, nullptr, true, flags().store_context_size);
186
187 #define PRINT_CALLER_STACK_TRACE \
188 { \
189 GET_CALLER_PC_BP_SP; \
190 (void)sp; \
191 GET_STORE_STACK_TRACE_PC_BP(pc, bp) \
192 stack.Print(); \
193 }
194
195 // Return a chain with the previous ID id and the current stack.
196 // from_init = true if this is the first chain of an origin tracking path.
ChainOrigin(u32 id,StackTrace * stack,bool from_init=false)197 static u32 ChainOrigin(u32 id, StackTrace *stack, bool from_init = false) {
198 // StackDepot is not async signal safe. Do not create new chains in a signal
199 // handler.
200 DFsanThread *t = GetCurrentThread();
201 if (t && t->InSignalHandler())
202 return id;
203
204 // As an optimization the origin of an application byte is updated only when
205 // its shadow is non-zero. Because we are only interested in the origins of
206 // taint labels, it does not matter what origin a zero label has. This reduces
207 // memory write cost. MSan does similar optimization. The following invariant
208 // may not hold because of some bugs. We check the invariant to help debug.
209 if (!from_init && id == 0 && flags().check_origin_invariant) {
210 Printf(" DFSan found invalid origin invariant\n");
211 PRINT_CALLER_STACK_TRACE
212 }
213
214 Origin o = Origin::FromRawId(id);
215 stack->tag = StackTrace::TAG_UNKNOWN;
216 Origin chained = Origin::CreateChainedOrigin(o, stack);
217 return chained.raw_id();
218 }
219
ChainAndWriteOriginIfTainted(uptr src,uptr size,uptr dst,StackTrace * stack)220 static void ChainAndWriteOriginIfTainted(uptr src, uptr size, uptr dst,
221 StackTrace *stack) {
222 dfsan_origin o = GetOriginIfTainted(src, size);
223 if (o) {
224 o = ChainOrigin(o, stack);
225 *(dfsan_origin *)origin_for((void *)dst) = o;
226 }
227 }
228
229 // Copy the origins of the size bytes from src to dst. The source and target
230 // memory ranges cannot be overlapped. This is used by memcpy. stack records the
231 // stack trace of the memcpy. When dst and src are not 4-byte aligned properly,
232 // origins at the unaligned address boundaries may be overwritten because four
233 // contiguous bytes share the same origin.
CopyOrigin(const void * dst,const void * src,uptr size,StackTrace * stack)234 static void CopyOrigin(const void *dst, const void *src, uptr size,
235 StackTrace *stack) {
236 uptr d = (uptr)dst;
237 uptr beg = OriginAlignDown(d);
238 // Copy left unaligned origin if that memory is tainted.
239 if (beg < d) {
240 ChainAndWriteOriginIfTainted((uptr)src, beg + kOriginAlign - d, beg, stack);
241 beg += kOriginAlign;
242 }
243
244 uptr end = OriginAlignDown(d + size);
245 // If both ends fall into the same 4-byte slot, we are done.
246 if (end < beg)
247 return;
248
249 // Copy right unaligned origin if that memory is tainted.
250 if (end < d + size)
251 ChainAndWriteOriginIfTainted((uptr)src + (end - d), (d + size) - end, end,
252 stack);
253
254 if (beg >= end)
255 return;
256
257 // Align src up.
258 uptr src_a = OriginAlignUp((uptr)src);
259 dfsan_origin *src_o = origin_for((void *)src_a);
260 u32 *src_s = (u32 *)shadow_for((void *)src_a);
261 dfsan_origin *src_end = origin_for((void *)(src_a + (end - beg)));
262 dfsan_origin *dst_o = origin_for((void *)beg);
263 dfsan_origin last_src_o = 0;
264 dfsan_origin last_dst_o = 0;
265 for (; src_o < src_end; ++src_o, ++src_s, ++dst_o) {
266 if (!*src_s)
267 continue;
268 if (*src_o != last_src_o) {
269 last_src_o = *src_o;
270 last_dst_o = ChainOrigin(last_src_o, stack);
271 }
272 *dst_o = last_dst_o;
273 }
274 }
275
276 // Copy the origins of the size bytes from src to dst. The source and target
277 // memory ranges may be overlapped. So the copy is done in a reverse order.
278 // This is used by memmove. stack records the stack trace of the memmove.
ReverseCopyOrigin(const void * dst,const void * src,uptr size,StackTrace * stack)279 static void ReverseCopyOrigin(const void *dst, const void *src, uptr size,
280 StackTrace *stack) {
281 uptr d = (uptr)dst;
282 uptr end = OriginAlignDown(d + size);
283
284 // Copy right unaligned origin if that memory is tainted.
285 if (end < d + size)
286 ChainAndWriteOriginIfTainted((uptr)src + (end - d), (d + size) - end, end,
287 stack);
288
289 uptr beg = OriginAlignDown(d);
290
291 if (beg + kOriginAlign < end) {
292 // Align src up.
293 uptr src_a = OriginAlignUp((uptr)src);
294 void *src_end = (void *)(src_a + end - beg - kOriginAlign);
295 dfsan_origin *src_end_o = origin_for(src_end);
296 u32 *src_end_s = (u32 *)shadow_for(src_end);
297 dfsan_origin *src_begin_o = origin_for((void *)src_a);
298 dfsan_origin *dst = origin_for((void *)(end - kOriginAlign));
299 dfsan_origin last_src_o = 0;
300 dfsan_origin last_dst_o = 0;
301 for (; src_end_o >= src_begin_o; --src_end_o, --src_end_s, --dst) {
302 if (!*src_end_s)
303 continue;
304 if (*src_end_o != last_src_o) {
305 last_src_o = *src_end_o;
306 last_dst_o = ChainOrigin(last_src_o, stack);
307 }
308 *dst = last_dst_o;
309 }
310 }
311
312 // Copy left unaligned origin if that memory is tainted.
313 if (beg < d)
314 ChainAndWriteOriginIfTainted((uptr)src, beg + kOriginAlign - d, beg, stack);
315 }
316
317 // Copy or move the origins of the len bytes from src to dst. The source and
318 // target memory ranges may or may not be overlapped. This is used by memory
319 // transfer operations. stack records the stack trace of the memory transfer
320 // operation.
MoveOrigin(const void * dst,const void * src,uptr size,StackTrace * stack)321 static void MoveOrigin(const void *dst, const void *src, uptr size,
322 StackTrace *stack) {
323 // Validate address regions.
324 if (!MEM_IS_SHADOW(shadow_for(dst)) ||
325 !MEM_IS_SHADOW(shadow_for((void *)((uptr)dst + size))) ||
326 !MEM_IS_SHADOW(shadow_for(src)) ||
327 !MEM_IS_SHADOW(shadow_for((void *)((uptr)src + size)))) {
328 CHECK(false);
329 return;
330 }
331 // If destination origin range overlaps with source origin range, move
332 // origins by copying origins in a reverse order; otherwise, copy origins in
333 // a normal order. The orders of origin transfer are consistent with the
334 // orders of how memcpy and memmove transfer user data.
335 uptr src_aligned_beg = reinterpret_cast<uptr>(src) & ~3UL;
336 uptr src_aligned_end = (reinterpret_cast<uptr>(src) + size) & ~3UL;
337 uptr dst_aligned_beg = reinterpret_cast<uptr>(dst) & ~3UL;
338 if (dst_aligned_beg < src_aligned_end && dst_aligned_beg >= src_aligned_beg)
339 return ReverseCopyOrigin(dst, src, size, stack);
340 return CopyOrigin(dst, src, size, stack);
341 }
342
343 // Set the size bytes from the addres dst to be the origin value.
SetOrigin(const void * dst,uptr size,u32 origin)344 static void SetOrigin(const void *dst, uptr size, u32 origin) {
345 if (size == 0)
346 return;
347
348 // Origin mapping is 4 bytes per 4 bytes of application memory.
349 // Here we extend the range such that its left and right bounds are both
350 // 4 byte aligned.
351 uptr x = unaligned_origin_for((uptr)dst);
352 uptr beg = OriginAlignDown(x);
353 uptr end = OriginAlignUp(x + size); // align up.
354 u64 origin64 = ((u64)origin << 32) | origin;
355 // This is like memset, but the value is 32-bit. We unroll by 2 to write
356 // 64 bits at once. May want to unroll further to get 128-bit stores.
357 if (beg & 7ULL) {
358 if (*(u32 *)beg != origin)
359 *(u32 *)beg = origin;
360 beg += 4;
361 }
362 for (uptr addr = beg; addr < (end & ~7UL); addr += 8) {
363 if (*(u64 *)addr == origin64)
364 continue;
365 *(u64 *)addr = origin64;
366 }
367 if (end & 7ULL)
368 if (*(u32 *)(end - kOriginAlign) != origin)
369 *(u32 *)(end - kOriginAlign) = origin;
370 }
371
372 #define RET_CHAIN_ORIGIN(id) \
373 GET_CALLER_PC_BP_SP; \
374 (void)sp; \
375 GET_STORE_STACK_TRACE_PC_BP(pc, bp); \
376 return ChainOrigin(id, &stack);
377
378 // Return a new origin chain with the previous ID id and the current stack
379 // trace.
380 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin
__dfsan_chain_origin(dfsan_origin id)381 __dfsan_chain_origin(dfsan_origin id) {
382 RET_CHAIN_ORIGIN(id)
383 }
384
385 // Return a new origin chain with the previous ID id and the current stack
386 // trace if the label is tainted.
387 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin
__dfsan_chain_origin_if_tainted(dfsan_label label,dfsan_origin id)388 __dfsan_chain_origin_if_tainted(dfsan_label label, dfsan_origin id) {
389 if (!label)
390 return id;
391 RET_CHAIN_ORIGIN(id)
392 }
393
394 // Copy or move the origins of the len bytes from src to dst.
__dfsan_mem_origin_transfer(const void * dst,const void * src,uptr len)395 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_mem_origin_transfer(
396 const void *dst, const void *src, uptr len) {
397 if (src == dst)
398 return;
399 GET_CALLER_PC_BP;
400 GET_STORE_STACK_TRACE_PC_BP(pc, bp);
401 MoveOrigin(dst, src, len, &stack);
402 }
403
dfsan_mem_origin_transfer(const void * dst,const void * src,uptr len)404 SANITIZER_INTERFACE_ATTRIBUTE void dfsan_mem_origin_transfer(const void *dst,
405 const void *src,
406 uptr len) {
407 __dfsan_mem_origin_transfer(dst, src, len);
408 }
409
410 namespace __dfsan {
411
412 bool dfsan_inited = false;
413 bool dfsan_init_is_running = false;
414
dfsan_copy_memory(void * dst,const void * src,uptr size)415 void dfsan_copy_memory(void *dst, const void *src, uptr size) {
416 internal_memcpy(dst, src, size);
417 internal_memcpy((void *)shadow_for(dst), (const void *)shadow_for(src),
418 size * sizeof(dfsan_label));
419 if (dfsan_get_track_origins())
420 dfsan_mem_origin_transfer(dst, src, size);
421 }
422
423 // Releases the pages within the origin address range.
ReleaseOrigins(void * addr,uptr size)424 static void ReleaseOrigins(void *addr, uptr size) {
425 const uptr beg_origin_addr = (uptr)__dfsan::origin_for(addr);
426 const void *end_addr = (void *)((uptr)addr + size);
427 const uptr end_origin_addr = (uptr)__dfsan::origin_for(end_addr);
428
429 if (end_origin_addr - beg_origin_addr <
430 common_flags()->clear_shadow_mmap_threshold)
431 return;
432
433 const uptr page_size = GetPageSizeCached();
434 const uptr beg_aligned = RoundUpTo(beg_origin_addr, page_size);
435 const uptr end_aligned = RoundDownTo(end_origin_addr, page_size);
436
437 if (!MmapFixedSuperNoReserve(beg_aligned, end_aligned - beg_aligned))
438 Die();
439 }
440
WriteZeroShadowInRange(uptr beg,uptr end)441 static void WriteZeroShadowInRange(uptr beg, uptr end) {
442 // Don't write the label if it is already the value we need it to be.
443 // In a program where most addresses are not labeled, it is common that
444 // a page of shadow memory is entirely zeroed. The Linux copy-on-write
445 // implementation will share all of the zeroed pages, making a copy of a
446 // page when any value is written. The un-sharing will happen even if
447 // the value written does not change the value in memory. Avoiding the
448 // write when both |label| and |*labelp| are zero dramatically reduces
449 // the amount of real memory used by large programs.
450 if (!mem_is_zero((const char *)beg, end - beg))
451 internal_memset((void *)beg, 0, end - beg);
452 }
453
454 // Releases the pages within the shadow address range, and sets
455 // the shadow addresses not on the pages to be 0.
ReleaseOrClearShadows(void * addr,uptr size)456 static void ReleaseOrClearShadows(void *addr, uptr size) {
457 const uptr beg_shadow_addr = (uptr)__dfsan::shadow_for(addr);
458 const void *end_addr = (void *)((uptr)addr + size);
459 const uptr end_shadow_addr = (uptr)__dfsan::shadow_for(end_addr);
460
461 if (end_shadow_addr - beg_shadow_addr <
462 common_flags()->clear_shadow_mmap_threshold) {
463 WriteZeroShadowInRange(beg_shadow_addr, end_shadow_addr);
464 return;
465 }
466
467 const uptr page_size = GetPageSizeCached();
468 const uptr beg_aligned = RoundUpTo(beg_shadow_addr, page_size);
469 const uptr end_aligned = RoundDownTo(end_shadow_addr, page_size);
470
471 if (beg_aligned >= end_aligned) {
472 WriteZeroShadowInRange(beg_shadow_addr, end_shadow_addr);
473 } else {
474 if (beg_aligned != beg_shadow_addr)
475 WriteZeroShadowInRange(beg_shadow_addr, beg_aligned);
476 if (end_aligned != end_shadow_addr)
477 WriteZeroShadowInRange(end_aligned, end_shadow_addr);
478 if (!MmapFixedSuperNoReserve(beg_aligned, end_aligned - beg_aligned))
479 Die();
480 }
481 }
482
SetShadow(dfsan_label label,void * addr,uptr size,dfsan_origin origin)483 void SetShadow(dfsan_label label, void *addr, uptr size, dfsan_origin origin) {
484 if (0 != label) {
485 const uptr beg_shadow_addr = (uptr)__dfsan::shadow_for(addr);
486 internal_memset((void *)beg_shadow_addr, label, size);
487 if (dfsan_get_track_origins())
488 SetOrigin(addr, size, origin);
489 return;
490 }
491
492 if (dfsan_get_track_origins())
493 ReleaseOrigins(addr, size);
494
495 ReleaseOrClearShadows(addr, size);
496 }
497
498 } // namespace __dfsan
499
500 // If the label s is tainted, set the size bytes from the address p to be a new
501 // origin chain with the previous ID o and the current stack trace. This is
502 // used by instrumentation to reduce code size when too much code is inserted.
__dfsan_maybe_store_origin(dfsan_label s,void * p,uptr size,dfsan_origin o)503 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_maybe_store_origin(
504 dfsan_label s, void *p, uptr size, dfsan_origin o) {
505 if (UNLIKELY(s)) {
506 GET_CALLER_PC_BP_SP;
507 (void)sp;
508 GET_STORE_STACK_TRACE_PC_BP(pc, bp);
509 SetOrigin(p, size, ChainOrigin(o, &stack));
510 }
511 }
512
__dfsan_set_label(dfsan_label label,dfsan_origin origin,void * addr,uptr size)513 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_set_label(
514 dfsan_label label, dfsan_origin origin, void *addr, uptr size) {
515 __dfsan::SetShadow(label, addr, size, origin);
516 }
517
518 SANITIZER_INTERFACE_ATTRIBUTE
dfsan_set_label(dfsan_label label,void * addr,uptr size)519 void dfsan_set_label(dfsan_label label, void *addr, uptr size) {
520 dfsan_origin init_origin = 0;
521 if (label && dfsan_get_track_origins()) {
522 GET_CALLER_PC_BP;
523 GET_STORE_STACK_TRACE_PC_BP(pc, bp);
524 init_origin = ChainOrigin(0, &stack, true);
525 }
526 __dfsan::SetShadow(label, addr, size, init_origin);
527 }
528
529 SANITIZER_INTERFACE_ATTRIBUTE
dfsan_add_label(dfsan_label label,void * addr,uptr size)530 void dfsan_add_label(dfsan_label label, void *addr, uptr size) {
531 if (0 == label)
532 return;
533
534 if (dfsan_get_track_origins()) {
535 GET_CALLER_PC_BP;
536 GET_STORE_STACK_TRACE_PC_BP(pc, bp);
537 dfsan_origin init_origin = ChainOrigin(0, &stack, true);
538 SetOrigin(addr, size, init_origin);
539 }
540
541 for (dfsan_label *labelp = shadow_for(addr); size != 0; --size, ++labelp)
542 *labelp |= label;
543 }
544
545 // Unlike the other dfsan interface functions the behavior of this function
546 // depends on the label of one of its arguments. Hence it is implemented as a
547 // custom function.
548 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
__dfsw_dfsan_get_label(long data,dfsan_label data_label,dfsan_label * ret_label)549 __dfsw_dfsan_get_label(long data, dfsan_label data_label,
550 dfsan_label *ret_label) {
551 *ret_label = 0;
552 return data_label;
553 }
554
__dfso_dfsan_get_label(long data,dfsan_label data_label,dfsan_label * ret_label,dfsan_origin data_origin,dfsan_origin * ret_origin)555 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_label __dfso_dfsan_get_label(
556 long data, dfsan_label data_label, dfsan_label *ret_label,
557 dfsan_origin data_origin, dfsan_origin *ret_origin) {
558 *ret_label = 0;
559 *ret_origin = 0;
560 return data_label;
561 }
562
563 // This function is used if dfsan_get_origin is called when origin tracking is
564 // off.
__dfsw_dfsan_get_origin(long data,dfsan_label data_label,dfsan_label * ret_label)565 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin __dfsw_dfsan_get_origin(
566 long data, dfsan_label data_label, dfsan_label *ret_label) {
567 *ret_label = 0;
568 return 0;
569 }
570
__dfso_dfsan_get_origin(long data,dfsan_label data_label,dfsan_label * ret_label,dfsan_origin data_origin,dfsan_origin * ret_origin)571 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin __dfso_dfsan_get_origin(
572 long data, dfsan_label data_label, dfsan_label *ret_label,
573 dfsan_origin data_origin, dfsan_origin *ret_origin) {
574 *ret_label = 0;
575 *ret_origin = 0;
576 return data_origin;
577 }
578
579 SANITIZER_INTERFACE_ATTRIBUTE dfsan_label
dfsan_read_label(const void * addr,uptr size)580 dfsan_read_label(const void *addr, uptr size) {
581 if (size == 0)
582 return 0;
583 return __dfsan_union_load(shadow_for(addr), size);
584 }
585
586 SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin
dfsan_read_origin_of_first_taint(const void * addr,uptr size)587 dfsan_read_origin_of_first_taint(const void *addr, uptr size) {
588 return GetOriginIfTainted((uptr)addr, size);
589 }
590
dfsan_set_label_origin(dfsan_label label,dfsan_origin origin,void * addr,uptr size)591 SANITIZER_INTERFACE_ATTRIBUTE void dfsan_set_label_origin(dfsan_label label,
592 dfsan_origin origin,
593 void *addr,
594 uptr size) {
595 __dfsan_set_label(label, origin, addr, size);
596 }
597
598 extern "C" SANITIZER_INTERFACE_ATTRIBUTE int
dfsan_has_label(dfsan_label label,dfsan_label elem)599 dfsan_has_label(dfsan_label label, dfsan_label elem) {
600 return (label & elem) == elem;
601 }
602
603 class Decorator : public __sanitizer::SanitizerCommonDecorator {
604 public:
Decorator()605 Decorator() : SanitizerCommonDecorator() {}
Origin() const606 const char *Origin() const { return Magenta(); }
607 };
608
609 namespace {
610
PrintNoOriginTrackingWarning()611 void PrintNoOriginTrackingWarning() {
612 Decorator d;
613 Printf(
614 " %sDFSan: origin tracking is not enabled. Did you specify the "
615 "-dfsan-track-origins=1 option?%s\n",
616 d.Warning(), d.Default());
617 }
618
PrintNoTaintWarning(const void * address)619 void PrintNoTaintWarning(const void *address) {
620 Decorator d;
621 Printf(" %sDFSan: no tainted value at %x%s\n", d.Warning(), address,
622 d.Default());
623 }
624
PrintInvalidOriginWarning(dfsan_label label,const void * address)625 void PrintInvalidOriginWarning(dfsan_label label, const void *address) {
626 Decorator d;
627 Printf(
628 " %sTaint value 0x%x (at %p) has invalid origin tracking. This can "
629 "be a DFSan bug.%s\n",
630 d.Warning(), label, address, d.Default());
631 }
632
PrintOriginTraceToStr(const void * addr,const char * description,InternalScopedString * out)633 bool PrintOriginTraceToStr(const void *addr, const char *description,
634 InternalScopedString *out) {
635 CHECK(out);
636 CHECK(dfsan_get_track_origins());
637 Decorator d;
638
639 const dfsan_label label = *__dfsan::shadow_for(addr);
640 CHECK(label);
641
642 const dfsan_origin origin = *__dfsan::origin_for(addr);
643
644 out->append(" %sTaint value 0x%x (at %p) origin tracking (%s)%s\n",
645 d.Origin(), label, addr, description ? description : "",
646 d.Default());
647
648 Origin o = Origin::FromRawId(origin);
649 bool found = false;
650
651 while (o.isChainedOrigin()) {
652 StackTrace stack;
653 dfsan_origin origin_id = o.raw_id();
654 o = o.getNextChainedOrigin(&stack);
655 if (o.isChainedOrigin())
656 out->append(
657 " %sOrigin value: 0x%x, Taint value was stored to memory at%s\n",
658 d.Origin(), origin_id, d.Default());
659 else
660 out->append(" %sOrigin value: 0x%x, Taint value was created at%s\n",
661 d.Origin(), origin_id, d.Default());
662
663 // Includes a trailing newline, so no need to add it again.
664 stack.PrintTo(out);
665 found = true;
666 }
667
668 return found;
669 }
670
671 } // namespace
672
dfsan_print_origin_trace(const void * addr,const char * description)673 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void dfsan_print_origin_trace(
674 const void *addr, const char *description) {
675 if (!dfsan_get_track_origins()) {
676 PrintNoOriginTrackingWarning();
677 return;
678 }
679
680 const dfsan_label label = *__dfsan::shadow_for(addr);
681 if (!label) {
682 PrintNoTaintWarning(addr);
683 return;
684 }
685
686 InternalScopedString trace;
687 bool success = PrintOriginTraceToStr(addr, description, &trace);
688
689 if (trace.length())
690 Printf("%s", trace.data());
691
692 if (!success)
693 PrintInvalidOriginWarning(label, addr);
694 }
695
696 extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr
dfsan_sprint_origin_trace(const void * addr,const char * description,char * out_buf,uptr out_buf_size)697 dfsan_sprint_origin_trace(const void *addr, const char *description,
698 char *out_buf, uptr out_buf_size) {
699 CHECK(out_buf);
700
701 if (!dfsan_get_track_origins()) {
702 PrintNoOriginTrackingWarning();
703 return 0;
704 }
705
706 const dfsan_label label = *__dfsan::shadow_for(addr);
707 if (!label) {
708 PrintNoTaintWarning(addr);
709 return 0;
710 }
711
712 InternalScopedString trace;
713 bool success = PrintOriginTraceToStr(addr, description, &trace);
714
715 if (!success) {
716 PrintInvalidOriginWarning(label, addr);
717 return 0;
718 }
719
720 if (out_buf_size) {
721 internal_strncpy(out_buf, trace.data(), out_buf_size - 1);
722 out_buf[out_buf_size - 1] = '\0';
723 }
724
725 return trace.length();
726 }
727
728 extern "C" SANITIZER_INTERFACE_ATTRIBUTE dfsan_origin
dfsan_get_init_origin(const void * addr)729 dfsan_get_init_origin(const void *addr) {
730 if (!dfsan_get_track_origins())
731 return 0;
732
733 const dfsan_label label = *__dfsan::shadow_for(addr);
734 if (!label)
735 return 0;
736
737 const dfsan_origin origin = *__dfsan::origin_for(addr);
738
739 Origin o = Origin::FromRawId(origin);
740 dfsan_origin origin_id = o.raw_id();
741 while (o.isChainedOrigin()) {
742 StackTrace stack;
743 origin_id = o.raw_id();
744 o = o.getNextChainedOrigin(&stack);
745 }
746 return origin_id;
747 }
748
UnwindImpl(uptr pc,uptr bp,void * context,bool request_fast,u32 max_depth)749 void __sanitizer::BufferedStackTrace::UnwindImpl(uptr pc, uptr bp,
750 void *context,
751 bool request_fast,
752 u32 max_depth) {
753 using namespace __dfsan;
754 DFsanThread *t = GetCurrentThread();
755 if (!t || !StackTrace::WillUseFastUnwind(request_fast)) {
756 return Unwind(max_depth, pc, bp, context, 0, 0, false);
757 }
758 Unwind(max_depth, pc, bp, nullptr, t->stack_top(), t->stack_bottom(), true);
759 }
760
__sanitizer_print_stack_trace()761 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_print_stack_trace() {
762 GET_CALLER_PC_BP;
763 GET_STORE_STACK_TRACE_PC_BP(pc, bp);
764 stack.Print();
765 }
766
767 extern "C" SANITIZER_INTERFACE_ATTRIBUTE uptr
dfsan_sprint_stack_trace(char * out_buf,uptr out_buf_size)768 dfsan_sprint_stack_trace(char *out_buf, uptr out_buf_size) {
769 CHECK(out_buf);
770 GET_CALLER_PC_BP;
771 GET_STORE_STACK_TRACE_PC_BP(pc, bp);
772 return stack.PrintTo(out_buf, out_buf_size);
773 }
774
SetDefaults()775 void Flags::SetDefaults() {
776 #define DFSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
777 #include "dfsan_flags.inc"
778 #undef DFSAN_FLAG
779 }
780
RegisterDfsanFlags(FlagParser * parser,Flags * f)781 static void RegisterDfsanFlags(FlagParser *parser, Flags *f) {
782 #define DFSAN_FLAG(Type, Name, DefaultValue, Description) \
783 RegisterFlag(parser, #Name, Description, &f->Name);
784 #include "dfsan_flags.inc"
785 #undef DFSAN_FLAG
786 }
787
InitializeFlags()788 static void InitializeFlags() {
789 SetCommonFlagsDefaults();
790 {
791 CommonFlags cf;
792 cf.CopyFrom(*common_flags());
793 cf.intercept_tls_get_addr = true;
794 OverrideCommonFlags(cf);
795 }
796 flags().SetDefaults();
797
798 FlagParser parser;
799 RegisterCommonFlags(&parser);
800 RegisterDfsanFlags(&parser, &flags());
801 parser.ParseStringFromEnv("DFSAN_OPTIONS");
802 InitializeCommonFlags();
803 if (Verbosity()) ReportUnrecognizedFlags();
804 if (common_flags()->help) parser.PrintFlagDescriptions();
805 }
806
807 SANITIZER_INTERFACE_ATTRIBUTE
dfsan_clear_arg_tls(uptr offset,uptr size)808 void dfsan_clear_arg_tls(uptr offset, uptr size) {
809 internal_memset((void *)((uptr)__dfsan_arg_tls + offset), 0, size);
810 }
811
812 SANITIZER_INTERFACE_ATTRIBUTE
dfsan_clear_thread_local_state()813 void dfsan_clear_thread_local_state() {
814 internal_memset(__dfsan_arg_tls, 0, sizeof(__dfsan_arg_tls));
815 internal_memset(__dfsan_retval_tls, 0, sizeof(__dfsan_retval_tls));
816
817 if (dfsan_get_track_origins()) {
818 internal_memset(__dfsan_arg_origin_tls, 0, sizeof(__dfsan_arg_origin_tls));
819 internal_memset(&__dfsan_retval_origin_tls, 0,
820 sizeof(__dfsan_retval_origin_tls));
821 }
822 }
823
dfsan_flush()824 extern "C" void dfsan_flush() {
825 const uptr maxVirtualAddress = GetMaxUserVirtualAddress();
826 for (unsigned i = 0; i < kMemoryLayoutSize; ++i) {
827 uptr start = kMemoryLayout[i].start;
828 uptr end = kMemoryLayout[i].end;
829 uptr size = end - start;
830 MappingDesc::Type type = kMemoryLayout[i].type;
831
832 if (type != MappingDesc::SHADOW && type != MappingDesc::ORIGIN)
833 continue;
834
835 // Check if the segment should be mapped based on platform constraints.
836 if (start >= maxVirtualAddress)
837 continue;
838
839 if (!MmapFixedSuperNoReserve(start, size, kMemoryLayout[i].name)) {
840 Printf("FATAL: DataFlowSanitizer: failed to clear memory region\n");
841 Die();
842 }
843 }
844 }
845
846 // TODO: CheckMemoryLayoutSanity is based on msan.
847 // Consider refactoring these into a shared implementation.
CheckMemoryLayoutSanity()848 static void CheckMemoryLayoutSanity() {
849 uptr prev_end = 0;
850 for (unsigned i = 0; i < kMemoryLayoutSize; ++i) {
851 uptr start = kMemoryLayout[i].start;
852 uptr end = kMemoryLayout[i].end;
853 MappingDesc::Type type = kMemoryLayout[i].type;
854 CHECK_LT(start, end);
855 CHECK_EQ(prev_end, start);
856 CHECK(addr_is_type(start, type));
857 CHECK(addr_is_type((start + end) / 2, type));
858 CHECK(addr_is_type(end - 1, type));
859 if (type == MappingDesc::APP) {
860 uptr addr = start;
861 CHECK(MEM_IS_SHADOW(MEM_TO_SHADOW(addr)));
862 CHECK(MEM_IS_ORIGIN(MEM_TO_ORIGIN(addr)));
863 CHECK_EQ(MEM_TO_ORIGIN(addr), SHADOW_TO_ORIGIN(MEM_TO_SHADOW(addr)));
864
865 addr = (start + end) / 2;
866 CHECK(MEM_IS_SHADOW(MEM_TO_SHADOW(addr)));
867 CHECK(MEM_IS_ORIGIN(MEM_TO_ORIGIN(addr)));
868 CHECK_EQ(MEM_TO_ORIGIN(addr), SHADOW_TO_ORIGIN(MEM_TO_SHADOW(addr)));
869
870 addr = end - 1;
871 CHECK(MEM_IS_SHADOW(MEM_TO_SHADOW(addr)));
872 CHECK(MEM_IS_ORIGIN(MEM_TO_ORIGIN(addr)));
873 CHECK_EQ(MEM_TO_ORIGIN(addr), SHADOW_TO_ORIGIN(MEM_TO_SHADOW(addr)));
874 }
875 prev_end = end;
876 }
877 }
878
879 // TODO: CheckMemoryRangeAvailability is based on msan.
880 // Consider refactoring these into a shared implementation.
CheckMemoryRangeAvailability(uptr beg,uptr size)881 static bool CheckMemoryRangeAvailability(uptr beg, uptr size) {
882 if (size > 0) {
883 uptr end = beg + size - 1;
884 if (!MemoryRangeIsAvailable(beg, end)) {
885 Printf("FATAL: Memory range %p - %p is not available.\n", beg, end);
886 return false;
887 }
888 }
889 return true;
890 }
891
892 // TODO: ProtectMemoryRange is based on msan.
893 // Consider refactoring these into a shared implementation.
ProtectMemoryRange(uptr beg,uptr size,const char * name)894 static bool ProtectMemoryRange(uptr beg, uptr size, const char *name) {
895 if (size > 0) {
896 void *addr = MmapFixedNoAccess(beg, size, name);
897 if (beg == 0 && addr) {
898 // Depending on the kernel configuration, we may not be able to protect
899 // the page at address zero.
900 uptr gap = 16 * GetPageSizeCached();
901 beg += gap;
902 size -= gap;
903 addr = MmapFixedNoAccess(beg, size, name);
904 }
905 if ((uptr)addr != beg) {
906 uptr end = beg + size - 1;
907 Printf("FATAL: Cannot protect memory range %p - %p (%s).\n", beg, end,
908 name);
909 return false;
910 }
911 }
912 return true;
913 }
914
915 // TODO: InitShadow is based on msan.
916 // Consider refactoring these into a shared implementation.
InitShadow(bool init_origins)917 bool InitShadow(bool init_origins) {
918 // Let user know mapping parameters first.
919 VPrintf(1, "dfsan_init %p\n", &__dfsan::dfsan_init);
920 for (unsigned i = 0; i < kMemoryLayoutSize; ++i)
921 VPrintf(1, "%s: %zx - %zx\n", kMemoryLayout[i].name, kMemoryLayout[i].start,
922 kMemoryLayout[i].end - 1);
923
924 CheckMemoryLayoutSanity();
925
926 if (!MEM_IS_APP(&__dfsan::dfsan_init)) {
927 Printf("FATAL: Code %p is out of application range. Non-PIE build?\n",
928 (uptr)&__dfsan::dfsan_init);
929 return false;
930 }
931
932 const uptr maxVirtualAddress = GetMaxUserVirtualAddress();
933
934 for (unsigned i = 0; i < kMemoryLayoutSize; ++i) {
935 uptr start = kMemoryLayout[i].start;
936 uptr end = kMemoryLayout[i].end;
937 uptr size = end - start;
938 MappingDesc::Type type = kMemoryLayout[i].type;
939
940 // Check if the segment should be mapped based on platform constraints.
941 if (start >= maxVirtualAddress)
942 continue;
943
944 bool map = type == MappingDesc::SHADOW ||
945 (init_origins && type == MappingDesc::ORIGIN);
946 bool protect = type == MappingDesc::INVALID ||
947 (!init_origins && type == MappingDesc::ORIGIN);
948 CHECK(!(map && protect));
949 if (!map && !protect)
950 CHECK(type == MappingDesc::APP);
951 if (map) {
952 if (!CheckMemoryRangeAvailability(start, size))
953 return false;
954 if (!MmapFixedSuperNoReserve(start, size, kMemoryLayout[i].name))
955 return false;
956 if (common_flags()->use_madv_dontdump)
957 DontDumpShadowMemory(start, size);
958 }
959 if (protect) {
960 if (!CheckMemoryRangeAvailability(start, size))
961 return false;
962 if (!ProtectMemoryRange(start, size, kMemoryLayout[i].name))
963 return false;
964 }
965 }
966
967 return true;
968 }
969
DFsanInit(int argc,char ** argv,char ** envp)970 static void DFsanInit(int argc, char **argv, char **envp) {
971 CHECK(!dfsan_init_is_running);
972 if (dfsan_inited)
973 return;
974 dfsan_init_is_running = true;
975 SanitizerToolName = "DataflowSanitizer";
976
977 AvoidCVE_2016_2143();
978
979 InitializeFlags();
980
981 CheckASLR();
982
983 InitShadow(dfsan_get_track_origins());
984
985 initialize_interceptors();
986
987 // Set up threads
988 DFsanTSDInit(DFsanTSDDtor);
989
990 dfsan_allocator_init();
991
992 DFsanThread *main_thread = DFsanThread::Create(nullptr, nullptr, nullptr);
993 SetCurrentThread(main_thread);
994 main_thread->ThreadStart();
995
996 dfsan_init_is_running = false;
997 dfsan_inited = true;
998 }
999
1000 namespace __dfsan {
1001
dfsan_init()1002 void dfsan_init() { DFsanInit(0, nullptr, nullptr); }
1003
1004 } // namespace __dfsan
1005
1006 #if SANITIZER_CAN_USE_PREINIT_ARRAY
1007 __attribute__((section(".preinit_array"),
1008 used)) static void (*dfsan_init_ptr)(int, char **,
1009 char **) = DFsanInit;
1010 #endif
1011