1 //===-- lib/Semantics/expression.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Semantics/expression.h"
10 #include "check-call.h"
11 #include "pointer-assignment.h"
12 #include "resolve-names.h"
13 #include "flang/Common/Fortran.h"
14 #include "flang/Common/idioms.h"
15 #include "flang/Evaluate/common.h"
16 #include "flang/Evaluate/fold.h"
17 #include "flang/Evaluate/tools.h"
18 #include "flang/Parser/characters.h"
19 #include "flang/Parser/dump-parse-tree.h"
20 #include "flang/Parser/parse-tree-visitor.h"
21 #include "flang/Parser/parse-tree.h"
22 #include "flang/Semantics/scope.h"
23 #include "flang/Semantics/semantics.h"
24 #include "flang/Semantics/symbol.h"
25 #include "flang/Semantics/tools.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <functional>
29 #include <optional>
30 #include <set>
31 
32 // Typedef for optional generic expressions (ubiquitous in this file)
33 using MaybeExpr =
34     std::optional<Fortran::evaluate::Expr<Fortran::evaluate::SomeType>>;
35 
36 // Much of the code that implements semantic analysis of expressions is
37 // tightly coupled with their typed representations in lib/Evaluate,
38 // and appears here in namespace Fortran::evaluate for convenience.
39 namespace Fortran::evaluate {
40 
41 using common::LanguageFeature;
42 using common::NumericOperator;
43 using common::TypeCategory;
44 
ToUpperCase(const std::string & str)45 static inline std::string ToUpperCase(const std::string &str) {
46   return parser::ToUpperCaseLetters(str);
47 }
48 
49 struct DynamicTypeWithLength : public DynamicType {
DynamicTypeWithLengthFortran::evaluate::DynamicTypeWithLength50   explicit DynamicTypeWithLength(const DynamicType &t) : DynamicType{t} {}
51   std::optional<Expr<SubscriptInteger>> LEN() const;
52   std::optional<Expr<SubscriptInteger>> length;
53 };
54 
LEN() const55 std::optional<Expr<SubscriptInteger>> DynamicTypeWithLength::LEN() const {
56   if (length) {
57     return length;
58   } else {
59     return GetCharLength();
60   }
61 }
62 
AnalyzeTypeSpec(const std::optional<parser::TypeSpec> & spec)63 static std::optional<DynamicTypeWithLength> AnalyzeTypeSpec(
64     const std::optional<parser::TypeSpec> &spec) {
65   if (spec) {
66     if (const semantics::DeclTypeSpec * typeSpec{spec->declTypeSpec}) {
67       // Name resolution sets TypeSpec::declTypeSpec only when it's valid
68       // (viz., an intrinsic type with valid known kind or a non-polymorphic
69       // & non-ABSTRACT derived type).
70       if (const semantics::IntrinsicTypeSpec *
71           intrinsic{typeSpec->AsIntrinsic()}) {
72         TypeCategory category{intrinsic->category()};
73         if (auto optKind{ToInt64(intrinsic->kind())}) {
74           int kind{static_cast<int>(*optKind)};
75           if (category == TypeCategory::Character) {
76             const semantics::CharacterTypeSpec &cts{
77                 typeSpec->characterTypeSpec()};
78             const semantics::ParamValue &len{cts.length()};
79             // N.B. CHARACTER(LEN=*) is allowed in type-specs in ALLOCATE() &
80             // type guards, but not in array constructors.
81             return DynamicTypeWithLength{DynamicType{kind, len}};
82           } else {
83             return DynamicTypeWithLength{DynamicType{category, kind}};
84           }
85         }
86       } else if (const semantics::DerivedTypeSpec *
87           derived{typeSpec->AsDerived()}) {
88         return DynamicTypeWithLength{DynamicType{*derived}};
89       }
90     }
91   }
92   return std::nullopt;
93 }
94 
95 class ArgumentAnalyzer {
96 public:
ArgumentAnalyzer(ExpressionAnalyzer & context)97   explicit ArgumentAnalyzer(ExpressionAnalyzer &context)
98       : context_{context}, source_{context.GetContextualMessages().at()},
99         isProcedureCall_{false} {}
ArgumentAnalyzer(ExpressionAnalyzer & context,parser::CharBlock source,bool isProcedureCall=false)100   ArgumentAnalyzer(ExpressionAnalyzer &context, parser::CharBlock source,
101       bool isProcedureCall = false)
102       : context_{context}, source_{source}, isProcedureCall_{isProcedureCall} {}
fatalErrors() const103   bool fatalErrors() const { return fatalErrors_; }
GetActuals()104   ActualArguments &&GetActuals() {
105     CHECK(!fatalErrors_);
106     return std::move(actuals_);
107   }
GetExpr(std::size_t i) const108   const Expr<SomeType> &GetExpr(std::size_t i) const {
109     return DEREF(actuals_.at(i).value().UnwrapExpr());
110   }
MoveExpr(std::size_t i)111   Expr<SomeType> &&MoveExpr(std::size_t i) {
112     return std::move(DEREF(actuals_.at(i).value().UnwrapExpr()));
113   }
Analyze(const common::Indirection<parser::Expr> & x)114   void Analyze(const common::Indirection<parser::Expr> &x) {
115     Analyze(x.value());
116   }
Analyze(const parser::Expr & x)117   void Analyze(const parser::Expr &x) {
118     actuals_.emplace_back(AnalyzeExpr(x));
119     fatalErrors_ |= !actuals_.back();
120   }
121   void Analyze(const parser::Variable &);
122   void Analyze(const parser::ActualArgSpec &, bool isSubroutine);
123   void ConvertBOZ(std::optional<DynamicType> &thisType, std::size_t i,
124       std::optional<DynamicType> otherType);
125 
126   bool IsIntrinsicRelational(
127       RelationalOperator, const DynamicType &, const DynamicType &) const;
128   bool IsIntrinsicLogical() const;
129   bool IsIntrinsicNumeric(NumericOperator) const;
130   bool IsIntrinsicConcat() const;
131 
132   bool CheckConformance();
133   bool CheckForNullPointer(const char *where = "as an operand");
134 
135   // Find and return a user-defined operator or report an error.
136   // The provided message is used if there is no such operator.
137   MaybeExpr TryDefinedOp(const char *, parser::MessageFixedText,
138       const Symbol **definedOpSymbolPtr = nullptr, bool isUserOp = false);
139   template <typename E>
TryDefinedOp(E opr,parser::MessageFixedText msg)140   MaybeExpr TryDefinedOp(E opr, parser::MessageFixedText msg) {
141     return TryDefinedOp(
142         context_.context().languageFeatures().GetNames(opr), msg);
143   }
144   // Find and return a user-defined assignment
145   std::optional<ProcedureRef> TryDefinedAssignment();
146   std::optional<ProcedureRef> GetDefinedAssignmentProc();
147   std::optional<DynamicType> GetType(std::size_t) const;
148   void Dump(llvm::raw_ostream &);
149 
150 private:
151   MaybeExpr TryDefinedOp(std::vector<const char *>, parser::MessageFixedText);
152   MaybeExpr TryBoundOp(const Symbol &, int passIndex);
153   std::optional<ActualArgument> AnalyzeExpr(const parser::Expr &);
154   MaybeExpr AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr &);
155   bool AreConformable() const;
156   const Symbol *FindBoundOp(
157       parser::CharBlock, int passIndex, const Symbol *&definedOp);
158   void AddAssignmentConversion(
159       const DynamicType &lhsType, const DynamicType &rhsType);
160   bool OkLogicalIntegerAssignment(TypeCategory lhs, TypeCategory rhs);
161   int GetRank(std::size_t) const;
IsBOZLiteral(std::size_t i) const162   bool IsBOZLiteral(std::size_t i) const {
163     return evaluate::IsBOZLiteral(GetExpr(i));
164   }
165   void SayNoMatch(const std::string &, bool isAssignment = false);
166   std::string TypeAsFortran(std::size_t);
167   bool AnyUntypedOrMissingOperand();
168   bool CheckForUntypedNullPointer();
169 
170   ExpressionAnalyzer &context_;
171   ActualArguments actuals_;
172   parser::CharBlock source_;
173   bool fatalErrors_{false};
174   const bool isProcedureCall_; // false for user-defined op or assignment
175 };
176 
177 // Wraps a data reference in a typed Designator<>, and a procedure
178 // or procedure pointer reference in a ProcedureDesignator.
Designate(DataRef && ref)179 MaybeExpr ExpressionAnalyzer::Designate(DataRef &&ref) {
180   const Symbol &last{ref.GetLastSymbol()};
181   const Symbol &symbol{BypassGeneric(last).GetUltimate()};
182   if (semantics::IsProcedure(symbol)) {
183     if (auto *component{std::get_if<Component>(&ref.u)}) {
184       return Expr<SomeType>{ProcedureDesignator{std::move(*component)}};
185     } else if (!std::holds_alternative<SymbolRef>(ref.u)) {
186       DIE("unexpected alternative in DataRef");
187     } else if (!symbol.attrs().test(semantics::Attr::INTRINSIC)) {
188       if (symbol.has<semantics::GenericDetails>()) {
189         Say("'%s' is not a specific procedure"_err_en_US, symbol.name());
190       } else {
191         return Expr<SomeType>{ProcedureDesignator{symbol}};
192       }
193     } else if (auto interface{context_.intrinsics().IsSpecificIntrinsicFunction(
194                    symbol.name().ToString())}) {
195       SpecificIntrinsic intrinsic{
196           symbol.name().ToString(), std::move(*interface)};
197       intrinsic.isRestrictedSpecific = interface->isRestrictedSpecific;
198       return Expr<SomeType>{ProcedureDesignator{std::move(intrinsic)}};
199     } else {
200       Say("'%s' is not a specific intrinsic procedure"_err_en_US,
201           symbol.name());
202     }
203     return std::nullopt;
204   } else if (MaybeExpr result{AsGenericExpr(std::move(ref))}) {
205     return result;
206   } else {
207     if (!context_.HasError(last) && !context_.HasError(symbol)) {
208       AttachDeclaration(
209           Say("'%s' is not an object that can appear in an expression"_err_en_US,
210               last.name()),
211           symbol);
212       context_.SetError(last);
213     }
214     return std::nullopt;
215   }
216 }
217 
218 // Some subscript semantic checks must be deferred until all of the
219 // subscripts are in hand.
CompleteSubscripts(ArrayRef && ref)220 MaybeExpr ExpressionAnalyzer::CompleteSubscripts(ArrayRef &&ref) {
221   const Symbol &symbol{ref.GetLastSymbol().GetUltimate()};
222   int symbolRank{symbol.Rank()};
223   int subscripts{static_cast<int>(ref.size())};
224   if (subscripts == 0) {
225     return std::nullopt; // error recovery
226   } else if (subscripts != symbolRank) {
227     if (symbolRank != 0) {
228       Say("Reference to rank-%d object '%s' has %d subscripts"_err_en_US,
229           symbolRank, symbol.name(), subscripts);
230     }
231     return std::nullopt;
232   } else if (Component * component{ref.base().UnwrapComponent()}) {
233     int baseRank{component->base().Rank()};
234     if (baseRank > 0) {
235       int subscriptRank{0};
236       for (const auto &expr : ref.subscript()) {
237         subscriptRank += expr.Rank();
238       }
239       if (subscriptRank > 0) {
240         Say("Subscripts of component '%s' of rank-%d derived type "
241             "array have rank %d but must all be scalar"_err_en_US,
242             symbol.name(), baseRank, subscriptRank);
243         return std::nullopt;
244       }
245     }
246   } else if (const auto *object{
247                  symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
248     // C928 & C1002
249     if (Triplet * last{std::get_if<Triplet>(&ref.subscript().back().u)}) {
250       if (!last->upper() && object->IsAssumedSize()) {
251         Say("Assumed-size array '%s' must have explicit final "
252             "subscript upper bound value"_err_en_US,
253             symbol.name());
254         return std::nullopt;
255       }
256     }
257   } else {
258     // Shouldn't get here from Analyze(ArrayElement) without a valid base,
259     // which, if not an object, must be a construct entity from
260     // SELECT TYPE/RANK or ASSOCIATE.
261     CHECK(symbol.has<semantics::AssocEntityDetails>());
262   }
263   return Designate(DataRef{std::move(ref)});
264 }
265 
266 // Applies subscripts to a data reference.
ApplySubscripts(DataRef && dataRef,std::vector<Subscript> && subscripts)267 MaybeExpr ExpressionAnalyzer::ApplySubscripts(
268     DataRef &&dataRef, std::vector<Subscript> &&subscripts) {
269   if (subscripts.empty()) {
270     return std::nullopt; // error recovery
271   }
272   return std::visit(
273       common::visitors{
274           [&](SymbolRef &&symbol) {
275             return CompleteSubscripts(ArrayRef{symbol, std::move(subscripts)});
276           },
277           [&](Component &&c) {
278             return CompleteSubscripts(
279                 ArrayRef{std::move(c), std::move(subscripts)});
280           },
281           [&](auto &&) -> MaybeExpr {
282             DIE("bad base for ArrayRef");
283             return std::nullopt;
284           },
285       },
286       std::move(dataRef.u));
287 }
288 
289 // Top-level checks for data references.
TopLevelChecks(DataRef && dataRef)290 MaybeExpr ExpressionAnalyzer::TopLevelChecks(DataRef &&dataRef) {
291   if (Component * component{std::get_if<Component>(&dataRef.u)}) {
292     const Symbol &symbol{component->GetLastSymbol()};
293     int componentRank{symbol.Rank()};
294     if (componentRank > 0) {
295       int baseRank{component->base().Rank()};
296       if (baseRank > 0) {
297         Say("Reference to whole rank-%d component '%%%s' of "
298             "rank-%d array of derived type is not allowed"_err_en_US,
299             componentRank, symbol.name(), baseRank);
300       }
301     }
302   }
303   return Designate(std::move(dataRef));
304 }
305 
306 // Parse tree correction after a substring S(j:k) was misparsed as an
307 // array section.  N.B. Fortran substrings have to have a range, not a
308 // single index.
FixMisparsedSubstring(const parser::Designator & d)309 static void FixMisparsedSubstring(const parser::Designator &d) {
310   auto &mutate{const_cast<parser::Designator &>(d)};
311   if (auto *dataRef{std::get_if<parser::DataRef>(&mutate.u)}) {
312     if (auto *ae{std::get_if<common::Indirection<parser::ArrayElement>>(
313             &dataRef->u)}) {
314       parser::ArrayElement &arrElement{ae->value()};
315       if (!arrElement.subscripts.empty()) {
316         auto iter{arrElement.subscripts.begin()};
317         if (auto *triplet{std::get_if<parser::SubscriptTriplet>(&iter->u)}) {
318           if (!std::get<2>(triplet->t) /* no stride */ &&
319               ++iter == arrElement.subscripts.end() /* one subscript */) {
320             if (Symbol *
321                 symbol{std::visit(
322                     common::visitors{
323                         [](parser::Name &n) { return n.symbol; },
324                         [](common::Indirection<parser::StructureComponent>
325                                 &sc) { return sc.value().component.symbol; },
326                         [](auto &) -> Symbol * { return nullptr; },
327                     },
328                     arrElement.base.u)}) {
329               const Symbol &ultimate{symbol->GetUltimate()};
330               if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) {
331                 if (!ultimate.IsObjectArray() &&
332                     type->category() == semantics::DeclTypeSpec::Character) {
333                   // The ambiguous S(j:k) was parsed as an array section
334                   // reference, but it's now clear that it's a substring.
335                   // Fix the parse tree in situ.
336                   mutate.u = arrElement.ConvertToSubstring();
337                 }
338               }
339             }
340           }
341         }
342       }
343     }
344   }
345 }
346 
Analyze(const parser::Designator & d)347 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Designator &d) {
348   auto restorer{GetContextualMessages().SetLocation(d.source)};
349   FixMisparsedSubstring(d);
350   // These checks have to be deferred to these "top level" data-refs where
351   // we can be sure that there are no following subscripts (yet).
352   // Substrings have already been run through TopLevelChecks() and
353   // won't be returned by ExtractDataRef().
354   if (MaybeExpr result{Analyze(d.u)}) {
355     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(result))}) {
356       return TopLevelChecks(std::move(*dataRef));
357     }
358     return result;
359   }
360   return std::nullopt;
361 }
362 
363 // A utility subroutine to repackage optional expressions of various levels
364 // of type specificity as fully general MaybeExpr values.
AsMaybeExpr(A && x)365 template <typename A> common::IfNoLvalue<MaybeExpr, A> AsMaybeExpr(A &&x) {
366   return AsGenericExpr(std::move(x));
367 }
AsMaybeExpr(std::optional<A> && x)368 template <typename A> MaybeExpr AsMaybeExpr(std::optional<A> &&x) {
369   if (x) {
370     return AsMaybeExpr(std::move(*x));
371   }
372   return std::nullopt;
373 }
374 
375 // Type kind parameter values for literal constants.
AnalyzeKindParam(const std::optional<parser::KindParam> & kindParam,int defaultKind)376 int ExpressionAnalyzer::AnalyzeKindParam(
377     const std::optional<parser::KindParam> &kindParam, int defaultKind) {
378   if (!kindParam) {
379     return defaultKind;
380   }
381   return std::visit(
382       common::visitors{
383           [](std::uint64_t k) { return static_cast<int>(k); },
384           [&](const parser::Scalar<
385               parser::Integer<parser::Constant<parser::Name>>> &n) {
386             if (MaybeExpr ie{Analyze(n)}) {
387               if (std::optional<std::int64_t> i64{ToInt64(*ie)}) {
388                 int iv = *i64;
389                 if (iv == *i64) {
390                   return iv;
391                 }
392               }
393             }
394             return defaultKind;
395           },
396       },
397       kindParam->u);
398 }
399 
400 // Common handling of parser::IntLiteralConstant and SignedIntLiteralConstant
401 struct IntTypeVisitor {
402   using Result = MaybeExpr;
403   using Types = IntegerTypes;
TestFortran::evaluate::IntTypeVisitor404   template <typename T> Result Test() {
405     if (T::kind >= kind) {
406       const char *p{digits.begin()};
407       auto value{T::Scalar::Read(p, 10, true /*signed*/)};
408       if (!value.overflow) {
409         if (T::kind > kind) {
410           if (!isDefaultKind ||
411               !analyzer.context().IsEnabled(LanguageFeature::BigIntLiterals)) {
412             return std::nullopt;
413           } else if (analyzer.context().ShouldWarn(
414                          LanguageFeature::BigIntLiterals)) {
415             analyzer.Say(digits,
416                 "Integer literal is too large for default INTEGER(KIND=%d); "
417                 "assuming INTEGER(KIND=%d)"_en_US,
418                 kind, T::kind);
419           }
420         }
421         return Expr<SomeType>{
422             Expr<SomeInteger>{Expr<T>{Constant<T>{std::move(value.value)}}}};
423       }
424     }
425     return std::nullopt;
426   }
427   ExpressionAnalyzer &analyzer;
428   parser::CharBlock digits;
429   int kind;
430   bool isDefaultKind;
431 };
432 
433 template <typename PARSED>
IntLiteralConstant(const PARSED & x)434 MaybeExpr ExpressionAnalyzer::IntLiteralConstant(const PARSED &x) {
435   const auto &kindParam{std::get<std::optional<parser::KindParam>>(x.t)};
436   bool isDefaultKind{!kindParam};
437   int kind{AnalyzeKindParam(kindParam, GetDefaultKind(TypeCategory::Integer))};
438   if (CheckIntrinsicKind(TypeCategory::Integer, kind)) {
439     auto digits{std::get<parser::CharBlock>(x.t)};
440     if (MaybeExpr result{common::SearchTypes(
441             IntTypeVisitor{*this, digits, kind, isDefaultKind})}) {
442       return result;
443     } else if (isDefaultKind) {
444       Say(digits,
445           "Integer literal is too large for any allowable "
446           "kind of INTEGER"_err_en_US);
447     } else {
448       Say(digits, "Integer literal is too large for INTEGER(KIND=%d)"_err_en_US,
449           kind);
450     }
451   }
452   return std::nullopt;
453 }
454 
Analyze(const parser::IntLiteralConstant & x)455 MaybeExpr ExpressionAnalyzer::Analyze(const parser::IntLiteralConstant &x) {
456   auto restorer{
457       GetContextualMessages().SetLocation(std::get<parser::CharBlock>(x.t))};
458   return IntLiteralConstant(x);
459 }
460 
Analyze(const parser::SignedIntLiteralConstant & x)461 MaybeExpr ExpressionAnalyzer::Analyze(
462     const parser::SignedIntLiteralConstant &x) {
463   auto restorer{GetContextualMessages().SetLocation(x.source)};
464   return IntLiteralConstant(x);
465 }
466 
467 template <typename TYPE>
ReadRealLiteral(parser::CharBlock source,FoldingContext & context)468 Constant<TYPE> ReadRealLiteral(
469     parser::CharBlock source, FoldingContext &context) {
470   const char *p{source.begin()};
471   auto valWithFlags{Scalar<TYPE>::Read(p, context.rounding())};
472   CHECK(p == source.end());
473   RealFlagWarnings(context, valWithFlags.flags, "conversion of REAL literal");
474   auto value{valWithFlags.value};
475   if (context.flushSubnormalsToZero()) {
476     value = value.FlushSubnormalToZero();
477   }
478   return {value};
479 }
480 
481 struct RealTypeVisitor {
482   using Result = std::optional<Expr<SomeReal>>;
483   using Types = RealTypes;
484 
RealTypeVisitorFortran::evaluate::RealTypeVisitor485   RealTypeVisitor(int k, parser::CharBlock lit, FoldingContext &ctx)
486       : kind{k}, literal{lit}, context{ctx} {}
487 
TestFortran::evaluate::RealTypeVisitor488   template <typename T> Result Test() {
489     if (kind == T::kind) {
490       return {AsCategoryExpr(ReadRealLiteral<T>(literal, context))};
491     }
492     return std::nullopt;
493   }
494 
495   int kind;
496   parser::CharBlock literal;
497   FoldingContext &context;
498 };
499 
500 // Reads a real literal constant and encodes it with the right kind.
Analyze(const parser::RealLiteralConstant & x)501 MaybeExpr ExpressionAnalyzer::Analyze(const parser::RealLiteralConstant &x) {
502   // Use a local message context around the real literal for better
503   // provenance on any messages.
504   auto restorer{GetContextualMessages().SetLocation(x.real.source)};
505   // If a kind parameter appears, it defines the kind of the literal and the
506   // letter used in an exponent part must be 'E' (e.g., the 'E' in
507   // "6.02214E+23").  In the absence of an explicit kind parameter, any
508   // exponent letter determines the kind.  Otherwise, defaults apply.
509   auto &defaults{context_.defaultKinds()};
510   int defaultKind{defaults.GetDefaultKind(TypeCategory::Real)};
511   const char *end{x.real.source.end()};
512   char expoLetter{' '};
513   std::optional<int> letterKind;
514   for (const char *p{x.real.source.begin()}; p < end; ++p) {
515     if (parser::IsLetter(*p)) {
516       expoLetter = *p;
517       switch (expoLetter) {
518       case 'e':
519         letterKind = defaults.GetDefaultKind(TypeCategory::Real);
520         break;
521       case 'd':
522         letterKind = defaults.doublePrecisionKind();
523         break;
524       case 'q':
525         letterKind = defaults.quadPrecisionKind();
526         break;
527       default:
528         Say("Unknown exponent letter '%c'"_err_en_US, expoLetter);
529       }
530       break;
531     }
532   }
533   if (letterKind) {
534     defaultKind = *letterKind;
535   }
536   // C716 requires 'E' as an exponent, but this is more useful
537   auto kind{AnalyzeKindParam(x.kind, defaultKind)};
538   if (letterKind && kind != *letterKind && expoLetter != 'e') {
539     Say("Explicit kind parameter on real constant disagrees with "
540         "exponent letter '%c'"_en_US,
541         expoLetter);
542   }
543   auto result{common::SearchTypes(
544       RealTypeVisitor{kind, x.real.source, GetFoldingContext()})};
545   if (!result) { // C717
546     Say("Unsupported REAL(KIND=%d)"_err_en_US, kind);
547   }
548   return AsMaybeExpr(std::move(result));
549 }
550 
Analyze(const parser::SignedRealLiteralConstant & x)551 MaybeExpr ExpressionAnalyzer::Analyze(
552     const parser::SignedRealLiteralConstant &x) {
553   if (auto result{Analyze(std::get<parser::RealLiteralConstant>(x.t))}) {
554     auto &realExpr{std::get<Expr<SomeReal>>(result->u)};
555     if (auto sign{std::get<std::optional<parser::Sign>>(x.t)}) {
556       if (sign == parser::Sign::Negative) {
557         return AsGenericExpr(-std::move(realExpr));
558       }
559     }
560     return result;
561   }
562   return std::nullopt;
563 }
564 
Analyze(const parser::SignedComplexLiteralConstant & x)565 MaybeExpr ExpressionAnalyzer::Analyze(
566     const parser::SignedComplexLiteralConstant &x) {
567   auto result{Analyze(std::get<parser::ComplexLiteralConstant>(x.t))};
568   if (!result) {
569     return std::nullopt;
570   } else if (std::get<parser::Sign>(x.t) == parser::Sign::Negative) {
571     return AsGenericExpr(-std::move(std::get<Expr<SomeComplex>>(result->u)));
572   } else {
573     return result;
574   }
575 }
576 
Analyze(const parser::ComplexPart & x)577 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexPart &x) {
578   return Analyze(x.u);
579 }
580 
Analyze(const parser::ComplexLiteralConstant & z)581 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ComplexLiteralConstant &z) {
582   return AsMaybeExpr(
583       ConstructComplex(GetContextualMessages(), Analyze(std::get<0>(z.t)),
584           Analyze(std::get<1>(z.t)), GetDefaultKind(TypeCategory::Real)));
585 }
586 
587 // CHARACTER literal processing.
AnalyzeString(std::string && string,int kind)588 MaybeExpr ExpressionAnalyzer::AnalyzeString(std::string &&string, int kind) {
589   if (!CheckIntrinsicKind(TypeCategory::Character, kind)) {
590     return std::nullopt;
591   }
592   switch (kind) {
593   case 1:
594     return AsGenericExpr(Constant<Type<TypeCategory::Character, 1>>{
595         parser::DecodeString<std::string, parser::Encoding::LATIN_1>(
596             string, true)});
597   case 2:
598     return AsGenericExpr(Constant<Type<TypeCategory::Character, 2>>{
599         parser::DecodeString<std::u16string, parser::Encoding::UTF_8>(
600             string, true)});
601   case 4:
602     return AsGenericExpr(Constant<Type<TypeCategory::Character, 4>>{
603         parser::DecodeString<std::u32string, parser::Encoding::UTF_8>(
604             string, true)});
605   default:
606     CRASH_NO_CASE;
607   }
608 }
609 
Analyze(const parser::CharLiteralConstant & x)610 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CharLiteralConstant &x) {
611   int kind{
612       AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t), 1)};
613   auto value{std::get<std::string>(x.t)};
614   return AnalyzeString(std::move(value), kind);
615 }
616 
Analyze(const parser::HollerithLiteralConstant & x)617 MaybeExpr ExpressionAnalyzer::Analyze(
618     const parser::HollerithLiteralConstant &x) {
619   int kind{GetDefaultKind(TypeCategory::Character)};
620   auto value{x.v};
621   return AnalyzeString(std::move(value), kind);
622 }
623 
624 // .TRUE. and .FALSE. of various kinds
Analyze(const parser::LogicalLiteralConstant & x)625 MaybeExpr ExpressionAnalyzer::Analyze(const parser::LogicalLiteralConstant &x) {
626   auto kind{AnalyzeKindParam(std::get<std::optional<parser::KindParam>>(x.t),
627       GetDefaultKind(TypeCategory::Logical))};
628   bool value{std::get<bool>(x.t)};
629   auto result{common::SearchTypes(
630       TypeKindVisitor<TypeCategory::Logical, Constant, bool>{
631           kind, std::move(value)})};
632   if (!result) {
633     Say("unsupported LOGICAL(KIND=%d)"_err_en_US, kind); // C728
634   }
635   return result;
636 }
637 
638 // BOZ typeless literals
Analyze(const parser::BOZLiteralConstant & x)639 MaybeExpr ExpressionAnalyzer::Analyze(const parser::BOZLiteralConstant &x) {
640   const char *p{x.v.c_str()};
641   std::uint64_t base{16};
642   switch (*p++) {
643   case 'b':
644     base = 2;
645     break;
646   case 'o':
647     base = 8;
648     break;
649   case 'z':
650     break;
651   case 'x':
652     break;
653   default:
654     CRASH_NO_CASE;
655   }
656   CHECK(*p == '"');
657   ++p;
658   auto value{BOZLiteralConstant::Read(p, base, false /*unsigned*/)};
659   if (*p != '"') {
660     Say("Invalid digit ('%c') in BOZ literal '%s'"_err_en_US, *p,
661         x.v); // C7107, C7108
662     return std::nullopt;
663   }
664   if (value.overflow) {
665     Say("BOZ literal '%s' too large"_err_en_US, x.v);
666     return std::nullopt;
667   }
668   return AsGenericExpr(std::move(value.value));
669 }
670 
671 // Names and named constants
Analyze(const parser::Name & n)672 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Name &n) {
673   auto restorer{GetContextualMessages().SetLocation(n.source)};
674   if (std::optional<int> kind{IsImpliedDo(n.source)}) {
675     return AsMaybeExpr(ConvertToKind<TypeCategory::Integer>(
676         *kind, AsExpr(ImpliedDoIndex{n.source})));
677   } else if (context_.HasError(n)) {
678     return std::nullopt;
679   } else if (!n.symbol) {
680     SayAt(n, "Internal error: unresolved name '%s'"_err_en_US, n.source);
681     return std::nullopt;
682   } else {
683     const Symbol &ultimate{n.symbol->GetUltimate()};
684     if (ultimate.has<semantics::TypeParamDetails>()) {
685       // A bare reference to a derived type parameter (within a parameterized
686       // derived type definition)
687       return Fold(ConvertToType(
688           ultimate, AsGenericExpr(TypeParamInquiry{std::nullopt, ultimate})));
689     } else {
690       if (n.symbol->attrs().test(semantics::Attr::VOLATILE)) {
691         if (const semantics::Scope *
692             pure{semantics::FindPureProcedureContaining(
693                 context_.FindScope(n.source))}) {
694           SayAt(n,
695               "VOLATILE variable '%s' may not be referenced in pure subprogram '%s'"_err_en_US,
696               n.source, DEREF(pure->symbol()).name());
697           n.symbol->attrs().reset(semantics::Attr::VOLATILE);
698         }
699       }
700       if (!isWholeAssumedSizeArrayOk_ &&
701           semantics::IsAssumedSizeArray(*n.symbol)) { // C1002, C1014, C1231
702         AttachDeclaration(
703             SayAt(n,
704                 "Whole assumed-size array '%s' may not appear here without subscripts"_err_en_US,
705                 n.source),
706             *n.symbol);
707       }
708       return Designate(DataRef{*n.symbol});
709     }
710   }
711 }
712 
Analyze(const parser::NamedConstant & n)713 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NamedConstant &n) {
714   auto restorer{GetContextualMessages().SetLocation(n.v.source)};
715   if (MaybeExpr value{Analyze(n.v)}) {
716     Expr<SomeType> folded{Fold(std::move(*value))};
717     if (IsConstantExpr(folded)) {
718       return folded;
719     }
720     Say(n.v.source, "must be a constant"_err_en_US); // C718
721   }
722   return std::nullopt;
723 }
724 
Analyze(const parser::NullInit & n)725 MaybeExpr ExpressionAnalyzer::Analyze(const parser::NullInit &n) {
726   if (MaybeExpr value{Analyze(n.v)}) {
727     // Subtle: when the NullInit is a DataStmtConstant, it might
728     // be a misparse of a structure constructor without parameters
729     // or components (e.g., T()).  Checking the result to ensure
730     // that a "=>" data entity initializer actually resolved to
731     // a null pointer has to be done by the caller.
732     return Fold(std::move(*value));
733   }
734   return std::nullopt;
735 }
736 
Analyze(const parser::InitialDataTarget & x)737 MaybeExpr ExpressionAnalyzer::Analyze(const parser::InitialDataTarget &x) {
738   return Analyze(x.value());
739 }
740 
Analyze(const parser::DataStmtValue & x)741 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtValue &x) {
742   if (const auto &repeat{
743           std::get<std::optional<parser::DataStmtRepeat>>(x.t)}) {
744     x.repetitions = -1;
745     if (MaybeExpr expr{Analyze(repeat->u)}) {
746       Expr<SomeType> folded{Fold(std::move(*expr))};
747       if (auto value{ToInt64(folded)}) {
748         if (*value >= 0) { // C882
749           x.repetitions = *value;
750         } else {
751           Say(FindSourceLocation(repeat),
752               "Repeat count (%jd) for data value must not be negative"_err_en_US,
753               *value);
754         }
755       }
756     }
757   }
758   return Analyze(std::get<parser::DataStmtConstant>(x.t));
759 }
760 
761 // Substring references
GetSubstringBound(const std::optional<parser::ScalarIntExpr> & bound)762 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::GetSubstringBound(
763     const std::optional<parser::ScalarIntExpr> &bound) {
764   if (bound) {
765     if (MaybeExpr expr{Analyze(*bound)}) {
766       if (expr->Rank() > 1) {
767         Say("substring bound expression has rank %d"_err_en_US, expr->Rank());
768       }
769       if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
770         if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
771           return {std::move(*ssIntExpr)};
772         }
773         return {Expr<SubscriptInteger>{
774             Convert<SubscriptInteger, TypeCategory::Integer>{
775                 std::move(*intExpr)}}};
776       } else {
777         Say("substring bound expression is not INTEGER"_err_en_US);
778       }
779     }
780   }
781   return std::nullopt;
782 }
783 
Analyze(const parser::Substring & ss)784 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Substring &ss) {
785   if (MaybeExpr baseExpr{Analyze(std::get<parser::DataRef>(ss.t))}) {
786     if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*baseExpr))}) {
787       if (MaybeExpr newBaseExpr{TopLevelChecks(std::move(*dataRef))}) {
788         if (std::optional<DataRef> checked{
789                 ExtractDataRef(std::move(*newBaseExpr))}) {
790           const parser::SubstringRange &range{
791               std::get<parser::SubstringRange>(ss.t)};
792           std::optional<Expr<SubscriptInteger>> first{
793               GetSubstringBound(std::get<0>(range.t))};
794           std::optional<Expr<SubscriptInteger>> last{
795               GetSubstringBound(std::get<1>(range.t))};
796           const Symbol &symbol{checked->GetLastSymbol()};
797           if (std::optional<DynamicType> dynamicType{
798                   DynamicType::From(symbol)}) {
799             if (dynamicType->category() == TypeCategory::Character) {
800               return WrapperHelper<TypeCategory::Character, Designator,
801                   Substring>(dynamicType->kind(),
802                   Substring{std::move(checked.value()), std::move(first),
803                       std::move(last)});
804             }
805           }
806           Say("substring may apply only to CHARACTER"_err_en_US);
807         }
808       }
809     }
810   }
811   return std::nullopt;
812 }
813 
814 // CHARACTER literal substrings
Analyze(const parser::CharLiteralConstantSubstring & x)815 MaybeExpr ExpressionAnalyzer::Analyze(
816     const parser::CharLiteralConstantSubstring &x) {
817   const parser::SubstringRange &range{std::get<parser::SubstringRange>(x.t)};
818   std::optional<Expr<SubscriptInteger>> lower{
819       GetSubstringBound(std::get<0>(range.t))};
820   std::optional<Expr<SubscriptInteger>> upper{
821       GetSubstringBound(std::get<1>(range.t))};
822   if (MaybeExpr string{Analyze(std::get<parser::CharLiteralConstant>(x.t))}) {
823     if (auto *charExpr{std::get_if<Expr<SomeCharacter>>(&string->u)}) {
824       Expr<SubscriptInteger> length{
825           std::visit([](const auto &ckExpr) { return ckExpr.LEN().value(); },
826               charExpr->u)};
827       if (!lower) {
828         lower = Expr<SubscriptInteger>{1};
829       }
830       if (!upper) {
831         upper = Expr<SubscriptInteger>{
832             static_cast<std::int64_t>(ToInt64(length).value())};
833       }
834       return std::visit(
835           [&](auto &&ckExpr) -> MaybeExpr {
836             using Result = ResultType<decltype(ckExpr)>;
837             auto *cp{std::get_if<Constant<Result>>(&ckExpr.u)};
838             CHECK(DEREF(cp).size() == 1);
839             StaticDataObject::Pointer staticData{StaticDataObject::Create()};
840             staticData->set_alignment(Result::kind)
841                 .set_itemBytes(Result::kind)
842                 .Push(cp->GetScalarValue().value());
843             Substring substring{std::move(staticData), std::move(lower.value()),
844                 std::move(upper.value())};
845             return AsGenericExpr(
846                 Expr<Result>{Designator<Result>{std::move(substring)}});
847           },
848           std::move(charExpr->u));
849     }
850   }
851   return std::nullopt;
852 }
853 
854 // Subscripted array references
AsSubscript(MaybeExpr && expr)855 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::AsSubscript(
856     MaybeExpr &&expr) {
857   if (expr) {
858     if (expr->Rank() > 1) {
859       Say("Subscript expression has rank %d greater than 1"_err_en_US,
860           expr->Rank());
861     }
862     if (auto *intExpr{std::get_if<Expr<SomeInteger>>(&expr->u)}) {
863       if (auto *ssIntExpr{std::get_if<Expr<SubscriptInteger>>(&intExpr->u)}) {
864         return std::move(*ssIntExpr);
865       } else {
866         return Expr<SubscriptInteger>{
867             Convert<SubscriptInteger, TypeCategory::Integer>{
868                 std::move(*intExpr)}};
869       }
870     } else {
871       Say("Subscript expression is not INTEGER"_err_en_US);
872     }
873   }
874   return std::nullopt;
875 }
876 
TripletPart(const std::optional<parser::Subscript> & s)877 std::optional<Expr<SubscriptInteger>> ExpressionAnalyzer::TripletPart(
878     const std::optional<parser::Subscript> &s) {
879   if (s) {
880     return AsSubscript(Analyze(*s));
881   } else {
882     return std::nullopt;
883   }
884 }
885 
AnalyzeSectionSubscript(const parser::SectionSubscript & ss)886 std::optional<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscript(
887     const parser::SectionSubscript &ss) {
888   return std::visit(
889       common::visitors{
890           [&](const parser::SubscriptTriplet &t) -> std::optional<Subscript> {
891             const auto &lower{std::get<0>(t.t)};
892             const auto &upper{std::get<1>(t.t)};
893             const auto &stride{std::get<2>(t.t)};
894             auto result{Triplet{
895                 TripletPart(lower), TripletPart(upper), TripletPart(stride)}};
896             if ((lower && !result.lower()) || (upper && !result.upper())) {
897               return std::nullopt;
898             } else {
899               return std::make_optional<Subscript>(result);
900             }
901           },
902           [&](const auto &s) -> std::optional<Subscript> {
903             if (auto subscriptExpr{AsSubscript(Analyze(s))}) {
904               return Subscript{std::move(*subscriptExpr)};
905             } else {
906               return std::nullopt;
907             }
908           },
909       },
910       ss.u);
911 }
912 
913 // Empty result means an error occurred
AnalyzeSectionSubscripts(const std::list<parser::SectionSubscript> & sss)914 std::vector<Subscript> ExpressionAnalyzer::AnalyzeSectionSubscripts(
915     const std::list<parser::SectionSubscript> &sss) {
916   bool error{false};
917   std::vector<Subscript> subscripts;
918   for (const auto &s : sss) {
919     if (auto subscript{AnalyzeSectionSubscript(s)}) {
920       subscripts.emplace_back(std::move(*subscript));
921     } else {
922       error = true;
923     }
924   }
925   return !error ? subscripts : std::vector<Subscript>{};
926 }
927 
Analyze(const parser::ArrayElement & ae)928 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayElement &ae) {
929   MaybeExpr baseExpr;
930   {
931     auto restorer{AllowWholeAssumedSizeArray()};
932     baseExpr = Analyze(ae.base);
933   }
934   if (baseExpr) {
935     if (ae.subscripts.empty()) {
936       // will be converted to function call later or error reported
937     } else if (baseExpr->Rank() == 0) {
938       if (const Symbol * symbol{GetLastSymbol(*baseExpr)}) {
939         if (!context_.HasError(symbol)) {
940           Say("'%s' is not an array"_err_en_US, symbol->name());
941           context_.SetError(*symbol);
942         }
943       }
944     } else if (std::optional<DataRef> dataRef{
945                    ExtractDataRef(std::move(*baseExpr))}) {
946       return ApplySubscripts(
947           std::move(*dataRef), AnalyzeSectionSubscripts(ae.subscripts));
948     } else {
949       Say("Subscripts may be applied only to an object, component, or array constant"_err_en_US);
950     }
951   }
952   // error was reported: analyze subscripts without reporting more errors
953   auto restorer{GetContextualMessages().DiscardMessages()};
954   AnalyzeSectionSubscripts(ae.subscripts);
955   return std::nullopt;
956 }
957 
958 // Type parameter inquiries apply to data references, but don't depend
959 // on any trailing (co)subscripts.
IgnoreAnySubscripts(Designator<SomeDerived> && designator)960 static NamedEntity IgnoreAnySubscripts(Designator<SomeDerived> &&designator) {
961   return std::visit(
962       common::visitors{
963           [](SymbolRef &&symbol) { return NamedEntity{symbol}; },
964           [](Component &&component) {
965             return NamedEntity{std::move(component)};
966           },
967           [](ArrayRef &&arrayRef) { return std::move(arrayRef.base()); },
968           [](CoarrayRef &&coarrayRef) {
969             return NamedEntity{coarrayRef.GetLastSymbol()};
970           },
971       },
972       std::move(designator.u));
973 }
974 
975 // Components of parent derived types are explicitly represented as such.
CreateComponent(DataRef && base,const Symbol & component,const semantics::Scope & scope)976 static std::optional<Component> CreateComponent(
977     DataRef &&base, const Symbol &component, const semantics::Scope &scope) {
978   if (&component.owner() == &scope) {
979     return Component{std::move(base), component};
980   }
981   if (const semantics::Scope * parentScope{scope.GetDerivedTypeParent()}) {
982     if (const Symbol * parentComponent{parentScope->GetSymbol()}) {
983       return CreateComponent(
984           DataRef{Component{std::move(base), *parentComponent}}, component,
985           *parentScope);
986     }
987   }
988   return std::nullopt;
989 }
990 
991 // Derived type component references and type parameter inquiries
Analyze(const parser::StructureComponent & sc)992 MaybeExpr ExpressionAnalyzer::Analyze(const parser::StructureComponent &sc) {
993   MaybeExpr base{Analyze(sc.base)};
994   Symbol *sym{sc.component.symbol};
995   if (!base || !sym || context_.HasError(sym)) {
996     return std::nullopt;
997   }
998   const auto &name{sc.component.source};
999   if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1000     const auto *dtSpec{GetDerivedTypeSpec(dtExpr->GetType())};
1001     if (sym->detailsIf<semantics::TypeParamDetails>()) {
1002       if (auto *designator{UnwrapExpr<Designator<SomeDerived>>(*dtExpr)}) {
1003         if (std::optional<DynamicType> dyType{DynamicType::From(*sym)}) {
1004           if (dyType->category() == TypeCategory::Integer) {
1005             auto restorer{GetContextualMessages().SetLocation(name)};
1006             return Fold(ConvertToType(*dyType,
1007                 AsGenericExpr(TypeParamInquiry{
1008                     IgnoreAnySubscripts(std::move(*designator)), *sym})));
1009           }
1010         }
1011         Say(name, "Type parameter is not INTEGER"_err_en_US);
1012       } else {
1013         Say(name,
1014             "A type parameter inquiry must be applied to "
1015             "a designator"_err_en_US);
1016       }
1017     } else if (!dtSpec || !dtSpec->scope()) {
1018       CHECK(context_.AnyFatalError() || !foldingContext_.messages().empty());
1019       return std::nullopt;
1020     } else if (std::optional<DataRef> dataRef{
1021                    ExtractDataRef(std::move(*dtExpr))}) {
1022       if (auto component{
1023               CreateComponent(std::move(*dataRef), *sym, *dtSpec->scope())}) {
1024         return Designate(DataRef{std::move(*component)});
1025       } else {
1026         Say(name, "Component is not in scope of derived TYPE(%s)"_err_en_US,
1027             dtSpec->typeSymbol().name());
1028       }
1029     } else {
1030       Say(name,
1031           "Base of component reference must be a data reference"_err_en_US);
1032     }
1033   } else if (auto *details{sym->detailsIf<semantics::MiscDetails>()}) {
1034     // special part-ref: %re, %im, %kind, %len
1035     // Type errors are detected and reported in semantics.
1036     using MiscKind = semantics::MiscDetails::Kind;
1037     MiscKind kind{details->kind()};
1038     if (kind == MiscKind::ComplexPartRe || kind == MiscKind::ComplexPartIm) {
1039       if (auto *zExpr{std::get_if<Expr<SomeComplex>>(&base->u)}) {
1040         if (std::optional<DataRef> dataRef{ExtractDataRef(std::move(*zExpr))}) {
1041           Expr<SomeReal> realExpr{std::visit(
1042               [&](const auto &z) {
1043                 using PartType = typename ResultType<decltype(z)>::Part;
1044                 auto part{kind == MiscKind::ComplexPartRe
1045                         ? ComplexPart::Part::RE
1046                         : ComplexPart::Part::IM};
1047                 return AsCategoryExpr(Designator<PartType>{
1048                     ComplexPart{std::move(*dataRef), part}});
1049               },
1050               zExpr->u)};
1051           return AsGenericExpr(std::move(realExpr));
1052         }
1053       }
1054     } else if (kind == MiscKind::KindParamInquiry ||
1055         kind == MiscKind::LenParamInquiry) {
1056       // Convert x%KIND -> intrinsic KIND(x), x%LEN -> intrinsic LEN(x)
1057       return MakeFunctionRef(
1058           name, ActualArguments{ActualArgument{std::move(*base)}});
1059     } else {
1060       DIE("unexpected MiscDetails::Kind");
1061     }
1062   } else {
1063     Say(name, "derived type required before component reference"_err_en_US);
1064   }
1065   return std::nullopt;
1066 }
1067 
Analyze(const parser::CoindexedNamedObject & x)1068 MaybeExpr ExpressionAnalyzer::Analyze(const parser::CoindexedNamedObject &x) {
1069   if (auto maybeDataRef{ExtractDataRef(Analyze(x.base))}) {
1070     DataRef *dataRef{&*maybeDataRef};
1071     std::vector<Subscript> subscripts;
1072     SymbolVector reversed;
1073     if (auto *aRef{std::get_if<ArrayRef>(&dataRef->u)}) {
1074       subscripts = std::move(aRef->subscript());
1075       reversed.push_back(aRef->GetLastSymbol());
1076       if (Component * component{aRef->base().UnwrapComponent()}) {
1077         dataRef = &component->base();
1078       } else {
1079         dataRef = nullptr;
1080       }
1081     }
1082     if (dataRef) {
1083       while (auto *component{std::get_if<Component>(&dataRef->u)}) {
1084         reversed.push_back(component->GetLastSymbol());
1085         dataRef = &component->base();
1086       }
1087       if (auto *baseSym{std::get_if<SymbolRef>(&dataRef->u)}) {
1088         reversed.push_back(*baseSym);
1089       } else {
1090         Say("Base of coindexed named object has subscripts or cosubscripts"_err_en_US);
1091       }
1092     }
1093     std::vector<Expr<SubscriptInteger>> cosubscripts;
1094     bool cosubsOk{true};
1095     for (const auto &cosub :
1096         std::get<std::list<parser::Cosubscript>>(x.imageSelector.t)) {
1097       MaybeExpr coex{Analyze(cosub)};
1098       if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(coex)}) {
1099         cosubscripts.push_back(
1100             ConvertToType<SubscriptInteger>(std::move(*intExpr)));
1101       } else {
1102         cosubsOk = false;
1103       }
1104     }
1105     if (cosubsOk && !reversed.empty()) {
1106       int numCosubscripts{static_cast<int>(cosubscripts.size())};
1107       const Symbol &symbol{reversed.front()};
1108       if (numCosubscripts != symbol.Corank()) {
1109         Say("'%s' has corank %d, but coindexed reference has %d cosubscripts"_err_en_US,
1110             symbol.name(), symbol.Corank(), numCosubscripts);
1111       }
1112     }
1113     for (const auto &imageSelSpec :
1114         std::get<std::list<parser::ImageSelectorSpec>>(x.imageSelector.t)) {
1115       std::visit(
1116           common::visitors{
1117               [&](const auto &x) { Analyze(x.v); },
1118           },
1119           imageSelSpec.u);
1120     }
1121     // Reverse the chain of symbols so that the base is first and coarray
1122     // ultimate component is last.
1123     if (cosubsOk) {
1124       return Designate(
1125           DataRef{CoarrayRef{SymbolVector{reversed.crbegin(), reversed.crend()},
1126               std::move(subscripts), std::move(cosubscripts)}});
1127     }
1128   }
1129   return std::nullopt;
1130 }
1131 
IntegerTypeSpecKind(const parser::IntegerTypeSpec & spec)1132 int ExpressionAnalyzer::IntegerTypeSpecKind(
1133     const parser::IntegerTypeSpec &spec) {
1134   Expr<SubscriptInteger> value{
1135       AnalyzeKindSelector(TypeCategory::Integer, spec.v)};
1136   if (auto kind{ToInt64(value)}) {
1137     return static_cast<int>(*kind);
1138   }
1139   SayAt(spec, "Constant INTEGER kind value required here"_err_en_US);
1140   return GetDefaultKind(TypeCategory::Integer);
1141 }
1142 
1143 // Array constructors
1144 
1145 // Inverts a collection of generic ArrayConstructorValues<SomeType> that
1146 // all happen to have the same actual type T into one ArrayConstructor<T>.
1147 template <typename T>
MakeSpecific(ArrayConstructorValues<SomeType> && from)1148 ArrayConstructorValues<T> MakeSpecific(
1149     ArrayConstructorValues<SomeType> &&from) {
1150   ArrayConstructorValues<T> to;
1151   for (ArrayConstructorValue<SomeType> &x : from) {
1152     std::visit(
1153         common::visitors{
1154             [&](common::CopyableIndirection<Expr<SomeType>> &&expr) {
1155               auto *typed{UnwrapExpr<Expr<T>>(expr.value())};
1156               to.Push(std::move(DEREF(typed)));
1157             },
1158             [&](ImpliedDo<SomeType> &&impliedDo) {
1159               to.Push(ImpliedDo<T>{impliedDo.name(),
1160                   std::move(impliedDo.lower()), std::move(impliedDo.upper()),
1161                   std::move(impliedDo.stride()),
1162                   MakeSpecific<T>(std::move(impliedDo.values()))});
1163             },
1164         },
1165         std::move(x.u));
1166   }
1167   return to;
1168 }
1169 
1170 class ArrayConstructorContext {
1171 public:
ArrayConstructorContext(ExpressionAnalyzer & c,std::optional<DynamicTypeWithLength> && t)1172   ArrayConstructorContext(
1173       ExpressionAnalyzer &c, std::optional<DynamicTypeWithLength> &&t)
1174       : exprAnalyzer_{c}, type_{std::move(t)} {}
1175 
1176   void Add(const parser::AcValue &);
1177   MaybeExpr ToExpr();
1178 
1179   // These interfaces allow *this to be used as a type visitor argument to
1180   // common::SearchTypes() to convert the array constructor to a typed
1181   // expression in ToExpr().
1182   using Result = MaybeExpr;
1183   using Types = AllTypes;
Test()1184   template <typename T> Result Test() {
1185     if (type_ && type_->category() == T::category) {
1186       if constexpr (T::category == TypeCategory::Derived) {
1187         if (!type_->IsUnlimitedPolymorphic()) {
1188           return AsMaybeExpr(ArrayConstructor<T>{type_->GetDerivedTypeSpec(),
1189               MakeSpecific<T>(std::move(values_))});
1190         }
1191       } else if (type_->kind() == T::kind) {
1192         if constexpr (T::category == TypeCategory::Character) {
1193           if (auto len{type_->LEN()}) {
1194             return AsMaybeExpr(ArrayConstructor<T>{
1195                 *std::move(len), MakeSpecific<T>(std::move(values_))});
1196           }
1197         } else {
1198           return AsMaybeExpr(
1199               ArrayConstructor<T>{MakeSpecific<T>(std::move(values_))});
1200         }
1201       }
1202     }
1203     return std::nullopt;
1204   }
1205 
1206 private:
1207   using ImpliedDoIntType = ResultType<ImpliedDoIndex>;
1208 
1209   void Push(MaybeExpr &&);
1210   void Add(const parser::AcValue::Triplet &);
1211   void Add(const parser::Expr &);
1212   void Add(const parser::AcImpliedDo &);
1213   void UnrollConstantImpliedDo(const parser::AcImpliedDo &,
1214       parser::CharBlock name, std::int64_t lower, std::int64_t upper,
1215       std::int64_t stride);
1216 
1217   template <int KIND, typename A>
GetSpecificIntExpr(const A & x)1218   std::optional<Expr<Type<TypeCategory::Integer, KIND>>> GetSpecificIntExpr(
1219       const A &x) {
1220     if (MaybeExpr y{exprAnalyzer_.Analyze(x)}) {
1221       Expr<SomeInteger> *intExpr{UnwrapExpr<Expr<SomeInteger>>(*y)};
1222       return Fold(exprAnalyzer_.GetFoldingContext(),
1223           ConvertToType<Type<TypeCategory::Integer, KIND>>(
1224               std::move(DEREF(intExpr))));
1225     }
1226     return std::nullopt;
1227   }
1228 
1229   // Nested array constructors all reference the same ExpressionAnalyzer,
1230   // which represents the nest of active implied DO loop indices.
1231   ExpressionAnalyzer &exprAnalyzer_;
1232   std::optional<DynamicTypeWithLength> type_;
1233   bool explicitType_{type_.has_value()};
1234   std::optional<std::int64_t> constantLength_;
1235   ArrayConstructorValues<SomeType> values_;
1236   std::uint64_t messageDisplayedSet_{0};
1237 };
1238 
Push(MaybeExpr && x)1239 void ArrayConstructorContext::Push(MaybeExpr &&x) {
1240   if (!x) {
1241     return;
1242   }
1243   if (!type_) {
1244     if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
1245       // Treat an array constructor of BOZ as if default integer.
1246       if (exprAnalyzer_.context().ShouldWarn(
1247               common::LanguageFeature::BOZAsDefaultInteger)) {
1248         exprAnalyzer_.Say(
1249             "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US);
1250       }
1251       x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
1252           exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
1253           std::move(*boz)));
1254     }
1255   }
1256   std::optional<DynamicType> dyType{x->GetType()};
1257   if (!dyType) {
1258     if (auto *boz{std::get_if<BOZLiteralConstant>(&x->u)}) {
1259       if (!type_) {
1260         // Treat an array constructor of BOZ as if default integer.
1261         if (exprAnalyzer_.context().ShouldWarn(
1262                 common::LanguageFeature::BOZAsDefaultInteger)) {
1263           exprAnalyzer_.Say(
1264               "BOZ literal in array constructor without explicit type is assumed to be default INTEGER"_en_US);
1265         }
1266         x = AsGenericExpr(ConvertToKind<TypeCategory::Integer>(
1267             exprAnalyzer_.GetDefaultKind(TypeCategory::Integer),
1268             std::move(*boz)));
1269         dyType = x.value().GetType();
1270       } else if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1271         x = std::move(cast);
1272         dyType = *type_;
1273       } else {
1274         if (!(messageDisplayedSet_ & 0x80)) {
1275           exprAnalyzer_.Say(
1276               "BOZ literal is not suitable for use in this array constructor"_err_en_US);
1277           messageDisplayedSet_ |= 0x80;
1278         }
1279         return;
1280       }
1281     } else { // procedure name, &c.
1282       if (!(messageDisplayedSet_ & 0x40)) {
1283         exprAnalyzer_.Say(
1284             "Item is not suitable for use in an array constructor"_err_en_US);
1285         messageDisplayedSet_ |= 0x40;
1286       }
1287       return;
1288     }
1289   } else if (dyType->IsUnlimitedPolymorphic()) {
1290     if (!(messageDisplayedSet_ & 8)) {
1291       exprAnalyzer_.Say("Cannot have an unlimited polymorphic value in an "
1292                         "array constructor"_err_en_US); // C7113
1293       messageDisplayedSet_ |= 8;
1294     }
1295     return;
1296   }
1297   DynamicTypeWithLength xType{dyType.value()};
1298   if (Expr<SomeCharacter> * charExpr{UnwrapExpr<Expr<SomeCharacter>>(*x)}) {
1299     CHECK(xType.category() == TypeCategory::Character);
1300     xType.length =
1301         std::visit([](const auto &kc) { return kc.LEN(); }, charExpr->u);
1302   }
1303   if (!type_) {
1304     // If there is no explicit type-spec in an array constructor, the type
1305     // of the array is the declared type of all of the elements, which must
1306     // be well-defined and all match.
1307     // TODO: Possible language extension: use the most general type of
1308     // the values as the type of a numeric constructed array, convert all
1309     // of the other values to that type.  Alternative: let the first value
1310     // determine the type, and convert the others to that type.
1311     CHECK(!explicitType_);
1312     type_ = std::move(xType);
1313     constantLength_ = ToInt64(type_->length);
1314     values_.Push(std::move(*x));
1315   } else if (!explicitType_) {
1316     if (type_->IsTkCompatibleWith(xType) && xType.IsTkCompatibleWith(*type_)) {
1317       values_.Push(std::move(*x));
1318       if (auto thisLen{ToInt64(xType.LEN())}) {
1319         if (constantLength_) {
1320           if (exprAnalyzer_.context().warnOnNonstandardUsage() &&
1321               *thisLen != *constantLength_) {
1322             if (!(messageDisplayedSet_ & 1)) {
1323               exprAnalyzer_.Say(
1324                   "Character literal in array constructor without explicit "
1325                   "type has different length than earlier elements"_en_US);
1326               messageDisplayedSet_ |= 1;
1327             }
1328           }
1329           if (*thisLen > *constantLength_) {
1330             // Language extension: use the longest literal to determine the
1331             // length of the array constructor's character elements, not the
1332             // first, when there is no explicit type.
1333             *constantLength_ = *thisLen;
1334             type_->length = xType.LEN();
1335           }
1336         } else {
1337           constantLength_ = *thisLen;
1338           type_->length = xType.LEN();
1339         }
1340       }
1341     } else {
1342       if (!(messageDisplayedSet_ & 2)) {
1343         exprAnalyzer_.Say(
1344             "Values in array constructor must have the same declared type "
1345             "when no explicit type appears"_err_en_US); // C7110
1346         messageDisplayedSet_ |= 2;
1347       }
1348     }
1349   } else {
1350     if (auto cast{ConvertToType(*type_, std::move(*x))}) {
1351       values_.Push(std::move(*cast));
1352     } else if (!(messageDisplayedSet_ & 4)) {
1353       exprAnalyzer_.Say("Value in array constructor of type '%s' could not "
1354                         "be converted to the type of the array '%s'"_err_en_US,
1355           x->GetType()->AsFortran(), type_->AsFortran()); // C7111, C7112
1356       messageDisplayedSet_ |= 4;
1357     }
1358   }
1359 }
1360 
Add(const parser::AcValue & x)1361 void ArrayConstructorContext::Add(const parser::AcValue &x) {
1362   std::visit(
1363       common::visitors{
1364           [&](const parser::AcValue::Triplet &triplet) { Add(triplet); },
1365           [&](const common::Indirection<parser::Expr> &expr) {
1366             Add(expr.value());
1367           },
1368           [&](const common::Indirection<parser::AcImpliedDo> &impliedDo) {
1369             Add(impliedDo.value());
1370           },
1371       },
1372       x.u);
1373 }
1374 
1375 // Transforms l:u(:s) into (_,_=l,u(,s)) with an anonymous index '_'
Add(const parser::AcValue::Triplet & triplet)1376 void ArrayConstructorContext::Add(const parser::AcValue::Triplet &triplet) {
1377   std::optional<Expr<ImpliedDoIntType>> lower{
1378       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<0>(triplet.t))};
1379   std::optional<Expr<ImpliedDoIntType>> upper{
1380       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<1>(triplet.t))};
1381   std::optional<Expr<ImpliedDoIntType>> stride{
1382       GetSpecificIntExpr<ImpliedDoIntType::kind>(std::get<2>(triplet.t))};
1383   if (lower && upper) {
1384     if (!stride) {
1385       stride = Expr<ImpliedDoIntType>{1};
1386     }
1387     if (!type_) {
1388       type_ = DynamicTypeWithLength{ImpliedDoIntType::GetType()};
1389     }
1390     auto v{std::move(values_)};
1391     parser::CharBlock anonymous;
1392     Push(Expr<SomeType>{
1393         Expr<SomeInteger>{Expr<ImpliedDoIntType>{ImpliedDoIndex{anonymous}}}});
1394     std::swap(v, values_);
1395     values_.Push(ImpliedDo<SomeType>{anonymous, std::move(*lower),
1396         std::move(*upper), std::move(*stride), std::move(v)});
1397   }
1398 }
1399 
Add(const parser::Expr & expr)1400 void ArrayConstructorContext::Add(const parser::Expr &expr) {
1401   auto restorer{exprAnalyzer_.GetContextualMessages().SetLocation(expr.source)};
1402   Push(exprAnalyzer_.Analyze(expr));
1403 }
1404 
Add(const parser::AcImpliedDo & impliedDo)1405 void ArrayConstructorContext::Add(const parser::AcImpliedDo &impliedDo) {
1406   const auto &control{std::get<parser::AcImpliedDoControl>(impliedDo.t)};
1407   const auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
1408   exprAnalyzer_.Analyze(bounds.name);
1409   parser::CharBlock name{bounds.name.thing.thing.source};
1410   const Symbol *symbol{bounds.name.thing.thing.symbol};
1411   int kind{ImpliedDoIntType::kind};
1412   if (const auto dynamicType{DynamicType::From(symbol)}) {
1413     kind = dynamicType->kind();
1414   }
1415   std::optional<Expr<ImpliedDoIntType>> lower{
1416       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.lower)};
1417   std::optional<Expr<ImpliedDoIntType>> upper{
1418       GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.upper)};
1419   if (lower && upper) {
1420     std::optional<Expr<ImpliedDoIntType>> stride{
1421         GetSpecificIntExpr<ImpliedDoIntType::kind>(bounds.step)};
1422     if (!stride) {
1423       stride = Expr<ImpliedDoIntType>{1};
1424     }
1425     if (exprAnalyzer_.AddImpliedDo(name, kind)) {
1426       // Check for constant bounds; the loop may require complete unrolling
1427       // of the parse tree if all bounds are constant in order to allow the
1428       // implied DO loop index to qualify as a constant expression.
1429       auto cLower{ToInt64(lower)};
1430       auto cUpper{ToInt64(upper)};
1431       auto cStride{ToInt64(stride)};
1432       if (!(messageDisplayedSet_ & 0x10) && cStride && *cStride == 0) {
1433         exprAnalyzer_.SayAt(bounds.step.value().thing.thing.value().source,
1434             "The stride of an implied DO loop must not be zero"_err_en_US);
1435         messageDisplayedSet_ |= 0x10;
1436       }
1437       bool isConstant{cLower && cUpper && cStride && *cStride != 0};
1438       bool isNonemptyConstant{isConstant &&
1439           ((*cStride > 0 && *cLower <= *cUpper) ||
1440               (*cStride < 0 && *cLower >= *cUpper))};
1441       bool unrollConstantLoop{false};
1442       parser::Messages buffer;
1443       auto saveMessagesDisplayed{messageDisplayedSet_};
1444       {
1445         auto messageRestorer{
1446             exprAnalyzer_.GetContextualMessages().SetMessages(buffer)};
1447         auto v{std::move(values_)};
1448         for (const auto &value :
1449             std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1450           Add(value);
1451         }
1452         std::swap(v, values_);
1453         if (isNonemptyConstant && buffer.AnyFatalError()) {
1454           unrollConstantLoop = true;
1455         } else {
1456           values_.Push(ImpliedDo<SomeType>{name, std::move(*lower),
1457               std::move(*upper), std::move(*stride), std::move(v)});
1458         }
1459       }
1460       if (unrollConstantLoop) {
1461         messageDisplayedSet_ = saveMessagesDisplayed;
1462         UnrollConstantImpliedDo(impliedDo, name, *cLower, *cUpper, *cStride);
1463       } else if (auto *messages{
1464                      exprAnalyzer_.GetContextualMessages().messages()}) {
1465         messages->Annex(std::move(buffer));
1466       }
1467       exprAnalyzer_.RemoveImpliedDo(name);
1468     } else if (!(messageDisplayedSet_ & 0x20)) {
1469       exprAnalyzer_.SayAt(name,
1470           "Implied DO index '%s' is active in a surrounding implied DO loop "
1471           "and may not have the same name"_err_en_US,
1472           name); // C7115
1473       messageDisplayedSet_ |= 0x20;
1474     }
1475   }
1476 }
1477 
1478 // Fortran considers an implied DO index of an array constructor to be
1479 // a constant expression if the bounds of the implied DO loop are constant.
1480 // Usually this doesn't matter, but if we emitted spurious messages as a
1481 // result of not using constant values for the index while analyzing the
1482 // items, we need to do it again the "hard" way with multiple iterations over
1483 // the parse tree.
UnrollConstantImpliedDo(const parser::AcImpliedDo & impliedDo,parser::CharBlock name,std::int64_t lower,std::int64_t upper,std::int64_t stride)1484 void ArrayConstructorContext::UnrollConstantImpliedDo(
1485     const parser::AcImpliedDo &impliedDo, parser::CharBlock name,
1486     std::int64_t lower, std::int64_t upper, std::int64_t stride) {
1487   auto &foldingContext{exprAnalyzer_.GetFoldingContext()};
1488   auto restorer{exprAnalyzer_.DoNotUseSavedTypedExprs()};
1489   for (auto &at{foldingContext.StartImpliedDo(name, lower)};
1490        (stride > 0 && at <= upper) || (stride < 0 && at >= upper);
1491        at += stride) {
1492     for (const auto &value :
1493         std::get<std::list<parser::AcValue>>(impliedDo.t)) {
1494       Add(value);
1495     }
1496   }
1497   foldingContext.EndImpliedDo(name);
1498 }
1499 
ToExpr()1500 MaybeExpr ArrayConstructorContext::ToExpr() {
1501   return common::SearchTypes(std::move(*this));
1502 }
1503 
Analyze(const parser::ArrayConstructor & array)1504 MaybeExpr ExpressionAnalyzer::Analyze(const parser::ArrayConstructor &array) {
1505   const parser::AcSpec &acSpec{array.v};
1506   ArrayConstructorContext acContext{*this, AnalyzeTypeSpec(acSpec.type)};
1507   for (const parser::AcValue &value : acSpec.values) {
1508     acContext.Add(value);
1509   }
1510   return acContext.ToExpr();
1511 }
1512 
Analyze(const parser::StructureConstructor & structure)1513 MaybeExpr ExpressionAnalyzer::Analyze(
1514     const parser::StructureConstructor &structure) {
1515   auto &parsedType{std::get<parser::DerivedTypeSpec>(structure.t)};
1516   parser::Name structureType{std::get<parser::Name>(parsedType.t)};
1517   parser::CharBlock &typeName{structureType.source};
1518   if (semantics::Symbol * typeSymbol{structureType.symbol}) {
1519     if (typeSymbol->has<semantics::DerivedTypeDetails>()) {
1520       semantics::DerivedTypeSpec dtSpec{typeName, typeSymbol->GetUltimate()};
1521       if (!CheckIsValidForwardReference(dtSpec)) {
1522         return std::nullopt;
1523       }
1524     }
1525   }
1526   if (!parsedType.derivedTypeSpec) {
1527     return std::nullopt;
1528   }
1529   const auto &spec{*parsedType.derivedTypeSpec};
1530   const Symbol &typeSymbol{spec.typeSymbol()};
1531   if (!spec.scope() || !typeSymbol.has<semantics::DerivedTypeDetails>()) {
1532     return std::nullopt; // error recovery
1533   }
1534   const auto &typeDetails{typeSymbol.get<semantics::DerivedTypeDetails>()};
1535   const Symbol *parentComponent{typeDetails.GetParentComponent(*spec.scope())};
1536 
1537   if (typeSymbol.attrs().test(semantics::Attr::ABSTRACT)) { // C796
1538     AttachDeclaration(Say(typeName,
1539                           "ABSTRACT derived type '%s' may not be used in a "
1540                           "structure constructor"_err_en_US,
1541                           typeName),
1542         typeSymbol); // C7114
1543   }
1544 
1545   // This iterator traverses all of the components in the derived type and its
1546   // parents.  The symbols for whole parent components appear after their
1547   // own components and before the components of the types that extend them.
1548   // E.g., TYPE :: A; REAL X; END TYPE
1549   //       TYPE, EXTENDS(A) :: B; REAL Y; END TYPE
1550   // produces the component list X, A, Y.
1551   // The order is important below because a structure constructor can
1552   // initialize X or A by name, but not both.
1553   auto components{semantics::OrderedComponentIterator{spec}};
1554   auto nextAnonymous{components.begin()};
1555 
1556   std::set<parser::CharBlock> unavailable;
1557   bool anyKeyword{false};
1558   StructureConstructor result{spec};
1559   bool checkConflicts{true}; // until we hit one
1560   auto &messages{GetContextualMessages()};
1561 
1562   for (const auto &component :
1563       std::get<std::list<parser::ComponentSpec>>(structure.t)) {
1564     const parser::Expr &expr{
1565         std::get<parser::ComponentDataSource>(component.t).v.value()};
1566     parser::CharBlock source{expr.source};
1567     auto restorer{messages.SetLocation(source)};
1568     const Symbol *symbol{nullptr};
1569     MaybeExpr value{Analyze(expr)};
1570     std::optional<DynamicType> valueType{DynamicType::From(value)};
1571     if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
1572       anyKeyword = true;
1573       source = kw->v.source;
1574       symbol = kw->v.symbol;
1575       if (!symbol) {
1576         auto componentIter{std::find_if(components.begin(), components.end(),
1577             [=](const Symbol &symbol) { return symbol.name() == source; })};
1578         if (componentIter != components.end()) {
1579           symbol = &*componentIter;
1580         }
1581       }
1582       if (!symbol) { // C7101
1583         Say(source,
1584             "Keyword '%s=' does not name a component of derived type '%s'"_err_en_US,
1585             source, typeName);
1586       }
1587     } else {
1588       if (anyKeyword) { // C7100
1589         Say(source,
1590             "Value in structure constructor lacks a component name"_err_en_US);
1591         checkConflicts = false; // stem cascade
1592       }
1593       // Here's a regrettably common extension of the standard: anonymous
1594       // initialization of parent components, e.g., T(PT(1)) rather than
1595       // T(1) or T(PT=PT(1)).
1596       if (nextAnonymous == components.begin() && parentComponent &&
1597           valueType == DynamicType::From(*parentComponent) &&
1598           context().IsEnabled(LanguageFeature::AnonymousParents)) {
1599         auto iter{
1600             std::find(components.begin(), components.end(), *parentComponent)};
1601         if (iter != components.end()) {
1602           symbol = parentComponent;
1603           nextAnonymous = ++iter;
1604           if (context().ShouldWarn(LanguageFeature::AnonymousParents)) {
1605             Say(source,
1606                 "Whole parent component '%s' in structure "
1607                 "constructor should not be anonymous"_en_US,
1608                 symbol->name());
1609           }
1610         }
1611       }
1612       while (!symbol && nextAnonymous != components.end()) {
1613         const Symbol &next{*nextAnonymous};
1614         ++nextAnonymous;
1615         if (!next.test(Symbol::Flag::ParentComp)) {
1616           symbol = &next;
1617         }
1618       }
1619       if (!symbol) {
1620         Say(source, "Unexpected value in structure constructor"_err_en_US);
1621       }
1622     }
1623     if (symbol) {
1624       if (const auto *currScope{context_.globalScope().FindScope(source)}) {
1625         if (auto msg{CheckAccessibleComponent(*currScope, *symbol)}) {
1626           Say(source, *msg);
1627         }
1628       }
1629       if (checkConflicts) {
1630         auto componentIter{
1631             std::find(components.begin(), components.end(), *symbol)};
1632         if (unavailable.find(symbol->name()) != unavailable.cend()) {
1633           // C797, C798
1634           Say(source,
1635               "Component '%s' conflicts with another component earlier in "
1636               "this structure constructor"_err_en_US,
1637               symbol->name());
1638         } else if (symbol->test(Symbol::Flag::ParentComp)) {
1639           // Make earlier components unavailable once a whole parent appears.
1640           for (auto it{components.begin()}; it != componentIter; ++it) {
1641             unavailable.insert(it->name());
1642           }
1643         } else {
1644           // Make whole parent components unavailable after any of their
1645           // constituents appear.
1646           for (auto it{componentIter}; it != components.end(); ++it) {
1647             if (it->test(Symbol::Flag::ParentComp)) {
1648               unavailable.insert(it->name());
1649             }
1650           }
1651         }
1652       }
1653       unavailable.insert(symbol->name());
1654       if (value) {
1655         if (symbol->has<semantics::ProcEntityDetails>()) {
1656           CHECK(IsPointer(*symbol));
1657         } else if (symbol->has<semantics::ObjectEntityDetails>()) {
1658           // C1594(4)
1659           const auto &innermost{context_.FindScope(expr.source)};
1660           if (const auto *pureProc{FindPureProcedureContaining(innermost)}) {
1661             if (const Symbol * pointer{FindPointerComponent(*symbol)}) {
1662               if (const Symbol *
1663                   object{FindExternallyVisibleObject(*value, *pureProc)}) {
1664                 if (auto *msg{Say(expr.source,
1665                         "Externally visible object '%s' may not be "
1666                         "associated with pointer component '%s' in a "
1667                         "pure procedure"_err_en_US,
1668                         object->name(), pointer->name())}) {
1669                   msg->Attach(object->name(), "Object declaration"_en_US)
1670                       .Attach(pointer->name(), "Pointer declaration"_en_US);
1671                 }
1672               }
1673             }
1674           }
1675         } else if (symbol->has<semantics::TypeParamDetails>()) {
1676           Say(expr.source,
1677               "Type parameter '%s' may not appear as a component "
1678               "of a structure constructor"_err_en_US,
1679               symbol->name());
1680           continue;
1681         } else {
1682           Say(expr.source,
1683               "Component '%s' is neither a procedure pointer "
1684               "nor a data object"_err_en_US,
1685               symbol->name());
1686           continue;
1687         }
1688         if (IsPointer(*symbol)) {
1689           semantics::CheckPointerAssignment(
1690               GetFoldingContext(), *symbol, *value); // C7104, C7105
1691           result.Add(*symbol, Fold(std::move(*value)));
1692         } else if (MaybeExpr converted{
1693                        ConvertToType(*symbol, std::move(*value))}) {
1694           if (auto componentShape{GetShape(GetFoldingContext(), *symbol)}) {
1695             if (auto valueShape{GetShape(GetFoldingContext(), *converted)}) {
1696               if (GetRank(*componentShape) == 0 && GetRank(*valueShape) > 0) {
1697                 AttachDeclaration(
1698                     Say(expr.source,
1699                         "Rank-%d array value is not compatible with scalar component '%s'"_err_en_US,
1700                         GetRank(*valueShape), symbol->name()),
1701                     *symbol);
1702               } else {
1703                 auto checked{
1704                     CheckConformance(messages, *componentShape, *valueShape,
1705                         CheckConformanceFlags::RightIsExpandableDeferred,
1706                         "component", "value")};
1707                 if (checked && *checked && GetRank(*componentShape) > 0 &&
1708                     GetRank(*valueShape) == 0 &&
1709                     !IsExpandableScalar(*converted)) {
1710                   AttachDeclaration(
1711                       Say(expr.source,
1712                           "Scalar value cannot be expanded to shape of array component '%s'"_err_en_US,
1713                           symbol->name()),
1714                       *symbol);
1715                 }
1716                 if (checked.value_or(true)) {
1717                   result.Add(*symbol, std::move(*converted));
1718                 }
1719               }
1720             } else {
1721               Say(expr.source, "Shape of value cannot be determined"_err_en_US);
1722             }
1723           } else {
1724             AttachDeclaration(
1725                 Say(expr.source,
1726                     "Shape of component '%s' cannot be determined"_err_en_US,
1727                     symbol->name()),
1728                 *symbol);
1729           }
1730         } else if (IsAllocatable(*symbol) &&
1731             std::holds_alternative<NullPointer>(value->u)) {
1732           // NULL() with no arguments allowed by 7.5.10 para 6 for ALLOCATABLE
1733         } else if (auto symType{DynamicType::From(symbol)}) {
1734           if (valueType) {
1735             AttachDeclaration(
1736                 Say(expr.source,
1737                     "Value in structure constructor of type %s is "
1738                     "incompatible with component '%s' of type %s"_err_en_US,
1739                     valueType->AsFortran(), symbol->name(),
1740                     symType->AsFortran()),
1741                 *symbol);
1742           } else {
1743             AttachDeclaration(
1744                 Say(expr.source,
1745                     "Value in structure constructor is incompatible with "
1746                     " component '%s' of type %s"_err_en_US,
1747                     symbol->name(), symType->AsFortran()),
1748                 *symbol);
1749           }
1750         }
1751       }
1752     }
1753   }
1754 
1755   // Ensure that unmentioned component objects have default initializers.
1756   for (const Symbol &symbol : components) {
1757     if (!symbol.test(Symbol::Flag::ParentComp) &&
1758         unavailable.find(symbol.name()) == unavailable.cend() &&
1759         !IsAllocatable(symbol)) {
1760       if (const auto *details{
1761               symbol.detailsIf<semantics::ObjectEntityDetails>()}) {
1762         if (details->init()) {
1763           result.Add(symbol, common::Clone(*details->init()));
1764         } else { // C799
1765           AttachDeclaration(Say(typeName,
1766                                 "Structure constructor lacks a value for "
1767                                 "component '%s'"_err_en_US,
1768                                 symbol.name()),
1769               symbol);
1770         }
1771       }
1772     }
1773   }
1774 
1775   return AsMaybeExpr(Expr<SomeDerived>{std::move(result)});
1776 }
1777 
GetPassName(const semantics::Symbol & proc)1778 static std::optional<parser::CharBlock> GetPassName(
1779     const semantics::Symbol &proc) {
1780   return std::visit(
1781       [](const auto &details) {
1782         if constexpr (std::is_base_of_v<semantics::WithPassArg,
1783                           std::decay_t<decltype(details)>>) {
1784           return details.passName();
1785         } else {
1786           return std::optional<parser::CharBlock>{};
1787         }
1788       },
1789       proc.details());
1790 }
1791 
GetPassIndex(const Symbol & proc)1792 static int GetPassIndex(const Symbol &proc) {
1793   CHECK(!proc.attrs().test(semantics::Attr::NOPASS));
1794   std::optional<parser::CharBlock> passName{GetPassName(proc)};
1795   const auto *interface{semantics::FindInterface(proc)};
1796   if (!passName || !interface) {
1797     return 0; // first argument is passed-object
1798   }
1799   const auto &subp{interface->get<semantics::SubprogramDetails>()};
1800   int index{0};
1801   for (const auto *arg : subp.dummyArgs()) {
1802     if (arg && arg->name() == passName) {
1803       return index;
1804     }
1805     ++index;
1806   }
1807   DIE("PASS argument name not in dummy argument list");
1808 }
1809 
1810 // Injects an expression into an actual argument list as the "passed object"
1811 // for a type-bound procedure reference that is not NOPASS.  Adds an
1812 // argument keyword if possible, but not when the passed object goes
1813 // before a positional argument.
1814 // e.g., obj%tbp(x) -> tbp(obj,x).
AddPassArg(ActualArguments & actuals,const Expr<SomeDerived> & expr,const Symbol & component,bool isPassedObject=true)1815 static void AddPassArg(ActualArguments &actuals, const Expr<SomeDerived> &expr,
1816     const Symbol &component, bool isPassedObject = true) {
1817   if (component.attrs().test(semantics::Attr::NOPASS)) {
1818     return;
1819   }
1820   int passIndex{GetPassIndex(component)};
1821   auto iter{actuals.begin()};
1822   int at{0};
1823   while (iter < actuals.end() && at < passIndex) {
1824     if (*iter && (*iter)->keyword()) {
1825       iter = actuals.end();
1826       break;
1827     }
1828     ++iter;
1829     ++at;
1830   }
1831   ActualArgument passed{AsGenericExpr(common::Clone(expr))};
1832   passed.set_isPassedObject(isPassedObject);
1833   if (iter == actuals.end()) {
1834     if (auto passName{GetPassName(component)}) {
1835       passed.set_keyword(*passName);
1836     }
1837   }
1838   actuals.emplace(iter, std::move(passed));
1839 }
1840 
1841 // Return the compile-time resolution of a procedure binding, if possible.
GetBindingResolution(const std::optional<DynamicType> & baseType,const Symbol & component)1842 static const Symbol *GetBindingResolution(
1843     const std::optional<DynamicType> &baseType, const Symbol &component) {
1844   const auto *binding{component.detailsIf<semantics::ProcBindingDetails>()};
1845   if (!binding) {
1846     return nullptr;
1847   }
1848   if (!component.attrs().test(semantics::Attr::NON_OVERRIDABLE) &&
1849       (!baseType || baseType->IsPolymorphic())) {
1850     return nullptr;
1851   }
1852   return &binding->symbol();
1853 }
1854 
AnalyzeProcedureComponentRef(const parser::ProcComponentRef & pcr,ActualArguments && arguments)1855 auto ExpressionAnalyzer::AnalyzeProcedureComponentRef(
1856     const parser::ProcComponentRef &pcr, ActualArguments &&arguments)
1857     -> std::optional<CalleeAndArguments> {
1858   const parser::StructureComponent &sc{pcr.v.thing};
1859   if (MaybeExpr base{Analyze(sc.base)}) {
1860     if (const Symbol * sym{sc.component.symbol}) {
1861       if (context_.HasError(sym)) {
1862         return std::nullopt;
1863       }
1864       if (!IsProcedure(*sym)) {
1865         AttachDeclaration(
1866             Say(sc.component.source, "'%s' is not a procedure"_err_en_US,
1867                 sc.component.source),
1868             *sym);
1869         return std::nullopt;
1870       }
1871       if (auto *dtExpr{UnwrapExpr<Expr<SomeDerived>>(*base)}) {
1872         if (sym->has<semantics::GenericDetails>()) {
1873           AdjustActuals adjustment{
1874               [&](const Symbol &proc, ActualArguments &actuals) {
1875                 if (!proc.attrs().test(semantics::Attr::NOPASS)) {
1876                   AddPassArg(actuals, std::move(*dtExpr), proc);
1877                 }
1878                 return true;
1879               }};
1880           sym = ResolveGeneric(*sym, arguments, adjustment);
1881           if (!sym) {
1882             EmitGenericResolutionError(*sc.component.symbol);
1883             return std::nullopt;
1884           }
1885         }
1886         if (const Symbol *
1887             resolution{GetBindingResolution(dtExpr->GetType(), *sym)}) {
1888           AddPassArg(arguments, std::move(*dtExpr), *sym, false);
1889           return CalleeAndArguments{
1890               ProcedureDesignator{*resolution}, std::move(arguments)};
1891         } else if (std::optional<DataRef> dataRef{
1892                        ExtractDataRef(std::move(*dtExpr))}) {
1893           if (sym->attrs().test(semantics::Attr::NOPASS)) {
1894             return CalleeAndArguments{
1895                 ProcedureDesignator{Component{std::move(*dataRef), *sym}},
1896                 std::move(arguments)};
1897           } else {
1898             AddPassArg(arguments,
1899                 Expr<SomeDerived>{Designator<SomeDerived>{std::move(*dataRef)}},
1900                 *sym);
1901             return CalleeAndArguments{
1902                 ProcedureDesignator{*sym}, std::move(arguments)};
1903           }
1904         }
1905       }
1906       Say(sc.component.source,
1907           "Base of procedure component reference is not a derived-type object"_err_en_US);
1908     }
1909   }
1910   CHECK(!GetContextualMessages().empty());
1911   return std::nullopt;
1912 }
1913 
1914 // Can actual be argument associated with dummy?
CheckCompatibleArgument(bool isElemental,const ActualArgument & actual,const characteristics::DummyArgument & dummy)1915 static bool CheckCompatibleArgument(bool isElemental,
1916     const ActualArgument &actual, const characteristics::DummyArgument &dummy) {
1917   return std::visit(
1918       common::visitors{
1919           [&](const characteristics::DummyDataObject &x) {
1920             if (!isElemental && actual.Rank() != x.type.Rank() &&
1921                 !x.type.attrs().test(
1922                     characteristics::TypeAndShape::Attr::AssumedRank)) {
1923               return false;
1924             } else if (auto actualType{actual.GetType()}) {
1925               return x.type.type().IsTkCompatibleWith(*actualType);
1926             } else {
1927               return false;
1928             }
1929           },
1930           [&](const characteristics::DummyProcedure &) {
1931             const auto *expr{actual.UnwrapExpr()};
1932             return expr && IsProcedurePointerTarget(*expr);
1933           },
1934           [&](const characteristics::AlternateReturn &) {
1935             return actual.isAlternateReturn();
1936           },
1937       },
1938       dummy.u);
1939 }
1940 
1941 // Are the actual arguments compatible with the dummy arguments of procedure?
CheckCompatibleArguments(const characteristics::Procedure & procedure,const ActualArguments & actuals)1942 static bool CheckCompatibleArguments(
1943     const characteristics::Procedure &procedure,
1944     const ActualArguments &actuals) {
1945   bool isElemental{procedure.IsElemental()};
1946   const auto &dummies{procedure.dummyArguments};
1947   CHECK(dummies.size() == actuals.size());
1948   for (std::size_t i{0}; i < dummies.size(); ++i) {
1949     const characteristics::DummyArgument &dummy{dummies[i]};
1950     const std::optional<ActualArgument> &actual{actuals[i]};
1951     if (actual && !CheckCompatibleArgument(isElemental, *actual, dummy)) {
1952       return false;
1953     }
1954   }
1955   return true;
1956 }
1957 
1958 // Handles a forward reference to a module function from what must
1959 // be a specification expression.  Return false if the symbol is
1960 // an invalid forward reference.
ResolveForward(const Symbol & symbol)1961 bool ExpressionAnalyzer::ResolveForward(const Symbol &symbol) {
1962   if (context_.HasError(symbol)) {
1963     return false;
1964   }
1965   if (const auto *details{
1966           symbol.detailsIf<semantics::SubprogramNameDetails>()}) {
1967     if (details->kind() == semantics::SubprogramKind::Module) {
1968       // If this symbol is still a SubprogramNameDetails, we must be
1969       // checking a specification expression in a sibling module
1970       // procedure.  Resolve its names now so that its interface
1971       // is known.
1972       semantics::ResolveSpecificationParts(context_, symbol);
1973       if (symbol.has<semantics::SubprogramNameDetails>()) {
1974         // When the symbol hasn't had its details updated, we must have
1975         // already been in the process of resolving the function's
1976         // specification part; but recursive function calls are not
1977         // allowed in specification parts (10.1.11 para 5).
1978         Say("The module function '%s' may not be referenced recursively in a specification expression"_err_en_US,
1979             symbol.name());
1980         context_.SetError(symbol);
1981         return false;
1982       }
1983     } else { // 10.1.11 para 4
1984       Say("The internal function '%s' may not be referenced in a specification expression"_err_en_US,
1985           symbol.name());
1986       context_.SetError(symbol);
1987       return false;
1988     }
1989   }
1990   return true;
1991 }
1992 
1993 // Resolve a call to a generic procedure with given actual arguments.
1994 // adjustActuals is called on procedure bindings to handle pass arg.
ResolveGeneric(const Symbol & symbol,const ActualArguments & actuals,const AdjustActuals & adjustActuals,bool mightBeStructureConstructor)1995 const Symbol *ExpressionAnalyzer::ResolveGeneric(const Symbol &symbol,
1996     const ActualArguments &actuals, const AdjustActuals &adjustActuals,
1997     bool mightBeStructureConstructor) {
1998   const Symbol *elemental{nullptr}; // matching elemental specific proc
1999   const auto &details{symbol.GetUltimate().get<semantics::GenericDetails>()};
2000   for (const Symbol &specific : details.specificProcs()) {
2001     if (!ResolveForward(specific)) {
2002       continue;
2003     }
2004     if (std::optional<characteristics::Procedure> procedure{
2005             characteristics::Procedure::Characterize(
2006                 ProcedureDesignator{specific}, context_.foldingContext())}) {
2007       ActualArguments localActuals{actuals};
2008       if (specific.has<semantics::ProcBindingDetails>()) {
2009         if (!adjustActuals.value()(specific, localActuals)) {
2010           continue;
2011         }
2012       }
2013       if (semantics::CheckInterfaceForGeneric(
2014               *procedure, localActuals, GetFoldingContext())) {
2015         if (CheckCompatibleArguments(*procedure, localActuals)) {
2016           if (!procedure->IsElemental()) {
2017             // takes priority over elemental match
2018             return &AccessSpecific(symbol, specific);
2019           }
2020           elemental = &specific;
2021         }
2022       }
2023     }
2024   }
2025   if (elemental) {
2026     return &AccessSpecific(symbol, *elemental);
2027   }
2028   // Check parent derived type
2029   if (const auto *parentScope{symbol.owner().GetDerivedTypeParent()}) {
2030     if (const Symbol * extended{parentScope->FindComponent(symbol.name())}) {
2031       if (extended->GetUltimate().has<semantics::GenericDetails>()) {
2032         if (const Symbol *
2033             result{ResolveGeneric(*extended, actuals, adjustActuals, false)}) {
2034           return result;
2035         }
2036       }
2037     }
2038   }
2039   if (mightBeStructureConstructor && details.derivedType()) {
2040     return details.derivedType();
2041   }
2042   return nullptr;
2043 }
2044 
AccessSpecific(const Symbol & originalGeneric,const Symbol & specific)2045 const Symbol &ExpressionAnalyzer::AccessSpecific(
2046     const Symbol &originalGeneric, const Symbol &specific) {
2047   if (const auto *hosted{
2048           originalGeneric.detailsIf<semantics::HostAssocDetails>()}) {
2049     return AccessSpecific(hosted->symbol(), specific);
2050   } else if (const auto *used{
2051                  originalGeneric.detailsIf<semantics::UseDetails>()}) {
2052     const auto &scope{originalGeneric.owner()};
2053     if (auto iter{scope.find(specific.name())}; iter != scope.end()) {
2054       if (const auto *useDetails{
2055               iter->second->detailsIf<semantics::UseDetails>()}) {
2056         const Symbol &usedSymbol{useDetails->symbol()};
2057         const auto *usedGeneric{
2058             usedSymbol.detailsIf<semantics::GenericDetails>()};
2059         if (&usedSymbol == &specific ||
2060             (usedGeneric && usedGeneric->specific() == &specific)) {
2061           return specific;
2062         }
2063       }
2064     }
2065     // Create a renaming USE of the specific procedure.
2066     auto rename{context_.SaveTempName(
2067         used->symbol().owner().GetName().value().ToString() + "$" +
2068         specific.name().ToString())};
2069     return *const_cast<semantics::Scope &>(scope)
2070                 .try_emplace(rename, specific.attrs(),
2071                     semantics::UseDetails{rename, specific})
2072                 .first->second;
2073   } else {
2074     return specific;
2075   }
2076 }
2077 
EmitGenericResolutionError(const Symbol & symbol)2078 void ExpressionAnalyzer::EmitGenericResolutionError(const Symbol &symbol) {
2079   if (semantics::IsGenericDefinedOp(symbol)) {
2080     Say("No specific procedure of generic operator '%s' matches the actual arguments"_err_en_US,
2081         symbol.name());
2082   } else {
2083     Say("No specific procedure of generic '%s' matches the actual arguments"_err_en_US,
2084         symbol.name());
2085   }
2086 }
2087 
GetCalleeAndArguments(const parser::ProcedureDesignator & pd,ActualArguments && arguments,bool isSubroutine,bool mightBeStructureConstructor)2088 auto ExpressionAnalyzer::GetCalleeAndArguments(
2089     const parser::ProcedureDesignator &pd, ActualArguments &&arguments,
2090     bool isSubroutine, bool mightBeStructureConstructor)
2091     -> std::optional<CalleeAndArguments> {
2092   return std::visit(
2093       common::visitors{
2094           [&](const parser::Name &name) {
2095             return GetCalleeAndArguments(name, std::move(arguments),
2096                 isSubroutine, mightBeStructureConstructor);
2097           },
2098           [&](const parser::ProcComponentRef &pcr) {
2099             return AnalyzeProcedureComponentRef(pcr, std::move(arguments));
2100           },
2101       },
2102       pd.u);
2103 }
2104 
GetCalleeAndArguments(const parser::Name & name,ActualArguments && arguments,bool isSubroutine,bool mightBeStructureConstructor)2105 auto ExpressionAnalyzer::GetCalleeAndArguments(const parser::Name &name,
2106     ActualArguments &&arguments, bool isSubroutine,
2107     bool mightBeStructureConstructor) -> std::optional<CalleeAndArguments> {
2108   const Symbol *symbol{name.symbol};
2109   if (context_.HasError(symbol)) {
2110     return std::nullopt; // also handles null symbol
2111   }
2112   const Symbol &ultimate{DEREF(symbol).GetUltimate()};
2113   if (ultimate.attrs().test(semantics::Attr::INTRINSIC)) {
2114     if (std::optional<SpecificCall> specificCall{context_.intrinsics().Probe(
2115             CallCharacteristics{ultimate.name().ToString(), isSubroutine},
2116             arguments, GetFoldingContext())}) {
2117       CheckBadExplicitType(*specificCall, *symbol);
2118       return CalleeAndArguments{
2119           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2120           std::move(specificCall->arguments)};
2121     }
2122   } else {
2123     CheckForBadRecursion(name.source, ultimate);
2124     if (ultimate.has<semantics::GenericDetails>()) {
2125       ExpressionAnalyzer::AdjustActuals noAdjustment;
2126       symbol = ResolveGeneric(
2127           *symbol, arguments, noAdjustment, mightBeStructureConstructor);
2128     }
2129     if (symbol) {
2130       if (symbol->GetUltimate().has<semantics::DerivedTypeDetails>()) {
2131         if (mightBeStructureConstructor) {
2132           return CalleeAndArguments{
2133               semantics::SymbolRef{*symbol}, std::move(arguments)};
2134         }
2135       } else if (IsProcedure(*symbol)) {
2136         return CalleeAndArguments{
2137             ProcedureDesignator{*symbol}, std::move(arguments)};
2138       }
2139       if (!context_.HasError(*symbol)) {
2140         AttachDeclaration(
2141             Say(name.source, "'%s' is not a callable procedure"_err_en_US,
2142                 name.source),
2143             *symbol);
2144       }
2145     } else if (std::optional<SpecificCall> specificCall{
2146                    context_.intrinsics().Probe(
2147                        CallCharacteristics{
2148                            ultimate.name().ToString(), isSubroutine},
2149                        arguments, GetFoldingContext())}) {
2150       // Generics can extend intrinsics
2151       return CalleeAndArguments{
2152           ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
2153           std::move(specificCall->arguments)};
2154     } else {
2155       EmitGenericResolutionError(*name.symbol);
2156     }
2157   }
2158   return std::nullopt;
2159 }
2160 
2161 // Fortran 2018 expressly states (8.2 p3) that any declared type for a
2162 // generic intrinsic function "has no effect" on the result type of a
2163 // call to that intrinsic.  So one can declare "character*8 cos" and
2164 // still get a real result from "cos(1.)".  This is a dangerous feature,
2165 // especially since implementations are free to extend their sets of
2166 // intrinsics, and in doing so might clash with a name in a program.
2167 // So we emit a warning in this situation, and perhaps it should be an
2168 // error -- any correctly working program can silence the message by
2169 // simply deleting the pointless type declaration.
CheckBadExplicitType(const SpecificCall & call,const Symbol & intrinsic)2170 void ExpressionAnalyzer::CheckBadExplicitType(
2171     const SpecificCall &call, const Symbol &intrinsic) {
2172   if (intrinsic.GetUltimate().GetType()) {
2173     const auto &procedure{call.specificIntrinsic.characteristics.value()};
2174     if (const auto &result{procedure.functionResult}) {
2175       if (const auto *typeAndShape{result->GetTypeAndShape()}) {
2176         if (auto declared{
2177                 typeAndShape->Characterize(intrinsic, GetFoldingContext())}) {
2178           if (!declared->type().IsTkCompatibleWith(typeAndShape->type())) {
2179             if (auto *msg{Say(
2180                     "The result type '%s' of the intrinsic function '%s' is not the explicit declared type '%s'"_en_US,
2181                     typeAndShape->AsFortran(), intrinsic.name(),
2182                     declared->AsFortran())}) {
2183               msg->Attach(intrinsic.name(),
2184                   "Ignored declaration of intrinsic function '%s'"_en_US,
2185                   intrinsic.name());
2186             }
2187           }
2188         }
2189       }
2190     }
2191   }
2192 }
2193 
CheckForBadRecursion(parser::CharBlock callSite,const semantics::Symbol & proc)2194 void ExpressionAnalyzer::CheckForBadRecursion(
2195     parser::CharBlock callSite, const semantics::Symbol &proc) {
2196   if (const auto *scope{proc.scope()}) {
2197     if (scope->sourceRange().Contains(callSite)) {
2198       parser::Message *msg{nullptr};
2199       if (proc.attrs().test(semantics::Attr::NON_RECURSIVE)) { // 15.6.2.1(3)
2200         msg = Say("NON_RECURSIVE procedure '%s' cannot call itself"_err_en_US,
2201             callSite);
2202       } else if (IsAssumedLengthCharacter(proc) && IsExternal(proc)) {
2203         msg = Say( // 15.6.2.1(3)
2204             "Assumed-length CHARACTER(*) function '%s' cannot call itself"_err_en_US,
2205             callSite);
2206       }
2207       AttachDeclaration(msg, proc);
2208     }
2209   }
2210 }
2211 
AssumedTypeDummy(const A & x)2212 template <typename A> static const Symbol *AssumedTypeDummy(const A &x) {
2213   if (const auto *designator{
2214           std::get_if<common::Indirection<parser::Designator>>(&x.u)}) {
2215     if (const auto *dataRef{
2216             std::get_if<parser::DataRef>(&designator->value().u)}) {
2217       if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}) {
2218         return AssumedTypeDummy(*name);
2219       }
2220     }
2221   }
2222   return nullptr;
2223 }
2224 template <>
AssumedTypeDummy(const parser::Name & name)2225 const Symbol *AssumedTypeDummy<parser::Name>(const parser::Name &name) {
2226   if (const Symbol * symbol{name.symbol}) {
2227     if (const auto *type{symbol->GetType()}) {
2228       if (type->category() == semantics::DeclTypeSpec::TypeStar) {
2229         return symbol;
2230       }
2231     }
2232   }
2233   return nullptr;
2234 }
2235 template <typename A>
AssumedTypePointerOrAllocatableDummy(const A & object)2236 static const Symbol *AssumedTypePointerOrAllocatableDummy(const A &object) {
2237   // It is illegal for allocatable of pointer objects to be TYPE(*), but at that
2238   // point it is is not guaranteed that it has been checked the object has
2239   // POINTER or ALLOCATABLE attribute, so do not assume nullptr can be directly
2240   // returned.
2241   return std::visit(
2242       common::visitors{
2243           [&](const parser::StructureComponent &x) {
2244             return AssumedTypeDummy(x.component);
2245           },
2246           [&](const parser::Name &x) { return AssumedTypeDummy(x); },
2247       },
2248       object.u);
2249 }
2250 template <>
AssumedTypeDummy(const parser::AllocateObject & x)2251 const Symbol *AssumedTypeDummy<parser::AllocateObject>(
2252     const parser::AllocateObject &x) {
2253   return AssumedTypePointerOrAllocatableDummy(x);
2254 }
2255 template <>
AssumedTypeDummy(const parser::PointerObject & x)2256 const Symbol *AssumedTypeDummy<parser::PointerObject>(
2257     const parser::PointerObject &x) {
2258   return AssumedTypePointerOrAllocatableDummy(x);
2259 }
2260 
CheckIsValidForwardReference(const semantics::DerivedTypeSpec & dtSpec)2261 bool ExpressionAnalyzer::CheckIsValidForwardReference(
2262     const semantics::DerivedTypeSpec &dtSpec) {
2263   if (dtSpec.IsForwardReferenced()) {
2264     Say("Cannot construct value for derived type '%s' "
2265         "before it is defined"_err_en_US,
2266         dtSpec.name());
2267     return false;
2268   }
2269   return true;
2270 }
2271 
Analyze(const parser::FunctionReference & funcRef,std::optional<parser::StructureConstructor> * structureConstructor)2272 MaybeExpr ExpressionAnalyzer::Analyze(const parser::FunctionReference &funcRef,
2273     std::optional<parser::StructureConstructor> *structureConstructor) {
2274   const parser::Call &call{funcRef.v};
2275   auto restorer{GetContextualMessages().SetLocation(call.source)};
2276   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2277   for (const auto &arg : std::get<std::list<parser::ActualArgSpec>>(call.t)) {
2278     analyzer.Analyze(arg, false /* not subroutine call */);
2279   }
2280   if (analyzer.fatalErrors()) {
2281     return std::nullopt;
2282   }
2283   if (std::optional<CalleeAndArguments> callee{
2284           GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2285               analyzer.GetActuals(), false /* not subroutine */,
2286               true /* might be structure constructor */)}) {
2287     if (auto *proc{std::get_if<ProcedureDesignator>(&callee->u)}) {
2288       return MakeFunctionRef(
2289           call.source, std::move(*proc), std::move(callee->arguments));
2290     }
2291     CHECK(std::holds_alternative<semantics::SymbolRef>(callee->u));
2292     const Symbol &symbol{*std::get<semantics::SymbolRef>(callee->u)};
2293     if (structureConstructor) {
2294       // Structure constructor misparsed as function reference?
2295       const auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
2296       if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
2297         semantics::Scope &scope{context_.FindScope(name->source)};
2298         semantics::DerivedTypeSpec dtSpec{name->source, symbol.GetUltimate()};
2299         if (!CheckIsValidForwardReference(dtSpec)) {
2300           return std::nullopt;
2301         }
2302         const semantics::DeclTypeSpec &type{
2303             semantics::FindOrInstantiateDerivedType(scope, std::move(dtSpec))};
2304         auto &mutableRef{const_cast<parser::FunctionReference &>(funcRef)};
2305         *structureConstructor =
2306             mutableRef.ConvertToStructureConstructor(type.derivedTypeSpec());
2307         return Analyze(structureConstructor->value());
2308       }
2309     }
2310     if (!context_.HasError(symbol)) {
2311       AttachDeclaration(
2312           Say("'%s' is called like a function but is not a procedure"_err_en_US,
2313               symbol.name()),
2314           symbol);
2315       context_.SetError(symbol);
2316     }
2317   }
2318   return std::nullopt;
2319 }
2320 
HasAlternateReturns(const evaluate::ActualArguments & args)2321 static bool HasAlternateReturns(const evaluate::ActualArguments &args) {
2322   for (const auto &arg : args) {
2323     if (arg && arg->isAlternateReturn()) {
2324       return true;
2325     }
2326   }
2327   return false;
2328 }
2329 
Analyze(const parser::CallStmt & callStmt)2330 void ExpressionAnalyzer::Analyze(const parser::CallStmt &callStmt) {
2331   const parser::Call &call{callStmt.v};
2332   auto restorer{GetContextualMessages().SetLocation(call.source)};
2333   ArgumentAnalyzer analyzer{*this, call.source, true /* isProcedureCall */};
2334   const auto &actualArgList{std::get<std::list<parser::ActualArgSpec>>(call.t)};
2335   for (const auto &arg : actualArgList) {
2336     analyzer.Analyze(arg, true /* is subroutine call */);
2337   }
2338   if (!analyzer.fatalErrors()) {
2339     if (std::optional<CalleeAndArguments> callee{
2340             GetCalleeAndArguments(std::get<parser::ProcedureDesignator>(call.t),
2341                 analyzer.GetActuals(), true /* subroutine */)}) {
2342       ProcedureDesignator *proc{std::get_if<ProcedureDesignator>(&callee->u)};
2343       CHECK(proc);
2344       if (CheckCall(call.source, *proc, callee->arguments)) {
2345         bool hasAlternateReturns{HasAlternateReturns(callee->arguments)};
2346         callStmt.typedCall.Reset(
2347             new ProcedureRef{std::move(*proc), std::move(callee->arguments),
2348                 hasAlternateReturns},
2349             ProcedureRef::Deleter);
2350       }
2351     }
2352   }
2353 }
2354 
Analyze(const parser::AssignmentStmt & x)2355 const Assignment *ExpressionAnalyzer::Analyze(const parser::AssignmentStmt &x) {
2356   if (!x.typedAssignment) {
2357     ArgumentAnalyzer analyzer{*this};
2358     analyzer.Analyze(std::get<parser::Variable>(x.t));
2359     analyzer.Analyze(std::get<parser::Expr>(x.t));
2360     std::optional<Assignment> assignment;
2361     if (!analyzer.fatalErrors()) {
2362       std::optional<ProcedureRef> procRef{analyzer.TryDefinedAssignment()};
2363       if (!procRef) {
2364         analyzer.CheckForNullPointer(
2365             "in a non-pointer intrinsic assignment statement");
2366       }
2367       assignment.emplace(analyzer.MoveExpr(0), analyzer.MoveExpr(1));
2368       if (procRef) {
2369         assignment->u = std::move(*procRef);
2370       }
2371     }
2372     x.typedAssignment.Reset(new GenericAssignmentWrapper{std::move(assignment)},
2373         GenericAssignmentWrapper::Deleter);
2374   }
2375   return common::GetPtrFromOptional(x.typedAssignment->v);
2376 }
2377 
Analyze(const parser::PointerAssignmentStmt & x)2378 const Assignment *ExpressionAnalyzer::Analyze(
2379     const parser::PointerAssignmentStmt &x) {
2380   if (!x.typedAssignment) {
2381     MaybeExpr lhs{Analyze(std::get<parser::DataRef>(x.t))};
2382     MaybeExpr rhs{Analyze(std::get<parser::Expr>(x.t))};
2383     if (!lhs || !rhs) {
2384       x.typedAssignment.Reset(
2385           new GenericAssignmentWrapper{}, GenericAssignmentWrapper::Deleter);
2386     } else {
2387       Assignment assignment{std::move(*lhs), std::move(*rhs)};
2388       std::visit(common::visitors{
2389                      [&](const std::list<parser::BoundsRemapping> &list) {
2390                        Assignment::BoundsRemapping bounds;
2391                        for (const auto &elem : list) {
2392                          auto lower{AsSubscript(Analyze(std::get<0>(elem.t)))};
2393                          auto upper{AsSubscript(Analyze(std::get<1>(elem.t)))};
2394                          if (lower && upper) {
2395                            bounds.emplace_back(Fold(std::move(*lower)),
2396                                Fold(std::move(*upper)));
2397                          }
2398                        }
2399                        assignment.u = std::move(bounds);
2400                      },
2401                      [&](const std::list<parser::BoundsSpec> &list) {
2402                        Assignment::BoundsSpec bounds;
2403                        for (const auto &bound : list) {
2404                          if (auto lower{AsSubscript(Analyze(bound.v))}) {
2405                            bounds.emplace_back(Fold(std::move(*lower)));
2406                          }
2407                        }
2408                        assignment.u = std::move(bounds);
2409                      },
2410                  },
2411           std::get<parser::PointerAssignmentStmt::Bounds>(x.t).u);
2412       x.typedAssignment.Reset(
2413           new GenericAssignmentWrapper{std::move(assignment)},
2414           GenericAssignmentWrapper::Deleter);
2415     }
2416   }
2417   return common::GetPtrFromOptional(x.typedAssignment->v);
2418 }
2419 
IsExternalCalledImplicitly(parser::CharBlock callSite,const ProcedureDesignator & proc)2420 static bool IsExternalCalledImplicitly(
2421     parser::CharBlock callSite, const ProcedureDesignator &proc) {
2422   if (const auto *symbol{proc.GetSymbol()}) {
2423     return symbol->has<semantics::SubprogramDetails>() &&
2424         symbol->owner().IsGlobal() &&
2425         (!symbol->scope() /*ENTRY*/ ||
2426             !symbol->scope()->sourceRange().Contains(callSite));
2427   } else {
2428     return false;
2429   }
2430 }
2431 
CheckCall(parser::CharBlock callSite,const ProcedureDesignator & proc,ActualArguments & arguments)2432 std::optional<characteristics::Procedure> ExpressionAnalyzer::CheckCall(
2433     parser::CharBlock callSite, const ProcedureDesignator &proc,
2434     ActualArguments &arguments) {
2435   auto chars{characteristics::Procedure::Characterize(
2436       proc, context_.foldingContext())};
2437   if (chars) {
2438     bool treatExternalAsImplicit{IsExternalCalledImplicitly(callSite, proc)};
2439     if (treatExternalAsImplicit && !chars->CanBeCalledViaImplicitInterface()) {
2440       Say(callSite,
2441           "References to the procedure '%s' require an explicit interface"_en_US,
2442           DEREF(proc.GetSymbol()).name());
2443     }
2444     // Checks for ASSOCIATED() are done in intrinsic table processing
2445     bool procIsAssociated{false};
2446     if (const SpecificIntrinsic *
2447         specificIntrinsic{proc.GetSpecificIntrinsic()}) {
2448       if (specificIntrinsic->name == "associated") {
2449         procIsAssociated = true;
2450       }
2451     }
2452     if (!procIsAssociated) {
2453       semantics::CheckArguments(*chars, arguments, GetFoldingContext(),
2454           context_.FindScope(callSite), treatExternalAsImplicit,
2455           proc.GetSpecificIntrinsic());
2456       const Symbol *procSymbol{proc.GetSymbol()};
2457       if (procSymbol && !IsPureProcedure(*procSymbol)) {
2458         if (const semantics::Scope *
2459             pure{semantics::FindPureProcedureContaining(
2460                 context_.FindScope(callSite))}) {
2461           Say(callSite,
2462               "Procedure '%s' referenced in pure subprogram '%s' must be pure too"_err_en_US,
2463               procSymbol->name(), DEREF(pure->symbol()).name());
2464         }
2465       }
2466     }
2467   }
2468   return chars;
2469 }
2470 
2471 // Unary operations
2472 
Analyze(const parser::Expr::Parentheses & x)2473 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Parentheses &x) {
2474   if (MaybeExpr operand{Analyze(x.v.value())}) {
2475     if (const semantics::Symbol * symbol{GetLastSymbol(*operand)}) {
2476       if (const semantics::Symbol * result{FindFunctionResult(*symbol)}) {
2477         if (semantics::IsProcedurePointer(*result)) {
2478           Say("A function reference that returns a procedure "
2479               "pointer may not be parenthesized"_err_en_US); // C1003
2480         }
2481       }
2482     }
2483     return Parenthesize(std::move(*operand));
2484   }
2485   return std::nullopt;
2486 }
2487 
NumericUnaryHelper(ExpressionAnalyzer & context,NumericOperator opr,const parser::Expr::IntrinsicUnary & x)2488 static MaybeExpr NumericUnaryHelper(ExpressionAnalyzer &context,
2489     NumericOperator opr, const parser::Expr::IntrinsicUnary &x) {
2490   ArgumentAnalyzer analyzer{context};
2491   analyzer.Analyze(x.v);
2492   if (!analyzer.fatalErrors()) {
2493     if (analyzer.IsIntrinsicNumeric(opr)) {
2494       analyzer.CheckForNullPointer();
2495       if (opr == NumericOperator::Add) {
2496         return analyzer.MoveExpr(0);
2497       } else {
2498         return Negation(context.GetContextualMessages(), analyzer.MoveExpr(0));
2499       }
2500     } else {
2501       return analyzer.TryDefinedOp(AsFortran(opr),
2502           "Operand of unary %s must be numeric; have %s"_err_en_US);
2503     }
2504   }
2505   return std::nullopt;
2506 }
2507 
Analyze(const parser::Expr::UnaryPlus & x)2508 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::UnaryPlus &x) {
2509   return NumericUnaryHelper(*this, NumericOperator::Add, x);
2510 }
2511 
Analyze(const parser::Expr::Negate & x)2512 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Negate &x) {
2513   return NumericUnaryHelper(*this, NumericOperator::Subtract, x);
2514 }
2515 
Analyze(const parser::Expr::NOT & x)2516 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NOT &x) {
2517   ArgumentAnalyzer analyzer{*this};
2518   analyzer.Analyze(x.v);
2519   if (!analyzer.fatalErrors()) {
2520     if (analyzer.IsIntrinsicLogical()) {
2521       analyzer.CheckForNullPointer();
2522       return AsGenericExpr(
2523           LogicalNegation(std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u)));
2524     } else {
2525       return analyzer.TryDefinedOp(LogicalOperator::Not,
2526           "Operand of %s must be LOGICAL; have %s"_err_en_US);
2527     }
2528   }
2529   return std::nullopt;
2530 }
2531 
Analyze(const parser::Expr::PercentLoc & x)2532 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::PercentLoc &x) {
2533   // Represent %LOC() exactly as if it had been a call to the LOC() extension
2534   // intrinsic function.
2535   // Use the actual source for the name of the call for error reporting.
2536   std::optional<ActualArgument> arg;
2537   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(x.v.value())}) {
2538     arg = ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
2539   } else if (MaybeExpr argExpr{Analyze(x.v.value())}) {
2540     arg = ActualArgument{std::move(*argExpr)};
2541   } else {
2542     return std::nullopt;
2543   }
2544   parser::CharBlock at{GetContextualMessages().at()};
2545   CHECK(at.size() >= 4);
2546   parser::CharBlock loc{at.begin() + 1, 3};
2547   CHECK(loc == "loc");
2548   return MakeFunctionRef(loc, ActualArguments{std::move(*arg)});
2549 }
2550 
Analyze(const parser::Expr::DefinedUnary & x)2551 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedUnary &x) {
2552   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2553   ArgumentAnalyzer analyzer{*this, name.source};
2554   analyzer.Analyze(std::get<1>(x.t));
2555   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2556       "No operator %s defined for %s"_err_en_US, nullptr, true);
2557 }
2558 
2559 // Binary (dyadic) operations
2560 
2561 template <template <typename> class OPR>
NumericBinaryHelper(ExpressionAnalyzer & context,NumericOperator opr,const parser::Expr::IntrinsicBinary & x)2562 MaybeExpr NumericBinaryHelper(ExpressionAnalyzer &context, NumericOperator opr,
2563     const parser::Expr::IntrinsicBinary &x) {
2564   ArgumentAnalyzer analyzer{context};
2565   analyzer.Analyze(std::get<0>(x.t));
2566   analyzer.Analyze(std::get<1>(x.t));
2567   if (!analyzer.fatalErrors()) {
2568     if (analyzer.IsIntrinsicNumeric(opr)) {
2569       analyzer.CheckForNullPointer();
2570       analyzer.CheckConformance();
2571       return NumericOperation<OPR>(context.GetContextualMessages(),
2572           analyzer.MoveExpr(0), analyzer.MoveExpr(1),
2573           context.GetDefaultKind(TypeCategory::Real));
2574     } else {
2575       return analyzer.TryDefinedOp(AsFortran(opr),
2576           "Operands of %s must be numeric; have %s and %s"_err_en_US);
2577     }
2578   }
2579   return std::nullopt;
2580 }
2581 
Analyze(const parser::Expr::Power & x)2582 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Power &x) {
2583   return NumericBinaryHelper<Power>(*this, NumericOperator::Power, x);
2584 }
2585 
Analyze(const parser::Expr::Multiply & x)2586 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Multiply &x) {
2587   return NumericBinaryHelper<Multiply>(*this, NumericOperator::Multiply, x);
2588 }
2589 
Analyze(const parser::Expr::Divide & x)2590 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Divide &x) {
2591   return NumericBinaryHelper<Divide>(*this, NumericOperator::Divide, x);
2592 }
2593 
Analyze(const parser::Expr::Add & x)2594 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Add &x) {
2595   return NumericBinaryHelper<Add>(*this, NumericOperator::Add, x);
2596 }
2597 
Analyze(const parser::Expr::Subtract & x)2598 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Subtract &x) {
2599   return NumericBinaryHelper<Subtract>(*this, NumericOperator::Subtract, x);
2600 }
2601 
Analyze(const parser::Expr::ComplexConstructor & x)2602 MaybeExpr ExpressionAnalyzer::Analyze(
2603     const parser::Expr::ComplexConstructor &x) {
2604   auto re{Analyze(std::get<0>(x.t).value())};
2605   auto im{Analyze(std::get<1>(x.t).value())};
2606   if (re && im) {
2607     ConformabilityCheck(GetContextualMessages(), *re, *im);
2608   }
2609   return AsMaybeExpr(ConstructComplex(GetContextualMessages(), std::move(re),
2610       std::move(im), GetDefaultKind(TypeCategory::Real)));
2611 }
2612 
Analyze(const parser::Expr::Concat & x)2613 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::Concat &x) {
2614   ArgumentAnalyzer analyzer{*this};
2615   analyzer.Analyze(std::get<0>(x.t));
2616   analyzer.Analyze(std::get<1>(x.t));
2617   if (!analyzer.fatalErrors()) {
2618     if (analyzer.IsIntrinsicConcat()) {
2619       analyzer.CheckForNullPointer();
2620       return std::visit(
2621           [&](auto &&x, auto &&y) -> MaybeExpr {
2622             using T = ResultType<decltype(x)>;
2623             if constexpr (std::is_same_v<T, ResultType<decltype(y)>>) {
2624               return AsGenericExpr(Concat<T::kind>{std::move(x), std::move(y)});
2625             } else {
2626               DIE("different types for intrinsic concat");
2627             }
2628           },
2629           std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(0).u).u),
2630           std::move(std::get<Expr<SomeCharacter>>(analyzer.MoveExpr(1).u).u));
2631     } else {
2632       return analyzer.TryDefinedOp("//",
2633           "Operands of %s must be CHARACTER with the same kind; have %s and %s"_err_en_US);
2634     }
2635   }
2636   return std::nullopt;
2637 }
2638 
2639 // The Name represents a user-defined intrinsic operator.
2640 // If the actuals match one of the specific procedures, return a function ref.
2641 // Otherwise report the error in messages.
AnalyzeDefinedOp(const parser::Name & name,ActualArguments && actuals)2642 MaybeExpr ExpressionAnalyzer::AnalyzeDefinedOp(
2643     const parser::Name &name, ActualArguments &&actuals) {
2644   if (auto callee{GetCalleeAndArguments(name, std::move(actuals))}) {
2645     CHECK(std::holds_alternative<ProcedureDesignator>(callee->u));
2646     return MakeFunctionRef(name.source,
2647         std::move(std::get<ProcedureDesignator>(callee->u)),
2648         std::move(callee->arguments));
2649   } else {
2650     return std::nullopt;
2651   }
2652 }
2653 
RelationHelper(ExpressionAnalyzer & context,RelationalOperator opr,const parser::Expr::IntrinsicBinary & x)2654 MaybeExpr RelationHelper(ExpressionAnalyzer &context, RelationalOperator opr,
2655     const parser::Expr::IntrinsicBinary &x) {
2656   ArgumentAnalyzer analyzer{context};
2657   analyzer.Analyze(std::get<0>(x.t));
2658   analyzer.Analyze(std::get<1>(x.t));
2659   if (!analyzer.fatalErrors()) {
2660     std::optional<DynamicType> leftType{analyzer.GetType(0)};
2661     std::optional<DynamicType> rightType{analyzer.GetType(1)};
2662     analyzer.ConvertBOZ(leftType, 0, rightType);
2663     analyzer.ConvertBOZ(rightType, 1, leftType);
2664     if (leftType && rightType &&
2665         analyzer.IsIntrinsicRelational(opr, *leftType, *rightType)) {
2666       analyzer.CheckForNullPointer("as a relational operand");
2667       return AsMaybeExpr(Relate(context.GetContextualMessages(), opr,
2668           analyzer.MoveExpr(0), analyzer.MoveExpr(1)));
2669     } else {
2670       return analyzer.TryDefinedOp(opr,
2671           leftType && leftType->category() == TypeCategory::Logical &&
2672                   rightType && rightType->category() == TypeCategory::Logical
2673               ? "LOGICAL operands must be compared using .EQV. or .NEQV."_err_en_US
2674               : "Operands of %s must have comparable types; have %s and %s"_err_en_US);
2675     }
2676   }
2677   return std::nullopt;
2678 }
2679 
Analyze(const parser::Expr::LT & x)2680 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LT &x) {
2681   return RelationHelper(*this, RelationalOperator::LT, x);
2682 }
2683 
Analyze(const parser::Expr::LE & x)2684 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::LE &x) {
2685   return RelationHelper(*this, RelationalOperator::LE, x);
2686 }
2687 
Analyze(const parser::Expr::EQ & x)2688 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQ &x) {
2689   return RelationHelper(*this, RelationalOperator::EQ, x);
2690 }
2691 
Analyze(const parser::Expr::NE & x)2692 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NE &x) {
2693   return RelationHelper(*this, RelationalOperator::NE, x);
2694 }
2695 
Analyze(const parser::Expr::GE & x)2696 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GE &x) {
2697   return RelationHelper(*this, RelationalOperator::GE, x);
2698 }
2699 
Analyze(const parser::Expr::GT & x)2700 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::GT &x) {
2701   return RelationHelper(*this, RelationalOperator::GT, x);
2702 }
2703 
LogicalBinaryHelper(ExpressionAnalyzer & context,LogicalOperator opr,const parser::Expr::IntrinsicBinary & x)2704 MaybeExpr LogicalBinaryHelper(ExpressionAnalyzer &context, LogicalOperator opr,
2705     const parser::Expr::IntrinsicBinary &x) {
2706   ArgumentAnalyzer analyzer{context};
2707   analyzer.Analyze(std::get<0>(x.t));
2708   analyzer.Analyze(std::get<1>(x.t));
2709   if (!analyzer.fatalErrors()) {
2710     if (analyzer.IsIntrinsicLogical()) {
2711       analyzer.CheckForNullPointer("as a logical operand");
2712       return AsGenericExpr(BinaryLogicalOperation(opr,
2713           std::get<Expr<SomeLogical>>(analyzer.MoveExpr(0).u),
2714           std::get<Expr<SomeLogical>>(analyzer.MoveExpr(1).u)));
2715     } else {
2716       return analyzer.TryDefinedOp(
2717           opr, "Operands of %s must be LOGICAL; have %s and %s"_err_en_US);
2718     }
2719   }
2720   return std::nullopt;
2721 }
2722 
Analyze(const parser::Expr::AND & x)2723 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::AND &x) {
2724   return LogicalBinaryHelper(*this, LogicalOperator::And, x);
2725 }
2726 
Analyze(const parser::Expr::OR & x)2727 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::OR &x) {
2728   return LogicalBinaryHelper(*this, LogicalOperator::Or, x);
2729 }
2730 
Analyze(const parser::Expr::EQV & x)2731 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::EQV &x) {
2732   return LogicalBinaryHelper(*this, LogicalOperator::Eqv, x);
2733 }
2734 
Analyze(const parser::Expr::NEQV & x)2735 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::NEQV &x) {
2736   return LogicalBinaryHelper(*this, LogicalOperator::Neqv, x);
2737 }
2738 
Analyze(const parser::Expr::DefinedBinary & x)2739 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr::DefinedBinary &x) {
2740   const auto &name{std::get<parser::DefinedOpName>(x.t).v};
2741   ArgumentAnalyzer analyzer{*this, name.source};
2742   analyzer.Analyze(std::get<1>(x.t));
2743   analyzer.Analyze(std::get<2>(x.t));
2744   return analyzer.TryDefinedOp(name.source.ToString().c_str(),
2745       "No operator %s defined for %s and %s"_err_en_US, nullptr, true);
2746 }
2747 
CheckFuncRefToArrayElementRefHasSubscripts(semantics::SemanticsContext & context,const parser::FunctionReference & funcRef)2748 static void CheckFuncRefToArrayElementRefHasSubscripts(
2749     semantics::SemanticsContext &context,
2750     const parser::FunctionReference &funcRef) {
2751   // Emit message if the function reference fix will end up an array element
2752   // reference with no subscripts because it will not be possible to later tell
2753   // the difference in expressions between empty subscript list due to bad
2754   // subscripts error recovery or because the user did not put any.
2755   if (std::get<std::list<parser::ActualArgSpec>>(funcRef.v.t).empty()) {
2756     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2757     const auto *name{std::get_if<parser::Name>(&proc.u)};
2758     if (!name) {
2759       name = &std::get<parser::ProcComponentRef>(proc.u).v.thing.component;
2760     }
2761     auto &msg{context.Say(funcRef.v.source,
2762         name->symbol && name->symbol->Rank() == 0
2763             ? "'%s' is not a function"_err_en_US
2764             : "Reference to array '%s' with empty subscript list"_err_en_US,
2765         name->source)};
2766     if (name->symbol) {
2767       if (semantics::IsFunctionResultWithSameNameAsFunction(*name->symbol)) {
2768         msg.Attach(name->source,
2769             "A result variable must be declared with RESULT to allow recursive "
2770             "function calls"_en_US);
2771       } else {
2772         AttachDeclaration(&msg, *name->symbol);
2773       }
2774     }
2775   }
2776 }
2777 
2778 // Converts, if appropriate, an original misparse of ambiguous syntax like
2779 // A(1) as a function reference into an array reference.
2780 // Misparsed structure constructors are detected elsewhere after generic
2781 // function call resolution fails.
2782 template <typename... A>
FixMisparsedFunctionReference(semantics::SemanticsContext & context,const std::variant<A...> & constU)2783 static void FixMisparsedFunctionReference(
2784     semantics::SemanticsContext &context, const std::variant<A...> &constU) {
2785   // The parse tree is updated in situ when resolving an ambiguous parse.
2786   using uType = std::decay_t<decltype(constU)>;
2787   auto &u{const_cast<uType &>(constU)};
2788   if (auto *func{
2789           std::get_if<common::Indirection<parser::FunctionReference>>(&u)}) {
2790     parser::FunctionReference &funcRef{func->value()};
2791     auto &proc{std::get<parser::ProcedureDesignator>(funcRef.v.t)};
2792     if (Symbol *
2793         origSymbol{
2794             std::visit(common::visitors{
2795                            [&](parser::Name &name) { return name.symbol; },
2796                            [&](parser::ProcComponentRef &pcr) {
2797                              return pcr.v.thing.component.symbol;
2798                            },
2799                        },
2800                 proc.u)}) {
2801       Symbol &symbol{origSymbol->GetUltimate()};
2802       if (symbol.has<semantics::ObjectEntityDetails>() ||
2803           symbol.has<semantics::AssocEntityDetails>()) {
2804         // Note that expression in AssocEntityDetails cannot be a procedure
2805         // pointer as per C1105 so this cannot be a function reference.
2806         if constexpr (common::HasMember<common::Indirection<parser::Designator>,
2807                           uType>) {
2808           CheckFuncRefToArrayElementRefHasSubscripts(context, funcRef);
2809           u = common::Indirection{funcRef.ConvertToArrayElementRef()};
2810         } else {
2811           DIE("can't fix misparsed function as array reference");
2812         }
2813       }
2814     }
2815   }
2816 }
2817 
2818 // Common handling of parse tree node types that retain the
2819 // representation of the analyzed expression.
2820 template <typename PARSED>
ExprOrVariable(const PARSED & x,parser::CharBlock source)2821 MaybeExpr ExpressionAnalyzer::ExprOrVariable(
2822     const PARSED &x, parser::CharBlock source) {
2823   if (useSavedTypedExprs_ && x.typedExpr) {
2824     return x.typedExpr->v;
2825   }
2826   auto restorer{GetContextualMessages().SetLocation(source)};
2827   if constexpr (std::is_same_v<PARSED, parser::Expr> ||
2828       std::is_same_v<PARSED, parser::Variable>) {
2829     FixMisparsedFunctionReference(context_, x.u);
2830   }
2831   if (AssumedTypeDummy(x)) { // C710
2832     Say("TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
2833     ResetExpr(x);
2834     return std::nullopt;
2835   }
2836   MaybeExpr result;
2837   if constexpr (common::HasMember<parser::StructureConstructor,
2838                     std::decay_t<decltype(x.u)>> &&
2839       common::HasMember<common::Indirection<parser::FunctionReference>,
2840           std::decay_t<decltype(x.u)>>) {
2841     if (const auto *funcRef{
2842             std::get_if<common::Indirection<parser::FunctionReference>>(
2843                 &x.u)}) {
2844       // Function references in Exprs might turn out to be misparsed structure
2845       // constructors; we have to try generic procedure resolution
2846       // first to be sure.
2847       std::optional<parser::StructureConstructor> ctor;
2848       result = Analyze(funcRef->value(), &ctor);
2849       if (result && ctor) {
2850         // A misparsed function reference is really a structure
2851         // constructor.  Repair the parse tree in situ.
2852         const_cast<PARSED &>(x).u = std::move(*ctor);
2853       }
2854     } else {
2855       result = Analyze(x.u);
2856     }
2857   } else {
2858     result = Analyze(x.u);
2859   }
2860   if (result) {
2861     SetExpr(x, Fold(std::move(*result)));
2862     return x.typedExpr->v;
2863   } else {
2864     ResetExpr(x);
2865     if (!context_.AnyFatalError()) {
2866       std::string buf;
2867       llvm::raw_string_ostream dump{buf};
2868       parser::DumpTree(dump, x);
2869       Say("Internal error: Expression analysis failed on: %s"_err_en_US,
2870           dump.str());
2871     }
2872     return std::nullopt;
2873   }
2874 }
2875 
Analyze(const parser::Expr & expr)2876 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Expr &expr) {
2877   return ExprOrVariable(expr, expr.source);
2878 }
2879 
Analyze(const parser::Variable & variable)2880 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Variable &variable) {
2881   return ExprOrVariable(variable, variable.GetSource());
2882 }
2883 
Analyze(const parser::Selector & selector)2884 MaybeExpr ExpressionAnalyzer::Analyze(const parser::Selector &selector) {
2885   if (const auto *var{std::get_if<parser::Variable>(&selector.u)}) {
2886     if (!useSavedTypedExprs_ || !var->typedExpr) {
2887       parser::CharBlock source{var->GetSource()};
2888       auto restorer{GetContextualMessages().SetLocation(source)};
2889       FixMisparsedFunctionReference(context_, var->u);
2890       if (const auto *funcRef{
2891               std::get_if<common::Indirection<parser::FunctionReference>>(
2892                   &var->u)}) {
2893         // A Selector that parsed as a Variable might turn out during analysis
2894         // to actually be a structure constructor.  In that case, repair the
2895         // Variable parse tree node into an Expr
2896         std::optional<parser::StructureConstructor> ctor;
2897         if (MaybeExpr result{Analyze(funcRef->value(), &ctor)}) {
2898           if (ctor) {
2899             auto &writable{const_cast<parser::Selector &>(selector)};
2900             writable.u = parser::Expr{std::move(*ctor)};
2901             auto &expr{std::get<parser::Expr>(writable.u)};
2902             expr.source = source;
2903             SetExpr(expr, Fold(std::move(*result)));
2904             return expr.typedExpr->v;
2905           } else {
2906             SetExpr(*var, Fold(std::move(*result)));
2907             return var->typedExpr->v;
2908           }
2909         } else {
2910           ResetExpr(*var);
2911           if (context_.AnyFatalError()) {
2912             return std::nullopt;
2913           }
2914         }
2915       }
2916     }
2917   }
2918   // Not a Variable -> FunctionReference; handle normally as Variable or Expr
2919   return Analyze(selector.u);
2920 }
2921 
Analyze(const parser::DataStmtConstant & x)2922 MaybeExpr ExpressionAnalyzer::Analyze(const parser::DataStmtConstant &x) {
2923   return ExprOrVariable(x, x.source);
2924 }
2925 
Analyze(const parser::AllocateObject & x)2926 MaybeExpr ExpressionAnalyzer::Analyze(const parser::AllocateObject &x) {
2927   return ExprOrVariable(x, parser::FindSourceLocation(x));
2928 }
2929 
Analyze(const parser::PointerObject & x)2930 MaybeExpr ExpressionAnalyzer::Analyze(const parser::PointerObject &x) {
2931   return ExprOrVariable(x, parser::FindSourceLocation(x));
2932 }
2933 
AnalyzeKindSelector(TypeCategory category,const std::optional<parser::KindSelector> & selector)2934 Expr<SubscriptInteger> ExpressionAnalyzer::AnalyzeKindSelector(
2935     TypeCategory category,
2936     const std::optional<parser::KindSelector> &selector) {
2937   int defaultKind{GetDefaultKind(category)};
2938   if (!selector) {
2939     return Expr<SubscriptInteger>{defaultKind};
2940   }
2941   return std::visit(
2942       common::visitors{
2943           [&](const parser::ScalarIntConstantExpr &x) {
2944             if (MaybeExpr kind{Analyze(x)}) {
2945               if (std::optional<std::int64_t> code{ToInt64(*kind)}) {
2946                 if (CheckIntrinsicKind(category, *code)) {
2947                   return Expr<SubscriptInteger>{*code};
2948                 }
2949               } else if (auto *intExpr{UnwrapExpr<Expr<SomeInteger>>(*kind)}) {
2950                 return ConvertToType<SubscriptInteger>(std::move(*intExpr));
2951               }
2952             }
2953             return Expr<SubscriptInteger>{defaultKind};
2954           },
2955           [&](const parser::KindSelector::StarSize &x) {
2956             std::intmax_t size = x.v;
2957             if (!CheckIntrinsicSize(category, size)) {
2958               size = defaultKind;
2959             } else if (category == TypeCategory::Complex) {
2960               size /= 2;
2961             }
2962             return Expr<SubscriptInteger>{size};
2963           },
2964       },
2965       selector->u);
2966 }
2967 
GetDefaultKind(common::TypeCategory category)2968 int ExpressionAnalyzer::GetDefaultKind(common::TypeCategory category) {
2969   return context_.GetDefaultKind(category);
2970 }
2971 
GetDefaultKindOfType(common::TypeCategory category)2972 DynamicType ExpressionAnalyzer::GetDefaultKindOfType(
2973     common::TypeCategory category) {
2974   return {category, GetDefaultKind(category)};
2975 }
2976 
CheckIntrinsicKind(TypeCategory category,std::int64_t kind)2977 bool ExpressionAnalyzer::CheckIntrinsicKind(
2978     TypeCategory category, std::int64_t kind) {
2979   if (IsValidKindOfIntrinsicType(category, kind)) { // C712, C714, C715, C727
2980     return true;
2981   } else {
2982     Say("%s(KIND=%jd) is not a supported type"_err_en_US,
2983         ToUpperCase(EnumToString(category)), kind);
2984     return false;
2985   }
2986 }
2987 
CheckIntrinsicSize(TypeCategory category,std::int64_t size)2988 bool ExpressionAnalyzer::CheckIntrinsicSize(
2989     TypeCategory category, std::int64_t size) {
2990   if (category == TypeCategory::Complex) {
2991     // COMPLEX*16 == COMPLEX(KIND=8)
2992     if (size % 2 == 0 && IsValidKindOfIntrinsicType(category, size / 2)) {
2993       return true;
2994     }
2995   } else if (IsValidKindOfIntrinsicType(category, size)) {
2996     return true;
2997   }
2998   Say("%s*%jd is not a supported type"_err_en_US,
2999       ToUpperCase(EnumToString(category)), size);
3000   return false;
3001 }
3002 
AddImpliedDo(parser::CharBlock name,int kind)3003 bool ExpressionAnalyzer::AddImpliedDo(parser::CharBlock name, int kind) {
3004   return impliedDos_.insert(std::make_pair(name, kind)).second;
3005 }
3006 
RemoveImpliedDo(parser::CharBlock name)3007 void ExpressionAnalyzer::RemoveImpliedDo(parser::CharBlock name) {
3008   auto iter{impliedDos_.find(name)};
3009   if (iter != impliedDos_.end()) {
3010     impliedDos_.erase(iter);
3011   }
3012 }
3013 
IsImpliedDo(parser::CharBlock name) const3014 std::optional<int> ExpressionAnalyzer::IsImpliedDo(
3015     parser::CharBlock name) const {
3016   auto iter{impliedDos_.find(name)};
3017   if (iter != impliedDos_.cend()) {
3018     return {iter->second};
3019   } else {
3020     return std::nullopt;
3021   }
3022 }
3023 
EnforceTypeConstraint(parser::CharBlock at,const MaybeExpr & result,TypeCategory category,bool defaultKind)3024 bool ExpressionAnalyzer::EnforceTypeConstraint(parser::CharBlock at,
3025     const MaybeExpr &result, TypeCategory category, bool defaultKind) {
3026   if (result) {
3027     if (auto type{result->GetType()}) {
3028       if (type->category() != category) { // C885
3029         Say(at, "Must have %s type, but is %s"_err_en_US,
3030             ToUpperCase(EnumToString(category)),
3031             ToUpperCase(type->AsFortran()));
3032         return false;
3033       } else if (defaultKind) {
3034         int kind{context_.GetDefaultKind(category)};
3035         if (type->kind() != kind) {
3036           Say(at, "Must have default kind(%d) of %s type, but is %s"_err_en_US,
3037               kind, ToUpperCase(EnumToString(category)),
3038               ToUpperCase(type->AsFortran()));
3039           return false;
3040         }
3041       }
3042     } else {
3043       Say(at, "Must have %s type, but is typeless"_err_en_US,
3044           ToUpperCase(EnumToString(category)));
3045       return false;
3046     }
3047   }
3048   return true;
3049 }
3050 
MakeFunctionRef(parser::CharBlock callSite,ProcedureDesignator && proc,ActualArguments && arguments)3051 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(parser::CharBlock callSite,
3052     ProcedureDesignator &&proc, ActualArguments &&arguments) {
3053   if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&proc.u)}) {
3054     if (intrinsic->name == "null" && arguments.empty()) {
3055       return Expr<SomeType>{NullPointer{}};
3056     }
3057   }
3058   if (const Symbol * symbol{proc.GetSymbol()}) {
3059     if (!ResolveForward(*symbol)) {
3060       return std::nullopt;
3061     }
3062   }
3063   if (auto chars{CheckCall(callSite, proc, arguments)}) {
3064     if (chars->functionResult) {
3065       const auto &result{*chars->functionResult};
3066       if (result.IsProcedurePointer()) {
3067         return Expr<SomeType>{
3068             ProcedureRef{std::move(proc), std::move(arguments)}};
3069       } else {
3070         // Not a procedure pointer, so type and shape are known.
3071         return TypedWrapper<FunctionRef, ProcedureRef>(
3072             DEREF(result.GetTypeAndShape()).type(),
3073             ProcedureRef{std::move(proc), std::move(arguments)});
3074       }
3075     } else {
3076       Say("Function result characteristics are not known"_err_en_US);
3077     }
3078   }
3079   return std::nullopt;
3080 }
3081 
MakeFunctionRef(parser::CharBlock intrinsic,ActualArguments && arguments)3082 MaybeExpr ExpressionAnalyzer::MakeFunctionRef(
3083     parser::CharBlock intrinsic, ActualArguments &&arguments) {
3084   if (std::optional<SpecificCall> specificCall{
3085           context_.intrinsics().Probe(CallCharacteristics{intrinsic.ToString()},
3086               arguments, GetFoldingContext())}) {
3087     return MakeFunctionRef(intrinsic,
3088         ProcedureDesignator{std::move(specificCall->specificIntrinsic)},
3089         std::move(specificCall->arguments));
3090   } else {
3091     return std::nullopt;
3092   }
3093 }
3094 
Analyze(const parser::Variable & x)3095 void ArgumentAnalyzer::Analyze(const parser::Variable &x) {
3096   source_.ExtendToCover(x.GetSource());
3097   if (MaybeExpr expr{context_.Analyze(x)}) {
3098     if (!IsConstantExpr(*expr)) {
3099       actuals_.emplace_back(std::move(*expr));
3100       return;
3101     }
3102     const Symbol *symbol{GetLastSymbol(*expr)};
3103     if (!symbol) {
3104       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
3105           x.GetSource());
3106     } else if (auto *subp{symbol->detailsIf<semantics::SubprogramDetails>()}) {
3107       auto *msg{context_.SayAt(x,
3108           "Assignment to subprogram '%s' is not allowed"_err_en_US,
3109           symbol->name())};
3110       if (subp->isFunction()) {
3111         const auto &result{subp->result().name()};
3112         msg->Attach(result, "Function result is '%s'"_err_en_US, result);
3113       }
3114     } else {
3115       context_.SayAt(x, "Assignment to constant '%s' is not allowed"_err_en_US,
3116           symbol->name());
3117     }
3118   }
3119   fatalErrors_ = true;
3120 }
3121 
Analyze(const parser::ActualArgSpec & arg,bool isSubroutine)3122 void ArgumentAnalyzer::Analyze(
3123     const parser::ActualArgSpec &arg, bool isSubroutine) {
3124   // TODO: Actual arguments that are procedures and procedure pointers need to
3125   // be detected and represented (they're not expressions).
3126   // TODO: C1534: Don't allow a "restricted" specific intrinsic to be passed.
3127   std::optional<ActualArgument> actual;
3128   std::visit(common::visitors{
3129                  [&](const common::Indirection<parser::Expr> &x) {
3130                    actual = AnalyzeExpr(x.value());
3131                  },
3132                  [&](const parser::AltReturnSpec &label) {
3133                    if (!isSubroutine) {
3134                      context_.Say(
3135                          "alternate return specification may not appear on"
3136                          " function reference"_err_en_US);
3137                    }
3138                    actual = ActualArgument(label.v);
3139                  },
3140                  [&](const parser::ActualArg::PercentRef &) {
3141                    context_.Say("TODO: %REF() argument"_err_en_US);
3142                  },
3143                  [&](const parser::ActualArg::PercentVal &) {
3144                    context_.Say("TODO: %VAL() argument"_err_en_US);
3145                  },
3146              },
3147       std::get<parser::ActualArg>(arg.t).u);
3148   if (actual) {
3149     if (const auto &argKW{std::get<std::optional<parser::Keyword>>(arg.t)}) {
3150       actual->set_keyword(argKW->v.source);
3151     }
3152     actuals_.emplace_back(std::move(*actual));
3153   } else {
3154     fatalErrors_ = true;
3155   }
3156 }
3157 
IsIntrinsicRelational(RelationalOperator opr,const DynamicType & leftType,const DynamicType & rightType) const3158 bool ArgumentAnalyzer::IsIntrinsicRelational(RelationalOperator opr,
3159     const DynamicType &leftType, const DynamicType &rightType) const {
3160   CHECK(actuals_.size() == 2);
3161   return semantics::IsIntrinsicRelational(
3162       opr, leftType, GetRank(0), rightType, GetRank(1));
3163 }
3164 
IsIntrinsicNumeric(NumericOperator opr) const3165 bool ArgumentAnalyzer::IsIntrinsicNumeric(NumericOperator opr) const {
3166   std::optional<DynamicType> leftType{GetType(0)};
3167   if (actuals_.size() == 1) {
3168     if (IsBOZLiteral(0)) {
3169       return opr == NumericOperator::Add; // unary '+'
3170     } else {
3171       return leftType && semantics::IsIntrinsicNumeric(*leftType);
3172     }
3173   } else {
3174     std::optional<DynamicType> rightType{GetType(1)};
3175     if (IsBOZLiteral(0) && rightType) { // BOZ opr Integer/Real
3176       auto cat1{rightType->category()};
3177       return cat1 == TypeCategory::Integer || cat1 == TypeCategory::Real;
3178     } else if (IsBOZLiteral(1) && leftType) { // Integer/Real opr BOZ
3179       auto cat0{leftType->category()};
3180       return cat0 == TypeCategory::Integer || cat0 == TypeCategory::Real;
3181     } else {
3182       return leftType && rightType &&
3183           semantics::IsIntrinsicNumeric(
3184               *leftType, GetRank(0), *rightType, GetRank(1));
3185     }
3186   }
3187 }
3188 
IsIntrinsicLogical() const3189 bool ArgumentAnalyzer::IsIntrinsicLogical() const {
3190   if (std::optional<DynamicType> leftType{GetType(0)}) {
3191     if (actuals_.size() == 1) {
3192       return semantics::IsIntrinsicLogical(*leftType);
3193     } else if (std::optional<DynamicType> rightType{GetType(1)}) {
3194       return semantics::IsIntrinsicLogical(
3195           *leftType, GetRank(0), *rightType, GetRank(1));
3196     }
3197   }
3198   return false;
3199 }
3200 
IsIntrinsicConcat() const3201 bool ArgumentAnalyzer::IsIntrinsicConcat() const {
3202   if (std::optional<DynamicType> leftType{GetType(0)}) {
3203     if (std::optional<DynamicType> rightType{GetType(1)}) {
3204       return semantics::IsIntrinsicConcat(
3205           *leftType, GetRank(0), *rightType, GetRank(1));
3206     }
3207   }
3208   return false;
3209 }
3210 
CheckConformance()3211 bool ArgumentAnalyzer::CheckConformance() {
3212   if (actuals_.size() == 2) {
3213     const auto *lhs{actuals_.at(0).value().UnwrapExpr()};
3214     const auto *rhs{actuals_.at(1).value().UnwrapExpr()};
3215     if (lhs && rhs) {
3216       auto &foldingContext{context_.GetFoldingContext()};
3217       auto lhShape{GetShape(foldingContext, *lhs)};
3218       auto rhShape{GetShape(foldingContext, *rhs)};
3219       if (lhShape && rhShape) {
3220         if (!evaluate::CheckConformance(foldingContext.messages(), *lhShape,
3221                 *rhShape, CheckConformanceFlags::EitherScalarExpandable,
3222                 "left operand", "right operand")
3223                  .value_or(false /*fail when conformance is not known now*/)) {
3224           fatalErrors_ = true;
3225           return false;
3226         }
3227       }
3228     }
3229   }
3230   return true; // no proven problem
3231 }
3232 
CheckForNullPointer(const char * where)3233 bool ArgumentAnalyzer::CheckForNullPointer(const char *where) {
3234   for (const std::optional<ActualArgument> &arg : actuals_) {
3235     if (arg) {
3236       if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) {
3237         if (IsNullPointer(*expr)) {
3238           context_.Say(
3239               source_, "A NULL() pointer is not allowed %s"_err_en_US, where);
3240           fatalErrors_ = true;
3241           return false;
3242         }
3243       }
3244     }
3245   }
3246   return true;
3247 }
3248 
TryDefinedOp(const char * opr,parser::MessageFixedText error,const Symbol ** definedOpSymbolPtr,bool isUserOp)3249 MaybeExpr ArgumentAnalyzer::TryDefinedOp(const char *opr,
3250     parser::MessageFixedText error, const Symbol **definedOpSymbolPtr,
3251     bool isUserOp) {
3252   if (!CheckForUntypedNullPointer()) {
3253     return std::nullopt;
3254   }
3255   if (AnyUntypedOrMissingOperand()) {
3256     context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
3257     return std::nullopt;
3258   }
3259   const Symbol *localDefinedOpSymbolPtr{nullptr};
3260   if (!definedOpSymbolPtr) {
3261     definedOpSymbolPtr = &localDefinedOpSymbolPtr;
3262   }
3263   {
3264     auto restorer{context_.GetContextualMessages().DiscardMessages()};
3265     std::string oprNameString{
3266         isUserOp ? std::string{opr} : "operator("s + opr + ')'};
3267     parser::CharBlock oprName{oprNameString};
3268     const auto &scope{context_.context().FindScope(source_)};
3269     if (Symbol * symbol{scope.FindSymbol(oprName)}) {
3270       *definedOpSymbolPtr = symbol;
3271       parser::Name name{symbol->name(), symbol};
3272       if (auto result{context_.AnalyzeDefinedOp(name, GetActuals())}) {
3273         return result;
3274       }
3275     }
3276     for (std::size_t passIndex{0}; passIndex < actuals_.size(); ++passIndex) {
3277       if (const Symbol *
3278           symbol{FindBoundOp(oprName, passIndex, *definedOpSymbolPtr)}) {
3279         if (MaybeExpr result{TryBoundOp(*symbol, passIndex)}) {
3280           return result;
3281         }
3282       }
3283     }
3284   }
3285   if (*definedOpSymbolPtr) {
3286     SayNoMatch(ToUpperCase((*definedOpSymbolPtr)->name().ToString()));
3287   } else if (actuals_.size() == 1 || AreConformable()) {
3288     if (CheckForNullPointer()) {
3289       context_.Say(error, ToUpperCase(opr), TypeAsFortran(0), TypeAsFortran(1));
3290     }
3291   } else {
3292     context_.Say(
3293         "Operands of %s are not conformable; have rank %d and rank %d"_err_en_US,
3294         ToUpperCase(opr), actuals_[0]->Rank(), actuals_[1]->Rank());
3295   }
3296   return std::nullopt;
3297 }
3298 
TryDefinedOp(std::vector<const char * > oprs,parser::MessageFixedText error)3299 MaybeExpr ArgumentAnalyzer::TryDefinedOp(
3300     std::vector<const char *> oprs, parser::MessageFixedText error) {
3301   const Symbol *definedOpSymbolPtr{nullptr};
3302   for (std::size_t i{1}; i < oprs.size(); ++i) {
3303     auto restorer{context_.GetContextualMessages().DiscardMessages()};
3304     if (auto result{TryDefinedOp(oprs[i], error, &definedOpSymbolPtr)}) {
3305       return result;
3306     }
3307   }
3308   return TryDefinedOp(oprs[0], error, &definedOpSymbolPtr);
3309 }
3310 
TryBoundOp(const Symbol & symbol,int passIndex)3311 MaybeExpr ArgumentAnalyzer::TryBoundOp(const Symbol &symbol, int passIndex) {
3312   ActualArguments localActuals{actuals_};
3313   const Symbol *proc{GetBindingResolution(GetType(passIndex), symbol)};
3314   if (!proc) {
3315     proc = &symbol;
3316     localActuals.at(passIndex).value().set_isPassedObject();
3317   }
3318   CheckConformance();
3319   return context_.MakeFunctionRef(
3320       source_, ProcedureDesignator{*proc}, std::move(localActuals));
3321 }
3322 
TryDefinedAssignment()3323 std::optional<ProcedureRef> ArgumentAnalyzer::TryDefinedAssignment() {
3324   using semantics::Tristate;
3325   const Expr<SomeType> &lhs{GetExpr(0)};
3326   const Expr<SomeType> &rhs{GetExpr(1)};
3327   std::optional<DynamicType> lhsType{lhs.GetType()};
3328   std::optional<DynamicType> rhsType{rhs.GetType()};
3329   int lhsRank{lhs.Rank()};
3330   int rhsRank{rhs.Rank()};
3331   Tristate isDefined{
3332       semantics::IsDefinedAssignment(lhsType, lhsRank, rhsType, rhsRank)};
3333   if (isDefined == Tristate::No) {
3334     if (lhsType && rhsType) {
3335       AddAssignmentConversion(*lhsType, *rhsType);
3336     }
3337     return std::nullopt; // user-defined assignment not allowed for these args
3338   }
3339   auto restorer{context_.GetContextualMessages().SetLocation(source_)};
3340   if (std::optional<ProcedureRef> procRef{GetDefinedAssignmentProc()}) {
3341     if (context_.inWhereBody() && !procRef->proc().IsElemental()) { // C1032
3342       context_.Say(
3343           "Defined assignment in WHERE must be elemental, but '%s' is not"_err_en_US,
3344           DEREF(procRef->proc().GetSymbol()).name());
3345     }
3346     context_.CheckCall(source_, procRef->proc(), procRef->arguments());
3347     return std::move(*procRef);
3348   }
3349   if (isDefined == Tristate::Yes) {
3350     if (!lhsType || !rhsType || (lhsRank != rhsRank && rhsRank != 0) ||
3351         !OkLogicalIntegerAssignment(lhsType->category(), rhsType->category())) {
3352       SayNoMatch("ASSIGNMENT(=)", true);
3353     }
3354   }
3355   return std::nullopt;
3356 }
3357 
OkLogicalIntegerAssignment(TypeCategory lhs,TypeCategory rhs)3358 bool ArgumentAnalyzer::OkLogicalIntegerAssignment(
3359     TypeCategory lhs, TypeCategory rhs) {
3360   if (!context_.context().languageFeatures().IsEnabled(
3361           common::LanguageFeature::LogicalIntegerAssignment)) {
3362     return false;
3363   }
3364   std::optional<parser::MessageFixedText> msg;
3365   if (lhs == TypeCategory::Integer && rhs == TypeCategory::Logical) {
3366     // allow assignment to LOGICAL from INTEGER as a legacy extension
3367     msg = "nonstandard usage: assignment of LOGICAL to INTEGER"_en_US;
3368   } else if (lhs == TypeCategory::Logical && rhs == TypeCategory::Integer) {
3369     // ... and assignment to LOGICAL from INTEGER
3370     msg = "nonstandard usage: assignment of INTEGER to LOGICAL"_en_US;
3371   } else {
3372     return false;
3373   }
3374   if (context_.context().languageFeatures().ShouldWarn(
3375           common::LanguageFeature::LogicalIntegerAssignment)) {
3376     context_.Say(std::move(*msg));
3377   }
3378   return true;
3379 }
3380 
GetDefinedAssignmentProc()3381 std::optional<ProcedureRef> ArgumentAnalyzer::GetDefinedAssignmentProc() {
3382   auto restorer{context_.GetContextualMessages().DiscardMessages()};
3383   std::string oprNameString{"assignment(=)"};
3384   parser::CharBlock oprName{oprNameString};
3385   const Symbol *proc{nullptr};
3386   const auto &scope{context_.context().FindScope(source_)};
3387   if (const Symbol * symbol{scope.FindSymbol(oprName)}) {
3388     ExpressionAnalyzer::AdjustActuals noAdjustment;
3389     if (const Symbol *
3390         specific{context_.ResolveGeneric(*symbol, actuals_, noAdjustment)}) {
3391       proc = specific;
3392     } else {
3393       context_.EmitGenericResolutionError(*symbol);
3394     }
3395   }
3396   int passedObjectIndex{-1};
3397   const Symbol *definedOpSymbol{nullptr};
3398   for (std::size_t i{0}; i < actuals_.size(); ++i) {
3399     if (const Symbol * specific{FindBoundOp(oprName, i, definedOpSymbol)}) {
3400       if (const Symbol *
3401           resolution{GetBindingResolution(GetType(i), *specific)}) {
3402         proc = resolution;
3403       } else {
3404         proc = specific;
3405         passedObjectIndex = i;
3406       }
3407     }
3408   }
3409   if (!proc) {
3410     return std::nullopt;
3411   }
3412   ActualArguments actualsCopy{actuals_};
3413   if (passedObjectIndex >= 0) {
3414     actualsCopy[passedObjectIndex]->set_isPassedObject();
3415   }
3416   return ProcedureRef{ProcedureDesignator{*proc}, std::move(actualsCopy)};
3417 }
3418 
Dump(llvm::raw_ostream & os)3419 void ArgumentAnalyzer::Dump(llvm::raw_ostream &os) {
3420   os << "source_: " << source_.ToString() << " fatalErrors_ = " << fatalErrors_
3421      << '\n';
3422   for (const auto &actual : actuals_) {
3423     if (!actual.has_value()) {
3424       os << "- error\n";
3425     } else if (const Symbol * symbol{actual->GetAssumedTypeDummy()}) {
3426       os << "- assumed type: " << symbol->name().ToString() << '\n';
3427     } else if (const Expr<SomeType> *expr{actual->UnwrapExpr()}) {
3428       expr->AsFortran(os << "- expr: ") << '\n';
3429     } else {
3430       DIE("bad ActualArgument");
3431     }
3432   }
3433 }
3434 
AnalyzeExpr(const parser::Expr & expr)3435 std::optional<ActualArgument> ArgumentAnalyzer::AnalyzeExpr(
3436     const parser::Expr &expr) {
3437   source_.ExtendToCover(expr.source);
3438   if (const Symbol * assumedTypeDummy{AssumedTypeDummy(expr)}) {
3439     expr.typedExpr.Reset(new GenericExprWrapper{}, GenericExprWrapper::Deleter);
3440     if (isProcedureCall_) {
3441       return ActualArgument{ActualArgument::AssumedType{*assumedTypeDummy}};
3442     }
3443     context_.SayAt(expr.source,
3444         "TYPE(*) dummy argument may only be used as an actual argument"_err_en_US);
3445   } else if (MaybeExpr argExpr{AnalyzeExprOrWholeAssumedSizeArray(expr)}) {
3446     if (isProcedureCall_ || !IsProcedure(*argExpr)) {
3447       return ActualArgument{std::move(*argExpr)};
3448     }
3449     context_.SayAt(expr.source,
3450         IsFunction(*argExpr) ? "Function call must have argument list"_err_en_US
3451                              : "Subroutine name is not allowed here"_err_en_US);
3452   }
3453   return std::nullopt;
3454 }
3455 
AnalyzeExprOrWholeAssumedSizeArray(const parser::Expr & expr)3456 MaybeExpr ArgumentAnalyzer::AnalyzeExprOrWholeAssumedSizeArray(
3457     const parser::Expr &expr) {
3458   // If an expression's parse tree is a whole assumed-size array:
3459   //   Expr -> Designator -> DataRef -> Name
3460   // treat it as a special case for argument passing and bypass
3461   // the C1002/C1014 constraint checking in expression semantics.
3462   if (const auto *name{parser::Unwrap<parser::Name>(expr)}) {
3463     if (name->symbol && semantics::IsAssumedSizeArray(*name->symbol)) {
3464       auto restorer{context_.AllowWholeAssumedSizeArray()};
3465       return context_.Analyze(expr);
3466     }
3467   }
3468   return context_.Analyze(expr);
3469 }
3470 
AreConformable() const3471 bool ArgumentAnalyzer::AreConformable() const {
3472   CHECK(actuals_.size() == 2);
3473   return actuals_[0] && actuals_[1] &&
3474       evaluate::AreConformable(*actuals_[0], *actuals_[1]);
3475 }
3476 
3477 // Look for a type-bound operator in the type of arg number passIndex.
FindBoundOp(parser::CharBlock oprName,int passIndex,const Symbol * & definedOp)3478 const Symbol *ArgumentAnalyzer::FindBoundOp(
3479     parser::CharBlock oprName, int passIndex, const Symbol *&definedOp) {
3480   const auto *type{GetDerivedTypeSpec(GetType(passIndex))};
3481   if (!type || !type->scope()) {
3482     return nullptr;
3483   }
3484   const Symbol *symbol{type->scope()->FindComponent(oprName)};
3485   if (!symbol) {
3486     return nullptr;
3487   }
3488   definedOp = symbol;
3489   ExpressionAnalyzer::AdjustActuals adjustment{
3490       [&](const Symbol &proc, ActualArguments &) {
3491         return passIndex == GetPassIndex(proc);
3492       }};
3493   const Symbol *result{context_.ResolveGeneric(*symbol, actuals_, adjustment)};
3494   if (!result) {
3495     context_.EmitGenericResolutionError(*symbol);
3496   }
3497   return result;
3498 }
3499 
3500 // If there is an implicit conversion between intrinsic types, make it explicit
AddAssignmentConversion(const DynamicType & lhsType,const DynamicType & rhsType)3501 void ArgumentAnalyzer::AddAssignmentConversion(
3502     const DynamicType &lhsType, const DynamicType &rhsType) {
3503   if (lhsType.category() == rhsType.category() &&
3504       lhsType.kind() == rhsType.kind()) {
3505     // no conversion necessary
3506   } else if (auto rhsExpr{evaluate::ConvertToType(lhsType, MoveExpr(1))}) {
3507     actuals_[1] = ActualArgument{*rhsExpr};
3508   } else {
3509     actuals_[1] = std::nullopt;
3510   }
3511 }
3512 
GetType(std::size_t i) const3513 std::optional<DynamicType> ArgumentAnalyzer::GetType(std::size_t i) const {
3514   return i < actuals_.size() ? actuals_[i].value().GetType() : std::nullopt;
3515 }
GetRank(std::size_t i) const3516 int ArgumentAnalyzer::GetRank(std::size_t i) const {
3517   return i < actuals_.size() ? actuals_[i].value().Rank() : 0;
3518 }
3519 
3520 // If the argument at index i is a BOZ literal, convert its type to match the
3521 // otherType.  If it's REAL convert to REAL, otherwise convert to INTEGER.
3522 // Note that IBM supports comparing BOZ literals to CHARACTER operands.  That
3523 // is not currently supported.
ConvertBOZ(std::optional<DynamicType> & thisType,std::size_t i,std::optional<DynamicType> otherType)3524 void ArgumentAnalyzer::ConvertBOZ(std::optional<DynamicType> &thisType,
3525     std::size_t i, std::optional<DynamicType> otherType) {
3526   if (IsBOZLiteral(i)) {
3527     Expr<SomeType> &&argExpr{MoveExpr(i)};
3528     auto *boz{std::get_if<BOZLiteralConstant>(&argExpr.u)};
3529     if (otherType && otherType->category() == TypeCategory::Real) {
3530       int kind{context_.context().GetDefaultKind(TypeCategory::Real)};
3531       MaybeExpr realExpr{
3532           ConvertToKind<TypeCategory::Real>(kind, std::move(*boz))};
3533       actuals_[i] = std::move(*realExpr);
3534       thisType.emplace(TypeCategory::Real, kind);
3535     } else {
3536       int kind{context_.context().GetDefaultKind(TypeCategory::Integer)};
3537       MaybeExpr intExpr{
3538           ConvertToKind<TypeCategory::Integer>(kind, std::move(*boz))};
3539       actuals_[i] = std::move(*intExpr);
3540       thisType.emplace(TypeCategory::Integer, kind);
3541     }
3542   }
3543 }
3544 
3545 // Report error resolving opr when there is a user-defined one available
SayNoMatch(const std::string & opr,bool isAssignment)3546 void ArgumentAnalyzer::SayNoMatch(const std::string &opr, bool isAssignment) {
3547   std::string type0{TypeAsFortran(0)};
3548   auto rank0{actuals_[0]->Rank()};
3549   if (actuals_.size() == 1) {
3550     if (rank0 > 0) {
3551       context_.Say("No intrinsic or user-defined %s matches "
3552                    "rank %d array of %s"_err_en_US,
3553           opr, rank0, type0);
3554     } else {
3555       context_.Say("No intrinsic or user-defined %s matches "
3556                    "operand type %s"_err_en_US,
3557           opr, type0);
3558     }
3559   } else {
3560     std::string type1{TypeAsFortran(1)};
3561     auto rank1{actuals_[1]->Rank()};
3562     if (rank0 > 0 && rank1 > 0 && rank0 != rank1) {
3563       context_.Say("No intrinsic or user-defined %s matches "
3564                    "rank %d array of %s and rank %d array of %s"_err_en_US,
3565           opr, rank0, type0, rank1, type1);
3566     } else if (isAssignment && rank0 != rank1) {
3567       if (rank0 == 0) {
3568         context_.Say("No intrinsic or user-defined %s matches "
3569                      "scalar %s and rank %d array of %s"_err_en_US,
3570             opr, type0, rank1, type1);
3571       } else {
3572         context_.Say("No intrinsic or user-defined %s matches "
3573                      "rank %d array of %s and scalar %s"_err_en_US,
3574             opr, rank0, type0, type1);
3575       }
3576     } else {
3577       context_.Say("No intrinsic or user-defined %s matches "
3578                    "operand types %s and %s"_err_en_US,
3579           opr, type0, type1);
3580     }
3581   }
3582 }
3583 
TypeAsFortran(std::size_t i)3584 std::string ArgumentAnalyzer::TypeAsFortran(std::size_t i) {
3585   if (i >= actuals_.size() || !actuals_[i]) {
3586     return "missing argument";
3587   } else if (std::optional<DynamicType> type{GetType(i)}) {
3588     return type->category() == TypeCategory::Derived
3589         ? "TYPE("s + type->AsFortran() + ')'
3590         : type->category() == TypeCategory::Character
3591         ? "CHARACTER(KIND="s + std::to_string(type->kind()) + ')'
3592         : ToUpperCase(type->AsFortran());
3593   } else {
3594     return "untyped";
3595   }
3596 }
3597 
AnyUntypedOrMissingOperand()3598 bool ArgumentAnalyzer::AnyUntypedOrMissingOperand() {
3599   for (const auto &actual : actuals_) {
3600     if (!actual || !actual->GetType()) {
3601       return true;
3602     }
3603   }
3604   return false;
3605 }
3606 
CheckForUntypedNullPointer()3607 bool ArgumentAnalyzer::CheckForUntypedNullPointer() {
3608   for (const std::optional<ActualArgument> &arg : actuals_) {
3609     if (arg) {
3610       if (const Expr<SomeType> *expr{arg->UnwrapExpr()}) {
3611         if (std::holds_alternative<NullPointer>(expr->u)) {
3612           context_.Say(source_,
3613               "A typeless NULL() pointer is not allowed as an operand"_err_en_US);
3614           fatalErrors_ = true;
3615           return false;
3616         }
3617       }
3618     }
3619   }
3620   return true;
3621 }
3622 
3623 } // namespace Fortran::evaluate
3624 
3625 namespace Fortran::semantics {
AnalyzeKindSelector(SemanticsContext & context,common::TypeCategory category,const std::optional<parser::KindSelector> & selector)3626 evaluate::Expr<evaluate::SubscriptInteger> AnalyzeKindSelector(
3627     SemanticsContext &context, common::TypeCategory category,
3628     const std::optional<parser::KindSelector> &selector) {
3629   evaluate::ExpressionAnalyzer analyzer{context};
3630   auto restorer{
3631       analyzer.GetContextualMessages().SetLocation(context.location().value())};
3632   return analyzer.AnalyzeKindSelector(category, selector);
3633 }
3634 
ExprChecker(SemanticsContext & context)3635 ExprChecker::ExprChecker(SemanticsContext &context) : context_{context} {}
3636 
Pre(const parser::DataImpliedDo & ido)3637 bool ExprChecker::Pre(const parser::DataImpliedDo &ido) {
3638   parser::Walk(std::get<parser::DataImpliedDo::Bounds>(ido.t), *this);
3639   const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
3640   auto name{bounds.name.thing.thing};
3641   int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
3642   if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
3643     if (dynamicType->category() == TypeCategory::Integer) {
3644       kind = dynamicType->kind();
3645     }
3646   }
3647   exprAnalyzer_.AddImpliedDo(name.source, kind);
3648   parser::Walk(std::get<std::list<parser::DataIDoObject>>(ido.t), *this);
3649   exprAnalyzer_.RemoveImpliedDo(name.source);
3650   return false;
3651 }
3652 
Walk(const parser::Program & program)3653 bool ExprChecker::Walk(const parser::Program &program) {
3654   parser::Walk(program, *this);
3655   return !context_.AnyFatalError();
3656 }
3657 } // namespace Fortran::semantics
3658