1 //===- InputSection.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "InputSection.h"
10 #include "Config.h"
11 #include "EhFrame.h"
12 #include "InputFiles.h"
13 #include "LinkerScript.h"
14 #include "OutputSections.h"
15 #include "Relocations.h"
16 #include "SymbolTable.h"
17 #include "Symbols.h"
18 #include "SyntheticSections.h"
19 #include "Target.h"
20 #include "Thunks.h"
21 #include "lld/Common/ErrorHandler.h"
22 #include "lld/Common/Memory.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/Compression.h"
25 #include "llvm/Support/Endian.h"
26 #include "llvm/Support/Threading.h"
27 #include "llvm/Support/xxhash.h"
28 #include <algorithm>
29 #include <mutex>
30 #include <set>
31 #include <unordered_set>
32 #include <vector>
33
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::support;
38 using namespace llvm::support::endian;
39 using namespace llvm::sys;
40 using namespace lld;
41 using namespace lld::elf;
42
43 std::vector<InputSectionBase *> elf::inputSections;
44 DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax;
45
46 // Returns a string to construct an error message.
toString(const InputSectionBase * sec)47 std::string lld::toString(const InputSectionBase *sec) {
48 return (toString(sec->file) + ":(" + sec->name + ")").str();
49 }
50
51 template <class ELFT>
getSectionContents(ObjFile<ELFT> & file,const typename ELFT::Shdr & hdr)52 static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
53 const typename ELFT::Shdr &hdr) {
54 if (hdr.sh_type == SHT_NOBITS)
55 return makeArrayRef<uint8_t>(nullptr, hdr.sh_size);
56 return check(file.getObj().getSectionContents(hdr));
57 }
58
InputSectionBase(InputFile * file,uint64_t flags,uint32_t type,uint64_t entsize,uint32_t link,uint32_t info,uint32_t alignment,ArrayRef<uint8_t> data,StringRef name,Kind sectionKind)59 InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
60 uint32_t type, uint64_t entsize,
61 uint32_t link, uint32_t info,
62 uint32_t alignment, ArrayRef<uint8_t> data,
63 StringRef name, Kind sectionKind)
64 : SectionBase(sectionKind, name, flags, entsize, alignment, type, info,
65 link),
66 file(file), rawData(data) {
67 // In order to reduce memory allocation, we assume that mergeable
68 // sections are smaller than 4 GiB, which is not an unreasonable
69 // assumption as of 2017.
70 if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX)
71 error(toString(this) + ": section too large");
72
73 numRelocations = 0;
74 areRelocsRela = false;
75
76 // The ELF spec states that a value of 0 means the section has
77 // no alignment constraints.
78 uint32_t v = std::max<uint32_t>(alignment, 1);
79 if (!isPowerOf2_64(v))
80 fatal(toString(this) + ": sh_addralign is not a power of 2");
81 this->alignment = v;
82
83 // In ELF, each section can be compressed by zlib, and if compressed,
84 // section name may be mangled by appending "z" (e.g. ".zdebug_info").
85 // If that's the case, demangle section name so that we can handle a
86 // section as if it weren't compressed.
87 if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) {
88 if (!zlib::isAvailable())
89 error(toString(file) + ": contains a compressed section, " +
90 "but zlib is not available");
91 switch (config->ekind) {
92 case ELF32LEKind:
93 parseCompressedHeader<ELF32LE>();
94 break;
95 case ELF32BEKind:
96 parseCompressedHeader<ELF32BE>();
97 break;
98 case ELF64LEKind:
99 parseCompressedHeader<ELF64LE>();
100 break;
101 case ELF64BEKind:
102 parseCompressedHeader<ELF64BE>();
103 break;
104 default:
105 llvm_unreachable("unknown ELFT");
106 }
107 }
108 }
109
110 // Drop SHF_GROUP bit unless we are producing a re-linkable object file.
111 // SHF_GROUP is a marker that a section belongs to some comdat group.
112 // That flag doesn't make sense in an executable.
getFlags(uint64_t flags)113 static uint64_t getFlags(uint64_t flags) {
114 flags &= ~(uint64_t)SHF_INFO_LINK;
115 if (!config->relocatable)
116 flags &= ~(uint64_t)SHF_GROUP;
117 return flags;
118 }
119
120 // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
121 // March 2017) fail to infer section types for sections starting with
122 // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
123 // SHF_INIT_ARRAY. As a result, the following assembler directive
124 // creates ".init_array.100" with SHT_PROGBITS, for example.
125 //
126 // .section .init_array.100, "aw"
127 //
128 // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
129 // incorrect inputs as if they were correct from the beginning.
getType(uint64_t type,StringRef name)130 static uint64_t getType(uint64_t type, StringRef name) {
131 if (type == SHT_PROGBITS && name.startswith(".init_array."))
132 return SHT_INIT_ARRAY;
133 if (type == SHT_PROGBITS && name.startswith(".fini_array."))
134 return SHT_FINI_ARRAY;
135 return type;
136 }
137
138 template <class ELFT>
InputSectionBase(ObjFile<ELFT> & file,const typename ELFT::Shdr & hdr,StringRef name,Kind sectionKind)139 InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
140 const typename ELFT::Shdr &hdr,
141 StringRef name, Kind sectionKind)
142 : InputSectionBase(&file, getFlags(hdr.sh_flags),
143 getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link,
144 hdr.sh_info, hdr.sh_addralign,
145 getSectionContents(file, hdr), name, sectionKind) {
146 // We reject object files having insanely large alignments even though
147 // they are allowed by the spec. I think 4GB is a reasonable limitation.
148 // We might want to relax this in the future.
149 if (hdr.sh_addralign > UINT32_MAX)
150 fatal(toString(&file) + ": section sh_addralign is too large");
151 }
152
getSize() const153 size_t InputSectionBase::getSize() const {
154 if (auto *s = dyn_cast<SyntheticSection>(this))
155 return s->getSize();
156 if (uncompressedSize >= 0)
157 return uncompressedSize;
158 return rawData.size() - bytesDropped;
159 }
160
uncompress() const161 void InputSectionBase::uncompress() const {
162 size_t size = uncompressedSize;
163 char *uncompressedBuf;
164 {
165 static std::mutex mu;
166 std::lock_guard<std::mutex> lock(mu);
167 uncompressedBuf = bAlloc.Allocate<char>(size);
168 }
169
170 if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size))
171 fatal(toString(this) +
172 ": uncompress failed: " + llvm::toString(std::move(e)));
173 rawData = makeArrayRef((uint8_t *)uncompressedBuf, size);
174 uncompressedSize = -1;
175 }
176
getOffsetInFile() const177 uint64_t InputSectionBase::getOffsetInFile() const {
178 const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart();
179 const uint8_t *secStart = data().begin();
180 return secStart - fileStart;
181 }
182
getOffset(uint64_t offset) const183 uint64_t SectionBase::getOffset(uint64_t offset) const {
184 switch (kind()) {
185 case Output: {
186 auto *os = cast<OutputSection>(this);
187 // For output sections we treat offset -1 as the end of the section.
188 return offset == uint64_t(-1) ? os->size : offset;
189 }
190 case Regular:
191 case Synthetic:
192 return cast<InputSection>(this)->getOffset(offset);
193 case EHFrame:
194 // The file crtbeginT.o has relocations pointing to the start of an empty
195 // .eh_frame that is known to be the first in the link. It does that to
196 // identify the start of the output .eh_frame.
197 return offset;
198 case Merge:
199 const MergeInputSection *ms = cast<MergeInputSection>(this);
200 if (InputSection *isec = ms->getParent())
201 return isec->getOffset(ms->getParentOffset(offset));
202 return ms->getParentOffset(offset);
203 }
204 llvm_unreachable("invalid section kind");
205 }
206
getVA(uint64_t offset) const207 uint64_t SectionBase::getVA(uint64_t offset) const {
208 const OutputSection *out = getOutputSection();
209 return (out ? out->addr : 0) + getOffset(offset);
210 }
211
getOutputSection()212 OutputSection *SectionBase::getOutputSection() {
213 InputSection *sec;
214 if (auto *isec = dyn_cast<InputSection>(this))
215 sec = isec;
216 else if (auto *ms = dyn_cast<MergeInputSection>(this))
217 sec = ms->getParent();
218 else if (auto *eh = dyn_cast<EhInputSection>(this))
219 sec = eh->getParent();
220 else
221 return cast<OutputSection>(this);
222 return sec ? sec->getParent() : nullptr;
223 }
224
225 // When a section is compressed, `rawData` consists with a header followed
226 // by zlib-compressed data. This function parses a header to initialize
227 // `uncompressedSize` member and remove the header from `rawData`.
parseCompressedHeader()228 template <typename ELFT> void InputSectionBase::parseCompressedHeader() {
229 // Old-style header
230 if (name.startswith(".zdebug")) {
231 if (!toStringRef(rawData).startswith("ZLIB")) {
232 error(toString(this) + ": corrupted compressed section header");
233 return;
234 }
235 rawData = rawData.slice(4);
236
237 if (rawData.size() < 8) {
238 error(toString(this) + ": corrupted compressed section header");
239 return;
240 }
241
242 uncompressedSize = read64be(rawData.data());
243 rawData = rawData.slice(8);
244
245 // Restore the original section name.
246 // (e.g. ".zdebug_info" -> ".debug_info")
247 name = saver.save("." + name.substr(2));
248 return;
249 }
250
251 assert(flags & SHF_COMPRESSED);
252 flags &= ~(uint64_t)SHF_COMPRESSED;
253
254 // New-style header
255 if (rawData.size() < sizeof(typename ELFT::Chdr)) {
256 error(toString(this) + ": corrupted compressed section");
257 return;
258 }
259
260 auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(rawData.data());
261 if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
262 error(toString(this) + ": unsupported compression type");
263 return;
264 }
265
266 uncompressedSize = hdr->ch_size;
267 alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
268 rawData = rawData.slice(sizeof(*hdr));
269 }
270
getLinkOrderDep() const271 InputSection *InputSectionBase::getLinkOrderDep() const {
272 assert(flags & SHF_LINK_ORDER);
273 if (!link)
274 return nullptr;
275 return cast<InputSection>(file->getSections()[link]);
276 }
277
278 // Find a function symbol that encloses a given location.
279 template <class ELFT>
getEnclosingFunction(uint64_t offset)280 Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) {
281 for (Symbol *b : file->getSymbols())
282 if (Defined *d = dyn_cast<Defined>(b))
283 if (d->section == this && d->type == STT_FUNC && d->value <= offset &&
284 offset < d->value + d->size)
285 return d;
286 return nullptr;
287 }
288
289 // Returns a source location string. Used to construct an error message.
290 template <class ELFT>
getLocation(uint64_t offset)291 std::string InputSectionBase::getLocation(uint64_t offset) {
292 std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str();
293
294 // We don't have file for synthetic sections.
295 if (getFile<ELFT>() == nullptr)
296 return (config->outputFile + ":(" + secAndOffset + ")")
297 .str();
298
299 // First check if we can get desired values from debugging information.
300 if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset))
301 return info->FileName + ":" + std::to_string(info->Line) + ":(" +
302 secAndOffset + ")";
303
304 // File->sourceFile contains STT_FILE symbol that contains a
305 // source file name. If it's missing, we use an object file name.
306 std::string srcFile = std::string(getFile<ELFT>()->sourceFile);
307 if (srcFile.empty())
308 srcFile = toString(file);
309
310 if (Defined *d = getEnclosingFunction<ELFT>(offset))
311 return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")";
312
313 // If there's no symbol, print out the offset in the section.
314 return (srcFile + ":(" + secAndOffset + ")");
315 }
316
317 // This function is intended to be used for constructing an error message.
318 // The returned message looks like this:
319 //
320 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
321 //
322 // Returns an empty string if there's no way to get line info.
getSrcMsg(const Symbol & sym,uint64_t offset)323 std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) {
324 return file->getSrcMsg(sym, *this, offset);
325 }
326
327 // Returns a filename string along with an optional section name. This
328 // function is intended to be used for constructing an error
329 // message. The returned message looks like this:
330 //
331 // path/to/foo.o:(function bar)
332 //
333 // or
334 //
335 // path/to/foo.o:(function bar) in archive path/to/bar.a
getObjMsg(uint64_t off)336 std::string InputSectionBase::getObjMsg(uint64_t off) {
337 std::string filename = std::string(file->getName());
338
339 std::string archive;
340 if (!file->archiveName.empty())
341 archive = " in archive " + file->archiveName;
342
343 // Find a symbol that encloses a given location.
344 for (Symbol *b : file->getSymbols())
345 if (auto *d = dyn_cast<Defined>(b))
346 if (d->section == this && d->value <= off && off < d->value + d->size)
347 return filename + ":(" + toString(*d) + ")" + archive;
348
349 // If there's no symbol, print out the offset in the section.
350 return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
351 .str();
352 }
353
354 InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
355
InputSection(InputFile * f,uint64_t flags,uint32_t type,uint32_t alignment,ArrayRef<uint8_t> data,StringRef name,Kind k)356 InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
357 uint32_t alignment, ArrayRef<uint8_t> data,
358 StringRef name, Kind k)
359 : InputSectionBase(f, flags, type,
360 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data,
361 name, k) {}
362
363 template <class ELFT>
InputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)364 InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
365 StringRef name)
366 : InputSectionBase(f, header, name, InputSectionBase::Regular) {}
367
classof(const SectionBase * s)368 bool InputSection::classof(const SectionBase *s) {
369 return s->kind() == SectionBase::Regular ||
370 s->kind() == SectionBase::Synthetic;
371 }
372
getParent() const373 OutputSection *InputSection::getParent() const {
374 return cast_or_null<OutputSection>(parent);
375 }
376
377 // Copy SHT_GROUP section contents. Used only for the -r option.
copyShtGroup(uint8_t * buf)378 template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
379 // ELFT::Word is the 32-bit integral type in the target endianness.
380 using u32 = typename ELFT::Word;
381 ArrayRef<u32> from = getDataAs<u32>();
382 auto *to = reinterpret_cast<u32 *>(buf);
383
384 // The first entry is not a section number but a flag.
385 *to++ = from[0];
386
387 // Adjust section numbers because section numbers in an input object files are
388 // different in the output. We also need to handle combined or discarded
389 // members.
390 ArrayRef<InputSectionBase *> sections = file->getSections();
391 std::unordered_set<uint32_t> seen;
392 for (uint32_t idx : from.slice(1)) {
393 OutputSection *osec = sections[idx]->getOutputSection();
394 if (osec && seen.insert(osec->sectionIndex).second)
395 *to++ = osec->sectionIndex;
396 }
397 }
398
getRelocatedSection() const399 InputSectionBase *InputSection::getRelocatedSection() const {
400 if (!file || (type != SHT_RELA && type != SHT_REL))
401 return nullptr;
402 ArrayRef<InputSectionBase *> sections = file->getSections();
403 return sections[info];
404 }
405
406 // This is used for -r and --emit-relocs. We can't use memcpy to copy
407 // relocations because we need to update symbol table offset and section index
408 // for each relocation. So we copy relocations one by one.
409 template <class ELFT, class RelTy>
copyRelocations(uint8_t * buf,ArrayRef<RelTy> rels)410 void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) {
411 InputSectionBase *sec = getRelocatedSection();
412
413 for (const RelTy &rel : rels) {
414 RelType type = rel.getType(config->isMips64EL);
415 const ObjFile<ELFT> *file = getFile<ELFT>();
416 Symbol &sym = file->getRelocTargetSym(rel);
417
418 auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
419 buf += sizeof(RelTy);
420
421 if (RelTy::IsRela)
422 p->r_addend = getAddend<ELFT>(rel);
423
424 // Output section VA is zero for -r, so r_offset is an offset within the
425 // section, but for --emit-relocs it is a virtual address.
426 p->r_offset = sec->getVA(rel.r_offset);
427 p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type,
428 config->isMips64EL);
429
430 if (sym.type == STT_SECTION) {
431 // We combine multiple section symbols into only one per
432 // section. This means we have to update the addend. That is
433 // trivial for Elf_Rela, but for Elf_Rel we have to write to the
434 // section data. We do that by adding to the Relocation vector.
435
436 // .eh_frame is horribly special and can reference discarded sections. To
437 // avoid having to parse and recreate .eh_frame, we just replace any
438 // relocation in it pointing to discarded sections with R_*_NONE, which
439 // hopefully creates a frame that is ignored at runtime. Also, don't warn
440 // on .gcc_except_table and debug sections.
441 //
442 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
443 auto *d = dyn_cast<Defined>(&sym);
444 if (!d) {
445 if (!isDebugSection(*sec) && sec->name != ".eh_frame" &&
446 sec->name != ".gcc_except_table" && sec->name != ".got2" &&
447 sec->name != ".toc") {
448 uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
449 Elf_Shdr_Impl<ELFT> sec =
450 CHECK(file->getObj().sections(), file)[secIdx];
451 warn("relocation refers to a discarded section: " +
452 CHECK(file->getObj().getSectionName(sec), file) +
453 "\n>>> referenced by " + getObjMsg(p->r_offset));
454 }
455 p->setSymbolAndType(0, 0, false);
456 continue;
457 }
458 SectionBase *section = d->section->repl;
459 if (!section->isLive()) {
460 p->setSymbolAndType(0, 0, false);
461 continue;
462 }
463
464 int64_t addend = getAddend<ELFT>(rel);
465 const uint8_t *bufLoc = sec->data().begin() + rel.r_offset;
466 if (!RelTy::IsRela)
467 addend = target->getImplicitAddend(bufLoc, type);
468
469 if (config->emachine == EM_MIPS &&
470 target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
471 // Some MIPS relocations depend on "gp" value. By default,
472 // this value has 0x7ff0 offset from a .got section. But
473 // relocatable files produced by a compiler or a linker
474 // might redefine this default value and we must use it
475 // for a calculation of the relocation result. When we
476 // generate EXE or DSO it's trivial. Generating a relocatable
477 // output is more difficult case because the linker does
478 // not calculate relocations in this mode and loses
479 // individual "gp" values used by each input object file.
480 // As a workaround we add the "gp" value to the relocation
481 // addend and save it back to the file.
482 addend += sec->getFile<ELFT>()->mipsGp0;
483 }
484
485 if (RelTy::IsRela)
486 p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
487 else if (config->relocatable && type != target->noneRel)
488 sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym});
489 } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
490 p->r_addend >= 0x8000) {
491 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
492 // indicates that r30 is relative to the input section .got2
493 // (r_addend>=0x8000), after linking, r30 should be relative to the output
494 // section .got2 . To compensate for the shift, adjust r_addend by
495 // ppc32Got2OutSecOff.
496 p->r_addend += sec->file->ppc32Got2OutSecOff;
497 }
498 }
499 }
500
501 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
502 // references specially. The general rule is that the value of the symbol in
503 // this context is the address of the place P. A further special case is that
504 // branch relocations to an undefined weak reference resolve to the next
505 // instruction.
getARMUndefinedRelativeWeakVA(RelType type,uint32_t a,uint32_t p)506 static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
507 uint32_t p) {
508 switch (type) {
509 // Unresolved branch relocations to weak references resolve to next
510 // instruction, this will be either 2 or 4 bytes on from P.
511 case R_ARM_THM_JUMP11:
512 return p + 2 + a;
513 case R_ARM_CALL:
514 case R_ARM_JUMP24:
515 case R_ARM_PC24:
516 case R_ARM_PLT32:
517 case R_ARM_PREL31:
518 case R_ARM_THM_JUMP19:
519 case R_ARM_THM_JUMP24:
520 return p + 4 + a;
521 case R_ARM_THM_CALL:
522 // We don't want an interworking BLX to ARM
523 return p + 5 + a;
524 // Unresolved non branch pc-relative relocations
525 // R_ARM_TARGET2 which can be resolved relatively is not present as it never
526 // targets a weak-reference.
527 case R_ARM_MOVW_PREL_NC:
528 case R_ARM_MOVT_PREL:
529 case R_ARM_REL32:
530 case R_ARM_THM_ALU_PREL_11_0:
531 case R_ARM_THM_MOVW_PREL_NC:
532 case R_ARM_THM_MOVT_PREL:
533 case R_ARM_THM_PC12:
534 return p + a;
535 // p + a is unrepresentable as negative immediates can't be encoded.
536 case R_ARM_THM_PC8:
537 return p;
538 }
539 llvm_unreachable("ARM pc-relative relocation expected\n");
540 }
541
542 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
getAArch64UndefinedRelativeWeakVA(uint64_t type,uint64_t p)543 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
544 switch (type) {
545 // Unresolved branch relocations to weak references resolve to next
546 // instruction, this is 4 bytes on from P.
547 case R_AARCH64_CALL26:
548 case R_AARCH64_CONDBR19:
549 case R_AARCH64_JUMP26:
550 case R_AARCH64_TSTBR14:
551 return p + 4;
552 // Unresolved non branch pc-relative relocations
553 case R_AARCH64_PREL16:
554 case R_AARCH64_PREL32:
555 case R_AARCH64_PREL64:
556 case R_AARCH64_ADR_PREL_LO21:
557 case R_AARCH64_LD_PREL_LO19:
558 case R_AARCH64_PLT32:
559 return p;
560 }
561 llvm_unreachable("AArch64 pc-relative relocation expected\n");
562 }
563
getRISCVUndefinedRelativeWeakVA(uint64_t type,uint64_t p)564 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
565 switch (type) {
566 case R_RISCV_BRANCH:
567 case R_RISCV_JAL:
568 case R_RISCV_CALL:
569 case R_RISCV_CALL_PLT:
570 case R_RISCV_RVC_BRANCH:
571 case R_RISCV_RVC_JUMP:
572 return p;
573 default:
574 return 0;
575 }
576 }
577
578 // ARM SBREL relocations are of the form S + A - B where B is the static base
579 // The ARM ABI defines base to be "addressing origin of the output segment
580 // defining the symbol S". We defined the "addressing origin"/static base to be
581 // the base of the PT_LOAD segment containing the Sym.
582 // The procedure call standard only defines a Read Write Position Independent
583 // RWPI variant so in practice we should expect the static base to be the base
584 // of the RW segment.
getARMStaticBase(const Symbol & sym)585 static uint64_t getARMStaticBase(const Symbol &sym) {
586 OutputSection *os = sym.getOutputSection();
587 if (!os || !os->ptLoad || !os->ptLoad->firstSec)
588 fatal("SBREL relocation to " + sym.getName() + " without static base");
589 return os->ptLoad->firstSec->addr;
590 }
591
592 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
593 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
594 // is calculated using PCREL_HI20's symbol.
595 //
596 // This function returns the R_RISCV_PCREL_HI20 relocation from
597 // R_RISCV_PCREL_LO12's symbol and addend.
getRISCVPCRelHi20(const Symbol * sym,uint64_t addend)598 static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
599 const Defined *d = cast<Defined>(sym);
600 if (!d->section) {
601 error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
602 sym->getName());
603 return nullptr;
604 }
605 InputSection *isec = cast<InputSection>(d->section);
606
607 if (addend != 0)
608 warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
609 isec->getObjMsg(d->value) + " is ignored");
610
611 // Relocations are sorted by offset, so we can use std::equal_range to do
612 // binary search.
613 Relocation r;
614 r.offset = d->value;
615 auto range =
616 std::equal_range(isec->relocations.begin(), isec->relocations.end(), r,
617 [](const Relocation &lhs, const Relocation &rhs) {
618 return lhs.offset < rhs.offset;
619 });
620
621 for (auto it = range.first; it != range.second; ++it)
622 if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
623 it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
624 return &*it;
625
626 error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) +
627 " without an associated R_RISCV_PCREL_HI20 relocation");
628 return nullptr;
629 }
630
631 // A TLS symbol's virtual address is relative to the TLS segment. Add a
632 // target-specific adjustment to produce a thread-pointer-relative offset.
getTlsTpOffset(const Symbol & s)633 static int64_t getTlsTpOffset(const Symbol &s) {
634 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
635 if (&s == ElfSym::tlsModuleBase)
636 return 0;
637
638 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
639 // while most others use Variant 1. At run time TP will be aligned to p_align.
640
641 // Variant 1. TP will be followed by an optional gap (which is the size of 2
642 // pointers on ARM/AArch64, 0 on other targets), followed by alignment
643 // padding, then the static TLS blocks. The alignment padding is added so that
644 // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
645 //
646 // Variant 2. Static TLS blocks, followed by alignment padding are placed
647 // before TP. The alignment padding is added so that (TP - padding -
648 // p_memsz) is congruent to p_vaddr modulo p_align.
649 PhdrEntry *tls = Out::tlsPhdr;
650 switch (config->emachine) {
651 // Variant 1.
652 case EM_ARM:
653 case EM_AARCH64:
654 return s.getVA(0) + config->wordsize * 2 +
655 ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
656 case EM_MIPS:
657 case EM_PPC:
658 case EM_PPC64:
659 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
660 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
661 // data and 0xf000 of the program's TLS segment.
662 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
663 case EM_RISCV:
664 return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));
665
666 // Variant 2.
667 case EM_HEXAGON:
668 case EM_SPARCV9:
669 case EM_386:
670 case EM_X86_64:
671 return s.getVA(0) - tls->p_memsz -
672 ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
673 default:
674 llvm_unreachable("unhandled Config->EMachine");
675 }
676 }
677
getRelocTargetVA(const InputFile * file,RelType type,int64_t a,uint64_t p,const Symbol & sym,RelExpr expr)678 uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type,
679 int64_t a, uint64_t p,
680 const Symbol &sym, RelExpr expr) {
681 switch (expr) {
682 case R_ABS:
683 case R_DTPREL:
684 case R_RELAX_TLS_LD_TO_LE_ABS:
685 case R_RELAX_GOT_PC_NOPIC:
686 case R_RISCV_ADD:
687 return sym.getVA(a);
688 case R_ADDEND:
689 return a;
690 case R_ARM_SBREL:
691 return sym.getVA(a) - getARMStaticBase(sym);
692 case R_GOT:
693 case R_RELAX_TLS_GD_TO_IE_ABS:
694 return sym.getGotVA() + a;
695 case R_GOTONLY_PC:
696 return in.got->getVA() + a - p;
697 case R_GOTPLTONLY_PC:
698 return in.gotPlt->getVA() + a - p;
699 case R_GOTREL:
700 case R_PPC64_RELAX_TOC:
701 return sym.getVA(a) - in.got->getVA();
702 case R_GOTPLTREL:
703 return sym.getVA(a) - in.gotPlt->getVA();
704 case R_GOTPLT:
705 case R_RELAX_TLS_GD_TO_IE_GOTPLT:
706 return sym.getGotVA() + a - in.gotPlt->getVA();
707 case R_TLSLD_GOT_OFF:
708 case R_GOT_OFF:
709 case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
710 return sym.getGotOffset() + a;
711 case R_AARCH64_GOT_PAGE_PC:
712 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
713 return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
714 case R_AARCH64_GOT_PAGE:
715 return sym.getGotVA() + a - getAArch64Page(in.got->getVA());
716 case R_GOT_PC:
717 case R_RELAX_TLS_GD_TO_IE:
718 return sym.getGotVA() + a - p;
719 case R_MIPS_GOTREL:
720 return sym.getVA(a) - in.mipsGot->getGp(file);
721 case R_MIPS_GOT_GP:
722 return in.mipsGot->getGp(file) + a;
723 case R_MIPS_GOT_GP_PC: {
724 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
725 // is _gp_disp symbol. In that case we should use the following
726 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
727 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
728 // microMIPS variants of these relocations use slightly different
729 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
730 // to correctly handle less-significant bit of the microMIPS symbol.
731 uint64_t v = in.mipsGot->getGp(file) + a - p;
732 if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
733 v += 4;
734 if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
735 v -= 1;
736 return v;
737 }
738 case R_MIPS_GOT_LOCAL_PAGE:
739 // If relocation against MIPS local symbol requires GOT entry, this entry
740 // should be initialized by 'page address'. This address is high 16-bits
741 // of sum the symbol's value and the addend.
742 return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
743 in.mipsGot->getGp(file);
744 case R_MIPS_GOT_OFF:
745 case R_MIPS_GOT_OFF32:
746 // In case of MIPS if a GOT relocation has non-zero addend this addend
747 // should be applied to the GOT entry content not to the GOT entry offset.
748 // That is why we use separate expression type.
749 return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
750 in.mipsGot->getGp(file);
751 case R_MIPS_TLSGD:
752 return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
753 in.mipsGot->getGp(file);
754 case R_MIPS_TLSLD:
755 return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
756 in.mipsGot->getGp(file);
757 case R_AARCH64_PAGE_PC: {
758 uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
759 return getAArch64Page(val) - getAArch64Page(p);
760 }
761 case R_RISCV_PC_INDIRECT: {
762 if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
763 return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
764 *hiRel->sym, hiRel->expr);
765 return 0;
766 }
767 case R_PC:
768 case R_ARM_PCA: {
769 uint64_t dest;
770 if (expr == R_ARM_PCA)
771 // Some PC relative ARM (Thumb) relocations align down the place.
772 p = p & 0xfffffffc;
773 if (sym.isUndefWeak()) {
774 // On ARM and AArch64 a branch to an undefined weak resolves to the next
775 // instruction, otherwise the place. On RISCV, resolve an undefined weak
776 // to the same instruction to cause an infinite loop (making the user
777 // aware of the issue) while ensuring no overflow.
778 if (config->emachine == EM_ARM)
779 dest = getARMUndefinedRelativeWeakVA(type, a, p);
780 else if (config->emachine == EM_AARCH64)
781 dest = getAArch64UndefinedRelativeWeakVA(type, p) + a;
782 else if (config->emachine == EM_PPC)
783 dest = p;
784 else if (config->emachine == EM_RISCV)
785 dest = getRISCVUndefinedRelativeWeakVA(type, p) + a;
786 else
787 dest = sym.getVA(a);
788 } else {
789 dest = sym.getVA(a);
790 }
791 return dest - p;
792 }
793 case R_PLT:
794 return sym.getPltVA() + a;
795 case R_PLT_PC:
796 case R_PPC64_CALL_PLT:
797 return sym.getPltVA() + a - p;
798 case R_PPC32_PLTREL:
799 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
800 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
801 // target VA computation.
802 return sym.getPltVA() - p;
803 case R_PPC64_CALL: {
804 uint64_t symVA = sym.getVA(a);
805 // If we have an undefined weak symbol, we might get here with a symbol
806 // address of zero. That could overflow, but the code must be unreachable,
807 // so don't bother doing anything at all.
808 if (!symVA)
809 return 0;
810
811 // PPC64 V2 ABI describes two entry points to a function. The global entry
812 // point is used for calls where the caller and callee (may) have different
813 // TOC base pointers and r2 needs to be modified to hold the TOC base for
814 // the callee. For local calls the caller and callee share the same
815 // TOC base and so the TOC pointer initialization code should be skipped by
816 // branching to the local entry point.
817 return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
818 }
819 case R_PPC64_TOCBASE:
820 return getPPC64TocBase() + a;
821 case R_RELAX_GOT_PC:
822 case R_PPC64_RELAX_GOT_PC:
823 return sym.getVA(a) - p;
824 case R_RELAX_TLS_GD_TO_LE:
825 case R_RELAX_TLS_IE_TO_LE:
826 case R_RELAX_TLS_LD_TO_LE:
827 case R_TPREL:
828 // It is not very clear what to return if the symbol is undefined. With
829 // --noinhibit-exec, even a non-weak undefined reference may reach here.
830 // Just return A, which matches R_ABS, and the behavior of some dynamic
831 // loaders.
832 if (sym.isUndefined() || sym.isLazy())
833 return a;
834 return getTlsTpOffset(sym) + a;
835 case R_RELAX_TLS_GD_TO_LE_NEG:
836 case R_TPREL_NEG:
837 if (sym.isUndefined())
838 return a;
839 return -getTlsTpOffset(sym) + a;
840 case R_SIZE:
841 return sym.getSize() + a;
842 case R_TLSDESC:
843 return in.got->getGlobalDynAddr(sym) + a;
844 case R_TLSDESC_PC:
845 return in.got->getGlobalDynAddr(sym) + a - p;
846 case R_AARCH64_TLSDESC_PAGE:
847 return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) -
848 getAArch64Page(p);
849 case R_TLSGD_GOT:
850 return in.got->getGlobalDynOffset(sym) + a;
851 case R_TLSGD_GOTPLT:
852 return in.got->getGlobalDynAddr(sym) + a - in.gotPlt->getVA();
853 case R_TLSGD_PC:
854 return in.got->getGlobalDynAddr(sym) + a - p;
855 case R_TLSLD_GOTPLT:
856 return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
857 case R_TLSLD_GOT:
858 return in.got->getTlsIndexOff() + a;
859 case R_TLSLD_PC:
860 return in.got->getTlsIndexVA() + a - p;
861 default:
862 llvm_unreachable("invalid expression");
863 }
864 }
865
866 // This function applies relocations to sections without SHF_ALLOC bit.
867 // Such sections are never mapped to memory at runtime. Debug sections are
868 // an example. Relocations in non-alloc sections are much easier to
869 // handle than in allocated sections because it will never need complex
870 // treatment such as GOT or PLT (because at runtime no one refers them).
871 // So, we handle relocations for non-alloc sections directly in this
872 // function as a performance optimization.
873 template <class ELFT, class RelTy>
relocateNonAlloc(uint8_t * buf,ArrayRef<RelTy> rels)874 void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) {
875 const unsigned bits = sizeof(typename ELFT::uint) * 8;
876 const bool isDebug = isDebugSection(*this);
877 const bool isDebugLocOrRanges =
878 isDebug && (name == ".debug_loc" || name == ".debug_ranges");
879 const bool isDebugLine = isDebug && name == ".debug_line";
880 Optional<uint64_t> tombstone;
881 for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc))
882 if (patAndValue.first.match(this->name)) {
883 tombstone = patAndValue.second;
884 break;
885 }
886
887 for (const RelTy &rel : rels) {
888 RelType type = rel.getType(config->isMips64EL);
889
890 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
891 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
892 // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
893 // need to keep this bug-compatible code for a while.
894 if (config->emachine == EM_386 && type == R_386_GOTPC)
895 continue;
896
897 uint64_t offset = rel.r_offset;
898 uint8_t *bufLoc = buf + offset;
899 int64_t addend = getAddend<ELFT>(rel);
900 if (!RelTy::IsRela)
901 addend += target->getImplicitAddend(bufLoc, type);
902
903 Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel);
904 RelExpr expr = target->getRelExpr(type, sym, bufLoc);
905 if (expr == R_NONE)
906 continue;
907
908 if (expr == R_SIZE) {
909 target->relocateNoSym(bufLoc, type,
910 SignExtend64<bits>(sym.getSize() + addend));
911 continue;
912 }
913
914 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
915 // sections.
916 if (expr != R_ABS && expr != R_DTPREL && expr != R_GOTPLTREL &&
917 expr != R_RISCV_ADD) {
918 std::string msg = getLocation<ELFT>(offset) +
919 ": has non-ABS relocation " + toString(type) +
920 " against symbol '" + toString(sym) + "'";
921 if (expr != R_PC && expr != R_ARM_PCA) {
922 error(msg);
923 return;
924 }
925
926 // If the control reaches here, we found a PC-relative relocation in a
927 // non-ALLOC section. Since non-ALLOC section is not loaded into memory
928 // at runtime, the notion of PC-relative doesn't make sense here. So,
929 // this is a usage error. However, GNU linkers historically accept such
930 // relocations without any errors and relocate them as if they were at
931 // address 0. For bug-compatibilty, we accept them with warnings. We
932 // know Steel Bank Common Lisp as of 2018 have this bug.
933 warn(msg);
934 target->relocateNoSym(
935 bufLoc, type,
936 SignExtend64<bits>(sym.getVA(addend - offset - outSecOff)));
937 continue;
938 }
939
940 if (tombstone ||
941 (isDebug && (type == target->symbolicRel || expr == R_DTPREL))) {
942 // Resolve relocations in .debug_* referencing (discarded symbols or ICF
943 // folded section symbols) to a tombstone value. Resolving to addend is
944 // unsatisfactory because the result address range may collide with a
945 // valid range of low address, or leave multiple CUs claiming ownership of
946 // the same range of code, which may confuse consumers.
947 //
948 // To address the problems, we use -1 as a tombstone value for most
949 // .debug_* sections. We have to ignore the addend because we don't want
950 // to resolve an address attribute (which may have a non-zero addend) to
951 // -1+addend (wrap around to a low address).
952 //
953 // R_DTPREL type relocations represent an offset into the dynamic thread
954 // vector. The computed value is st_value plus a non-negative offset.
955 // Negative values are invalid, so -1 can be used as the tombstone value.
956 //
957 // If the referenced symbol is discarded (made Undefined), or the
958 // section defining the referenced symbol is garbage collected,
959 // sym.getOutputSection() is nullptr. `ds->section->repl != ds->section`
960 // catches the ICF folded case. However, resolving a relocation in
961 // .debug_line to -1 would stop debugger users from setting breakpoints on
962 // the folded-in function, so exclude .debug_line.
963 //
964 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
965 // (base address selection entry), use 1 (which is used by GNU ld for
966 // .debug_ranges).
967 //
968 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
969 // value. Enable -1 in a future release.
970 auto *ds = dyn_cast<Defined>(&sym);
971 if (!sym.getOutputSection() ||
972 (ds && ds->section->repl != ds->section && !isDebugLine)) {
973 // If -z dead-reloc-in-nonalloc= is specified, respect it.
974 const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone)
975 : (isDebugLocOrRanges ? 1 : 0);
976 target->relocateNoSym(bufLoc, type, value);
977 continue;
978 }
979 }
980 target->relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
981 }
982 }
983
984 // This is used when '-r' is given.
985 // For REL targets, InputSection::copyRelocations() may store artificial
986 // relocations aimed to update addends. They are handled in relocateAlloc()
987 // for allocatable sections, and this function does the same for
988 // non-allocatable sections, such as sections with debug information.
relocateNonAllocForRelocatable(InputSection * sec,uint8_t * buf)989 static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) {
990 const unsigned bits = config->is64 ? 64 : 32;
991
992 for (const Relocation &rel : sec->relocations) {
993 // InputSection::copyRelocations() adds only R_ABS relocations.
994 assert(rel.expr == R_ABS);
995 uint8_t *bufLoc = buf + rel.offset;
996 uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits);
997 target->relocate(bufLoc, rel, targetVA);
998 }
999 }
1000
1001 template <class ELFT>
relocate(uint8_t * buf,uint8_t * bufEnd)1002 void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
1003 if (flags & SHF_EXECINSTR)
1004 adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);
1005
1006 if (flags & SHF_ALLOC) {
1007 relocateAlloc(buf, bufEnd);
1008 return;
1009 }
1010
1011 auto *sec = cast<InputSection>(this);
1012 if (config->relocatable)
1013 relocateNonAllocForRelocatable(sec, buf);
1014 else if (sec->areRelocsRela)
1015 sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>());
1016 else
1017 sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>());
1018 }
1019
relocateAlloc(uint8_t * buf,uint8_t * bufEnd)1020 void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) {
1021 assert(flags & SHF_ALLOC);
1022 const unsigned bits = config->wordsize * 8;
1023 uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1);
1024
1025 for (const Relocation &rel : relocations) {
1026 if (rel.expr == R_NONE)
1027 continue;
1028 uint64_t offset = rel.offset;
1029 uint8_t *bufLoc = buf + offset;
1030 RelType type = rel.type;
1031
1032 uint64_t addrLoc = getOutputSection()->addr + offset;
1033 if (auto *sec = dyn_cast<InputSection>(this))
1034 addrLoc += sec->outSecOff;
1035 RelExpr expr = rel.expr;
1036 uint64_t targetVA = SignExtend64(
1037 getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr),
1038 bits);
1039
1040 switch (expr) {
1041 case R_RELAX_GOT_PC:
1042 case R_RELAX_GOT_PC_NOPIC:
1043 target->relaxGot(bufLoc, rel, targetVA);
1044 break;
1045 case R_PPC64_RELAX_GOT_PC: {
1046 // The R_PPC64_PCREL_OPT relocation must appear immediately after
1047 // R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
1048 // We can only relax R_PPC64_PCREL_OPT if we have also relaxed
1049 // the associated R_PPC64_GOT_PCREL34 since only the latter has an
1050 // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
1051 // and only relax the other if the saved offset matches.
1052 if (type == R_PPC64_GOT_PCREL34)
1053 lastPPCRelaxedRelocOff = offset;
1054 if (type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff)
1055 break;
1056 target->relaxGot(bufLoc, rel, targetVA);
1057 break;
1058 }
1059 case R_PPC64_RELAX_TOC:
1060 // rel.sym refers to the STT_SECTION symbol associated to the .toc input
1061 // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
1062 // entry, there may be R_PPC64_TOC16_HA not paired with
1063 // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
1064 // opportunities but is safe.
1065 if (ppc64noTocRelax.count({rel.sym, rel.addend}) ||
1066 !tryRelaxPPC64TocIndirection(rel, bufLoc))
1067 target->relocate(bufLoc, rel, targetVA);
1068 break;
1069 case R_RELAX_TLS_IE_TO_LE:
1070 target->relaxTlsIeToLe(bufLoc, rel, targetVA);
1071 break;
1072 case R_RELAX_TLS_LD_TO_LE:
1073 case R_RELAX_TLS_LD_TO_LE_ABS:
1074 target->relaxTlsLdToLe(bufLoc, rel, targetVA);
1075 break;
1076 case R_RELAX_TLS_GD_TO_LE:
1077 case R_RELAX_TLS_GD_TO_LE_NEG:
1078 target->relaxTlsGdToLe(bufLoc, rel, targetVA);
1079 break;
1080 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
1081 case R_RELAX_TLS_GD_TO_IE:
1082 case R_RELAX_TLS_GD_TO_IE_ABS:
1083 case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
1084 case R_RELAX_TLS_GD_TO_IE_GOTPLT:
1085 target->relaxTlsGdToIe(bufLoc, rel, targetVA);
1086 break;
1087 case R_PPC64_CALL:
1088 // If this is a call to __tls_get_addr, it may be part of a TLS
1089 // sequence that has been relaxed and turned into a nop. In this
1090 // case, we don't want to handle it as a call.
1091 if (read32(bufLoc) == 0x60000000) // nop
1092 break;
1093
1094 // Patch a nop (0x60000000) to a ld.
1095 if (rel.sym->needsTocRestore) {
1096 // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
1097 // recursive calls even if the function is preemptible. This is not
1098 // wrong in the common case where the function is not preempted at
1099 // runtime. Just ignore.
1100 if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) &&
1101 rel.sym->file != file) {
1102 // Use substr(6) to remove the "__plt_" prefix.
1103 errorOrWarn(getErrorLocation(bufLoc) + "call to " +
1104 lld::toString(*rel.sym).substr(6) +
1105 " lacks nop, can't restore toc");
1106 break;
1107 }
1108 write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
1109 }
1110 target->relocate(bufLoc, rel, targetVA);
1111 break;
1112 default:
1113 target->relocate(bufLoc, rel, targetVA);
1114 break;
1115 }
1116 }
1117
1118 // Apply jumpInstrMods. jumpInstrMods are created when the opcode of
1119 // a jmp insn must be modified to shrink the jmp insn or to flip the jmp
1120 // insn. This is primarily used to relax and optimize jumps created with
1121 // basic block sections.
1122 if (isa<InputSection>(this)) {
1123 for (const JumpInstrMod &jumpMod : jumpInstrMods) {
1124 uint64_t offset = jumpMod.offset;
1125 uint8_t *bufLoc = buf + offset;
1126 target->applyJumpInstrMod(bufLoc, jumpMod.original, jumpMod.size);
1127 }
1128 }
1129 }
1130
1131 // For each function-defining prologue, find any calls to __morestack,
1132 // and replace them with calls to __morestack_non_split.
switchMorestackCallsToMorestackNonSplit(DenseSet<Defined * > & prologues,std::vector<Relocation * > & morestackCalls)1133 static void switchMorestackCallsToMorestackNonSplit(
1134 DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) {
1135
1136 // If the target adjusted a function's prologue, all calls to
1137 // __morestack inside that function should be switched to
1138 // __morestack_non_split.
1139 Symbol *moreStackNonSplit = symtab->find("__morestack_non_split");
1140 if (!moreStackNonSplit) {
1141 error("Mixing split-stack objects requires a definition of "
1142 "__morestack_non_split");
1143 return;
1144 }
1145
1146 // Sort both collections to compare addresses efficiently.
1147 llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
1148 return l->offset < r->offset;
1149 });
1150 std::vector<Defined *> functions(prologues.begin(), prologues.end());
1151 llvm::sort(functions, [](const Defined *l, const Defined *r) {
1152 return l->value < r->value;
1153 });
1154
1155 auto it = morestackCalls.begin();
1156 for (Defined *f : functions) {
1157 // Find the first call to __morestack within the function.
1158 while (it != morestackCalls.end() && (*it)->offset < f->value)
1159 ++it;
1160 // Adjust all calls inside the function.
1161 while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
1162 (*it)->sym = moreStackNonSplit;
1163 ++it;
1164 }
1165 }
1166 }
1167
enclosingPrologueAttempted(uint64_t offset,const DenseSet<Defined * > & prologues)1168 static bool enclosingPrologueAttempted(uint64_t offset,
1169 const DenseSet<Defined *> &prologues) {
1170 for (Defined *f : prologues)
1171 if (f->value <= offset && offset < f->value + f->size)
1172 return true;
1173 return false;
1174 }
1175
1176 // If a function compiled for split stack calls a function not
1177 // compiled for split stack, then the caller needs its prologue
1178 // adjusted to ensure that the called function will have enough stack
1179 // available. Find those functions, and adjust their prologues.
1180 template <class ELFT>
adjustSplitStackFunctionPrologues(uint8_t * buf,uint8_t * end)1181 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
1182 uint8_t *end) {
1183 if (!getFile<ELFT>()->splitStack)
1184 return;
1185 DenseSet<Defined *> prologues;
1186 std::vector<Relocation *> morestackCalls;
1187
1188 for (Relocation &rel : relocations) {
1189 // Local symbols can't possibly be cross-calls, and should have been
1190 // resolved long before this line.
1191 if (rel.sym->isLocal())
1192 continue;
1193
1194 // Ignore calls into the split-stack api.
1195 if (rel.sym->getName().startswith("__morestack")) {
1196 if (rel.sym->getName().equals("__morestack"))
1197 morestackCalls.push_back(&rel);
1198 continue;
1199 }
1200
1201 // A relocation to non-function isn't relevant. Sometimes
1202 // __morestack is not marked as a function, so this check comes
1203 // after the name check.
1204 if (rel.sym->type != STT_FUNC)
1205 continue;
1206
1207 // If the callee's-file was compiled with split stack, nothing to do. In
1208 // this context, a "Defined" symbol is one "defined by the binary currently
1209 // being produced". So an "undefined" symbol might be provided by a shared
1210 // library. It is not possible to tell how such symbols were compiled, so be
1211 // conservative.
1212 if (Defined *d = dyn_cast<Defined>(rel.sym))
1213 if (InputSection *isec = cast_or_null<InputSection>(d->section))
1214 if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
1215 continue;
1216
1217 if (enclosingPrologueAttempted(rel.offset, prologues))
1218 continue;
1219
1220 if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) {
1221 prologues.insert(f);
1222 if (target->adjustPrologueForCrossSplitStack(buf + f->value, end,
1223 f->stOther))
1224 continue;
1225 if (!getFile<ELFT>()->someNoSplitStack)
1226 error(lld::toString(this) + ": " + f->getName() +
1227 " (with -fsplit-stack) calls " + rel.sym->getName() +
1228 " (without -fsplit-stack), but couldn't adjust its prologue");
1229 }
1230 }
1231
1232 if (target->needsMoreStackNonSplit)
1233 switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
1234 }
1235
writeTo(uint8_t * buf)1236 template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
1237 if (type == SHT_NOBITS)
1238 return;
1239
1240 if (auto *s = dyn_cast<SyntheticSection>(this)) {
1241 s->writeTo(buf + outSecOff);
1242 return;
1243 }
1244
1245 // If -r or --emit-relocs is given, then an InputSection
1246 // may be a relocation section.
1247 if (type == SHT_RELA) {
1248 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>());
1249 return;
1250 }
1251 if (type == SHT_REL) {
1252 copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>());
1253 return;
1254 }
1255
1256 // If -r is given, we may have a SHT_GROUP section.
1257 if (type == SHT_GROUP) {
1258 copyShtGroup<ELFT>(buf + outSecOff);
1259 return;
1260 }
1261
1262 // If this is a compressed section, uncompress section contents directly
1263 // to the buffer.
1264 if (uncompressedSize >= 0) {
1265 size_t size = uncompressedSize;
1266 if (Error e = zlib::uncompress(toStringRef(rawData),
1267 (char *)(buf + outSecOff), size))
1268 fatal(toString(this) +
1269 ": uncompress failed: " + llvm::toString(std::move(e)));
1270 uint8_t *bufEnd = buf + outSecOff + size;
1271 relocate<ELFT>(buf + outSecOff, bufEnd);
1272 return;
1273 }
1274
1275 // Copy section contents from source object file to output file
1276 // and then apply relocations.
1277 memcpy(buf + outSecOff, data().data(), data().size());
1278 uint8_t *bufEnd = buf + outSecOff + data().size();
1279 relocate<ELFT>(buf + outSecOff, bufEnd);
1280 }
1281
replace(InputSection * other)1282 void InputSection::replace(InputSection *other) {
1283 alignment = std::max(alignment, other->alignment);
1284
1285 // When a section is replaced with another section that was allocated to
1286 // another partition, the replacement section (and its associated sections)
1287 // need to be placed in the main partition so that both partitions will be
1288 // able to access it.
1289 if (partition != other->partition) {
1290 partition = 1;
1291 for (InputSection *isec : dependentSections)
1292 isec->partition = 1;
1293 }
1294
1295 other->repl = repl;
1296 other->markDead();
1297 }
1298
1299 template <class ELFT>
EhInputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)1300 EhInputSection::EhInputSection(ObjFile<ELFT> &f,
1301 const typename ELFT::Shdr &header,
1302 StringRef name)
1303 : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
1304
getParent() const1305 SyntheticSection *EhInputSection::getParent() const {
1306 return cast_or_null<SyntheticSection>(parent);
1307 }
1308
1309 // Returns the index of the first relocation that points to a region between
1310 // Begin and Begin+Size.
1311 template <class IntTy, class RelTy>
getReloc(IntTy begin,IntTy size,const ArrayRef<RelTy> & rels,unsigned & relocI)1312 static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels,
1313 unsigned &relocI) {
1314 // Start search from RelocI for fast access. That works because the
1315 // relocations are sorted in .eh_frame.
1316 for (unsigned n = rels.size(); relocI < n; ++relocI) {
1317 const RelTy &rel = rels[relocI];
1318 if (rel.r_offset < begin)
1319 continue;
1320
1321 if (rel.r_offset < begin + size)
1322 return relocI;
1323 return -1;
1324 }
1325 return -1;
1326 }
1327
1328 // .eh_frame is a sequence of CIE or FDE records.
1329 // This function splits an input section into records and returns them.
split()1330 template <class ELFT> void EhInputSection::split() {
1331 if (areRelocsRela)
1332 split<ELFT>(relas<ELFT>());
1333 else
1334 split<ELFT>(rels<ELFT>());
1335 }
1336
1337 template <class ELFT, class RelTy>
split(ArrayRef<RelTy> rels)1338 void EhInputSection::split(ArrayRef<RelTy> rels) {
1339 // getReloc expects the relocations to be sorted by r_offset. See the comment
1340 // in scanRelocs.
1341 SmallVector<RelTy, 0> storage;
1342 rels = sortRels(rels, storage);
1343
1344 unsigned relI = 0;
1345 for (size_t off = 0, end = data().size(); off != end;) {
1346 size_t size = readEhRecordSize(this, off);
1347 pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI));
1348 // The empty record is the end marker.
1349 if (size == 4)
1350 break;
1351 off += size;
1352 }
1353 }
1354
findNull(StringRef s,size_t entSize)1355 static size_t findNull(StringRef s, size_t entSize) {
1356 // Optimize the common case.
1357 if (entSize == 1)
1358 return s.find(0);
1359
1360 for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
1361 const char *b = s.begin() + i;
1362 if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
1363 return i;
1364 }
1365 return StringRef::npos;
1366 }
1367
getParent() const1368 SyntheticSection *MergeInputSection::getParent() const {
1369 return cast_or_null<SyntheticSection>(parent);
1370 }
1371
1372 // Split SHF_STRINGS section. Such section is a sequence of
1373 // null-terminated strings.
splitStrings(ArrayRef<uint8_t> data,size_t entSize)1374 void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) {
1375 size_t off = 0;
1376 bool isAlloc = flags & SHF_ALLOC;
1377 StringRef s = toStringRef(data);
1378
1379 while (!s.empty()) {
1380 size_t end = findNull(s, entSize);
1381 if (end == StringRef::npos)
1382 fatal(toString(this) + ": string is not null terminated");
1383 size_t size = end + entSize;
1384
1385 pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc);
1386 s = s.substr(size);
1387 off += size;
1388 }
1389 }
1390
1391 // Split non-SHF_STRINGS section. Such section is a sequence of
1392 // fixed size records.
splitNonStrings(ArrayRef<uint8_t> data,size_t entSize)1393 void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
1394 size_t entSize) {
1395 size_t size = data.size();
1396 assert((size % entSize) == 0);
1397 bool isAlloc = flags & SHF_ALLOC;
1398
1399 for (size_t i = 0; i != size; i += entSize)
1400 pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc);
1401 }
1402
1403 template <class ELFT>
MergeInputSection(ObjFile<ELFT> & f,const typename ELFT::Shdr & header,StringRef name)1404 MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
1405 const typename ELFT::Shdr &header,
1406 StringRef name)
1407 : InputSectionBase(f, header, name, InputSectionBase::Merge) {}
1408
MergeInputSection(uint64_t flags,uint32_t type,uint64_t entsize,ArrayRef<uint8_t> data,StringRef name)1409 MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
1410 uint64_t entsize, ArrayRef<uint8_t> data,
1411 StringRef name)
1412 : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
1413 /*Alignment*/ entsize, data, name, SectionBase::Merge) {}
1414
1415 // This function is called after we obtain a complete list of input sections
1416 // that need to be linked. This is responsible to split section contents
1417 // into small chunks for further processing.
1418 //
1419 // Note that this function is called from parallelForEach. This must be
1420 // thread-safe (i.e. no memory allocation from the pools).
splitIntoPieces()1421 void MergeInputSection::splitIntoPieces() {
1422 assert(pieces.empty());
1423
1424 if (flags & SHF_STRINGS)
1425 splitStrings(data(), entsize);
1426 else
1427 splitNonStrings(data(), entsize);
1428 }
1429
getSectionPiece(uint64_t offset)1430 SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) {
1431 if (this->data().size() <= offset)
1432 fatal(toString(this) + ": offset is outside the section");
1433
1434 // If Offset is not at beginning of a section piece, it is not in the map.
1435 // In that case we need to do a binary search of the original section piece vector.
1436 auto it = partition_point(
1437 pieces, [=](SectionPiece p) { return p.inputOff <= offset; });
1438 return &it[-1];
1439 }
1440
1441 // Returns the offset in an output section for a given input offset.
1442 // Because contents of a mergeable section is not contiguous in output,
1443 // it is not just an addition to a base output offset.
getParentOffset(uint64_t offset) const1444 uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
1445 // If Offset is not at beginning of a section piece, it is not in the map.
1446 // In that case we need to search from the original section piece vector.
1447 const SectionPiece &piece = *getSectionPiece(offset);
1448 uint64_t addend = offset - piece.inputOff;
1449 return piece.outputOff + addend;
1450 }
1451
1452 template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1453 StringRef);
1454 template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1455 StringRef);
1456 template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1457 StringRef);
1458 template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1459 StringRef);
1460
1461 template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1462 template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1463 template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1464 template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1465
1466 template void InputSection::writeTo<ELF32LE>(uint8_t *);
1467 template void InputSection::writeTo<ELF32BE>(uint8_t *);
1468 template void InputSection::writeTo<ELF64LE>(uint8_t *);
1469 template void InputSection::writeTo<ELF64BE>(uint8_t *);
1470
1471 template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1472 const ELF32LE::Shdr &, StringRef);
1473 template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1474 const ELF32BE::Shdr &, StringRef);
1475 template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1476 const ELF64LE::Shdr &, StringRef);
1477 template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1478 const ELF64BE::Shdr &, StringRef);
1479
1480 template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1481 const ELF32LE::Shdr &, StringRef);
1482 template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1483 const ELF32BE::Shdr &, StringRef);
1484 template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1485 const ELF64LE::Shdr &, StringRef);
1486 template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1487 const ELF64BE::Shdr &, StringRef);
1488
1489 template void EhInputSection::split<ELF32LE>();
1490 template void EhInputSection::split<ELF32BE>();
1491 template void EhInputSection::split<ELF64LE>();
1492 template void EhInputSection::split<ELF64BE>();
1493