1 //===-- NativeProcessLinux.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "NativeProcessLinux.h"
10
11 #include <cerrno>
12 #include <cstdint>
13 #include <cstring>
14 #include <unistd.h>
15
16 #include <fstream>
17 #include <mutex>
18 #include <sstream>
19 #include <string>
20 #include <unordered_map>
21
22 #include "NativeThreadLinux.h"
23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
24 #include "Plugins/Process/Utility/LinuxProcMaps.h"
25 #include "Procfs.h"
26 #include "lldb/Core/ModuleSpec.h"
27 #include "lldb/Host/Host.h"
28 #include "lldb/Host/HostProcess.h"
29 #include "lldb/Host/ProcessLaunchInfo.h"
30 #include "lldb/Host/PseudoTerminal.h"
31 #include "lldb/Host/ThreadLauncher.h"
32 #include "lldb/Host/common/NativeRegisterContext.h"
33 #include "lldb/Host/linux/Host.h"
34 #include "lldb/Host/linux/Ptrace.h"
35 #include "lldb/Host/linux/Uio.h"
36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
37 #include "lldb/Symbol/ObjectFile.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/State.h"
42 #include "lldb/Utility/Status.h"
43 #include "lldb/Utility/StringExtractor.h"
44 #include "llvm/ADT/ScopeExit.h"
45 #include "llvm/Support/Errno.h"
46 #include "llvm/Support/FileSystem.h"
47 #include "llvm/Support/Threading.h"
48
49 #include <linux/unistd.h>
50 #include <sys/socket.h>
51 #include <sys/syscall.h>
52 #include <sys/types.h>
53 #include <sys/user.h>
54 #include <sys/wait.h>
55
56 #ifdef __aarch64__
57 #include <asm/hwcap.h>
58 #include <sys/auxv.h>
59 #endif
60
61 // Support hardware breakpoints in case it has not been defined
62 #ifndef TRAP_HWBKPT
63 #define TRAP_HWBKPT 4
64 #endif
65
66 #ifndef HWCAP2_MTE
67 #define HWCAP2_MTE (1 << 18)
68 #endif
69
70 using namespace lldb;
71 using namespace lldb_private;
72 using namespace lldb_private::process_linux;
73 using namespace llvm;
74
75 // Private bits we only need internally.
76
ProcessVmReadvSupported()77 static bool ProcessVmReadvSupported() {
78 static bool is_supported;
79 static llvm::once_flag flag;
80
81 llvm::call_once(flag, [] {
82 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
83
84 uint32_t source = 0x47424742;
85 uint32_t dest = 0;
86
87 struct iovec local, remote;
88 remote.iov_base = &source;
89 local.iov_base = &dest;
90 remote.iov_len = local.iov_len = sizeof source;
91
92 // We shall try if cross-process-memory reads work by attempting to read a
93 // value from our own process.
94 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
95 is_supported = (res == sizeof(source) && source == dest);
96 if (is_supported)
97 LLDB_LOG(log,
98 "Detected kernel support for process_vm_readv syscall. "
99 "Fast memory reads enabled.");
100 else
101 LLDB_LOG(log,
102 "syscall process_vm_readv failed (error: {0}). Fast memory "
103 "reads disabled.",
104 llvm::sys::StrError());
105 });
106
107 return is_supported;
108 }
109
MaybeLogLaunchInfo(const ProcessLaunchInfo & info)110 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
111 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
112 if (!log)
113 return;
114
115 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
116 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
117 else
118 LLDB_LOG(log, "leaving STDIN as is");
119
120 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
121 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
122 else
123 LLDB_LOG(log, "leaving STDOUT as is");
124
125 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
126 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
127 else
128 LLDB_LOG(log, "leaving STDERR as is");
129
130 int i = 0;
131 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
132 ++args, ++i)
133 LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
134 }
135
DisplayBytes(StreamString & s,void * bytes,uint32_t count)136 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
137 uint8_t *ptr = (uint8_t *)bytes;
138 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
139 for (uint32_t i = 0; i < loop_count; i++) {
140 s.Printf("[%x]", *ptr);
141 ptr++;
142 }
143 }
144
PtraceDisplayBytes(int & req,void * data,size_t data_size)145 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
146 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
147 if (!log)
148 return;
149 StreamString buf;
150
151 switch (req) {
152 case PTRACE_POKETEXT: {
153 DisplayBytes(buf, &data, 8);
154 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
155 break;
156 }
157 case PTRACE_POKEDATA: {
158 DisplayBytes(buf, &data, 8);
159 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
160 break;
161 }
162 case PTRACE_POKEUSER: {
163 DisplayBytes(buf, &data, 8);
164 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
165 break;
166 }
167 case PTRACE_SETREGS: {
168 DisplayBytes(buf, data, data_size);
169 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
170 break;
171 }
172 case PTRACE_SETFPREGS: {
173 DisplayBytes(buf, data, data_size);
174 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
175 break;
176 }
177 case PTRACE_SETSIGINFO: {
178 DisplayBytes(buf, data, sizeof(siginfo_t));
179 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
180 break;
181 }
182 case PTRACE_SETREGSET: {
183 // Extract iov_base from data, which is a pointer to the struct iovec
184 DisplayBytes(buf, *(void **)data, data_size);
185 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
186 break;
187 }
188 default: {}
189 }
190 }
191
192 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
193 static_assert(sizeof(long) >= k_ptrace_word_size,
194 "Size of long must be larger than ptrace word size");
195
196 // Simple helper function to ensure flags are enabled on the given file
197 // descriptor.
EnsureFDFlags(int fd,int flags)198 static Status EnsureFDFlags(int fd, int flags) {
199 Status error;
200
201 int status = fcntl(fd, F_GETFL);
202 if (status == -1) {
203 error.SetErrorToErrno();
204 return error;
205 }
206
207 if (fcntl(fd, F_SETFL, status | flags) == -1) {
208 error.SetErrorToErrno();
209 return error;
210 }
211
212 return error;
213 }
214
215 // Public Static Methods
216
217 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
Launch(ProcessLaunchInfo & launch_info,NativeDelegate & native_delegate,MainLoop & mainloop) const218 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
219 NativeDelegate &native_delegate,
220 MainLoop &mainloop) const {
221 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
222
223 MaybeLogLaunchInfo(launch_info);
224
225 Status status;
226 ::pid_t pid = ProcessLauncherPosixFork()
227 .LaunchProcess(launch_info, status)
228 .GetProcessId();
229 LLDB_LOG(log, "pid = {0:x}", pid);
230 if (status.Fail()) {
231 LLDB_LOG(log, "failed to launch process: {0}", status);
232 return status.ToError();
233 }
234
235 // Wait for the child process to trap on its call to execve.
236 int wstatus;
237 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
238 assert(wpid == pid);
239 (void)wpid;
240 if (!WIFSTOPPED(wstatus)) {
241 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
242 WaitStatus::Decode(wstatus));
243 return llvm::make_error<StringError>("Could not sync with inferior process",
244 llvm::inconvertibleErrorCode());
245 }
246 LLDB_LOG(log, "inferior started, now in stopped state");
247
248 ProcessInstanceInfo Info;
249 if (!Host::GetProcessInfo(pid, Info)) {
250 return llvm::make_error<StringError>("Cannot get process architecture",
251 llvm::inconvertibleErrorCode());
252 }
253
254 // Set the architecture to the exe architecture.
255 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
256 Info.GetArchitecture().GetArchitectureName());
257
258 status = SetDefaultPtraceOpts(pid);
259 if (status.Fail()) {
260 LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
261 return status.ToError();
262 }
263
264 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
265 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate,
266 Info.GetArchitecture(), mainloop, {pid}));
267 }
268
269 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
Attach(lldb::pid_t pid,NativeProcessProtocol::NativeDelegate & native_delegate,MainLoop & mainloop) const270 NativeProcessLinux::Factory::Attach(
271 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
272 MainLoop &mainloop) const {
273 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
274 LLDB_LOG(log, "pid = {0:x}", pid);
275
276 // Retrieve the architecture for the running process.
277 ProcessInstanceInfo Info;
278 if (!Host::GetProcessInfo(pid, Info)) {
279 return llvm::make_error<StringError>("Cannot get process architecture",
280 llvm::inconvertibleErrorCode());
281 }
282
283 auto tids_or = NativeProcessLinux::Attach(pid);
284 if (!tids_or)
285 return tids_or.takeError();
286
287 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
288 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
289 }
290
291 NativeProcessLinux::Extension
GetSupportedExtensions() const292 NativeProcessLinux::Factory::GetSupportedExtensions() const {
293 NativeProcessLinux::Extension supported =
294 Extension::multiprocess | Extension::fork | Extension::vfork |
295 Extension::pass_signals | Extension::auxv | Extension::libraries_svr4;
296
297 #ifdef __aarch64__
298 // At this point we do not have a process so read auxv directly.
299 if ((getauxval(AT_HWCAP2) & HWCAP2_MTE))
300 supported |= Extension::memory_tagging;
301 #endif
302
303 return supported;
304 }
305
306 // Public Instance Methods
307
NativeProcessLinux(::pid_t pid,int terminal_fd,NativeDelegate & delegate,const ArchSpec & arch,MainLoop & mainloop,llvm::ArrayRef<::pid_t> tids)308 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
309 NativeDelegate &delegate,
310 const ArchSpec &arch, MainLoop &mainloop,
311 llvm::ArrayRef<::pid_t> tids)
312 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch),
313 m_main_loop(mainloop), m_intel_pt_manager(pid) {
314 if (m_terminal_fd != -1) {
315 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
316 assert(status.Success());
317 }
318
319 Status status;
320 m_sigchld_handle = mainloop.RegisterSignal(
321 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
322 assert(m_sigchld_handle && status.Success());
323
324 for (const auto &tid : tids) {
325 NativeThreadLinux &thread = AddThread(tid, /*resume*/ false);
326 ThreadWasCreated(thread);
327 }
328
329 // Let our process instance know the thread has stopped.
330 SetCurrentThreadID(tids[0]);
331 SetState(StateType::eStateStopped, false);
332
333 // Proccess any signals we received before installing our handler
334 SigchldHandler();
335 }
336
Attach(::pid_t pid)337 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
338 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
339
340 Status status;
341 // Use a map to keep track of the threads which we have attached/need to
342 // attach.
343 Host::TidMap tids_to_attach;
344 while (Host::FindProcessThreads(pid, tids_to_attach)) {
345 for (Host::TidMap::iterator it = tids_to_attach.begin();
346 it != tids_to_attach.end();) {
347 if (it->second == false) {
348 lldb::tid_t tid = it->first;
349
350 // Attach to the requested process.
351 // An attach will cause the thread to stop with a SIGSTOP.
352 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
353 // No such thread. The thread may have exited. More error handling
354 // may be needed.
355 if (status.GetError() == ESRCH) {
356 it = tids_to_attach.erase(it);
357 continue;
358 }
359 return status.ToError();
360 }
361
362 int wpid =
363 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
364 // Need to use __WALL otherwise we receive an error with errno=ECHLD At
365 // this point we should have a thread stopped if waitpid succeeds.
366 if (wpid < 0) {
367 // No such thread. The thread may have exited. More error handling
368 // may be needed.
369 if (errno == ESRCH) {
370 it = tids_to_attach.erase(it);
371 continue;
372 }
373 return llvm::errorCodeToError(
374 std::error_code(errno, std::generic_category()));
375 }
376
377 if ((status = SetDefaultPtraceOpts(tid)).Fail())
378 return status.ToError();
379
380 LLDB_LOG(log, "adding tid = {0}", tid);
381 it->second = true;
382 }
383
384 // move the loop forward
385 ++it;
386 }
387 }
388
389 size_t tid_count = tids_to_attach.size();
390 if (tid_count == 0)
391 return llvm::make_error<StringError>("No such process",
392 llvm::inconvertibleErrorCode());
393
394 std::vector<::pid_t> tids;
395 tids.reserve(tid_count);
396 for (const auto &p : tids_to_attach)
397 tids.push_back(p.first);
398 return std::move(tids);
399 }
400
SetDefaultPtraceOpts(lldb::pid_t pid)401 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
402 long ptrace_opts = 0;
403
404 // Have the child raise an event on exit. This is used to keep the child in
405 // limbo until it is destroyed.
406 ptrace_opts |= PTRACE_O_TRACEEXIT;
407
408 // Have the tracer trace threads which spawn in the inferior process.
409 ptrace_opts |= PTRACE_O_TRACECLONE;
410
411 // Have the tracer notify us before execve returns (needed to disable legacy
412 // SIGTRAP generation)
413 ptrace_opts |= PTRACE_O_TRACEEXEC;
414
415 // Have the tracer trace forked children.
416 ptrace_opts |= PTRACE_O_TRACEFORK;
417
418 // Have the tracer trace vforks.
419 ptrace_opts |= PTRACE_O_TRACEVFORK;
420
421 // Have the tracer trace vfork-done in order to restore breakpoints after
422 // the child finishes sharing memory.
423 ptrace_opts |= PTRACE_O_TRACEVFORKDONE;
424
425 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
426 }
427
428 // Handles all waitpid events from the inferior process.
MonitorCallback(lldb::pid_t pid,bool exited,WaitStatus status)429 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited,
430 WaitStatus status) {
431 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
432
433 // Certain activities differ based on whether the pid is the tid of the main
434 // thread.
435 const bool is_main_thread = (pid == GetID());
436
437 // Handle when the thread exits.
438 if (exited) {
439 LLDB_LOG(log,
440 "got exit status({0}) , tid = {1} ({2} main thread), process "
441 "state = {3}",
442 status, pid, is_main_thread ? "is" : "is not", GetState());
443
444 // This is a thread that exited. Ensure we're not tracking it anymore.
445 StopTrackingThread(pid);
446
447 if (is_main_thread) {
448 // The main thread exited. We're done monitoring. Report to delegate.
449 SetExitStatus(status, true);
450
451 // Notify delegate that our process has exited.
452 SetState(StateType::eStateExited, true);
453 }
454 return;
455 }
456
457 siginfo_t info;
458 const auto info_err = GetSignalInfo(pid, &info);
459 auto thread_sp = GetThreadByID(pid);
460
461 if (!thread_sp) {
462 // Normally, the only situation when we cannot find the thread is if we
463 // have just received a new thread notification. This is indicated by
464 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0
465 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid);
466
467 if (info_err.Fail()) {
468 LLDB_LOG(log,
469 "(tid {0}) GetSignalInfo failed ({1}). "
470 "Ingoring this notification.",
471 pid, info_err);
472 return;
473 }
474
475 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code,
476 info.si_pid);
477
478 MonitorClone(pid, llvm::None);
479 return;
480 }
481
482 // Get details on the signal raised.
483 if (info_err.Success()) {
484 // We have retrieved the signal info. Dispatch appropriately.
485 if (info.si_signo == SIGTRAP)
486 MonitorSIGTRAP(info, *thread_sp);
487 else
488 MonitorSignal(info, *thread_sp, exited);
489 } else {
490 if (info_err.GetError() == EINVAL) {
491 // This is a group stop reception for this tid. We can reach here if we
492 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
493 // triggering the group-stop mechanism. Normally receiving these would
494 // stop the process, pending a SIGCONT. Simulating this state in a
495 // debugger is hard and is generally not needed (one use case is
496 // debugging background task being managed by a shell). For general use,
497 // it is sufficient to stop the process in a signal-delivery stop which
498 // happens before the group stop. This done by MonitorSignal and works
499 // correctly for all signals.
500 LLDB_LOG(log,
501 "received a group stop for pid {0} tid {1}. Transparent "
502 "handling of group stops not supported, resuming the "
503 "thread.",
504 GetID(), pid);
505 ResumeThread(*thread_sp, thread_sp->GetState(),
506 LLDB_INVALID_SIGNAL_NUMBER);
507 } else {
508 // ptrace(GETSIGINFO) failed (but not due to group-stop).
509
510 // A return value of ESRCH means the thread/process is no longer on the
511 // system, so it was killed somehow outside of our control. Either way,
512 // we can't do anything with it anymore.
513
514 // Stop tracking the metadata for the thread since it's entirely off the
515 // system now.
516 const bool thread_found = StopTrackingThread(pid);
517
518 LLDB_LOG(log,
519 "GetSignalInfo failed: {0}, tid = {1}, status = {2}, "
520 "status = {3}, main_thread = {4}, thread_found: {5}",
521 info_err, pid, status, status, is_main_thread, thread_found);
522
523 if (is_main_thread) {
524 // Notify the delegate - our process is not available but appears to
525 // have been killed outside our control. Is eStateExited the right
526 // exit state in this case?
527 SetExitStatus(status, true);
528 SetState(StateType::eStateExited, true);
529 } else {
530 // This thread was pulled out from underneath us. Anything to do here?
531 // Do we want to do an all stop?
532 LLDB_LOG(log,
533 "pid {0} tid {1} non-main thread exit occurred, didn't "
534 "tell delegate anything since thread disappeared out "
535 "from underneath us",
536 GetID(), pid);
537 }
538 }
539 }
540 }
541
WaitForCloneNotification(::pid_t pid)542 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) {
543 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
544
545 // The PID is not tracked yet, let's wait for it to appear.
546 int status = -1;
547 LLDB_LOG(log,
548 "received clone event for pid {0}. pid not tracked yet, "
549 "waiting for it to appear...",
550 pid);
551 ::pid_t wait_pid =
552 llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL);
553 // Since we are waiting on a specific pid, this must be the creation event.
554 // But let's do some checks just in case.
555 if (wait_pid != pid) {
556 LLDB_LOG(log,
557 "waiting for pid {0} failed. Assuming the pid has "
558 "disappeared in the meantime",
559 pid);
560 // The only way I know of this could happen is if the whole process was
561 // SIGKILLed in the mean time. In any case, we can't do anything about that
562 // now.
563 return;
564 }
565 if (WIFEXITED(status)) {
566 LLDB_LOG(log,
567 "waiting for pid {0} returned an 'exited' event. Not "
568 "tracking it.",
569 pid);
570 // Also a very improbable event.
571 m_pending_pid_map.erase(pid);
572 return;
573 }
574
575 MonitorClone(pid, llvm::None);
576 }
577
MonitorSIGTRAP(const siginfo_t & info,NativeThreadLinux & thread)578 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
579 NativeThreadLinux &thread) {
580 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
581 const bool is_main_thread = (thread.GetID() == GetID());
582
583 assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
584
585 switch (info.si_code) {
586 case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
587 case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
588 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
589 // This can either mean a new thread or a new process spawned via
590 // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2)
591 // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one
592 // of these flags are passed.
593
594 unsigned long event_message = 0;
595 if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
596 LLDB_LOG(log,
597 "pid {0} received clone() event but GetEventMessage failed "
598 "so we don't know the new pid/tid",
599 thread.GetID());
600 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
601 } else {
602 if (!MonitorClone(event_message, {{(info.si_code >> 8), thread.GetID()}}))
603 WaitForCloneNotification(event_message);
604 }
605
606 break;
607 }
608
609 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
610 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
611
612 // Exec clears any pending notifications.
613 m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
614
615 // Remove all but the main thread here. Linux fork creates a new process
616 // which only copies the main thread.
617 LLDB_LOG(log, "exec received, stop tracking all but main thread");
618
619 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) {
620 return t->GetID() != GetID();
621 });
622 assert(m_threads.size() == 1);
623 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
624
625 SetCurrentThreadID(main_thread->GetID());
626 main_thread->SetStoppedByExec();
627
628 // Tell coordinator about about the "new" (since exec) stopped main thread.
629 ThreadWasCreated(*main_thread);
630
631 // Let our delegate know we have just exec'd.
632 NotifyDidExec();
633
634 // Let the process know we're stopped.
635 StopRunningThreads(main_thread->GetID());
636
637 break;
638 }
639
640 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
641 // The inferior process or one of its threads is about to exit. We don't
642 // want to do anything with the thread so we just resume it. In case we
643 // want to implement "break on thread exit" functionality, we would need to
644 // stop here.
645
646 unsigned long data = 0;
647 if (GetEventMessage(thread.GetID(), &data).Fail())
648 data = -1;
649
650 LLDB_LOG(log,
651 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
652 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
653 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
654 is_main_thread);
655
656
657 StateType state = thread.GetState();
658 if (!StateIsRunningState(state)) {
659 // Due to a kernel bug, we may sometimes get this stop after the inferior
660 // gets a SIGKILL. This confuses our state tracking logic in
661 // ResumeThread(), since normally, we should not be receiving any ptrace
662 // events while the inferior is stopped. This makes sure that the
663 // inferior is resumed and exits normally.
664 state = eStateRunning;
665 }
666 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
667
668 break;
669 }
670
671 case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): {
672 if (bool(m_enabled_extensions & Extension::vfork)) {
673 thread.SetStoppedByVForkDone();
674 StopRunningThreads(thread.GetID());
675 }
676 else
677 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
678 break;
679 }
680
681 case 0:
682 case TRAP_TRACE: // We receive this on single stepping.
683 case TRAP_HWBKPT: // We receive this on watchpoint hit
684 {
685 // If a watchpoint was hit, report it
686 uint32_t wp_index;
687 Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
688 wp_index, (uintptr_t)info.si_addr);
689 if (error.Fail())
690 LLDB_LOG(log,
691 "received error while checking for watchpoint hits, pid = "
692 "{0}, error = {1}",
693 thread.GetID(), error);
694 if (wp_index != LLDB_INVALID_INDEX32) {
695 MonitorWatchpoint(thread, wp_index);
696 break;
697 }
698
699 // If a breakpoint was hit, report it
700 uint32_t bp_index;
701 error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
702 bp_index, (uintptr_t)info.si_addr);
703 if (error.Fail())
704 LLDB_LOG(log, "received error while checking for hardware "
705 "breakpoint hits, pid = {0}, error = {1}",
706 thread.GetID(), error);
707 if (bp_index != LLDB_INVALID_INDEX32) {
708 MonitorBreakpoint(thread);
709 break;
710 }
711
712 // Otherwise, report step over
713 MonitorTrace(thread);
714 break;
715 }
716
717 case SI_KERNEL:
718 #if defined __mips__
719 // For mips there is no special signal for watchpoint So we check for
720 // watchpoint in kernel trap
721 {
722 // If a watchpoint was hit, report it
723 uint32_t wp_index;
724 Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
725 wp_index, LLDB_INVALID_ADDRESS);
726 if (error.Fail())
727 LLDB_LOG(log,
728 "received error while checking for watchpoint hits, pid = "
729 "{0}, error = {1}",
730 thread.GetID(), error);
731 if (wp_index != LLDB_INVALID_INDEX32) {
732 MonitorWatchpoint(thread, wp_index);
733 break;
734 }
735 }
736 // NO BREAK
737 #endif
738 case TRAP_BRKPT:
739 MonitorBreakpoint(thread);
740 break;
741
742 case SIGTRAP:
743 case (SIGTRAP | 0x80):
744 LLDB_LOG(
745 log,
746 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
747 info.si_code, GetID(), thread.GetID());
748
749 // Ignore these signals until we know more about them.
750 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
751 break;
752
753 default:
754 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
755 info.si_code, GetID(), thread.GetID());
756 MonitorSignal(info, thread, false);
757 break;
758 }
759 }
760
MonitorTrace(NativeThreadLinux & thread)761 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
762 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
763 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
764
765 // This thread is currently stopped.
766 thread.SetStoppedByTrace();
767
768 StopRunningThreads(thread.GetID());
769 }
770
MonitorBreakpoint(NativeThreadLinux & thread)771 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
772 Log *log(
773 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
774 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
775
776 // Mark the thread as stopped at breakpoint.
777 thread.SetStoppedByBreakpoint();
778 FixupBreakpointPCAsNeeded(thread);
779
780 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
781 m_threads_stepping_with_breakpoint.end())
782 thread.SetStoppedByTrace();
783
784 StopRunningThreads(thread.GetID());
785 }
786
MonitorWatchpoint(NativeThreadLinux & thread,uint32_t wp_index)787 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
788 uint32_t wp_index) {
789 Log *log(
790 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
791 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
792 thread.GetID(), wp_index);
793
794 // Mark the thread as stopped at watchpoint. The address is at
795 // (lldb::addr_t)info->si_addr if we need it.
796 thread.SetStoppedByWatchpoint(wp_index);
797
798 // We need to tell all other running threads before we notify the delegate
799 // about this stop.
800 StopRunningThreads(thread.GetID());
801 }
802
MonitorSignal(const siginfo_t & info,NativeThreadLinux & thread,bool exited)803 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
804 NativeThreadLinux &thread, bool exited) {
805 const int signo = info.si_signo;
806 const bool is_from_llgs = info.si_pid == getpid();
807
808 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
809
810 // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
811 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
812 // or raise(3). Similarly for tgkill(2) on Linux.
813 //
814 // IOW, user generated signals never generate what we consider to be a
815 // "crash".
816 //
817 // Similarly, ACK signals generated by this monitor.
818
819 // Handle the signal.
820 LLDB_LOG(log,
821 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
822 "waitpid pid = {4})",
823 Host::GetSignalAsCString(signo), signo, info.si_code,
824 thread.GetID());
825
826 // Check for thread stop notification.
827 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
828 // This is a tgkill()-based stop.
829 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
830
831 // Check that we're not already marked with a stop reason. Note this thread
832 // really shouldn't already be marked as stopped - if we were, that would
833 // imply that the kernel signaled us with the thread stopping which we
834 // handled and marked as stopped, and that, without an intervening resume,
835 // we received another stop. It is more likely that we are missing the
836 // marking of a run state somewhere if we find that the thread was marked
837 // as stopped.
838 const StateType thread_state = thread.GetState();
839 if (!StateIsStoppedState(thread_state, false)) {
840 // An inferior thread has stopped because of a SIGSTOP we have sent it.
841 // Generally, these are not important stops and we don't want to report
842 // them as they are just used to stop other threads when one thread (the
843 // one with the *real* stop reason) hits a breakpoint (watchpoint,
844 // etc...). However, in the case of an asynchronous Interrupt(), this
845 // *is* the real stop reason, so we leave the signal intact if this is
846 // the thread that was chosen as the triggering thread.
847 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
848 if (m_pending_notification_tid == thread.GetID())
849 thread.SetStoppedBySignal(SIGSTOP, &info);
850 else
851 thread.SetStoppedWithNoReason();
852
853 SetCurrentThreadID(thread.GetID());
854 SignalIfAllThreadsStopped();
855 } else {
856 // We can end up here if stop was initiated by LLGS but by this time a
857 // thread stop has occurred - maybe initiated by another event.
858 Status error = ResumeThread(thread, thread.GetState(), 0);
859 if (error.Fail())
860 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
861 error);
862 }
863 } else {
864 LLDB_LOG(log,
865 "pid {0} tid {1}, thread was already marked as a stopped "
866 "state (state={2}), leaving stop signal as is",
867 GetID(), thread.GetID(), thread_state);
868 SignalIfAllThreadsStopped();
869 }
870
871 // Done handling.
872 return;
873 }
874
875 // Check if debugger should stop at this signal or just ignore it and resume
876 // the inferior.
877 if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) {
878 ResumeThread(thread, thread.GetState(), signo);
879 return;
880 }
881
882 // This thread is stopped.
883 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
884 thread.SetStoppedBySignal(signo, &info);
885
886 // Send a stop to the debugger after we get all other threads to stop.
887 StopRunningThreads(thread.GetID());
888 }
889
MonitorClone(lldb::pid_t child_pid,llvm::Optional<NativeProcessLinux::CloneInfo> clone_info)890 bool NativeProcessLinux::MonitorClone(
891 lldb::pid_t child_pid,
892 llvm::Optional<NativeProcessLinux::CloneInfo> clone_info) {
893 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
894 LLDB_LOG(log, "clone, child_pid={0}, clone info?={1}", child_pid,
895 clone_info.hasValue());
896
897 auto find_it = m_pending_pid_map.find(child_pid);
898 if (find_it == m_pending_pid_map.end()) {
899 // not in the map, so this is the first signal for the PID
900 m_pending_pid_map.insert({child_pid, clone_info});
901 return false;
902 }
903 m_pending_pid_map.erase(find_it);
904
905 // second signal for the pid
906 assert(clone_info.hasValue() != find_it->second.hasValue());
907 if (!clone_info) {
908 // child signal does not indicate the event, so grab the one stored
909 // earlier
910 clone_info = find_it->second;
911 }
912
913 LLDB_LOG(log, "second signal for child_pid={0}, parent_tid={1}, event={2}",
914 child_pid, clone_info->parent_tid, clone_info->event);
915
916 auto *parent_thread = GetThreadByID(clone_info->parent_tid);
917 assert(parent_thread);
918
919 switch (clone_info->event) {
920 case PTRACE_EVENT_CLONE: {
921 // PTRACE_EVENT_CLONE can either mean a new thread or a new process.
922 // Try to grab the new process' PGID to figure out which one it is.
923 // If PGID is the same as the PID, then it's a new process. Otherwise,
924 // it's a thread.
925 auto tgid_ret = getPIDForTID(child_pid);
926 if (tgid_ret != child_pid) {
927 // A new thread should have PGID matching our process' PID.
928 assert(!tgid_ret || tgid_ret.getValue() == GetID());
929
930 NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true);
931 ThreadWasCreated(child_thread);
932
933 // Resume the parent.
934 ResumeThread(*parent_thread, parent_thread->GetState(),
935 LLDB_INVALID_SIGNAL_NUMBER);
936 break;
937 }
938 }
939 LLVM_FALLTHROUGH;
940 case PTRACE_EVENT_FORK:
941 case PTRACE_EVENT_VFORK: {
942 bool is_vfork = clone_info->event == PTRACE_EVENT_VFORK;
943 std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux(
944 static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch,
945 m_main_loop, {static_cast<::pid_t>(child_pid)})};
946 if (!is_vfork)
947 child_process->m_software_breakpoints = m_software_breakpoints;
948
949 Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork;
950 if (bool(m_enabled_extensions & expected_ext)) {
951 m_delegate.NewSubprocess(this, std::move(child_process));
952 // NB: non-vfork clone() is reported as fork
953 parent_thread->SetStoppedByFork(is_vfork, child_pid);
954 StopRunningThreads(parent_thread->GetID());
955 } else {
956 child_process->Detach();
957 ResumeThread(*parent_thread, parent_thread->GetState(),
958 LLDB_INVALID_SIGNAL_NUMBER);
959 }
960 break;
961 }
962 default:
963 llvm_unreachable("unknown clone_info.event");
964 }
965
966 return true;
967 }
968
SupportHardwareSingleStepping() const969 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
970 if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS())
971 return false;
972 return true;
973 }
974
Resume(const ResumeActionList & resume_actions)975 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
976 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
977 LLDB_LOG(log, "pid {0}", GetID());
978
979 bool software_single_step = !SupportHardwareSingleStepping();
980
981 if (software_single_step) {
982 for (const auto &thread : m_threads) {
983 assert(thread && "thread list should not contain NULL threads");
984
985 const ResumeAction *const action =
986 resume_actions.GetActionForThread(thread->GetID(), true);
987 if (action == nullptr)
988 continue;
989
990 if (action->state == eStateStepping) {
991 Status error = SetupSoftwareSingleStepping(
992 static_cast<NativeThreadLinux &>(*thread));
993 if (error.Fail())
994 return error;
995 }
996 }
997 }
998
999 for (const auto &thread : m_threads) {
1000 assert(thread && "thread list should not contain NULL threads");
1001
1002 const ResumeAction *const action =
1003 resume_actions.GetActionForThread(thread->GetID(), true);
1004
1005 if (action == nullptr) {
1006 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
1007 thread->GetID());
1008 continue;
1009 }
1010
1011 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
1012 action->state, GetID(), thread->GetID());
1013
1014 switch (action->state) {
1015 case eStateRunning:
1016 case eStateStepping: {
1017 // Run the thread, possibly feeding it the signal.
1018 const int signo = action->signal;
1019 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
1020 signo);
1021 break;
1022 }
1023
1024 case eStateSuspended:
1025 case eStateStopped:
1026 llvm_unreachable("Unexpected state");
1027
1028 default:
1029 return Status("NativeProcessLinux::%s (): unexpected state %s specified "
1030 "for pid %" PRIu64 ", tid %" PRIu64,
1031 __FUNCTION__, StateAsCString(action->state), GetID(),
1032 thread->GetID());
1033 }
1034 }
1035
1036 return Status();
1037 }
1038
Halt()1039 Status NativeProcessLinux::Halt() {
1040 Status error;
1041
1042 if (kill(GetID(), SIGSTOP) != 0)
1043 error.SetErrorToErrno();
1044
1045 return error;
1046 }
1047
Detach()1048 Status NativeProcessLinux::Detach() {
1049 Status error;
1050
1051 // Stop monitoring the inferior.
1052 m_sigchld_handle.reset();
1053
1054 // Tell ptrace to detach from the process.
1055 if (GetID() == LLDB_INVALID_PROCESS_ID)
1056 return error;
1057
1058 for (const auto &thread : m_threads) {
1059 Status e = Detach(thread->GetID());
1060 if (e.Fail())
1061 error =
1062 e; // Save the error, but still attempt to detach from other threads.
1063 }
1064
1065 m_intel_pt_manager.Clear();
1066
1067 return error;
1068 }
1069
Signal(int signo)1070 Status NativeProcessLinux::Signal(int signo) {
1071 Status error;
1072
1073 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1074 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
1075 Host::GetSignalAsCString(signo), GetID());
1076
1077 if (kill(GetID(), signo))
1078 error.SetErrorToErrno();
1079
1080 return error;
1081 }
1082
Interrupt()1083 Status NativeProcessLinux::Interrupt() {
1084 // Pick a running thread (or if none, a not-dead stopped thread) as the
1085 // chosen thread that will be the stop-reason thread.
1086 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1087
1088 NativeThreadProtocol *running_thread = nullptr;
1089 NativeThreadProtocol *stopped_thread = nullptr;
1090
1091 LLDB_LOG(log, "selecting running thread for interrupt target");
1092 for (const auto &thread : m_threads) {
1093 // If we have a running or stepping thread, we'll call that the target of
1094 // the interrupt.
1095 const auto thread_state = thread->GetState();
1096 if (thread_state == eStateRunning || thread_state == eStateStepping) {
1097 running_thread = thread.get();
1098 break;
1099 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1100 // Remember the first non-dead stopped thread. We'll use that as a
1101 // backup if there are no running threads.
1102 stopped_thread = thread.get();
1103 }
1104 }
1105
1106 if (!running_thread && !stopped_thread) {
1107 Status error("found no running/stepping or live stopped threads as target "
1108 "for interrupt");
1109 LLDB_LOG(log, "skipping due to error: {0}", error);
1110
1111 return error;
1112 }
1113
1114 NativeThreadProtocol *deferred_signal_thread =
1115 running_thread ? running_thread : stopped_thread;
1116
1117 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1118 running_thread ? "running" : "stopped",
1119 deferred_signal_thread->GetID());
1120
1121 StopRunningThreads(deferred_signal_thread->GetID());
1122
1123 return Status();
1124 }
1125
Kill()1126 Status NativeProcessLinux::Kill() {
1127 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1128 LLDB_LOG(log, "pid {0}", GetID());
1129
1130 Status error;
1131
1132 switch (m_state) {
1133 case StateType::eStateInvalid:
1134 case StateType::eStateExited:
1135 case StateType::eStateCrashed:
1136 case StateType::eStateDetached:
1137 case StateType::eStateUnloaded:
1138 // Nothing to do - the process is already dead.
1139 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1140 m_state);
1141 return error;
1142
1143 case StateType::eStateConnected:
1144 case StateType::eStateAttaching:
1145 case StateType::eStateLaunching:
1146 case StateType::eStateStopped:
1147 case StateType::eStateRunning:
1148 case StateType::eStateStepping:
1149 case StateType::eStateSuspended:
1150 // We can try to kill a process in these states.
1151 break;
1152 }
1153
1154 if (kill(GetID(), SIGKILL) != 0) {
1155 error.SetErrorToErrno();
1156 return error;
1157 }
1158
1159 return error;
1160 }
1161
GetMemoryRegionInfo(lldb::addr_t load_addr,MemoryRegionInfo & range_info)1162 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1163 MemoryRegionInfo &range_info) {
1164 // FIXME review that the final memory region returned extends to the end of
1165 // the virtual address space,
1166 // with no perms if it is not mapped.
1167
1168 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1169 // proc maps entries are in ascending order.
1170 // FIXME assert if we find differently.
1171
1172 if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1173 // We're done.
1174 return Status("unsupported");
1175 }
1176
1177 Status error = PopulateMemoryRegionCache();
1178 if (error.Fail()) {
1179 return error;
1180 }
1181
1182 lldb::addr_t prev_base_address = 0;
1183
1184 // FIXME start by finding the last region that is <= target address using
1185 // binary search. Data is sorted.
1186 // There can be a ton of regions on pthreads apps with lots of threads.
1187 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1188 ++it) {
1189 MemoryRegionInfo &proc_entry_info = it->first;
1190
1191 // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1192 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1193 "descending /proc/pid/maps entries detected, unexpected");
1194 prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1195 UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1196
1197 // If the target address comes before this entry, indicate distance to next
1198 // region.
1199 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1200 range_info.GetRange().SetRangeBase(load_addr);
1201 range_info.GetRange().SetByteSize(
1202 proc_entry_info.GetRange().GetRangeBase() - load_addr);
1203 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1204 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1205 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1206 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1207
1208 return error;
1209 } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1210 // The target address is within the memory region we're processing here.
1211 range_info = proc_entry_info;
1212 return error;
1213 }
1214
1215 // The target memory address comes somewhere after the region we just
1216 // parsed.
1217 }
1218
1219 // If we made it here, we didn't find an entry that contained the given
1220 // address. Return the load_addr as start and the amount of bytes betwwen
1221 // load address and the end of the memory as size.
1222 range_info.GetRange().SetRangeBase(load_addr);
1223 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1224 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1225 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1226 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1227 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1228 return error;
1229 }
1230
PopulateMemoryRegionCache()1231 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1232 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1233
1234 // If our cache is empty, pull the latest. There should always be at least
1235 // one memory region if memory region handling is supported.
1236 if (!m_mem_region_cache.empty()) {
1237 LLDB_LOG(log, "reusing {0} cached memory region entries",
1238 m_mem_region_cache.size());
1239 return Status();
1240 }
1241
1242 Status Result;
1243 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) {
1244 if (Info) {
1245 FileSpec file_spec(Info->GetName().GetCString());
1246 FileSystem::Instance().Resolve(file_spec);
1247 m_mem_region_cache.emplace_back(*Info, file_spec);
1248 return true;
1249 }
1250
1251 Result = Info.takeError();
1252 m_supports_mem_region = LazyBool::eLazyBoolNo;
1253 LLDB_LOG(log, "failed to parse proc maps: {0}", Result);
1254 return false;
1255 };
1256
1257 // Linux kernel since 2.6.14 has /proc/{pid}/smaps
1258 // if CONFIG_PROC_PAGE_MONITOR is enabled
1259 auto BufferOrError = getProcFile(GetID(), "smaps");
1260 if (BufferOrError)
1261 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback);
1262 else {
1263 BufferOrError = getProcFile(GetID(), "maps");
1264 if (!BufferOrError) {
1265 m_supports_mem_region = LazyBool::eLazyBoolNo;
1266 return BufferOrError.getError();
1267 }
1268
1269 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback);
1270 }
1271
1272 if (Result.Fail())
1273 return Result;
1274
1275 if (m_mem_region_cache.empty()) {
1276 // No entries after attempting to read them. This shouldn't happen if
1277 // /proc/{pid}/maps is supported. Assume we don't support map entries via
1278 // procfs.
1279 m_supports_mem_region = LazyBool::eLazyBoolNo;
1280 LLDB_LOG(log,
1281 "failed to find any procfs maps entries, assuming no support "
1282 "for memory region metadata retrieval");
1283 return Status("not supported");
1284 }
1285
1286 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1287 m_mem_region_cache.size(), GetID());
1288
1289 // We support memory retrieval, remember that.
1290 m_supports_mem_region = LazyBool::eLazyBoolYes;
1291 return Status();
1292 }
1293
DoStopIDBumped(uint32_t newBumpId)1294 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1295 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1296 LLDB_LOG(log, "newBumpId={0}", newBumpId);
1297 LLDB_LOG(log, "clearing {0} entries from memory region cache",
1298 m_mem_region_cache.size());
1299 m_mem_region_cache.clear();
1300 }
1301
1302 llvm::Expected<uint64_t>
Syscall(llvm::ArrayRef<uint64_t> args)1303 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) {
1304 PopulateMemoryRegionCache();
1305 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) {
1306 return pair.first.GetExecutable() == MemoryRegionInfo::eYes;
1307 });
1308 if (region_it == m_mem_region_cache.end())
1309 return llvm::createStringError(llvm::inconvertibleErrorCode(),
1310 "No executable memory region found!");
1311
1312 addr_t exe_addr = region_it->first.GetRange().GetRangeBase();
1313
1314 NativeThreadLinux &thread = *GetThreadByID(GetID());
1315 assert(thread.GetState() == eStateStopped);
1316 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext();
1317
1318 NativeRegisterContextLinux::SyscallData syscall_data =
1319 *reg_ctx.GetSyscallData();
1320
1321 DataBufferSP registers_sp;
1322 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError())
1323 return std::move(Err);
1324 auto restore_regs = llvm::make_scope_exit(
1325 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); });
1326
1327 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size());
1328 size_t bytes_read;
1329 if (llvm::Error Err =
1330 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read)
1331 .ToError()) {
1332 return std::move(Err);
1333 }
1334
1335 auto restore_mem = llvm::make_scope_exit(
1336 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); });
1337
1338 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError())
1339 return std::move(Err);
1340
1341 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) {
1342 if (llvm::Error Err =
1343 reg_ctx
1344 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip))
1345 .ToError()) {
1346 return std::move(Err);
1347 }
1348 }
1349 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(),
1350 syscall_data.Insn.size(), bytes_read)
1351 .ToError())
1352 return std::move(Err);
1353
1354 m_mem_region_cache.clear();
1355
1356 // With software single stepping the syscall insn buffer must also include a
1357 // trap instruction to stop the process.
1358 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT;
1359 if (llvm::Error Err =
1360 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError())
1361 return std::move(Err);
1362
1363 int status;
1364 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(),
1365 &status, __WALL);
1366 if (wait_pid == -1) {
1367 return llvm::errorCodeToError(
1368 std::error_code(errno, std::generic_category()));
1369 }
1370 assert((unsigned)wait_pid == thread.GetID());
1371
1372 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH);
1373
1374 // Values larger than this are actually negative errno numbers.
1375 uint64_t errno_threshold =
1376 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000;
1377 if (result > errno_threshold) {
1378 return llvm::errorCodeToError(
1379 std::error_code(-result & 0xfff, std::generic_category()));
1380 }
1381
1382 return result;
1383 }
1384
1385 llvm::Expected<addr_t>
AllocateMemory(size_t size,uint32_t permissions)1386 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) {
1387
1388 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1389 GetCurrentThread()->GetRegisterContext().GetMmapData();
1390 if (!mmap_data)
1391 return llvm::make_error<UnimplementedError>();
1392
1393 unsigned prot = PROT_NONE;
1394 assert((permissions & (ePermissionsReadable | ePermissionsWritable |
1395 ePermissionsExecutable)) == permissions &&
1396 "Unknown permission!");
1397 if (permissions & ePermissionsReadable)
1398 prot |= PROT_READ;
1399 if (permissions & ePermissionsWritable)
1400 prot |= PROT_WRITE;
1401 if (permissions & ePermissionsExecutable)
1402 prot |= PROT_EXEC;
1403
1404 llvm::Expected<uint64_t> Result =
1405 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE,
1406 uint64_t(-1), 0});
1407 if (Result)
1408 m_allocated_memory.try_emplace(*Result, size);
1409 return Result;
1410 }
1411
DeallocateMemory(lldb::addr_t addr)1412 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1413 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1414 GetCurrentThread()->GetRegisterContext().GetMmapData();
1415 if (!mmap_data)
1416 return llvm::make_error<UnimplementedError>();
1417
1418 auto it = m_allocated_memory.find(addr);
1419 if (it == m_allocated_memory.end())
1420 return llvm::createStringError(llvm::errc::invalid_argument,
1421 "Memory not allocated by the debugger.");
1422
1423 llvm::Expected<uint64_t> Result =
1424 Syscall({mmap_data->SysMunmap, addr, it->second});
1425 if (!Result)
1426 return Result.takeError();
1427
1428 m_allocated_memory.erase(it);
1429 return llvm::Error::success();
1430 }
1431
ReadMemoryTags(int32_t type,lldb::addr_t addr,size_t len,std::vector<uint8_t> & tags)1432 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr,
1433 size_t len,
1434 std::vector<uint8_t> &tags) {
1435 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1436 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1437 if (!details)
1438 return Status(details.takeError());
1439
1440 // Ignore 0 length read
1441 if (!len)
1442 return Status();
1443
1444 // lldb will align the range it requests but it is not required to by
1445 // the protocol so we'll do it again just in case.
1446 // Remove non address bits too. Ptrace calls may work regardless but that
1447 // is not a guarantee.
1448 MemoryTagManager::TagRange range(details->manager->RemoveNonAddressBits(addr),
1449 len);
1450 range = details->manager->ExpandToGranule(range);
1451
1452 // Allocate enough space for all tags to be read
1453 size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize();
1454 tags.resize(num_tags * details->manager->GetTagSizeInBytes());
1455
1456 struct iovec tags_iovec;
1457 uint8_t *dest = tags.data();
1458 lldb::addr_t read_addr = range.GetRangeBase();
1459
1460 // This call can return partial data so loop until we error or
1461 // get all tags back.
1462 while (num_tags) {
1463 tags_iovec.iov_base = dest;
1464 tags_iovec.iov_len = num_tags;
1465
1466 Status error = NativeProcessLinux::PtraceWrapper(
1467 details->ptrace_read_req, GetID(), reinterpret_cast<void *>(read_addr),
1468 static_cast<void *>(&tags_iovec), 0, nullptr);
1469
1470 if (error.Fail()) {
1471 // Discard partial reads
1472 tags.resize(0);
1473 return error;
1474 }
1475
1476 size_t tags_read = tags_iovec.iov_len;
1477 assert(tags_read && (tags_read <= num_tags));
1478
1479 dest += tags_read * details->manager->GetTagSizeInBytes();
1480 read_addr += details->manager->GetGranuleSize() * tags_read;
1481 num_tags -= tags_read;
1482 }
1483
1484 return Status();
1485 }
1486
WriteMemoryTags(int32_t type,lldb::addr_t addr,size_t len,const std::vector<uint8_t> & tags)1487 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr,
1488 size_t len,
1489 const std::vector<uint8_t> &tags) {
1490 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1491 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1492 if (!details)
1493 return Status(details.takeError());
1494
1495 // Ignore 0 length write
1496 if (!len)
1497 return Status();
1498
1499 // lldb will align the range it requests but it is not required to by
1500 // the protocol so we'll do it again just in case.
1501 // Remove non address bits too. Ptrace calls may work regardless but that
1502 // is not a guarantee.
1503 MemoryTagManager::TagRange range(details->manager->RemoveNonAddressBits(addr),
1504 len);
1505 range = details->manager->ExpandToGranule(range);
1506
1507 // Not checking number of tags here, we may repeat them below
1508 llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err =
1509 details->manager->UnpackTagsData(tags);
1510 if (!unpacked_tags_or_err)
1511 return Status(unpacked_tags_or_err.takeError());
1512
1513 llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err =
1514 details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range);
1515 if (!repeated_tags_or_err)
1516 return Status(repeated_tags_or_err.takeError());
1517
1518 // Repack them for ptrace to use
1519 llvm::Expected<std::vector<uint8_t>> final_tag_data =
1520 details->manager->PackTags(*repeated_tags_or_err);
1521 if (!final_tag_data)
1522 return Status(final_tag_data.takeError());
1523
1524 struct iovec tags_vec;
1525 uint8_t *src = final_tag_data->data();
1526 lldb::addr_t write_addr = range.GetRangeBase();
1527 // unpacked tags size because the number of bytes per tag might not be 1
1528 size_t num_tags = repeated_tags_or_err->size();
1529
1530 // This call can partially write tags, so we loop until we
1531 // error or all tags have been written.
1532 while (num_tags > 0) {
1533 tags_vec.iov_base = src;
1534 tags_vec.iov_len = num_tags;
1535
1536 Status error = NativeProcessLinux::PtraceWrapper(
1537 details->ptrace_write_req, GetID(),
1538 reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0,
1539 nullptr);
1540
1541 if (error.Fail()) {
1542 // Don't attempt to restore the original values in the case of a partial
1543 // write
1544 return error;
1545 }
1546
1547 size_t tags_written = tags_vec.iov_len;
1548 assert(tags_written && (tags_written <= num_tags));
1549
1550 src += tags_written * details->manager->GetTagSizeInBytes();
1551 write_addr += details->manager->GetGranuleSize() * tags_written;
1552 num_tags -= tags_written;
1553 }
1554
1555 return Status();
1556 }
1557
UpdateThreads()1558 size_t NativeProcessLinux::UpdateThreads() {
1559 // The NativeProcessLinux monitoring threads are always up to date with
1560 // respect to thread state and they keep the thread list populated properly.
1561 // All this method needs to do is return the thread count.
1562 return m_threads.size();
1563 }
1564
SetBreakpoint(lldb::addr_t addr,uint32_t size,bool hardware)1565 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1566 bool hardware) {
1567 if (hardware)
1568 return SetHardwareBreakpoint(addr, size);
1569 else
1570 return SetSoftwareBreakpoint(addr, size);
1571 }
1572
RemoveBreakpoint(lldb::addr_t addr,bool hardware)1573 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1574 if (hardware)
1575 return RemoveHardwareBreakpoint(addr);
1576 else
1577 return NativeProcessProtocol::RemoveBreakpoint(addr);
1578 }
1579
1580 llvm::Expected<llvm::ArrayRef<uint8_t>>
GetSoftwareBreakpointTrapOpcode(size_t size_hint)1581 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1582 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1583 // linux kernel does otherwise.
1584 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1585 static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1586
1587 switch (GetArchitecture().GetMachine()) {
1588 case llvm::Triple::arm:
1589 switch (size_hint) {
1590 case 2:
1591 return llvm::makeArrayRef(g_thumb_opcode);
1592 case 4:
1593 return llvm::makeArrayRef(g_arm_opcode);
1594 default:
1595 return llvm::createStringError(llvm::inconvertibleErrorCode(),
1596 "Unrecognised trap opcode size hint!");
1597 }
1598 default:
1599 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1600 }
1601 }
1602
ReadMemory(lldb::addr_t addr,void * buf,size_t size,size_t & bytes_read)1603 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1604 size_t &bytes_read) {
1605 if (ProcessVmReadvSupported()) {
1606 // The process_vm_readv path is about 50 times faster than ptrace api. We
1607 // want to use this syscall if it is supported.
1608
1609 const ::pid_t pid = GetID();
1610
1611 struct iovec local_iov, remote_iov;
1612 local_iov.iov_base = buf;
1613 local_iov.iov_len = size;
1614 remote_iov.iov_base = reinterpret_cast<void *>(addr);
1615 remote_iov.iov_len = size;
1616
1617 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
1618 const bool success = bytes_read == size;
1619
1620 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1621 LLDB_LOG(log,
1622 "using process_vm_readv to read {0} bytes from inferior "
1623 "address {1:x}: {2}",
1624 size, addr, success ? "Success" : llvm::sys::StrError(errno));
1625
1626 if (success)
1627 return Status();
1628 // else the call failed for some reason, let's retry the read using ptrace
1629 // api.
1630 }
1631
1632 unsigned char *dst = static_cast<unsigned char *>(buf);
1633 size_t remainder;
1634 long data;
1635
1636 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1637 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1638
1639 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1640 Status error = NativeProcessLinux::PtraceWrapper(
1641 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data);
1642 if (error.Fail())
1643 return error;
1644
1645 remainder = size - bytes_read;
1646 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1647
1648 // Copy the data into our buffer
1649 memcpy(dst, &data, remainder);
1650
1651 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1652 addr += k_ptrace_word_size;
1653 dst += k_ptrace_word_size;
1654 }
1655 return Status();
1656 }
1657
WriteMemory(lldb::addr_t addr,const void * buf,size_t size,size_t & bytes_written)1658 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1659 size_t size, size_t &bytes_written) {
1660 const unsigned char *src = static_cast<const unsigned char *>(buf);
1661 size_t remainder;
1662 Status error;
1663
1664 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY));
1665 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1666
1667 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1668 remainder = size - bytes_written;
1669 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1670
1671 if (remainder == k_ptrace_word_size) {
1672 unsigned long data = 0;
1673 memcpy(&data, src, k_ptrace_word_size);
1674
1675 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1676 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(),
1677 (void *)addr, (void *)data);
1678 if (error.Fail())
1679 return error;
1680 } else {
1681 unsigned char buff[8];
1682 size_t bytes_read;
1683 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1684 if (error.Fail())
1685 return error;
1686
1687 memcpy(buff, src, remainder);
1688
1689 size_t bytes_written_rec;
1690 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1691 if (error.Fail())
1692 return error;
1693
1694 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1695 *(unsigned long *)buff);
1696 }
1697
1698 addr += k_ptrace_word_size;
1699 src += k_ptrace_word_size;
1700 }
1701 return error;
1702 }
1703
GetSignalInfo(lldb::tid_t tid,void * siginfo)1704 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) {
1705 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1706 }
1707
GetEventMessage(lldb::tid_t tid,unsigned long * message)1708 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1709 unsigned long *message) {
1710 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1711 }
1712
Detach(lldb::tid_t tid)1713 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1714 if (tid == LLDB_INVALID_THREAD_ID)
1715 return Status();
1716
1717 return PtraceWrapper(PTRACE_DETACH, tid);
1718 }
1719
HasThreadNoLock(lldb::tid_t thread_id)1720 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1721 for (const auto &thread : m_threads) {
1722 assert(thread && "thread list should not contain NULL threads");
1723 if (thread->GetID() == thread_id) {
1724 // We have this thread.
1725 return true;
1726 }
1727 }
1728
1729 // We don't have this thread.
1730 return false;
1731 }
1732
StopTrackingThread(lldb::tid_t thread_id)1733 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) {
1734 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1735 LLDB_LOG(log, "tid: {0})", thread_id);
1736
1737 bool found = false;
1738 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) {
1739 if (*it && ((*it)->GetID() == thread_id)) {
1740 m_threads.erase(it);
1741 found = true;
1742 break;
1743 }
1744 }
1745
1746 if (found)
1747 NotifyTracersOfThreadDestroyed(thread_id);
1748
1749 SignalIfAllThreadsStopped();
1750 return found;
1751 }
1752
NotifyTracersOfNewThread(lldb::tid_t tid)1753 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) {
1754 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1755 Status error(m_intel_pt_manager.OnThreadCreated(tid));
1756 if (error.Fail())
1757 LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}",
1758 tid, error.AsCString());
1759 return error;
1760 }
1761
NotifyTracersOfThreadDestroyed(lldb::tid_t tid)1762 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) {
1763 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1764 Status error(m_intel_pt_manager.OnThreadDestroyed(tid));
1765 if (error.Fail())
1766 LLDB_LOG(log,
1767 "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}",
1768 tid, error.AsCString());
1769 return error;
1770 }
1771
AddThread(lldb::tid_t thread_id,bool resume)1772 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id,
1773 bool resume) {
1774 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD));
1775 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1776
1777 assert(!HasThreadNoLock(thread_id) &&
1778 "attempted to add a thread by id that already exists");
1779
1780 // If this is the first thread, save it as the current thread
1781 if (m_threads.empty())
1782 SetCurrentThreadID(thread_id);
1783
1784 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id));
1785 NativeThreadLinux &thread =
1786 static_cast<NativeThreadLinux &>(*m_threads.back());
1787
1788 Status tracing_error = NotifyTracersOfNewThread(thread.GetID());
1789 if (tracing_error.Fail()) {
1790 thread.SetStoppedByProcessorTrace(tracing_error.AsCString());
1791 StopRunningThreads(thread.GetID());
1792 } else if (resume)
1793 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1794 else
1795 thread.SetStoppedBySignal(SIGSTOP);
1796
1797 return thread;
1798 }
1799
GetLoadedModuleFileSpec(const char * module_path,FileSpec & file_spec)1800 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1801 FileSpec &file_spec) {
1802 Status error = PopulateMemoryRegionCache();
1803 if (error.Fail())
1804 return error;
1805
1806 FileSpec module_file_spec(module_path);
1807 FileSystem::Instance().Resolve(module_file_spec);
1808
1809 file_spec.Clear();
1810 for (const auto &it : m_mem_region_cache) {
1811 if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1812 file_spec = it.second;
1813 return Status();
1814 }
1815 }
1816 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1817 module_file_spec.GetFilename().AsCString(), GetID());
1818 }
1819
GetFileLoadAddress(const llvm::StringRef & file_name,lldb::addr_t & load_addr)1820 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1821 lldb::addr_t &load_addr) {
1822 load_addr = LLDB_INVALID_ADDRESS;
1823 Status error = PopulateMemoryRegionCache();
1824 if (error.Fail())
1825 return error;
1826
1827 FileSpec file(file_name);
1828 for (const auto &it : m_mem_region_cache) {
1829 if (it.second == file) {
1830 load_addr = it.first.GetRange().GetRangeBase();
1831 return Status();
1832 }
1833 }
1834 return Status("No load address found for specified file.");
1835 }
1836
GetThreadByID(lldb::tid_t tid)1837 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1838 return static_cast<NativeThreadLinux *>(
1839 NativeProcessProtocol::GetThreadByID(tid));
1840 }
1841
GetCurrentThread()1842 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() {
1843 return static_cast<NativeThreadLinux *>(
1844 NativeProcessProtocol::GetCurrentThread());
1845 }
1846
ResumeThread(NativeThreadLinux & thread,lldb::StateType state,int signo)1847 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1848 lldb::StateType state, int signo) {
1849 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1850 LLDB_LOG(log, "tid: {0}", thread.GetID());
1851
1852 // Before we do the resume below, first check if we have a pending stop
1853 // notification that is currently waiting for all threads to stop. This is
1854 // potentially a buggy situation since we're ostensibly waiting for threads
1855 // to stop before we send out the pending notification, and here we are
1856 // resuming one before we send out the pending stop notification.
1857 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1858 LLDB_LOG(log,
1859 "about to resume tid {0} per explicit request but we have a "
1860 "pending stop notification (tid {1}) that is actively "
1861 "waiting for this thread to stop. Valid sequence of events?",
1862 thread.GetID(), m_pending_notification_tid);
1863 }
1864
1865 // Request a resume. We expect this to be synchronous and the system to
1866 // reflect it is running after this completes.
1867 switch (state) {
1868 case eStateRunning: {
1869 const auto resume_result = thread.Resume(signo);
1870 if (resume_result.Success())
1871 SetState(eStateRunning, true);
1872 return resume_result;
1873 }
1874 case eStateStepping: {
1875 const auto step_result = thread.SingleStep(signo);
1876 if (step_result.Success())
1877 SetState(eStateRunning, true);
1878 return step_result;
1879 }
1880 default:
1881 LLDB_LOG(log, "Unhandled state {0}.", state);
1882 llvm_unreachable("Unhandled state for resume");
1883 }
1884 }
1885
1886 //===----------------------------------------------------------------------===//
1887
StopRunningThreads(const lldb::tid_t triggering_tid)1888 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1889 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1890 LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1891 triggering_tid);
1892
1893 m_pending_notification_tid = triggering_tid;
1894
1895 // Request a stop for all the thread stops that need to be stopped and are
1896 // not already known to be stopped.
1897 for (const auto &thread : m_threads) {
1898 if (StateIsRunningState(thread->GetState()))
1899 static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1900 }
1901
1902 SignalIfAllThreadsStopped();
1903 LLDB_LOG(log, "event processing done");
1904 }
1905
SignalIfAllThreadsStopped()1906 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1907 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1908 return; // No pending notification. Nothing to do.
1909
1910 for (const auto &thread_sp : m_threads) {
1911 if (StateIsRunningState(thread_sp->GetState()))
1912 return; // Some threads are still running. Don't signal yet.
1913 }
1914
1915 // We have a pending notification and all threads have stopped.
1916 Log *log(
1917 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1918
1919 // Clear any temporary breakpoints we used to implement software single
1920 // stepping.
1921 for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1922 Status error = RemoveBreakpoint(thread_info.second);
1923 if (error.Fail())
1924 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1925 thread_info.first, error);
1926 }
1927 m_threads_stepping_with_breakpoint.clear();
1928
1929 // Notify the delegate about the stop
1930 SetCurrentThreadID(m_pending_notification_tid);
1931 SetState(StateType::eStateStopped, true);
1932 m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1933 }
1934
ThreadWasCreated(NativeThreadLinux & thread)1935 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1936 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD);
1937 LLDB_LOG(log, "tid: {0}", thread.GetID());
1938
1939 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1940 StateIsRunningState(thread.GetState())) {
1941 // We will need to wait for this new thread to stop as well before firing
1942 // the notification.
1943 thread.RequestStop();
1944 }
1945 }
1946
SigchldHandler()1947 void NativeProcessLinux::SigchldHandler() {
1948 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS));
1949 // Process all pending waitpid notifications.
1950 while (true) {
1951 int status = -1;
1952 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, -1, &status,
1953 __WALL | __WNOTHREAD | WNOHANG);
1954
1955 if (wait_pid == 0)
1956 break; // We are done.
1957
1958 if (wait_pid == -1) {
1959 Status error(errno, eErrorTypePOSIX);
1960 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error);
1961 break;
1962 }
1963
1964 WaitStatus wait_status = WaitStatus::Decode(status);
1965 bool exited = wait_status.type == WaitStatus::Exit ||
1966 (wait_status.type == WaitStatus::Signal &&
1967 wait_pid == static_cast<::pid_t>(GetID()));
1968
1969 LLDB_LOG(
1970 log,
1971 "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}",
1972 wait_pid, wait_status, exited);
1973
1974 MonitorCallback(wait_pid, exited, wait_status);
1975 }
1976 }
1977
1978 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1979 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
PtraceWrapper(int req,lldb::pid_t pid,void * addr,void * data,size_t data_size,long * result)1980 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1981 void *data, size_t data_size,
1982 long *result) {
1983 Status error;
1984 long int ret;
1985
1986 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE));
1987
1988 PtraceDisplayBytes(req, data, data_size);
1989
1990 errno = 0;
1991 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1992 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1993 *(unsigned int *)addr, data);
1994 else
1995 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1996 addr, data);
1997
1998 if (ret == -1)
1999 error.SetErrorToErrno();
2000
2001 if (result)
2002 *result = ret;
2003
2004 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
2005 data_size, ret);
2006
2007 PtraceDisplayBytes(req, data, data_size);
2008
2009 if (error.Fail())
2010 LLDB_LOG(log, "ptrace() failed: {0}", error);
2011
2012 return error;
2013 }
2014
TraceSupported()2015 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() {
2016 if (IntelPTManager::IsSupported())
2017 return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"};
2018 return NativeProcessProtocol::TraceSupported();
2019 }
2020
TraceStart(StringRef json_request,StringRef type)2021 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) {
2022 if (type == "intel-pt") {
2023 if (Expected<TraceIntelPTStartRequest> request =
2024 json::parse<TraceIntelPTStartRequest>(json_request,
2025 "TraceIntelPTStartRequest")) {
2026 std::vector<lldb::tid_t> process_threads;
2027 for (auto &thread : m_threads)
2028 process_threads.push_back(thread->GetID());
2029 return m_intel_pt_manager.TraceStart(*request, process_threads);
2030 } else
2031 return request.takeError();
2032 }
2033
2034 return NativeProcessProtocol::TraceStart(json_request, type);
2035 }
2036
TraceStop(const TraceStopRequest & request)2037 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) {
2038 if (request.type == "intel-pt")
2039 return m_intel_pt_manager.TraceStop(request);
2040 return NativeProcessProtocol::TraceStop(request);
2041 }
2042
TraceGetState(StringRef type)2043 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) {
2044 if (type == "intel-pt")
2045 return m_intel_pt_manager.GetState();
2046 return NativeProcessProtocol::TraceGetState(type);
2047 }
2048
TraceGetBinaryData(const TraceGetBinaryDataRequest & request)2049 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData(
2050 const TraceGetBinaryDataRequest &request) {
2051 if (request.type == "intel-pt")
2052 return m_intel_pt_manager.GetBinaryData(request);
2053 return NativeProcessProtocol::TraceGetBinaryData(request);
2054 }
2055